

Solidity Smart Contract Testing with Static

Analysis Tools

MSc Research Project

Cybersecurity

Senan Behan

Student ID: x20167601

School of Computing

National College of Ireland

Supervisor: Mr. Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

……Senan Behan…………………………………………………………………………

Student ID:

……x20167601……………………………………………………………………………………...……

Programme:

……MSCCYBETOP…………………………………………

Year:

……2022……...

Module:

……Research Project ……………………………………………………………….………

Supervisor:

……Mr. Vikas Sahni……………………………………………………….………

Submission

Due Date:

……15 August 2022…………………………………………………….………

Project Title:

……Solidity Smart Contract Testing with Static Analysis Tools …….………

Word Count:

……6847……………………… Page Count…………20……………………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

…………Senan Behan………………………………………….………

Date:

…………14/08/2022…………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Solidity Smart Contract Testing with Static Analysis

Tools

Senan Behan

x20167601

Abstract

Smart contract development is often overlooked in security terms and the consequences

of vulnerable smart contracts embedded within a Blockchain can lead to current and future

unforeseen negative consequences. Solidity smart contracts are a rapidly developing area

within Blockchain technology. Several static analysis tools have been developed to assist

in the secure creation of smart contracts, and datasets are provided to facilitate testing of

tools.

This report describes the results of testing the Static Analysis tools, Osiris, Oyente and

Slither against Solidity generated smart contracts which contained documented

vulnerabilities, sourced from Smart Contract Weakness Classification and Test Cases

(SWC) registry and SmartBugs repository. The Docker static analysis tool images can be

utilised in testing to enhance security in smart contracts. The findings in this report

demonstrated the dominance of Slither testing tool in scanning and detecting

vulnerabilities, however False Negatives were present. The experiment also highlighted

the issue of vulnerability classification in datasets and re-classification of the dataset smart

contracts for vulnerabilities is required. This investigation demonstrated that Docker

proved to be an effective means of testing the tools.

Keywords: Slither, Osiris, Oyente, SmartBugs, SWC Registry, smart contracts,

vulnerabilities, Solidity, Static Analysis, testing.

1 Introduction

After the Colonial Pipeline attack in the USA, the White House signed in an Executive Order

which marked a new dawn in standard setting for organisations and testing of their cyber and

IT infrastructures. The European Union brought in the Cybersecurity Act 2019 Regulation

(EU) 2019/881 which sets out certification standards for organisations which are utilising best

practice cybersecurity measures.

Blockchain is becoming part of critical structures, and Smart Contracts, programming

scripts with functions and rules [1], allow autonomous actions/transactions once deployed on

the blockchain. Industrial Standards Organisations have published standards relating to smart

contracts to improve development and security, standards such as the International

Standardization Organization, ISO 23455:2019 and the European Telecommunications

Standards Institute (ETSI), GS PDL 011, both of which define a smart contract “…as a

computer program stored in a distributed ledger, wherein the outcome of executed programs

is recorded on the distributed ledger” [2].

2

Solidity based smart contracts designed for Ethereum are vulnerable as highlight by

Chen et al [3], who stated that the programming for Ethereum is a new “…paradigm with

DApps running on top of blockchains with many autonomous contracts…” resulting in

undiscovered vulnerabilities which require time to discover and resolve. Bouichou, Mezroui,

and Oualkadi [4] describe Solidity as “…loosely typed languages don’t require the programmer

to be specific…” resulting in vulnerabilities.

Static Analysis tools and smart contracts tested by researchers in the past, require

revisiting, due to the development of new static analysis tools and their suitability, new

vulnerabilities discovered and the challenge of understanding of vulnerability classification.

1.1 Research Question

“How effective are different docker static analysis testing tools at detecting different

vulnerabilities in Solidity generated Smart Contracts?”

1.2 Objectives

In addressing the research question, this report is organised as follows: Section 2 is the Related

Work, where a literature review is presented in the following key categories: Vulnerabilities of

Smart Contracts, Types of Smart Contract, and Categorizing of Vulnerabilities and Analytic

Tools / Security Tools. Section 3 is the Research Methodology section outlining the research,

equipment and the techniques utilised, and the dataset gathered and processed. Section 4

describes the framework of the research, while section 5 elaborates on the final stages of the

implementation, and section 6 discusses the evaluation of the research. Lastly, future works are

discussed, and the conclusion is presented in section 7.

 The research question posed is conducted on Docker Image Static Analysis tools Osiris,

Oyente and Slither, noting that the three Docker Images. One previous study, Ren et al. [5]

compared the above mentioned tools, focusing on runtime parameter. Testing in the present

study is conducted against known smart contracts with known vulnerabilities, sourced form

SWC registry [6] and Smartbugs [7]. All the known smart contract vulnerabilities listed in the

SWC registry are tested without code alteration. Tests are conducted on smart contracts with

either one or more vulnerabilities, noting the different levels of scanning capability of the tools.

