

Configuration Manual

MSc Research Project

MSCCYBETOP

Senan Behan

Student ID:x20167601

School of Computing

National College of Ireland

Supervisor: Mr. Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

……Senan Behan………………………………………………………………………………

Student ID:

……x20167601…………………………………………………………..……

Programme:

……MSCCYBETOP…………………

Year:

……2022…

Module:

……Research Project …………………………………….………

Lecturer:

……Vikas Sahni …………………………………………………….………

Submission Due

Date:

……15th August 2022………………………………………………………….………

Project Title:

… Solidity Smart Contract Testing with Static Analysis Tools …

Word Count:

…………1711………………… Page Count: ………14….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

………Senan Behan…………………………………………………………………………………

Date:

…………14/08/2022……………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Senan Behan

Student ID: x20167601

1 Equipment

1.1 Equipment utilised

Compiling and organisation of selected smart contracts in to separate files was conducted

utilising VS Code version: 1.59.1 (user setup), Node.js: 14.16.0, V8: 9.1.269.36-electron.0,

OS: Windows_NT x64 10.0.19044. The VS Code was installed on Operating System

Windows 10 Pro version 10.0.19044 Build 19044, with hardware: Lenovo Thinkpad-26 ,

Processor Intel® Core™ i7-6700HQ CPU @ 2.60Hz, 2592 Mhz, 4 Core(s), 8 Logical

Processor(s) with 32GiB RAM.

Testing of the Static Analysis tools was conducted an Ubuntu 18.04.6 LTS installed

on Dell Latitude E7250 with Processer Intel® Core™ i3-5010U CPU @ 2.10GHz, 1720Mhz,

4 Core(s), with 8GiB RAM.

Docker version 20.10.17, build 100c701, was installed on Ubuntu 18.04.6 LTS.

Please note a departure from the installation instruction resulted in utilising “yarn” as an

alternative to “npm” as the latter version experience difficulty in installation.

2 Dataset

2.1 Dataset

207 Smart Contracts were selected from two known sources, SWC Registry [1] and

Smartbugs [2]. SWC registry, a Smart Contract Weakness classification registry hosted on

GitHub under a MIT licence and maintained by smart contract developers, contains datasets

of smart contracts written in solidity which have vulnerabilities and/or fixed vulnerabilities.

The vulnerabilities are listed from SWC100 to SWC135 (at the time if writing) with

commentary and remedies concerning the vulnerability provided. The registry is based on

Common Weakness Enumeration CWE, a community-based list of software vulnerabilities.

All 117 smart contracts form the registry will be tested.

The smart contracts extracted form Smartbugs are hosted on Smartbugs GitHub

repository, a framework for analysing smart contracts. Contained within Smartbugs GitHub

repository is a dataset of solidity smart contracts sourced for testing with accompanying

comments on the location of the vulnerability within the contract. Unlike SWC, Smartbugs,

2

lists the vulnerabilities into larger category groups. Smartbugs lists 9 separate groups, of

which five relate to Solidity and four of the five were selected for testing due to the number

of smart contracts per vulnerability, which included the following vulnerabilities, Re-

entrancy, Access Control, Arithmetic and Unchecked Low-Level Checks, totalling 90

contracts. The contracts were sourced from Etherscan and other known vulnerable contracts.

3 Installation

3.1 VS Code

Install VS Code from https://code.visualstudio.com/docs?dv=win

Launch VS Code (Fig 1) and install extension Solidity for the writing and compiling of smart

contracts written in Solidity (Fig 2).

Fig 1: Solidity extension

Fig 2: Writing smart contracts in VS Code

3

3.2 Docker Images Osiris, Oyente and Slither

Setup Docker:

Remove any existence of a previous version of docker:
$ sudo apt purge docker-desktop

Installing the Docker Community Engine:
$ sudo apt-get install ./docker-desktop-<version>-<arch>.deb

$ sudo apt-get install ca-certificates curl gnupg lsb-

release

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --

dearmor -o /etc/apt/keyrings/docker.gpg

$ echo "deb [arch=$(dpkg --print-architecture) signed-

by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \

$ (lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list

> /dev/null

$ sudo apt-get install docker-ce docker-ce-cli containerd.io docker-

compose-plugin

Detail of Docker can be seen in Fig 3.

Fig 3: Docker installed

Docker version (Fig 4)

Fig 4: Docker version

Pulling down images from docker hub https://hub.docker.com/
$ docker pull <ImageID>

Check for containers in Docker
$ docker ps -a

Search for the image ID of the test tool
$ docker image

Commence running image in docker. This will start a “container “which is a running image.

The container allows for execution of commands and functionality. Run the image as a

container in the background.
$ docker run -dit <ImageID>

4

Copy file containing smart contract into the container
$ docker cp <file> <ContianerID:<File>

Start container and execute commends from within the container
$ docker exec -it <ContainerID> /bin/bash

Docker images “pulled” were smartbugs/osiris [3], luongnguyen/oyente [4] and

smartbugs/slither [5]. The version of Osiris , Oyente and Slither can be seen in Fig 5, Fig 6

and Fig 7.

