ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSCCYBETOP

Senan Behan
Student 1D:x20167601

School of Computing
National College of Ireland

Supervisor: Mr. Vikas Sahni

‘-
National College of Ireland \ National

MSc Project Submission Sheet fr(gigfg
School of Computing

Student Name: ... SeNan Behan.......oo o
Student ID: = ... X20167601 ... s s
Programme: ... MSCCYBETORP........cccceeeueee. Year: ... 2022...
Module: ... Research Projectcccocoviiiiiiiiccec e,
Lecturer: = ... ViKas Sahni ..o e
Submission Due
Date: = ... 150 AUGUSE 2022
Project Title: ... Solidity Smart Contract Testing with Static Analysis Tools ...
Word Count: ... 1711 Page Count: 14.......

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Senan Behan
Student ID: x20167601

1 Equipment

1.1 Equipment utilised

Compiling and organisation of selected smart contracts in to separate files was conducted
utilising VS Code version: 1.59.1 (user setup), Node.js: 14.16.0, V8: 9.1.269.36-electron.0,
OS: Windows NT x64 10.0.19044. The VS Code was installed on Operating System
Windows 10 Pro version 10.0.19044 Build 19044, with hardware: Lenovo Thinkpad-26 ,
Processor Intel® Core™ i7-6700HQ CPU @ 2.60Hz, 2592 Mhz, 4 Core(s), 8 Logical
Processor(s) with 32GiB RAM.

Testing of the Static Analysis tools was conducted an Ubuntu 18.04.6 LTS installed
on Dell Latitude E7250 with Processer Intel® Core™ i3-5010U CPU @ 2.10GHz, 1720Mhz,
4 Core(s), with 8GiB RAM.

Docker version 20.10.17, build 100c701, was installed on Ubuntu 18.04.6 LTS.
Please note a departure from the installation instruction resulted in utilising “yarn” as an
alternative to “npm” as the latter version experience difficulty in installation.

2 Dataset

2.1 Dataset

207 Smart Contracts were selected from two known sources, SWC Registry [1] and
Smartbugs [2]. SWC registry, a Smart Contract Weakness classification registry hosted on
GitHub under a MIT licence and maintained by smart contract developers, contains datasets
of smart contracts written in solidity which have vulnerabilities and/or fixed vulnerabilities.
The vulnerabilities are listed from SWC100 to SWC135 (at the time if writing) with
commentary and remedies concerning the vulnerability provided. The registry is based on
Common Weakness Enumeration CWE, a community-based list of software vulnerabilities.
All 117 smart contracts form the registry will be tested.

The smart contracts extracted form Smartbugs are hosted on Smartbugs GitHub
repository, a framework for analysing smart contracts. Contained within Smartbugs GitHub
repository is a dataset of solidity smart contracts sourced for testing with accompanying
comments on the location of the vulnerability within the contract. Unlike SWC, Smartbugs,

1

lists the vulnerabilities into larger category groups. Smartbugs lists 9 separate groups, of
which five relate to Solidity and four of the five were selected for testing due to the number
of smart contracts per vulnerability, which included the following vulnerabilities, Re-
entrancy, Access Control, Arithmetic and Unchecked Low-Level Checks, totalling 90
contracts. The contracts were sourced from Etherscan and other known vulnerable contracts.

3 Installation

3.1 VS Code

Install VS Code from https://code.visualstudio.com/docs?dv=win
Launch VS Code (Fig 1) and install extension Solidity for the writing and compiling of smart
contracts written in Solidity (Fig 2).

SOI|d|‘ty v0.0.125

Juan Blanco | @ 770364 | % %k %k %k % (18)

Ethereum Solidity Language for Visual Studio Code
Disable ™ Uninstall v 3%

This extension is enabled globally.