The objective is to compare the static analytic tools against known vulnerabilities

testing the static analysis tools for True Positive, False Positive, False Negative and True

Negative detection to determine the efficiency the different static analysis tools.

2 Related Work

2.1 Background

Solidity, written in a high-level language, is a programming language for creating smart

contracts, within an Ethereum Virtual Machine (EVM), where the EVM, acting as a sandbox

for smart contracts in Ethereum [8] runs/complies the code.

3

Solidity [9] and Ethereum [10] are open source allowing many new developers access,

bring collaboration and publication of readymade smart contracts. Solidity and the Ethereum

platform has experienced a big demand [11] in 2022 noted by the increase of job vacancies.

Despite the vulnerabilities of Solidity, 83% of developers [12] do not view security as a

priority. For the above reason this report will focus on Solidity created smart contracts.

2.2 Vulnerabilities

Smart contracts vulnerabilities have led to a number of real world attacks include, inter alia,

the DAO in 2016 [13], PoWH Coin Ponzi Scheme [14], the Parity MultiSig Wallet [15], The

King of the Ether [13] and Coindash ICO attack [16] with vulnerabilities; re-entrancy, batch

Transfer Overflow CVE-2018-10299, DELEGATECALL opcodes and DoS, Unchecked

Return Values for Low Level Calls, Short Address respectively.

The level of security of a smart contract is reliant on the security of the programming

language [3]. Emin Gün Sirer, a computer scientists who examined the DAO attack in the

early stages, commented in a 2016 Article [17] that Solidity and Ethereum Virtual Machine

are “…more designed for loose web code…” application, commenting that smart contracts

should be treat in the same way as writing for nuclear code.

Smart contracts are deployed in EVM by way of complied bytecode. All rules and

functions are programmed into the smart contract which invokes tasks/transactions as per

programming. Once a smart contract is placed on the blockchain the smart contract is

immutable, therefore any vulnerabilities or bugs in the coding will be permanent as the smart

contract cannot be altered [13].

Praitheeshan et al. [1] detected 19 software and 16 Ethereum issues stating that

vulnerabilities in smart contracts are a result of software code implemented, the Solidity

language scripts and the immutability of blockchain. A number of challenges exist when

utilising Solidity [1]: developers inexperience of this new technology, lack of best practices,

immutability of smart contracts prevent updating of vulnerabilities.

2.2.1 Types of smart contract vulnerability

Vaibhav Saini listed 16 Solidity vulnerabilities in a 2018 Article [18], which are as follows:

• Re-entrancy

• Integer Overflow:

• Parity wallet attack:

• Party Wallet Attack II: Killed wallet

• Withdraw and not sent.

• Time draft (timestamp dependence)

• Separate public and private

• 51% Attack

• DelegateCall

• Default Visibility

• Default Visibility

• Entropy Illusion.

• Short Address

• Unchecked CALL Return Values

• Front Running (Race Condition)

• DDoS

• Constructors with Care

• Uninitialized storage Pointers

• Floating Points and Precision

• Tx.Origin Authentication

4

2.3 Tools

Static Analysis tools allow the examination of smart contracts for predefined common

vulnerabilities without the need to deploy on the blockchain. The tools can examine the source

code or compile the contract on a blockchain simulator (Virtual Machine) compiling the

bytecode. While both paid and free static analysis tools for Solidity based smart contracts have

been tested over the years, the research has not been exhausted. Further tools have yet to be

examined and compared, and the varying metrics of the studies and datasets to be explained.

Samreen and Alalfi [19] listed several static analysis tools which include: Oyente, SmartCheck

which detects vulnerabilities patterns analysis, Mythril written in python executes the EVM

bytecode “symbolically” disassembling the code, Maian detects multiple transactions

executing the EVM Bytecode symbolically, Securify extracts from known vulnerabilities to

create compliance and violation patterns and uses EVM bytecode as inputs, Vandel

disassembles and decompiles bytecode, and EthIR which uses rule based Control Flow Graphs

as input to a static analyser. Other publications mentioned static tools such as Gigahorse [20],

MadMax [20], Osiris [21], Slither [22], teEtherv , sComplier [3].

2.4 Testing

Sharma et al. [12], in a very recent study, examined 29 developers use of smart contract testing

tools, discovering a detection rate of vulnerabilities of 15% amongst inexperienced developers

and 55% amongst experienced developers. Sharma et al. [12] observed that developers found

tools difficult to implement, and they had to use different tools for different vulnerabilities.

Furthermore, some tools had to be employed outside the complier. From the study [12]

participant usage was as follows: 17% use static analysis tools, 14% use Truffle testing suite,

14% use Remix plugins, Myth was used by 7% and Slither by 3%. The study by Sharma et al.

[12] was a review, and the authors did not conduct tool testing.

