
Eliminating Misconfiguration and Privilege
Escalation in Docker Images

MSc Research Project

Cloud Computing

Adarsh Sharma
Student ID: 20140207

School of Computing

National College of Ireland

Supervisor: Divyaa Elango

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Adarsh Sharma

Student ID: 20140207

Programme: Cloud Computing

Year: 2021

Module: MSc Research Project

Supervisor: Divyaa Elango

Submission Due Date: 16th December 2021

Project Title: Eliminating Misconfiguration and Privilege Escalation in
Docker Images

Word Count: 6835

Page Count: 18

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th December 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Eliminating Misconfiguration and Privilege
Escalation in Docker Images

Adarsh Sharma
20140207

Abstract

Containerization is indeed a type of virtualization of the operating system in
which programs operate although sharing the equivalent operating system in separ-
ated user zones classified as containers. Docker as a technology is very efficient and
effective in the field of information technology security. In this research project we
have analysed that This study gives proof of the same, as well as the significance
of few more benchmarks that must be implemented. Furthermore, two tests are
carried out to offer insight into the reliance on certified images which gets imported
or pulled using Dockerhub.This project recommends an architecture that adds an
explicit level of protection before image distribution. Anchore Engine is the re-
commended architecture’s instead of Clair and other tools to analyse the Docker
images. Alongside proof, a comprehensive examination of the Docker images on the
Dockerhub is presented. On the suggested methodology, hundred images collected
randomly are tested, half of which are legitimate image through Dockerhub whereas
the remaining fifty are unverified. For the privilege escalation attack part we carried
out in which local host which contains an Ubuntu operating system was attacked
due to misconfigurations. Using the grounds of the trials, the security effectiveness
of docker as a technologies is delivered approaching the end of the research project.

1 Introduction

Considering the advancement of technologies in virtualisation throughout the last decade,
the need for containerization has become apparent. Containerization based on containers
has increased in acceptance as a result of the advantages it offers against traditional VM’s
(virtual machines) through hypervisors. In compared to virtual computers, container
technology provides incredibly light-weight and need very little boot-up time interval.
Liu and Zhao (2014) and Sultan et al. (2019).Containers, due to their minimal weight,
take advantage of the performance need and allows developers to construct and deliver
programs in a timely manner in CI/CD model (Continuous Integration/Continuous De-
livery).Docker is one of the market experts in container orchestration technology. This
handles resource optimization including add-ons to activities such as fast development,
testing, and deployment Brady et al. (2020). As an exceptional microservice technology,
it inherited several benefits but also has some cyber security flaws. Isolation is a key
problem across most technological fields and industries. Containerization was nowhere
so promising than classical virtualization built on hypervisors. Each virtual machine
obtains its essential application-related services through the VM kernel, meanwhile con-
tainers communicate about resources as well as their requirements among the container

1

as well as the host kernel. This highlights the security problems on its own since the
amount of hurdles an attacker must overcome in regards of VM is greater, however con-
tainers communicate straightforwardly with the host kernel, making the host computer
susceptible. Sultan et al. (2019). Public repositories could be used to obtain a parent
Docker image (push and pull). Dockerhub being the most widely used. It cannot be
assured that those source images posted on Dockerhub seem to be totally legal, secure
to use, plus free of vulnerabilities. Liu and Zhao (2014). In a deliberately motivated
condition, a person would purposefully generate an image containing vulnerabilities or
insert a misconfigured and malicious program. Import of that kind of an image form
the repository might provide the attacker with simple loophole access using Trojan or
equivalent infections Oya et al. (2016).The existence of these backdoors within operat-
ing containers might provide the intruder multi-level/layer accessibility to the container,
resulting to a potential example of privilege escalation. Whereas if root of any computer
is penetrated through any of those containers, then attacker may be able to corrupt
the server of docker engine , which is in charge of managing the clusters of established
containers Liu and Zhao (2014). This investigation will look at examples of Privilege
Escalation including the identification for misconfigured (vulnerable) images that leads
to a susceptible linux environment.