Fig 5: Osiris Image installed

Fig 6: Oyente Image installed

Fig 7: Slither Image installed

3.3 Lazy Docker

Organise the docker images and containers in the terminal by installing Lazydocker (Fig 8).

Version of lazydocker can be seen in Fig 9.

Fig 8: Installing Lazy Docker

5

Fig 9: Lazy Docker version

Lazydocker is to organise the docker containers , however th eoperation of the containers can

still be conducted through the terminal, which is the main process this experiment utilised/.

Lazydocker was utilised as a quick reference to ascertina which containersn were running

(Fig 10).

Fig 10: Lazydocker view of docker containers running

3.4 Execution of commands in Osiris, Oyente and Slither

From the terminal the smart contracts ae copied into the container as per instruction above.

Start the container in an interactive shell requires the docker exec command as above. From

within the container, commands are executed to run the test tool against the individual smart

contracts.

Search for the image (Osiris)
$ docker image

Start the container with the image ID
$ docker run -dit <ImageID>

Search for the contain identification number
$ docker ps -a

With the identified container identification number execute a function to allow interaction

with the container.
$ docker exec -it <ContainerID> /bin/bash

6

3.4.1 Commands in Osiris

From within the container:
root@723de1a090e1: ~#

Check folders in Osiris
$ ls

Utilizing the Osiris python script execute against the fill path of the location of the copied in

smart contract (Fig 11):
root@723de1a090e1:~# python osiris/osiris.py -s

/arithmetic/integer_overflow_mapping_sym_1.solsol

Fig 11: Osiris result after execution of command

3.4.2 Commands in Oyente

From within the container:
root@e4d5cb041e79:/oyente#

Check folders in Oyente
$ ls

Navigate into the Oyente folder to execute the python script.
$ cd oyenter

root@e4d5cb041e79:/oyente/oyente#

Utilizing the Oyente python script execute against the fill path of the location of the smart in

contract (Fig 12):
root@e4d5cb041e79:/oyente/oyente# python oyente.py -s

/reentrancy/reentrancy_insecure.sol

7

Fig 12: Oyente result after execution of command

3.4.3 Commands in Slither

Commands for Slither:

From within the container:
root@8439351fd412:/slither#

Command execute against a smart contract (Fig 13)
root@8439351fd412:/slither# slither

/unchecked_low_level_calls/0x7a4349a749e59a5736efb7826ee3496a2dfd5489.sol

Fig 13: Partial return from Slither after execution of command

4 Vulnerabilities tested by tools

4.1 Osiris

The following are Solidity smart contract vulnerabilities detected by Osiris as determined by

previous studies [6] [7].

• Assertion failure

• State Dependency

• Integer Overflow/Underflow

• Denial of Service

• Time Manipulation

• Re-entrancy

8

4.2 Oyente

The following are Solidity smart contract vulnerabilities detected by Oyente as determined

by previous studies [6] [8] [9] [10] [11] [7] [12].

• Re-entrancy

• Unhandled Exceptions

• Transaction Order dependency

• Integer Overflow/underflow

• Timestamp dependency

• Tx. Order Dependence

• State Dependence

• Assertion failure

• Freezing ether

• Denial of Service

• Time Manipulation

9

4.3 Slither

The following are document (Fig 14) Solidity smart contract vulnerabilities detectable by

Slither [13].

Fig 14: Vulnerablities detected by Slither [13]

10

5 Testing

5.1 Implementation Testing of Tools and Dataset

The Static Analysis tools from Solidity based Smart Contracts were sourced form Docker

Hub. Each smart tool was a docker image.

Install docker Community Edition Engine from the repository as guided from the Docker

Documents. Pulling the Selected Static Analytic Tools docker images, Oyente, Slither and

Osiris. Using docker execute commands run the images as container.

To copy the smart contract, run docker detect mode “docker run -dit <image_name>

/bin/bash”. This command allows the container to run in the background so the files can be

copied into the container.

 After the copying of the smart contracts to the test tool docker containers, using

terminal commands in docker, the smart contracts are individual tested. The result comprises

of the written findings from the tools onto a terminal screen. Each tool conducts the

examination differently, and the results are output according to each tool as illustrated in Fig

15, showing a true Positive result for re-entrancy vulnerability.

Fig 15: Oytene Output sample

The above is a successful detection for the vulnerability re-Entrancy. This is atypical of a

result. However, some results can be more extensive with more output as the program iterates

through the smart contract.

However, results can be hybrid returns a seen below in Fig 16, Fig 17 and Fig 18.

The example below, the smart contract is listed with a re-entrancy vulnerability. Oyente and

Slither detect the re-entrancy vulnerability. Osiris failed to detect for re-entrancy. However,

both Oyente and Osiris detected Arithmetic Vulnerability within the re-entrancy vulnerable

smart contract which was not listed as a vulnerability.