Details Feature Contributions Runtime Status

Solidity support for Visual Studio code

Visual Studio Marketplace v0.0.139 downloads 4053329 installs 770356 rating kkxkx%

Solidity is the language used in Ethereum to create smart contracts, this extension provides:

® Syntax highlighting
® Snippets

* Compilation of the current contract (Press F1 Solidity : Compile Current Solidity Contract), or F5

Fig 1: Solidity extension

) File Edit Selection View Go Run Terminal Help Swec_100_1_v.sol - sc_testing_win - Visual Studio Code

g EXPLORER rity Swec 100 7_v.sol X
> OPEN EDITORS
\/ SC_TESTING WIN

£9.4.24;

HashForEther :_l
withdrawWinnings() {

require(uint32

_sendwWinni

_sendwinnings() {
.transfer(.balance);

“ OUTLINE

Fig 2: Writing smart contracts in VS Code

3.2 Docker Images Osiris, Oyente and Slither

Setup Docker:

Remove any existence of a previous version of docker:
$ sudo apt purge docker-desktop

Installing the Docker Community Engine:
$ sudo apt-get install ./docker-desktop-<version>-<arch>.deb

$ sudo apt-get install ca-certificates curl gnupg 1sb-
release

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --
dearmor -o /etc/apt/keyrings/docker.gpg

$ echo "deb [arch=$ (dpkg --print-architecture) signed-
by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \
$ (lsb release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list

> /dev/null
$ sudo apt-get install docker-ce docker-ce-cli containerd.io docker-
compose-plugin

Detail of Docker can be seen in Fig 3.

bobby@bobby-Latitude-E7250:~5 systemctl status docker
® docker.service - Docker Application Container Engine
Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled)
Active: active (running) since Fri 2622-67-88 13:37:16 IST; 6h ago
Docs: https://docs.docker.com

Main PID: 2237 (dockerd)
Tasks: 45
CGroup: /system.slice/docker.service
L2237 Jusr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock

Fig 3: Docker installed

Docker version (Fig 4)

bobby@bobby-Latitude-E7250:~5% docker --version
Docker version 20.10.17, build 1eec7e1

bobby@bobby-Latitude-E7250:~5 I

Fig 4: Docker version

Pulling down images from docker hub https://hub.docker.com/
$ docker pull <ImageID>

Check for containers in Docker
$ docker ps -a

Search for the image ID of the test tool
$ docker image

Commence running image in docker. This will start a “container “which is a running image.
The container allows for execution of commands and functionality. Run the image as a

container in the background.
$ docker run -dit <ImageID>

Copy file containing smart contract into the container
$ docker cp <file> <ContianerID:<File>

Start container and execute commends from within the container
S docker exec -it <ContainerID> /bin/bash

Docker images “pulled” were smartbugs/osiris [3], luongnguyen/oyente [4] and
smartbugs/slither [5]. The version of Osiris , Oyente and Slither can be seen in Fig 5, Fig 6
and Fig 7.

Name: smartbugs/osiris

ID: sha256:fd8c4f2lecfaeca330252647f8326881842a3ac7abaf5e1f4e4466174de8T5615
Tags:

Size:

Created:

ID TAG SIZE COMMAND
fd8c4f2lec 2.11M1B Jbinfbash -c #(nop) COPY dir:bbf162542d6a5b4ate|

Fig 5: Osiris Image installed

Name: luongnguyen/oyente

ID: sha256:607bfccb7f8ddb868ec24365c43b3aad9acc2308T0422ef1584ab05766482743
Tags:

Size: 1.43GB

Created: Thu, ©3 May 2018 09:28:36 IST

ID TAG S COMMAND
607bfccb7f /bin/bash -c #(nop) WORKDIR foyente/

Fig 6: Oyente Image installed

Name : smartbugs/slither

ID: sha256:1e2685153d1ba38dc3cc400ec420501e8d0b29b801484c71acb51552597891c2
Tags:

Size: 322.16MB

Created: Mon, 04 Mar 2019 20:19:17 GMT

1D TAG S COMMAND
1€2685153d €MD ["/bin/sh" "-c" "/bin/bash"]