ISO TR 23455:2019 published in 2019 set standards for smart contract development

including security of smart contracts. ETSI published in December 2021, an Industrial

Specifications [23] on the requirements for Smart Contract’s Architecture and Security, which

gives guidance to testing.

2.5 Vulnerabilities of Smart Contracts

Saad et al. [24] examined attacks on smart contracts as part of Blockchain 2.0 focusing on

Ethereum and Solidity, listing well-known attacks such as re-entrancy, over and under flow,

replay, short address and reordering attacks, observing that attacks were due to poor

programming or vulnerabilities in the program platform [24]. Saad et al. [24] stated that the

flexibility in programming smart contracts contributed to vulnerabilities giving the example of

re-entrancy attack which cannot occur on Bitcoin or Ripple. Saad et al [24] highlighted issues

and an overview of fixes, but did not demonstrate the vulnerabilities through testing, nor did

they suggest which testing tools to utilise.

Alkhalifah et al. [25] concentrated on the vulnerability re-entrancy, noting this

vulnerability led to two attacks out of seven well documented incidents between 2016 and

5

2018, concluding that vulnerabilities in smart contracts were due to coding errors by the

developer. Alkhalifah et al. [25], iterated that coding practices have not yet matured [26. p2],

and referred the “code is law” concept, where once the smart contract is deployed on the

Blockchain it is next to impossible to modify it.

The number of vulnerabilities varies depending on the research. Bouichou, Mezroui, and

Oualkadi [4] listed 13 vulnerabilities, examining 8 real world smart contracts attacks and 12

testing tools, giving a good insight to the workings of the attacks, however, Bouichou et al. [4]

limited the study to real world attacks. Chen et al [3] highlighted two security issues, firstly,

permissionless i.e., allowing attackers in, and secondly, immutability which prevents

vulnerability patching. Chen et al [3] viewed 40 vulnerabilities, 29 attacks with 51 defences,

and focused on Ethereum, unlike Saad et al., Chen et al. discovered that 13 of the 25 Ethereum

application layer vulnerabilities were not addressed/detected in their review, while observing

that SmartCheck, performed well in discovering 10 out of 26 vulnerabilities. However, [3] the

focus of the review was on defences and not on smart contract testing tools.

2.6 Categorizing of Vulnerabilities

Previous works tested smart contracts for known vulnerabilities (see Table 1 for examples),

however, in many cases the vulnerability categorization was vague or the vulnerability in the

smart contract was singularly classified [3], [19], [25]–[32]. Pervious papers did not conform

to a standard classification of vulnerabilities and the labelling of vulnerabilities. In ten papers

reviewed in this report [3], [5], [20], [26]–[32], which tested various tools, the dataset for the

vulnerabilities was not consistent and nor were they fully comparable with each other. Each

paper contained similarities in general labelling of the vulnerabilities, however, there was a

degree of divergence with sampling specific vulnerabilities. This issue was highlighted by the

ETSI in the 2021 published standard on smart contracts, stating that in testing, a well-structured

approach was required and the test code should have clear indicators of error [23].

This view was iterated by Ren et al. [5]. In previous studies [31] [29] [28], the

vulnerabilities selected for testing were generally categorised into headline vulnerabilities such

as re-entrancy without expanding on the vulnerability mechanism, while other studies did

elaborate on the mechanism, e.g., fallback function [20] or call.value [5]. The consequence

of the above resulted in difficulty in comparing previous research due to labelling of datasets.

Noting SWC registry lists 36 vulnerabilities of which exist subcategories (vulnerability

mechanism) of the headline vulnerabilities, and Smartbugs provides the code associated with

the headline vulnerability. SWC 106 labels unprotected “selfdestruct” functionality

vulnerability, also known as a suicide vulnerability [20], under the headline vulnerability of

“access control”. Papers [28] [20] [33] refer to “suicide” vulnerability, while papers [31] [20]

[34] refer to this vulnerability as “selfdestruct”, and paper [5] refers to the vulnerability as an

“access control” vulnerability. As observed, there is a degree of interchangeability concerning

the abovementioned vulnerability.

 As a further example, the vulnerability “mishandled exception” is also known as

“Uncheck Call Return Value” [3], and Choi et al. [28] considers “Gasless Send” as a

“Mishandling Exception”. The above general labelling can cause confusion. The lack of a

systematic labelling approach hinders comparison of tools.

6

 Ren et al. [5] reported that the selection of the dataset (smart contracts with

vulnerabilities) in many cases can skew particular results in favour of an author’s tool which

is subject to the research. Chen and colleagues argue that real world vulnerabilities are different

to artificial injected vulnerabilities where the latter effects a “universal conclusion”,

highlighting the example of two contradictory results in terms of False Positive and False

Negative for SmartCheck and Slither tools depending on the dataset utilised [5].