11

Fig 16: Oyente Output Re-entrancy Vulnerability

Fig 16 shows a TP for re-entrancy and a detection of Arithmetic vulnerability. A process is

actioned to check if the Arithmetic detection is TP or FP (see below).

12

Fig 17: Osiris Output Re-entrancy Vulnerability

Fig 17 above shows the failed detection of re-entrancy but postive detection for an arithmetic

vulnerablity. The test gives a FN for re-entracy but a detection for arithmic. It needs to be

determined if the detecion is a TP of a FP. Examiantion of both Fig 16 and Fig 17 shows

Oyente also detected to unlisted vulenrablity, thereby both Oyente and Osiris are TP for

detecting this arithmetic vulnerablity. The TP for Arithmetic will be included intot he

Arithmetic Vulnerablity dataset generated.

Slither Output sample:

Fig 18: Slither Output Re-entrancy Vulnerability

(Fig 18 image was cropped for illustration purposes)

Diagram 18 illustrates the Slither tool detection of re-entrancy, however, there is a detection

for Low Level Call. The detection for Low Level Call (LLC) is within the tools scope to

detect for this vulnerability; however, this vulnerability was not listed as a vulnerability for

this smart contract. Further research on the vulnerability and contract is conducted, however,

it could not be determined that the smart contract contained the LLC vulnerability, therefore

the detection by Slither of Low-Level Call will be consider FP, for the purpose of the

experiment.

13

6 Metrics

Recall, Precision, Accuracy and F1-Score were calculated for each testing tool.

Recall = TP / (TP + FN) How many relevant items were observed? Related to a type II error.

Precision = TP / (TP + FP) How many observed items are relevant? Related to a type I error.

Accuracy = (TP +TN) / (TP + TN + FP + FN) Accuracy represents the number of correctly

classified data observations over the total number of observations.

The F1 Score: = 2* (Recall*Precision) / (Recall + Precision)

Results are entered into spread sheet with smart contracts and corresponding TP,TN , FP and

FN (Fig 19)

Fig 19: Results of TP, TN, FP and FN entered into Spread Sheet.

Fig 20: Enlarge sample of Spread Sheet from Fig19

14

References

[1] ‘SWC-100 · Overview’. http://swcregistry.io/ (accessed Jul. 10, 2022).

[2] ‘SmartBugs: A Dataset of Vulnerable Solidity Smart Contracts’.

https://smartbugs.github.io/ (accessed Jun. 04, 2022).

[3] ‘smartbugs/osiris - Docker Image | Docker Hub’.

https://hub.docker.com/r/smartbugs/osiris (accessed Aug. 14, 2022).

[4] ‘luongnguyen/oyente - Docker Image | Docker Hub’.

https://hub.docker.com/r/luongnguyen/oyente (accessed Aug. 14, 2022).

[5] ‘smartbugs/slither - Docker Image | Docker Hub’.

https://hub.docker.com/r/smartbugs/slither (accessed Aug. 14, 2022).

[6] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha, ‘SMARTIAN:

Enhancing Smart Contract Fuzzing with Static and Dynamic Data-Flow Analyses’, in 2021

36th IEEE/ACM International Conference on Automated Software Engineering (ASE), Nov.

2021, pp. 227–239. doi: 10.1109/ASE51524.2021.9678888.

[7] M. Ren et al., ‘Empirical evaluation of smart contract testing: what is the best

choice?’, in Proceedings of the 30th ACM SIGSOFT International Symposium on Software

Testing and Analysis, New York, NY, USA, Jul. 2021, pp. 566–579. doi:

10.1145/3460319.3464837.

[8] A. Ghaleb and K. Pattabiraman, ‘How effective are smart contract analysis tools?

evaluating smart contract static analysis tools using bug injection’, in Proceedings of the 29th

ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event

USA, Jul. 2020, pp. 415–427. doi: 10.1145/3395363.3397385.

[9] H. Chen, M. Pendleton, L. Njilla, and S. Xu, ‘A Survey on Ethereum Systems

Security: Vulnerabilities, Attacks, and Defenses’, ACM Comput. Surv., vol. 53, no. 3, pp. 1–

43, May 2021, doi: 10.1145/3391195.

[10] M. Zhang, X. Zhang, Y. Zhang, and Z. Lin, ‘TXSPECTOR: Uncovering Attacks in

Ethereum from Transactions’, p. 19, Aug. 2020.

[11] D. Perez and B. Livshits, ‘Smart Contract Vulnerabilities: Vulnerable Does Not Imply

Exploited’, 2021, pp. 1325–1341. Accessed: May 01, 2022. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity21/presentation/perez

[12] C. Benabbou and Ö. Gürcan, ‘A Survey of Verification, Validation and Testing

Solutions for Smart Contracts’, in 2021 Third International Conference on Blockchain

Computing and Applications (BCCA), Nov. 2021, pp. 57–64. doi:

10.1109/BCCA53669.2021.9657040.

[13] ‘trailofbits/slither - Docker Image | Docker Hub’.

https://hub.docker.com/r/trailofbits/slither (accessed Aug. 01, 2022).