Docker’s official and verified images on the Docker Hub repositories contain a huge
variety of vulnerabilities, those are detailed in the evaluation portion of this study. Static
vulnerability assessment technologies are widely available on the marketplace. Clair and
Anchore Engine being two well-known examples. These aid in the evaluation of docker im-
ages for existing CVE vulnerabilities. Our primary system employed in this project, An-
chore Engine, is competent of generating static vulnerability evaluation findings. It would
also deliver an exceptionally efficient policies enforcement engine that can be tailored to
meet specific compliance requirements. Privilege escalation threats could be performed
out effectively by leveraging vulnerabilities somewhere at applications or kernel levels
of either Linux server Zhong and Liu (2020). When a container installed on a linux
host is penetrated by enhanced privileges, the whole docker engine server including host
computer may be affected. This study demonstrates the prevalence of such exploitation,
which is a famous example of privilege escalation.

We would just be enabled to filter out all the hazardous pictures subsequent to their
deployment as operational containers somewhere at conclusion of the study. This study
also exposes the potential of a misconfiguration scheme, which might contribute to a
privilege escalation threat on the host systems during container deployments.

2 Research Questions

• What actions may be done to safeguard the Docker image against attacks such as
Privilege Escalation?

• How can unsafe Docker images containing security problems can be prevented from
being published into public repositories such as Docker Hub?

This study aims to improve Docker security through the usage of the suggested Auto-
matic Image Analyzer (AIA). Even before of deploying images within the operational
environment, a static vulnerability evaluation must be performed. AIA is mostly powered

2

by the Anchore Engine. The tool used Anchore Engine is indeed a static vulnerability
evaluation tool that uses CVE (Common Vulnerabilities Exposures) ratings to determ-
ine vulnerabilities. Following the satisfactory conclusion of this research, installations
into production settings would be entirely based on CVE (Common Vulnerabilities and
Exposures) assessments.

3 Related Work

This related work part is structured into many pieces. The majority of the analysis
has been done in the containerisation sector. The very first element of literature review
is an overview of Docker’s architecture design. The main focus is on ”C-groups” and
”Namespaces”, who are in charge of general security issues isolating in docker. The later
part offers information regarding the study done on Linux privilege escalation threats,
and the final chapter is an overall assessment of the studies, as well as drawbacks and
areas for further research.

3.1 Docker C-groups and Namespaces

Containerization methods have been accessible for a long time through Linux. Docker as
a technologies first appeared in 2013, whereby it dominating the worldwide containeriz-
ation and deployments industries. In practice, the use cases of containers against virtual
machines is determined by a variety of requirements-related criteria. Docker constantly
operates on the basis of a shared responsibilities approach with its hosts, in which it
distributes its resources to the kernel that hosts it.This phenomenon creates a security
concern, as safeguarding the hosts plus docker as just a platform is mutually critical in
terms of cyber security. Sultan et al. (2019) Shameem Ahamed et al. (2021). Cgroups
Namespaces were indeed two kernel features that are accountable for the entire security
as well as isolation of container techniques.

Cgroups are also known as Cgroups. They are the initial characteristic. Cgroups seem
to be in charge of limiting the resources available to containers. This includes system
storage, CPU run-time, network connectivity, and input/output operations. Cgroups
provide as a check against a singular container’s excessive consumption of resources.Sultan
et al. (2019) had also published significant research on Control groups and namespaces.
C-groups typically store a variety of system information.

Namespaces are the kernel’s second possible functionality. They were responsible for
the isolation of assets over containers. Most functionality, from file systems to procedures
and domain names, are separated by namespaces.Binding of Containersis one of the
tasks of namespaces, that also include the separation of container-related activities from
neighbouring containers or the hosts Operating System. Namespaces are the functionality
in charge of offering deployment containers unique isolated root directories. Table 1 lists
the many types of namespaces accessible in Linux. Amontamavut et al. (2012) Seo et al.
(2014).

3.2 Docker Engine

Docker engine, as stated in the canonical literature, is a lightweight as well as transport-
able packaging technology that depends on container-based virtualization. It is indeed
a client-server program made up of three primary components. This is also referred as

3

Figure 1: Type of Namespaces

a daemon process, and this is commonly utilized by the docker operation. It is also in
charge of a command line interfaces, which is in charge of managing the whole Docker
clients Liu and Zhao (2014). The third element is the REST API, that is utilized for
communicating from the daemon client. Docker engine objectives include sorting docker
images onto many layers such as container layer and base layer, that must possess regu-
lated rights of read/write and read only privilege.