Table 1: Vulnerability types and Previous Papers Published

Publication

Vulnerability

[27] [3] [20] [26] [28] [5] [29] [30] [31] [32]

Re-entrancy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Arithmetic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T Order Dependency ✓ ✓ ✓ ✓ ✓ ✓

Access Control

/Suicidal

 ✓ ✓ ✓ ✓ ✓ ✓

Unchecked LLC ✓ ✓ ✓ ✓

Timestamp

Dependency

✓ ✓ ✓

Tx. Origin ✓ ✓ ✓

Mishandling Exception ✓ ✓ ✓ ✓ ✓ ✓

DoS ✓ ✓ ✓ ✓

Timestamp

manipulation

 ✓

2.7 Analytic Tools / Security Tools

Static Analysis is the examination of code or programmes when the smart contract is not

executed (non-runtime). Methods of Static Analysis include: decomplication, complying, run-

based, CFG (Control Flow Graph and symbolic execution [1].

Ghaleb and Pattabiraman [27] compared their proposed SolidiFi tool against six static

analysis tools using bug code snippets injected into “all possible locations” with an automated

and systematic framework to evaluate the tools, with a focus on False Negatives. The injected

smart contracts were examined by Oyente [35], Securify [15], Mythril [34], Slither,

SmartCheck [30] and Manticore, checking for false negatives and undetected bugs, and

presenting an explanation for the lack of detection. Osiris was not tested. The automated

process of bug injection cannot be manually verified due to the large number of smart contracts

injected, therefore comparison with other studies is difficult. The authors found Slither detected

all re-entrancy vulnerabilities, however had a high False Positive return. Conducting the

experiment with a smaller number of contracts with known vulnerabilities guarantees the

vulnerability is known, and thus an improved analysis.

Di Angelo and Salzer [31] conducted a review of Ethereum smart contract static

analysis tools arguing that little academic examination was previously conducted on the tools

themselves, and that previous papers concentrated on methods, regardless of the tools’

“provenance”. Di Angelo and Salzer [31] examined 27 tools with the objective of creating a

7

guide for future developers. The report observed that some papers involved the examining of

the author’s own tool, giving rise to perceived impartiality when comparing the author’s tool

to others. Di Angelo and Salzer’s [31], survey included Osiris, Oyente, finding that Osiris only

detected Arithmetic issues and Oyente detected Re-entrancy, Timestamp and Trans Order

Dependency. Slither was not included in the study.

Ji, Kim and Im [32] conducted testing of static analysis tools within docker containers

testing against smart contract vulnerabilities in an attempt to demonstrate a proposed software

tool to automate the evaluation static analysis tools. The proposed tool returned comparative

performance indicators i.e., Recall, Precision, Accuracy and F1-Score for the static analysis

tools. Slither and Oyente were among the tools test, however Osiris was not tested. A dataset

of 237 smart contracts was utilised and which included re-entrancy, access control, unchecked

LLC, and integer overflow. This paper concluded that tools which had a high True Positive has

low precision and accuracy rates, recommending Slither and Oyente for re-entrancy, Slither for

Uncheck LLC.

Perez and Livshits [26] argued that smart contract vulnerabilities may not always be

exploitable. The authors reused the datasets of previous research, comprising of over 23,000

vulnerable contracts from 800,000 contracts. The authors settled on 6 vulnerabilities: “…re-

entrancy (RE), unhandled exception (UE), locked Ether (LE), transaction order dependency

(TO), integer overflows (IO) and unrestricted actions (UA).” Perez and Livshits [26] tested 9

static analysis tools including Oyente, which performed well recording that it detected

RE,UE,TO and IO, however, the study did not include Slither nor Osiris.

Akca, Rajan, and Peng [36] examined their automated technique Solidity SolAnalyser,

comparing it favourable to Oyente, Securify, Maian, SmartCheck and Mythril. This study

involved generating approximately 13,000 mutated contracts from 1838 real contracts covering

8 different vulnerabilities. SolAnalyser utilised both static and dynamic analysis, combining

ContractAnalyser and ExecutionValidator, creating SolAnalyser. This technique was

compared to the abovementioned static analysis tools. Akca et al. [36] did observe that static

analyses tools return a large number of False Positive. Of note, the study involved the authors

own framework, giving rising the issues of impartiality.

Praitheeshan et al. [1] conducted a survey of previous works, listing a number of static

analysis tools and the vulnerabilities detected. This paper comprehensively explained the main

vulnerabilities; however, the vulnerabilities were limited to two real world attacks, namely

DAO and Parity. The tested tools included, Oyente, Zeus, Vandel Ethir, Securify, Maian and

Gasper which detected the headline vulnerabilities Re-entrancy, Exception handling,

Transaction ordering, Block timestamp dependency, Call stack depth limitations, Integer

over/under flow, Suicidal contract, Use of Origin, Unchecked and failed send, No restriction

write, No restriction transfer and Greedy contracts. While this paper explored the headline

vulnerabilities, the paper was a survey without testing the tools and did not report on the Recall,

Precision or Accuracy of the tools in detail, only to state that Securify had less False Positives

than Oyente and Securify stating was better at detecting reentracy, but the findings lacked

detail.