Fig 7: Slither Image installed

3.3 Lazy Docker

Organise the docker images and containers in the terminal by installing Lazydocker (Fig 8).
Version of lazydocker can be seen in Fig 9.

bobby@bobby-Latitude-E7250:~5 wget https://github.com/jesseduffield/lazydocker/releases/download/ve.8/lazydocker_0.8_Linux_x86_64.tar.gz
--2022-07-03 18:36:06-- https://github.con/jesseduffield/lazydocker/releases/download/ve.8/lazydocker_ 8.8 Linux_x86_64.tar.gz

Resolving github.com (github.com)... 140.82.121.4
Connecting to github.com (github.com)|140.82.121.4|:443... connected.

Fig 8: Installing Lazy Docker

bobby@bobby-Latitude-E7250:~% lazydocker --version
Version: 0.18.1

Date: 2022-85-11T12:14:33Z

BuildSource: binaryRelease

Commit: da650f4384219e13e0dad3de266501aa0b06859C
05: linux

Arch: amdo64

Fig 9: Lazy Docker version

Lazydocker is to organise the docker containers , however th eoperation of the containers can
still be conducted through the terminal, which is the main process this experiment utilised/.
Lazydocker was utilised as a quick reference to ascertina which containersn were running
(Fig 10).

Project - Stats - Env - Config - Top
bobby

Containers————————————————
running awesome_Llehmann .00% fdac
festive_knuth ;
peaceful_thompson
quizzical_greider
slither
Manticore
Manticore
Manticore
Manticore
Manticore

hello-world latest

luongnguyen/oyente latest
mythril/myth latest
gspprotocol/securify-usolc latest
redis latest
smartbugs/conkas latest
smartbugs/osiris latest
smartbugs/pakala latest
smartbugs/slither latest

Volumes

local d4eb®3elf2459ffc7ea578a0cd907c87463F5c41
local etherbank.sol

local f9535deb31b802fbbb1d9720eenc642e09258444

Fig 10: Lazydocker view of docker containers running

3.4 Execution of commands in Osiris, Oyente and Slither

From the terminal the smart contracts ae copied into the container as per instruction above.
Start the container in an interactive shell requires the docker exec command as above. From
within the container, commands are executed to run the test tool against the individual smart
contracts.

Search for the image (Osiris)

$ docker image

Start the container with the image ID

$ docker run -dit <ImageID>

Search for the contain identification number

$ docker ps -a

With the identified container identification number execute a function to allow interaction

with the container.
$ docker exec -it <ContainerID> /bin/bash

3.4.1 Commands in Osiris

From within the container:
root@723dela090el: ~#

Check folders in Osiris
S 1s

Utilizing the Osiris python script execute against the fill path of the location of the copied in

smart contract (Fig 11):
root@723dela090el:~# python osiris/osiris.py -s
/arithmetic/integer overflow mapping sym 1l.solsol

e1a090el:~#

N T B E L L U B A T Ry - tm el n feger_overflow_mapping_sym_1.sol

o8o o8o
. o

.0000.0 0000 0000 d8b oooo .oooO.O

("8 "888 °"883""8F '888 d8a("8

08880

INFO:root:Contract farithmetic/integer_overflow_mapping_sym_1.sol:IntegerOverflowMappingSymi:
INFO:symExec:Runni

INFO:symExec:

INFO:symExec: EVM code coverage: 98.

INFO:symExec: Arithmetic bugs: True

INFO:symExec: L> pverflow bugs: False

INFO:symExec: L> Underflow bugs: True
farithmetic/integer_overflow_mapping_sym_1.sol:IntegerOverflowMappingSymi:16:9
map[k] -= v

:symExec: L> pivision bugs: False
rsymExec: L> Modulo bugs: False
rsymExec: L> Truncation bugs: False
gnedness bugs: False
Callstack bug: False
ymEXec: Concurrency bug: False
rsymExec: Time dependency bug: False
rsymExec: Reentra b False
- 5 seconds ---

leted

3.4.2 Commands in Oyente

From within the container:
root@ed4d5cb041e79: /oyente#

Check folders in Oyente
$ 1s

Navigate into the Oyente folder to execute the python script.
$ cd oyenter
root@edd5cb041e79: /oyente/oyente#