3.3 Docker Image

Docker images are the templates that include the configuration data needed to install a
container. Docker engine is required for container installation via docker images along
with container management across a host system. Docker images contain data needed
by middleware, network setup, applications, operating system files, and library. The
authors of the study, Sultan et al. (2019), provided a comprehensive analysis of docker
images and indeed the docker engine.These are various techniques for creating a Docker
image, and the most common of which are both interactive approach as well as the
Docker file approach. The interactive technique allows the admins to manually modify
a configuration of widely accessible docker images through repositories. The Docker file
approach allows the administrator to generate a file (Docker image file) from beginning.
Table 2 offers a list of the most significant commands/instructions required in the docker
file during container setting.

3.4 Privilege Escalation

Privilege escalation threats are frequently caused by namespace incursions, which are
a fundamental Linux characteristic designed to protect the operating system from such
assaults. Such attacks target either the application domain or the kernel layer of the
os. Processes space technologies might be used to protect against application-layer priv-
ilege escalation assaults. The defense versus kernel-layer privilege escalation assaults is
fairly difficult since it requires the attack to be divided into two distinct groups. The
first involves privilege escalation through control-data threats, while the second involves
privilege escalation using non-control groups assaults. According to Sinha et al. (2020),
this assault on kernel controlling data is based on memory degradation of the kernel’s
flow of data, wherein tainted memory is redirected in accordance with the malicious
code introduced by the attackers, which was previously characterized as a code injection

4

Figure 2: Commands

assault.These attacks might be mitigated by using Supervisory Mode Execution Preven-
tion (SMEP) as well as Privileged Execute Never (PXN). The following sort of attack
exploits a memory corruption vulnerabilities, allowing tampering with security-critical
content without disrupting the control flow; similar attacker exploits the kernel by using
non-control data. Such attacks are extremely risky since they mess with sensitive kernel
data structures including directives. There are several sorts of mitigation strategies util-
ized to remove the dangers of each of the aforementioned categories of attacks, however
Sinha et al. (2020) provide one of the distinct ways. The approach’s main focus is on log
monitoring and assessment. A log file includes detailed information on the health of the
machine (software, hardware, and network-based jobs). Tasci et al. (2018) investigation
is unique in that it discusses efficiency using a method centered on automatic pattern
recognition algorithms. It eliminates the requirement for manual analysis of log records
to seek for evidence of privilege escalation actions. The method provided in the study
Teplyuk et al. (2020), ultimately contributes to the strengthening of SElinux’s kernel
security protocol. The technique results in a 1 percent overhead, making it significantly
more efficient compared to existing security applications. Using Linux, task space pro-
tection technologies might be used to guard against application-layer privilege escalation
threats.

3.5 Summary

In the research of Sultan et al. (2019),suggested model spans host to containers and vice-
versa case situations, with an emphasis on applications security after deployment. The
authors have identified 15 potential vulnerabilities that might lead to several types of
attacks, as well as an outline of mitigating. Brady et al. (2020) explain the common
constraints of static vulnerability analysis and different add-on dynamic security evalu-
ation products. These advantages are presented and shown by testing using the tools like
Anchore Engine and Clair implemented on the AWS infrastructure. The researchers have

5

described the whole CI/CD process, confirming Docker security issues across the Soft-
ware development life cycle also known as SDLC. Rangnau et al. (2020) have presented a
Docker security architecture.This framework could scan pictures for static vulnerabilities.
The authors have developed a malevolent prediction module built on machine learning
techniques. This modules is capable of predicting and mitigating unpredictable threats.
Provisions are in place to monitor IP/DNS inquiries as well as resource use for changes
and fast reaction. ? study highlights the relevance of Cgroups and proposes a method
to mitigate the impact of DDOS using control groups. Therefore order to decrease cost,
Linux security mechanisms are not used. Total reliance tries to revolve around the cgroup
mechanism, resulting in increased efficiency. Several of the four approaches employed in
the study is focused on Java vulnerabilities, while the others are centered on CPU load
usage. N et al. (2015) have presented a unique diagnostics system solution. This authors’
suggested approach may inspect docker images before and after they are pulled from
DockerHub’s open repo. Clair, a static vulnerabilities detecting utility/tool, serves as the
system’s foundation. There really are various drawbacks in the proposed approach, one of
which being the preference for static testing methods over dynamic options. On the other
hand, Clair is employed as the system’s backbone, despite the fact that it lacks commer-
cial sponsorship and therefore does not aid in tight compliance, policy administration, or
implementation.