Ren et al. [5] reported discrepancies between previous studies due to lack of a common

framework for testing, common dataset and metrics to conduct correct comparison/evaluations

based on runtime and evaluation metrics, testing Oyente, Osiris and Slither.[5] attempted to

8

create a baseline suite of tools and datasets for testing, selecting the dataset contracts form

Etherscan (45,622) Solidify (9,369), CVE (124) and SWC (90). It was observed that the

contract vulnerabilities gathered from Ehterscan API’s were self-determined, and the authors

conducted manual injection of vulnerabilities into the dataset from Solidify. While the authors

created a baseline from a large dataset, the process above could have led to errors due to lack

of third-party confirmation of the exitance and type of vulnerable. Furthermore, the study did

not test the tool’s ability to discover vulnerabilities.

 Alkhalifah et al. [25] conducted testing on six “vulnerability-detection” tools to detect

the re-entrancy vulnerability. The authors did discuss the short comings of the testing tools and

their inability to discover new patterns in re-entrancy attack. The authors proposed a proof-of-

concept solution, involving monitoring the difference between the contract balance and the

total balance of all participants. Alkhalifah et al. [25] did not conduct testing on the different

tools but confined their study to a proof of concept concerning re-entrancy vulnerability. The

authors mentioned Oyente but did not test the tool.

Choi et al. [28] in their demonstration of SMARTIAN, a fuzzing testing tool, employed

both statistical and dynamic analysis of smart contracts to contribute to the developing of the

fuzzing testing. The static analysis was conducted to determine parameters for fuzzing and

dynamic analysis conducted on dataflows for feedback. The experiment compared

SMARTIAN against two fuzzer tools, ILF and sFuzz, and two symbolic executors Manticore

and Mythril. The authors claimed SMARTIAN tested for 13 types of bugs, discovering 211

bugs from 500 real world contracts without excessive false positives. This study, while

comprehensive, did not involve Slither, Oyente and Osiris. Furthermore, the authors were

testing their own solution give rise to potential impartiality.

Chen et al. [3] outlined a number static tools which detected vulnerabilities referring to

previous works, however, the paper did not conduct testing to confirm these claims.

3 Research Methodology

A framework comprising of static analysis smart contract tools running in Docker was

established. The selected smart contract dataset was categorised based on vulnerabilities and

tested by the static analysis tools within Docker. The preliminary results were examined to

ensure the category/classification of the smart contract based on vulnerabilities corresponded

with the results. If required, the smart contract maybe recorded as having an additional

vulnerability assigned to that smart contract which was not originally classified according to

the dataset source. The additional classification procedure is set out below. Additional

classification may occur when a smart contract is labelled as having a certain vulnerability, but

when tested by the tool, another vulnerability is detected. The “other vulnerability” maybe

originally observed as a False Positive. On examination of the smart contract and supported by

a detection by another static analysis testing tool, the vulnerability is deemed to exist and a

return of True Positive, instead of False Positive, will be recorded, after which the results will

be collated and compared.

 The dataset of the smart contracts was copied into the Docker containers of the static

analysis tool, and the tool was executed against the smart contracts. The results were returned

and compared against the expected detection for that tool for each vulnerability, see Fig.1.

9

Fig.1. Workflow of Data Process

3.1 Equipment utilised

Equipment and software utilised as set out in the configuration manual

3.2 Data Selection

The dataset was selected from SWC Registry [6] and Smartbugs repository in GitHub [7].

3.3 Data Verification

Each individual smart contract was researched, and any attached commentary viewed to

determine the type of vulnerability associated with the contract.

3.4 Data Integration

Each smart contract was individually selected and uploaded into VS Code to be complied and

saved to a testing file. The contracts were viewed but were not altered from the original.

3.5 Data Testing

The experiment tested 207 smart contracts. Each static analysis tool is designed to test for

certain vulnerabilities. The smart contracts selected form Smartbugs contained Re-entrancy,

Access Control, Arithmetic and Unchecked Low-Level Call (Unchecked LLC) vulnerabilities

and the dataset form SWC covers a greater range of vulnerabilities. The static analysis tools

tested were not designed to detect all the vulnerabilities tested, a factor which was taken into

consideration when determining detection rates. Smart contracts vulnerabilities which fall

outside the scope of the test tools are considered neutral smart contracts for the purpose of the

test and have an expected result of True Negative.

 Solidity complier version of the testing tool effects the ability of the tools to read certain

contracts. The solidity complier version in docker images Oyente and Osiris is pre-0.4.25,

impacting on scanning a number of SWC smart contracts, while Slither complier version

0.4.25+ facilitated scanning all but a few of the contracts. Oyente read 72, Osiris read 69 and

Slither read 185 contracts.