Utilizing the Oyente python script execute against the fill path of the location of the smart in

contract (Fig 12):
root@e4d4dbcb041e79:/oyente/oyente# python oyente.py -s
/reentrancy/reentrancy insecure.sol

root@e4dscb041e79: foyente/oyente# python oyente.py -s farithmetic/arithmetic/insecure_transfer.sol

WARNING:root:You are using evm version 1.8.2. The supported version is 1.7.3

WARNING:root:You are using solc version 0.4.21, The latest supported version is 0.4.19

INFO:root:contract farithmetic/arithmetic/insecure transfer.sol:IntegerOverflowAdd:

INFO:symExec: Results

INFO: A EVM Code Coverage: 99.6%

INFO:symExec: Integer Underflow: False

INFO:symE> a Integer Overflow: True

INFO:symExec: Parity Multisig Bug 2: False

INFO:symExec: Callstack Depth Attack Vulnerability: False

INFO:symExec: Transaction-Ordering Dependence (TOD): False

INFO:symExec: Timestamp Dependency: False

INFO:symExec: Re-Entrancy Vulnerability: False

INFO:symExec: farithmetic/arithmetic/insecure_transfer.sol:18:9: Warning: Integer Overflow.

balanceOf[_to] += _value

Integer Overflow occurs if:
_value = 44369063854674067291029404066660873444229566625561754964912869797988903417852
balanceOf[_to] = 85653202831209899131921273706816539903532775246499202405936884825549521553152
balanceOf[msg.sender] = 44369063854674067291029404066660873444229566625561754964912869797988903417852

INFO:symExec: Analysis Completed

Fig 12: Oyente result after execution of command

3.4.3 Commands in Slither

Commands for Slither:

From within the container:
root@8439351fd412:/slither#

Command execute against a smart contract (Fig 13)
root@8439351fd412:/slither# slither
/unchecked low level calls/0x7a4349%9a749e59a5736efb7826ee3496a2dfd5489.s01

INFO:Detectors:

Fig 13: Partial return from Slither after execution of command

4 Vulnerabilities tested by tools

4.1 Osiris

The following are Solidity smart contract vulnerabilities detected by Osiris as determined by
previous studies [6] [7].

Assertion failure

State Dependency

Integer Overflow/Underflow
Denial of Service

Time Manipulation
Re-entrancy

4.2 Qyente

The following are Solidity smart contract vulnerabilities detected by Oyente as determined
by previous studies [6] [8] [9] [10] [11] [7] [12].

Re-entrancy

Unhandled Exceptions
Transaction Order dependency
Integer Overflow/underflow
Timestamp dependency

Tx. Order Dependence
State Dependence
Assertion failure

Freezing ether

Denial of Service

Time Manipulation

4.3 Slither

The following are document (Fig 14) Solidity smart contract vulnerabilities detectable by

Slither [13].

-1

10

"

12

13

14

15
16

30

31

Detector

shadowing-state

suicidal

uninitialized-state
unindtialized
storage

arbitrary-send

cantrolled

delegatecall
recntrancy -oth
ecrc2@-interface
incorrect-equality

lacked-cther

shadowing-abstract

canstant- functian

recntrancy -no-cth

tx-origin
unindtialized-lacal
unused-return
shadowing-builtin
shadowing-local
calls-loap
recntrancy-benign
tinestanp

assembly

constable- states

deprecated- standards

erc2@-indexed

external-functian

low-level-calls

naning-canventian

pragma

salc-versicn

wnusecd-state

What it Detects
Siate varizbles shadowing

Functions allowing amyone to destruct the
contract

Uninitialized state variables

Uninitialized storage variables

Functions that s=nd echer to arbitrary
desfinations

Controlled delegatecall destination

Reentrancy vulnerabilities (theft of ethers)
Incorrect ERC20 interfaces

Dangerous strict egqualities

Contracts that lock ether

Srate varizbles shadowing from abstract
contracs

Constant functions changing the state

Reentrancy wulnerabilities (no theft of
ethers]