3.6 Research Void

Containers used in operational contexts are incredibly important. Administrators in
charge of deployments may use Docker certified or authorized images provided on Docker-
Hub. This investigation demonstrates the prevalence of vulnerabilities including exploits
within official images. Gholami et al. (2021) and Rad et al. (2015) offered alternative
ways for partially comparable image studies, however this research includes a dependable
methodology as well as policy enforcement for conformance.The anchore engine tool is
the key mechanism employed in this research for vulnerability identification and analysis.
Several studies, notably Brady et al. (2020) and Fadil et al. (2020), have employed a
static vulnerability detection approach named Clair. This tool Clair does not provide
commercial assistance and could not be utilized to apply specific deployment procedures,
making it rather unstable. This study also presents the existence of a misconfiguration
schema that might be utilized to launch a privilege escalation hack on the hosted linux
computer.

4 Methodology

The Docker image serves as the foundation for each container that is deployed. This
image needs be appropriately configured and adhere to the necessary regulations. Some
of the general recommended practices for Docker image compliance are as follows:

• To mitigate potential privilege assaults, include a user tag with in dockerfile: Through
default, the system implements the container with root privileges, which is not always
necessary. This introduces an unneeded risk in terms of privilege escalation.

6

Figure 3: Limitations over approach

7

• Unless absolutely necessary, avoid using large (in size) and prominent Dockerhub
images: Another reason for this is that not all of the library and system functions given
by the official docker images on DockerHub are required.

• Constantly enable contents trust to prevent pulling unverified photos: This minim-
izes, but does not eliminate, the danger of pulling susceptible images.

Ahead to deployment, the integrity of each picture must be confirmed. This analysis
aids in evaluating the image’s integrity before to dissemination. This AIA (Automatic
Image Analyzer) suggested in this study is in charge of correction of image weaknesses
or exploits. This reduces the danger of deploying a vulnerable image throughout the op-
erational environment. AIA is built on the anchore engine, that can inspect and analyze
docker images. Those images may be found in either online repositories example Docker-
Hub or local machine also known as local repository. There seem to be several conditions
for establishing the AIA, those are discussed in the next section, design requirements.
AIA also interfaces with the public CVE database, which is available online. It provides
a collection of entries including facts on current vulnerabilities and hacks. Several cyber
security solutions use these entries all around the world. CVE entries are also utilized in
the National Vulnerability Database of the United States (NVD). AIA has two more small
modules that aid in the evaluation of the output collected. These sections also include
policy enforcement component and the outcome management component. There are nu-
merous methods for managing results, among the most user-friendly being the usage of
spreadsheets (Google Sheets or Microsoft Excel). In contrast, this Policy enforcement
modules allows users to determine the requirements for compliance. In each business,
there are various general instruments used for policy administration. Anchore engine
may likewise be utilized to do so using value - adding customizations, as can YAML
scripting. AIA may analyze any Docker image, however for this study, images from open
repo of DockerHub are being used. It is a popular web repository/library for managing
Docker images throughout the Globe. The docker images can be classified into below
mentioned category on Docker hub.

• Verified Images- These are the images which are published by the verified source.

• Official Images- These are the images which are official and published by Docker
itself.

• Generic Images- These are the images which are neither published by Docker nor
by any verified source. These are uploaded by any user who have Dockerhub account.

Vulnerabilities as well as hacks might be found in many of the DockerHub images.
Throughout this study, the suggested AIA is used to assess all sorts of images from open
repo of DockerHub. Finally, this study sheds light on the implications of Docker Image
misconfiguration on some kind of Linux-based infrastructure. The assessment portion of
this research contains information regarding the requirements and the complete experi-
ment. In a nutshell, the exploit would be carried out on a locally produced Dockerfile
that was misconfigured but also used a parent image through DockerHub. This would
undermine the host machine’s/root server’s access, resulting in an instance of privilege
escalation.

8

5 Design Specification

This part is organized into several sections, each depending on the solution architecture’s
primary components. Every subsection will provide a summary of the particular module
or component as well as its advantages over comparable choices accessible. Figure 5 de-
picts an architectural layout of the suggested solution. The following are key aspects of
the approaches.

• Open resources available online.
- Docker Hub Repository and CVE Database

• Implementation on Local System.
- Docker Engine - AIA (Automatic Image Anylyzer comprising of result management

and policy making modules.)