3.6 Testing tools

Three docker images based static analytical/ symbolic execution tools, Slither, Oyente and

Osiris were tested in the experiment. The image of each tool was pulled from Docker Hub [37]

10

and executed in Docker as containers. The smart contracts are copied into the docker container

of each tool and tested.

3.7 Evaluation

The smart contract testing result are separated into the following confusion matrix:

True Positive (TP): The occurrence that the tool correctly detected a stated vulnerability.

True Negative (NP): The occurrence that the tool correctly failed to detect a stated vulnerability

as predicted.

False Positive (FP): The occurrence that the tool incorrectly detected a stated vulnerability.

False Negative (FN): The occurrence that the tool incorrectly failed to detect a stated

vulnerability.

3.8.1 Detection of unlabelled vulnerability

This concerns two stages. Stage One, as illustrated in Table 2, compares the result i.e., the

detection or non-detection with the documentation for the tool, ascertaining if the outcome is

expected as per documentation. If the expected detection corresponds with the actual detection,

the result will be a True Positive. However, if a detection for a vulnerability which is not listed

or documented for that smart contract, then the process progresses to the next stage. Stage Two,

as illustrated in Table 3, compares the result from another static analysis testing tool for the

same smart contract. If two static analysis tools listed in Table 4 detect the same vulnerability

in a smart contract which was not listed nor documented for that vulnerability, the result will

be determined a True Positive, otherwise the result will be considered a False Positive.

3.8.1 Partial Detection vulnerability

Failing to detect a listed vulnerability while also detecting another unlisted vulnerability will

be considered a False Negative for the undetected vulnerability, and the unlisted vulnerability

detected will be further examined by a Stage Two process as mentioned above.

On occasion two smart contracts exist, where one contract contains the vulnerability,

and the other contract is considered the “fixed” contract of the first, with no vulnerability. If a

smart contract with a vulnerability is not detected i.e., False Negative, then the corresponding

“fixed” contract will be not counted as a Ture Negative if the test indicates so, as it cannot be

determined if the True Negative is as result of the “fix”.

Table 2: Expected detection by Static Analysis tool according to documentation for

vulnerabilities in Smart Contract

Expected Detection Non-Detection Future

Examination

Classification

✓ ✓ TP

✓ ✓ TN

 ✓ Revert (FP)

 ✓ FN

11

Table 3: Revert -Vulnerability detected by an alternative Static Analysis Tool

Revert (FP) Alternative Tool Classification

 ✓ TP

  FP

Table 4: Alternative Static Analysis Tool Combination

 Osiris Oyente Slither

Osiris  ✓ ✓

Oyente ✓  ✓

Slither ✓ ✓ 

4 Design Specification

The collected dataset of smart contracts is compiled in VS Code then organised and saved into

separate folders depending on the source of the smart contract, i.e., SWC or SmartBugs

registry, and vulnerability type. Utilising a community edition docker engine installed on an

Ubuntu 18.04.6 OS, the selected docker images for Smart Contract Static Analysis tools i.e.,

Oyente, Osiris and Slither are “pull” from the Docker Hub repository [37]. Within the Docker

engine, set up docker containers for Oyente, Osiris and Slither from their retrospect images.

The aforementioned smart contracts files will be copied into Oyente, Osiris and Slither docker

containers via Docker, then execute the Static Analysis commands unique to each tool to test

the individual smart contracts, see Fig.2.

Fig.2. Design Specification of Docker hosting Static Analysis tools testing on Smart Contracts

5 Implementation

VS Code was utilised to compile and organise the dataset sourced form SWC registry and

SmartBugs.

Docker Community Edition Engine was utilised to run Docker images, creating

containers from Oyente, Osiris and Slither Static Analysis testing tools. The Docker images

mentioned above scanned the smart contracts for vulnerabilities, and the results were outputted

onto the docker terminal. The raw data results captured detection and non-detection both

expected and unexpected of vulnerabilities and copied into an editor (Notepad ++).

Comparison of the raw data results were made with the original documented smart contract

and of the documented capability of the static analysis tools. Recorded results were entered a

12

spread sheet, including data handling errors. Statistical analysis was conducted creating a

confusion matrix. Recall, Precision Accuracy and F1-Score were calculated, determining the

capability and the predictability of each of the tools.

6 Evaluation

The 207 smart contracts tested by all tools resulted in both expect returns and some unexpected

returns. Slither testing tool was the most comprehensive tool examining 185 smart contracts as

Slither’s solidity complier was able to read both newer and older contracts. Contracts with a

complier 04.25.0 and earlier prove problematic for Oyente and Osiris. However, Oyente and

Osiris read 72 and 69 smart contracts respectively. Oyente and Osiris have similar overall

quantitative detection rate outcomes, noting a slight divergence on which contracts gave a

particular result.