Dangerous usage of tx.origin
Uninitialized local variables

Unused return valuss

Built-in symibal shadowing

Local variables shadowing

Multple calls ina loop

Banign reentrancy vulnerabilities
Dangerous usage of block.tincstamp
Azzemibly usage

Srate varizbles that could be declared
constant

Deprecated Solidity Standards
Un-indexed ERCZ0 event parameters

Public function that could be dedared as
external

Laowe lewel calls

Conformance o Solidity naming
conventons

If different pragma directives are used

Incorrect Solidiy version (< 0.4.24 or
complex pragma)

Unused state variables

Impact

Hizh

High

High

Hizh

Hizh

High

High
Madium
Medium

Medium

Medium

Medium

Medium

Medium
Medium
Madium
Laow
Lowe
Laow
Low
Laow

Informatdanal

Informatanal

Informatdanal

Informadanal

Informatdanal

Informadanal

Informatdanal

Informational

Informatdanal

Informadanal

Fig 14: Vulnerablities detected by Slither [13]

9

Confidence

High

High

High

High

Medium

Medium

Medium
High
High

High

High

Medium

Medium

Medium
Medium
Medium
High
High
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High

High

5 Testing

5.1 Implementation Testing of Tools and Dataset

The Static Analysis tools from Solidity based Smart Contracts were sourced form Docker
Hub. Each smart tool was a docker image.
Install docker Community Edition Engine from the repository as guided from the Docker
Documents. Pulling the Selected Static Analytic Tools docker images, Oyente, Slither and
Osiris. Using docker execute commands run the images as container.

To copy the smart contract, run docker detect mode “docker run -dit <image_name>

/bin/bash”. This command allows the container to run in the background so the files can be
copied into the container.

After the copying of the smart contracts to the test tool docker containers, using
terminal commands in docker, the smart contracts are individual tested. The result comprises
of the written findings from the tools onto a terminal screen. Each tool conducts the
examination differently, and the results are output according to each tool as illustrated in Fig
15, showing a true Positive result for re-entrancy vulnerability.

INFO:root:contract /reentrancy/8x941d225236464a25eb18076df7da6a91dof95e9e.sol:ETH_FUND:

INFO:symExec: == Results

INFO:symExec: Coverage: 98. 6%

INFO:symExXec: Integer Underflow: False

INFO:symExec: Integer Overflow: False

INFO:symExec: Parity Multisig Bug 2: False

INFO:symExec: Callstack Depth Attack Vulnerability: False

INFO:symExec: Transaction-Ordering Dependence (TOD): False

INFO:symExXec: Timestamp Dependency: False

INFO:symExec: Re-Entrancy Vulnerability: True <

INFO:symExec: /freentrancy/0x941d225236464a25eb18076df7da6a91def95e9e.s01:44:16: Warning: Re-Entrancy Vulnerability.
if(msg.sender.call.value(_am)()

Jreentrancy/0x941d225236464a25eb18076df7da6a91d0f95e%e.s01:47:17: Warning: Re-Entrancy Vulnerability.

TransferLog.AddMessage(msg.sender,_am,"Cashout")

INFO:symExec: Analysis Completed

Fig 15: Oytene Output sample

The above is a successful detection for the vulnerability re-Entrancy. This is atypical of a
result. However, some results can be more extensive with more output as the program iterates
through the smart contract.
However, results can be hybrid returns a seen below in Fig 16, Fig 17 and Fig 18.

The example below, the smart contract is listed with a re-entrancy vulnerability. Oyente and
Slither detect the re-entrancy vulnerability. Osiris failed to detect for re-entrancy. However,
both Oyente and Osiris detected Arithmetic Vulnerability within the re-entrancy vulnerable
smart contract which was not listed as a vulnerability.