Please find the Architectural diagram of the proposed study which is implemented.

Figure 4: Architecture Diagram

5.1 Open resources available online

In this section there are two main components which are available online and they are
open for everybody. One is Docker Hub and the other one is CVE database.

As previously stated in this project, DockerHub is indeed the leading internet re-
pository that handles the worldwide availability of container images. Similarly rivals in
market are offering comparable products to DockerHub include Red Hat Quay, Amazon
ECR which is a prominent Container Service offered by Amazon, JFrog Artifactory, and
others. The primary rationale for adopting DockerHub throughout this study is its wide-
spread appeal and the fact that it is the largest public source providing container images.

CVE database which is also known as Common Vulnerability Exposure is indeed
an MITRE Corporation publication presenting vulnerability details in open-source or
commercially available software. CVE identifiers were widely used in the United States

9

National Vulnerability Database as well as the SCAP (Security Conttent Automation
Protocol).

5.2 Implementation on Local System

In the local machine user needs to install Docker and Docker compose before configure
Docker Engine. Docker Engine (Daemon) primarily designed to handle images and con-
tainers once they have been deployed. This is indeed a client-server strategy in which the
daemon process operates as a server and the Docker CLI serves as a client. Architectural
diagram of Docker Engine is given below in figure 6.

Figure 5: Docker Engine Diagram

Automatic Image Analyser examines image metadata through Docker Engine. As
mentioned in the last section, AIA is built on the Anchore Engine. We need to install
Docker-Compose as it is a critical requirement for effective anchore engine deployment.
Docker Compose allows users to combine many containers to operate a certain application.
Anchore Engine and database PostGRE SQL, which anchore uses, are both contained
in two configurable containers. Manually inputting other value-added solutions is also
conceivable, based on their Docker-compose setup file. Figure 7 depicts a flow diagram of
the AIA modules. For Scripting Python is used which is automating the module of AIA,
assisting users through the full image analysis phase.This module allows users to view
the list of images currently available on the host machine, as well as add or remove new
or any existing images for evaluation. The program also permits users to examine the
results of the analysis for vulnerabilities. An assessment portion of this research provides
a comprehensive review of the data received from the numerous tests performed. Finally,
policy enforcement is conceivable in terms of compliance. To just be authorized for
deployment, each image must follow the set of criteria defined in the policy enforcement
modules. This allows users to construct a barrier that prohibits them from deploying

10

malformed images that include abnormalities and vulnerabilities.

Figure 6: AIA Diagram

6 Implementation

This part focuses on overall implementation of 2 operations carried out in this study.
The very first experiment reports on the outcomes of testing performed on hundred
Docker images using the suggested framework. Mentioned hundred Docker Images are
taken from DockerHub and comprise 50 recognized and 50 unverified images. The other
experiment, on the other hand, includes an illustration of a privilege escalation assault
on the host system through a misconfigured Docker containers. The next chapter of
assessment includes all of the findings and a detailed overview of both studies. Table
below lists all of the specifications related to hardware and software that were used in
both research. The status of the local computer and the virtual machine was therefore
statically maintained throughout the duration of the investigations. Python 3.6 has been
applied for automating AIA. Excel analyzes data using MS Office scripts (connected to
the result management component).

11

Figure 7: Specifications

7 Evaluation

Each chapter offers a comprehensive examination of the results obtained through both
studies. This part is further separated into two segments, with experiment 1 focusing on
AIA examination of 100 Docker hub images. The next section provides information on
the privilege escalation exploit carried out on the host system (ubuntu 20.04)

7.1 Evaluation over validated and non-validated images

Under this part, the suggested infrastructure is tested against hundred Docker images.
Apparently DockerHub is used to download all the hundred images eligible for evaluation.
Half of the total images are authorized Docker images provided by Docker Inc, with the
other being non-verified common images. AIA is entirely accountable for all 100 evalu-
ations. The result managing module aids in the study of the outcome in relation to the
five kinds of vulnerabilities. These classifications are dependent on the intensity of the
NVD:

• High
• Medium
• Low
• Negligible or Unknown

Figure 11 shows an investigation of the top 20 images each from 100 examined. Fig-
ures 9 and 10 provide graphical representations of authenticated 50 Docker images and
unauthenticated rest half Docker images.