6.1 Dataset Classification

In determining if an unclassified vulnerability exists within a smart contract, the evaluation

was conducted per Section 4.24 smart contracts were additionally classified as containing

further vulnerabilities. When a new vulnerability was discovered originating from a particular

classified smart contract, then that particular contract was additionally classified as containing

a second vulnerable. For example, on examination, originally Unchecked LLC classified

contracts were found to have an additional Re-entrancy vulnerability and 6 Arithmetic

vulnerabilities as show in Table 5. Oyente and Osiris had a corelation of 1, discovering the

same new vulnerabilities in contracts.

 Table 5 shows the origin of newly discovered vulnerabilities within smart contracts.

The column “SC Original Classification” is the original vulnerable type classified smart

contract where the additional vulnerability was discovered. The top row “Additional

Classification” represents the newly discovered vulnerability to be included in the experiment.

A total of 24 smart contracts were re-classified with additional vulnerabilities. From examining

previous publications, reclassification of SmartBugs smart contract was not conducted during

testing.

Table 5: Additional classified Smart Contract with Vulnerabilities

 Additional

Classification

SC Original

Classifications

Re-entrancy

Access

Control

Arithmetic

Unchecked

LLC

Total

Re-entrancy 16 16

Access Control 1 1

Arithmetic

Unchecked LLC 1 6 7

Total 1 23 24

13

6.2 Experiment Osiris

Table 6, 7 and 8 show the raw data captured for each Static Analysis tool, in terms of True

Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) when testing

the tool’s effectiveness at detecting vulnerabilities within the smart contract tested. Table 6, 7,

and 8 show the smart contracts as per their vulnerability classification under Column

“Vulnerabilities” and the detection rate under Rows labelled “TP”,”TN”, “FP” and “FN”.

Table 6: Dataset tested by Osiris

Vulnerabilities Read TP TN FP FN

SmartBugs Dataset

Re-entrancy 18/31 18 0 0 1

Access Control 4/18 0 3 2 0

Arithmetic 10/15 32 0 1 1

Unchecked LLC 18/26 0 5 12 0

Total 50 59 8 15 2

SWC Dataset

Total 19 20 5 11 4

Datasets Total 69 79 13 26 6

6.3 Experiment Oyente

Table 7: Dataset tested by Oyente

Vulnerabilities Read TP TN FP FN

SmartBugs Dataset

Re-entrancy 18/31 18 0 0 1

Access Control 4/18 0 4 2

Arithmetic 10/15 32 0 1 1

Unchecked LLC 20/26 0 4 16 0

Total 48 50 8 19 2

SWC Dataset

Total 20/117 5 11 0 4

Datasets Total 72 31 19 19 6

6.4 Experiment Slither

Table 8: Datasets tested by Slither

Vulnerabilities Read TP TN FP FN

SmartBugs Dataset

Re-entrancy 29/31 28 0 0 1

Access Control 18/18 14 0 0 3

Arithmetic 15/15 0 0 5* 0

Unchecked LLC 26/26 26 0 0 3

Total 88 68 0 0 7

SWC Dataset

Total 97 47 12 7 34

14

Datasets Total 185 111 12 7 41

*Revert 5 vulnerabilities as follows = 2 to SWC 100 and 3 to SWC 131

6.5 Results

Table 9 shows the confusion matrix for each of the Static Analysis tools and the vulnerabilities

the tools attempted to detect. The data captured from Tables 6, 7 and 8 was utilised to generate

the confusion matrix in Tables 9 and 10. Table 10 shows the combined result for each Static

Analysis tool for the entire vulnerability dataset employed.

Table 9: Vulnerability Type against Static Analysis Tool

Static Analysis

Tool

Vulnerability

Osiris

Oyente

Slither

Re-entrancy

Recall 0.947368 0.947368 0.965517

Precision 1 1 1

Accuracy 0.947368 0.947368 0.965517

F1-Score 0.972973 0.972973 0.982456

Access Control

Recall 0 0 0.823529

Precision 0 0 1

Accuracy 0 0 0.823529

F1-Score 0 0 0.903226

Arithmetic

Recall 1 0.969697 0

Precision 0.969697 0.969697 0

Accuracy 0.941176 0.941176 0

F1-Score 0.984629 0.969697 0

Unchecked LLC

Recall 0 0 0.896552

Precision 0 0 1

Accuracy 0 0 0.896552

F1-Score 0 0 0.945455

SWC

Recall 0.833333 0.555555 0.580246

Precision 0.645161 1 0.870370

Accuracy 0.625000 0.800000 0.590000

F1-Score 0.727272 0.714285 0.672000

15

Table 10: Overall Combined Datasets

 Recall Precision Accuracy F1-Score

Osiris 0.929412 0.752381 0.741935 0.831579

Oyente 0.873016 0.591399 0.643411 0.705129

Slither 0.735100 0.940678 0.719298 0.825279

6.6 Discussion

The experiment was limited by the number of tools tested and the level of understanding of

vulnerabilities within Solidity. Research was hampered by the lack of coordination within the

community to categorise vulnerabilities, an opinion shared by other researchers (e.g., [23] and

[5]), hence the introduction of reclassification in this experiment. SmartBugs and SWC

Registry do provide a valuable service in providing documented and categorised datasets.