10

5cbdd1e7s: foyente/oyented pgthon oyente.py -s [reentrancy/ i acdafbb47fblfcO85ea6
WARNIN oot:You are using evm version 1. . The supported version is 1.7.
WARNING:root:You are using solc version 0.4.21, The latest supported version is 0.4.19
INFO:root:contr: f E : 4a6bb P85eat693 89e.sol:Log:
INFO:symEXec: Results
INFO:symExec: M C Coverage:
INFO:symExec: Integer Underflow:
INFO:symExec: Integer Overflow:
INFO:symExec: Parity Multisig Bug 2:
INFO:symExec: Callstack Depth Attack Vulnerabilit
INFO:symExec: Transaction-Ordering Dependence (TOD
INFO:symExec: Timestamp Dependency:
INFO: symExec
INFO:symExec: -reentrjn B 30ce3 a6 8%e.s50l:61:5: Warning: Integer Underflow.
Message[] public His
INFO: svaxec -reentrﬂn v/ 9e.sol:61:5: Warning: Integer Overflow.
Mess
3 a6bb47fb1fc085ea669353fd8% . s0l:65:5: Warning: Integer Overflow.
function AddHEJJdgededress _adr,uint _val,string _data)
Spanning multiple lines.
Integer Overflow occurs if:
_data = 115 57098568 9E 984665640564 75840079131
INFO:symExec: ysi
INFO:root:contract E 9 : 39e.sol:PrivateBank:
INFO:symEXec: Recultc
INFO:symEXec: M Coverage:
INFO:symExec: Integer Underflow:
INFO:symExec: Integer Overflow:
INFO:symExec: Parity Multisig Bug
INFO:symExec: Callstack Depth Attack Vulnerability:
INFO:symExec: Transaction-Ordering Dependence (TOD
INFO:symExec: Timestamp Dependen
INFO:symExec: Re-Entrancy Vulnerability:
INFO:symExec: /reentrancy/ 3Bce38acdacbba7fblfco8 5 fd8%e.s0l:41:17: Warning: Re-Entrancy Vulnerability.
TransferLog.AddMessage(msg.sender)
Jreentrancy/8xb93430ce38acdatbb47fbifcoa 569 . :38:16: Warning: Re-Entrancy Vulnerability.
if(msg.sender.call.value(_a
INFO:symExec: — Anﬂlffl .ompleted

Fig 16: Oyente Output Re-entrancy Vulnerability

Fig 16 shows a TP for re-entrancy and a detection of Arithmetic vulnerability. A process is
actioned to check if the Arithmetic detection is TP or FP (see below).

11

root@723de1a®90el:~# python osiris/osiris.py -s [reentrancy/FRCEEEE{Id=kt:FlEETDEFST el EREE] fol: TPl

.000000. o8o o8o
dsp' “¥8b e o
888 888 .oo000.0 o000 0000 dBb oocco .0000.0
888 888 dss("8 ‘888 '888""8P '888 dss("8
888 888 " "v88b. 888 888 888 ""vssb.
“88b dsg8' o.)88b 888 888 888 0.)88b
"¥Y8boodsP' 8""888P' 0888Bo d888b 08880 8""888P'

INFO:root:Contract /reentrancy/0xb93438ce38ac4a6bba7fblfco85ea669353fd8%e.s0l:Log:
INFO:symExec:Running, please wait...