7.1.1 Verified Image

Figure 9 shows a thorough breakdown of the tests run on 50 validated images. Those are
Docker-Hub certified images chosen at random. Figure 11 shows exemplary test results
in yellow colour for all confirmed photos, beginning with image ”owncloud” having the

12

largest proportion of vulnerabilities discovered (856). The average count of vulnerability
in all fifty docker images is 226; the least is 1. This owncloud image contains the most
’High severity’ risks (129). The average number of ’High severity’ dangers amongst 50
images is 5. Considering 50 images, the average of unknowns, insignificant, low, and
considerable dangers is 16, 166, 8, as well as 29, respectively.

7.1.2 Non-Verified Image

Figure 10 shows a thorough breakdown of the testing run across fifty non-verified im-
ages. All those are Docker-Hub images chosen at random. Figure 11 shows sample
test outcomes in green colour for all confirmed images, beginning with image named
pasnsxt/pythontasks containing the largest amount of vulnerabilities discovered (2092).
The average security vulnerabilities throughout all 50 images is 266, having 0 being the
minimum. The images of pasnsxt/python-tasks contain the most ’High severity’ vulner-
ability counted (2092). The average number of ’High severity’ dangers among 50 docker
images is ten. Considering 50 images, the aggregate of unknown, insignificant, low, and
medium dangers is 23, 122, 42, as well as 67, respectively.

7.2 Docker Privilege Escalation Exploit

A realtime privilege escalation exploit was carried out over/via Docker container facilities
in this research. Misconfigurations cause such a phenomenon, with the major focus
being on getting unspecified rights. The whole attack flow is detailed from both an
administrator as well as an attacker’s perspective in this portion of the report.

7.2.1 Role of Admin

When a fresh team worker requires access to specific container services, an administrator
must enroll the individual to Docker group. Becoming a member of such group permits
you to use every docker service with specific predefined permissions. When a new worker
we are considering him as attacker, in this example Ankit, is enrolled to the Docker
group, Ankit obtains basic deploying and access capabilities. It is crucial to remember
that Ankit does not have sudo privileges on his local system.

7.2.2 Role of Attacker

Ankit’s accessibility to Docker services is granted. Immediately Ankit creates a blank
directory at /home/ankit/. One such directory is critical to the overall plot. Ankit will
then create a Dockerfile (customized Docker image) using the worst Docker techniques
and misconfigurations. The following are the levels of the docker container files:

- FROM httpd layer is utilized to import the image of apache with faults.

- ENV (dollar sign)WORKDIR layer is used to set the variable for the environment.

- RUN mkdir -p WORKDIR using this ankit can run the directory

- Using Volume with the directory to mount the layer with volume on variable declared.

13

Figure 8: Docker Verified Image

14

Figure 9: Docker Non-Verified Image

15

Figure 10: Study results for the top 20 Verified and Unverified Images

16

-WORKDIR (dollar sign)WORKDIR with this the directory is alligned.

This attacker has made several irregularities in the above created image. With re-
gard to the enforcement of docker compliance, neither of the best procedures have now
been implemented. The Methodology segment explains the general principles that must
be followed prior to Docker installations. Ankit runs the imaged using the same direct-
ory generated before (/home/ankit/Name Directory) after establishing a misconfigured
images with the following instruction: ” Docker build -t exploit” is an abbreviation for
Exploit tag. Which allows Ankit to create the misconfigured container that is located
in the same directory. Following the construction of the container, Ankit launches it by
staging the volume at the current desired directory, that results in the transferring of
the experimental root systems of the host towards the container using : docker run-v
/:/Directory -it exploit /bin/bash.

The study’s results are unexpected. Phase one of this strategy provides Ankit imme-
diate access to the container’s root. Granting users container root capabilities is not a
great practice. The USER layer barrier should be specified with in Dockerfile to prevent
this.

Phase two involves replicating the host computer’s root directory inside the container.
Because Ankit has the container’s administrative rights, he has access to all sudoers files
in the clone as root. Ankit now has sudo privilege on the host system and therefore can
sign in as root after quitting the container.

8 Conclusion and Future Work

The aforementioned study addressed the suggested research questions. Regardless of
any limits in the suggested architecture’s efficiency, outcomes were produced. Although
this research has certain drawbacks, including one that being the inherent disadvantage
of static testing versus dynamic analysis. In terms of future work, the AIA modules
employed in this study may be able to discover vulnerabilities predicated on miscon-
figuration tendencies or anomalous behaviors utilizing machine learning algorithms. If
dynamic analysis is feasible, AIA module efficiency and dependability would rise.

References

Amontamavut, P., Nakagawa, Y. and Hayakawa, E. (2012). Separated linux process
logging mechanism for embedded systems, 2012 IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pp. 411–414.

Brady, K., Moon, S., Nguyen, T. and Coffman, J. (2020). Docker container security in
cloud computing, 2020 10th Annual Computing and Communication Workshop and
Conference (CCWC), pp. 0975–0980.

Fadil, I., Saeppani, A., Guntara, A. and Mahardika, F. (2020). Distributing parallel vir-
tual image application using continuous integrity/continuous delivery based on cloud
infrastructure, 2020 8th International Conference on Cyber and IT Service Manage-
ment (CITSM), pp. 1–4.

17

Gholami, S., Khazaei, H. and Bezemer, C.-P. (2021). Should you upgrade official docker
hub images in production environments?, 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER),
pp. 101–105.

Liu, D. and Zhao, L. (2014). The research and implementation of cloud computing
platform based on docker, 2014 11th International Computer Conference on Wavelet
Actiev Media Technology and Information Processing(ICCWAMTIP), pp. 475–478.

N, P. E., Mulerickal, F. J. P., Paul, B. and Sastri, Y. (2015). Evaluation of docker
containers based on hardware utilization, 2015 International Conference on Control
Communication Computing India (ICCC), pp. 697–700.

Oya, M., Shi, Y., Yanagisawa, M. and Togawa, N. (2016). In-situ trojan authentication for
invalidating hardware-trojan functions, 2016 17th International Symposium on Quality
Electronic Design (ISQED), pp. 152–157.

Rad, P., Muppidi, M., Agaian, S. S. and Jamshidi, M. (2015). Secure image processing
inside cloud file sharing environment using lightweight containers, 2015 IEEE Interna-
tional Conference on Imaging Systems and Techniques (IST), pp. 1–6.

Rangnau, T., Buijtenen, R. v., Fransen, F. and Turkmen, F. (2020). Continuous security
testing: A case study on integrating dynamic security testing tools in ci/cd pipelines,
2020 IEEE 24th International Enterprise Distributed Object Computing Conference
(EDOC), pp. 145–154.

Seo, K.-T., Hwang, H.-S., Moon, I.-Y., Kwon, O.-Y. and Kim, B.-J. (2014). Performance
comparison analysis of linux container and virtual machine for building cloud, pp. 105–
111.

Shameem Ahamed, W. S., Zavarsky, P. and Swar, B. (2021). Security audit of docker
container images in cloud architecture, 2021 2nd International Conference on Secure
Cyber Computing and Communications (ICSCCC), pp. 202–207.

Sinha, N., Sundaram, M. and Sinha, A. (2020). Authorization secured dynamic privileged
escalation, 2020 International Conference on Recent Trends on Electronics, Informa-
tion, Communication Technology (RTEICT), pp. 110–117.

Sultan, S., Ahmad, I. and Dimitriou, T. (2019). Container security: Issues, challenges,
and the road ahead, IEEE Access 7: 52976–52996.

Tasci, T., Melcher, J. and Verl, A. (2018). A container-based architecture for real-time
control applications, 2018 IEEE International Conference on Engineering, Technology
and Innovation (ICE/ITMC), pp. 1–9.

Teplyuk, P., Yakunin, A. and Sharlaev, E. (2020). Study of security flaws in the linux
kernel by fuzzing, 2020 International Multi-Conference on Industrial Engineering and
Modern Technologies (FarEastCon), pp. 1–5.

Zhong, J. and Liu, W. (2020). Research on container security of paas, 2020 IEEE Inter-
national Conference on Power, Intelligent Computing and Systems (ICPICS), pp. 722–
725.

18

	Introduction
	Research Questions
	Related Work
	Docker C-groups and Namespaces
	Docker Engine
	Docker Image
	Privilege Escalation
	Summary
	Research Void

	Methodology
	Design Specification
	Open resources available online
	Implementation on Local System

	Implementation
	Evaluation
	Evaluation over validated and non-validated images
	Verified Image
	Non-Verified Image

	Docker Privilege Escalation Exploit
	Role of Admin
	Role of Attacker

	Conclusion and Future Work