111 SYMBOLIC EXECUTION IMEOUT !!!

INFO: == == Results

INFO: coverage:

INFO: 8 Arithmetic bugs:

INFO:symExec: L> overflow bugs: True
/reentrancy/0xb93430ce38ac4a6bb47fb1fco85ea669353fd89e.sol:Log:50:1
contract Leog

A
freentrancy/0xb93430ce38ac4a6bb4a7fb1fco85ea669353fd8%e.sol:Log:72:9
History.push(LastMsg)

A

/reentrancy/0xb93430ce38ac4a6bb47fb1fcO85ea669353fd8%e.sol:Log:72:9
History.push(LastMsg)

INFO: xec: L. underflow bugs: False
INFO: L. pivision bugs: False
INFO: L. Modulo bugs: False
INFO: xec: L> Truncation bugs: False
INFO:symExec: L Signedness bugs: False
INFO:symExec: Callstack bug: False
INFO: g Concurrency bug: False
INFO: Time dependency bug: False
INFO:symExec: Reentrancy bug: False
INFO:symExec: - 50.2231338872 seconds ---
INFO:symExec: Analysis Completed

Fig 17: Osiris Output Re-entrancy Vulnerability

Fig 17 above shows the failed detection of re-entrancy but postive detection for an arithmetic
vulnerablity. The test gives a FN for re-entracy but a detection for arithmic. It needs to be
determined if the detecion is a TP of a FP. Examiantion of both Fig 16 and Fig 17 shows
Oyente also detected to unlisted vulenrablity, thereby both Oyente and Osiris are TP for
detecting this arithmetic vulnerablity. The TP for Arithmetic will be included intot he
Arithmetic Vulnerablity dataset generated.

Slither Output sample:

root@s8439351fd412: /slither# slither /freentrancy/0xb93430ce38ac4a6bb47fbl1fc085ea669353fd8%e.s0l
INFO:Detectors:

fe

a|I|ty

(Fig 18 image was cropped for illustration purposes)

Diagram 18 illustrates the Slither tool detection of re-entrancy, however, there is a detection
for Low Level Call. The detection for Low Level Call (LLC) is within the tools scope to
detect for this vulnerability; however, this vulnerability was not listed as a vulnerability for
this smart contract. Further research on the vulnerability and contract is conducted, however,
it could not be determined that the smart contract contained the LLC vulnerability, therefore
the detection by Slither of Low-Level Call will be consider FP, for the purpose of the
experiment.

12

6 Metrics

Recall, Precision, Accuracy and F1-Score were calculated for each testing tool.

Recall = TP/ (TP + FN) How many relevant items were observed? Related to a type |1 error.
Precision = TP / (TP + FP) How many observed items are relevant? Related to a type | error.

Accuracy = (TP +TN) / (TP + TN + FP + FN) Accuracy represents the number of correctly
classified data observations over the total number of observations.

The F1 Score: = 2* (Recall*Precision) / (Recall + Precision)

Results are entered into spread sheet with smart contracts and corresponding TP, TN , FP and
FN (Fig 19)

Fig 19: Results of TP, TN, FP and FN entered into Spread Sheet.

1 |Swe_sC B :ither 5C Read TP TH FF FN Vul Detect Status

2 | Smart Contract

3

4

5

& |Swe_100_1_s.sol ¥ ¥ & ArbitlisesE Dangercus

aspersWc
&

ArbitUserEt
7 |Swec 100_1_v.sol ¥ her Dangerous
8 |Swc 101_2 v_integer_overflow_mapping_sym_1.sol.sol
9 |Swc_101_2_v_integer_overflow_minimal.sol sol
10 |Swe_101_3_s_integer_overflow_minimal_fixed sol
11 |Swe_101_4 s iteger_overflow_mul_fixed.sol sol
12 |Swc_101_4_v_integer_overflow_mul.scl.sol
5_s integer_overflow_multibe_multifunc feasible_fixed.sol

< =<

_v_integer_overflow_multite_multifunc_feasible.sol
_6_s_integer_sverflow_multibe_onefunc_feasible_fixed sol
18 |Swe_101_€_v_integer_overflow_multitc_onefunc_feasible.sel
17 |Swe_101_7_v_integer_overflow_multibc_onefunc_infessible.sol
18 |Swc_101_8_s_overflow_simple_add_fixed.sol

18 |Swc_101_8_v_overflow_simple_sddv.sol

20 |Swe_101_8_v_BECToken sol

21 |Swe_102_v_versicn_0_4_12.scl

22 |Swe_103_1_s_flosting_pragms_fixed.sol

23 |Swe_103_1_v_flosting_pragma.scl

Swe 103_2_v_no_pragma.sol
Swc_103_3_s_semver_floating_pragma_fixed sol
Swe_103_3_v_semver_floating_pragma sol

27 |Swe_104_v_uncheded_return_value.sol

28 |Swe_105_1_v_tokensalechallenge sol

delrd ext
N couldnt read comactly

¥ PragmaFixed shouldbconstant!
Warming

<<

Warning

Y ‘Wamnimg
Warning

asperSWC Waming

asperSWC Waming

aspersWc

Ether2Arbit

User Dangercus

asperSWC

Ether2Asbit

¥ User Dangerous

externsl call Waming

asperSWC

Ether2Arbit

32 |Swc_105_simple_ether_drain.sol A Y User ‘Warning

BRI e e IR IR IR I I
< =< =<

<=

<
<

29 |Swe_105_multicwned_not_vulnersblescl

30 |Swe_105_multiowned_vulnerable sol
21 |Swe_105_rubixisol

=< =<
<

Fig 20: Enlarge sample of Spread Sheet from Fig19

13

References

[1] ‘SWC-100 - Overview’. http://swcregistry.io/ (accessed Jul. 10, 2022).

[2] ‘SmartBugs: A Dataset of Vulnerable Solidity Smart Contracts’.
https://smartbugs.github.io/ (accessed Jun. 04, 2022).

[3] ‘smartbugs/osiris - Docker Image | Docker Hub’.
https://hub.docker.com/r/smartbugs/osiris (accessed Aug. 14, 2022).

[4] ‘luongnguyen/oyente - Docker Image | Docker Hub’.
https://hub.docker.com/r/luongnguyen/oyente (accessed Aug. 14, 2022).

[5] ‘smartbugs/slither - Docker Image | Docker Hub’.
https://hub.docker.com/r/smartbugs/slither (accessed Aug. 14, 2022).

[6] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha, ‘SMARTIAN:
Enhancing Smart Contract Fuzzing with Static and Dynamic Data-Flow Analyses’, in 2021
36th IEEE/ACM International Conference on Automated Software Engineering (ASE), Nov.
2021, pp. 227-239. doi: 10.1109/ASE51524.2021.9678888.

[7] M. Ren et al., ‘Empirical evaluation of smart contract testing: what is the best
choice?’, in Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, New York, NY, USA, Jul. 2021, pp. 566-579. doi:
10.1145/3460319.3464837.

[8] A. Ghaleb and K. Pattabiraman, ‘How effective are smart contract analysis tools?
evaluating smart contract static analysis tools using bug injection’, in Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event
USA, Jul. 2020, pp. 415-427. doi: 10.1145/3395363.3397385.

[9] H. Chen, M. Pendleton, L. Njilla, and S. Xu, ‘A Survey on Ethereum Systems
Security: Vulnerabilities, Attacks, and Defenses’, ACM Comput. Surv., vol. 53, no. 3, pp. 1-
43, May 2021, doi: 10.1145/3391195.

[10] M. Zhang, X. Zhang, Y. Zhang, and Z. Lin, ‘TXSPECTOR: Uncovering Attacks in
Ethereum from Transactions’, p. 19, Aug. 2020.

[11] D. Perez and B. Livshits, ‘Smart Contract Vulnerabilities: Vulnerable Does Not Imply
Exploited’, 2021, pp. 1325-1341. Accessed: May 01, 2022. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/perez

[12] C.Benabbou and O. Giircan, ‘A Survey of Verification, Validation and Testing
Solutions for Smart Contracts’, in 2021 Third International Conference on Blockchain
Computing and Applications (BCCA), Nov. 2021, pp. 57-64. doi:
10.1109/BCCA53669.2021.9657040.

[13] ‘trailofbits/slither - Docker Image | Docker Hub’.
https://hub.docker.com/r/trailofbits/slither (accessed Aug. 01, 2022).

14