Whilst writing this report, SWC added SWC 136 to the registry demonstrating the commitment

to maintaining a registry of vulnerabilities.

Using the confusion matrix, a Ture Positive and Ture Negative are desired. However,

this experiment tested for vulnerabilities, therefore, the consequence of a False Negative i.e.,

undetected vulnerability is more severe than a False Positive i.e., wrongly detected

vulnerability. An undetected vulnerability will be a security risk to smart contracts deployment.

A False Positive may result in increased production time to find a nonexciting vulnerability.

Precision values measure the influence of the False Positive, and a type I error, while Recall

measures the influence of False Negative and is a type II error.

An imbalance in the dataset existed in the experiment, as some tools read more

contracts than others and some tools were not designed to detect certain vulnerabilities. F1

Score metric is an appropriate metric to handle this imbalanced data. The F1 -Score is the

weight average of Recall and Precision, i.e., the metric harmonises the mean of Recall and

Precision. The closer to the value 1 an F1-Score is, the closer the model is in predicting the

classification of an outcome.

6.6.1 Discussion Individual Vulnerabilities

Examining for Re-entrancy vulnerability, Slither recorded the highest prediction (Table 9) with

a low level of False Negatives as indicated by the highest Recall value in Table 9. Both Osiris

and Oyente produced the same a high prediction score (Table 9) indicating all Static Analysis

tools tested are be suitable for Re-entrancy testing, agreeing with [32] who recommended

Slither and Oyente in their research. It is noted [31] did not record re-entrancy detection for

Osiris. While [27] found Slither detected all occurrence of re-entrancy, it had a high rate of

False Positives, which contradicts this report’s findings. The Oyente results (Table 7) in this

experiment contradicted [1] where the authors stated Oyente they returned false warnings for

re-entrancy from “…problematic smart contracts”.

Access Control was only detected by Slither with a strong prediction score F1 Score in

Table 9. While the Recall value indicates a number of False Negatives. These findings echo

[32] stating “There was no effective countermeasure for detecting the ‘Access Control’...”.

16

Concerning Arithmetic vulnerability (SmartBugs dataset) detection, Osiris and Oyente

performed well with Osiris returning a stronger prediction as observed in Table 9. This

experiment returned low False Positives (Table 7) for Oyente which contradicts two previous

studies [27, 32] in which a high degree of False Positive was found. An explanation for this

divergence was not established, noting different datasets utilised. [31] did not record detection

for Arithmetic vulnerabilities for Oyente which contradicts [27] and [32].

Slither was not designed to detect Arithmetic vulnerabilities such as Over/Under Flow

Integers, however, Slither returned 5 detections for a different vulnerability type on testing.

For example, Slither detected an issue in the smart contract “overflow_single_tx.sol” on lines

36, 42 and 48 recording it as “unused local variable” a SWC 131 vulnerability, which can cause

“increase in computation and unnecessary gas consumption”. The same code lines were

labelled by SmartBugs as “overflow escapes to publicly-readable storage”, an Arithmetic

vulnerability. Of the 5 detections above, 2 were “Secret” SWC 100 vulnerabilities, and 3 were

SWC 131 vulnerabilities, therefore the detections were recorded as SWC detections.

Unchecked LLC vulnerabilities were only detected by Slither with a high degree of

predictability (Table 9), which were similar to previous findings [32]. Osiris and Oyente

respectively show a high degree of False Positives for Unchecked LLC smart contracts (Tables

6 and 7). On examination, the False Positives were attributed to falsely detecting nonexciting

vulnerabilities of another type and not Unchecked LLC.

Tests conducted on the SWC registry dataset, considered the tools detection design. As

observed from Table 9, Osiris returned the highest predictive value (F1 Score) and Recall value

(Table 9). Both Oyente and Slither returned low Recall values indicating a high False Negative,

undetected vulnerabilities. Oyente’s F1 Score was marginal higher than Slither, however, the

low Recall gives rise to concerns using Oyente and Slither for the SCW registry vulnerabilities.

Oyente and Osiris have a very strong correlation examining Smartbugs contracts, however,

Oyente and Osiris diverge on the examination of the SWC registry contracts.

6.6.2 Discussion Combined Vulnerabilities

Observing the overall results, as presented in Table 10, Slither’s Precision value exceeds

Osiris and Oyente, with Oyente mostly likely to miss a detection with to lowest value for

Recall. Table 10 illustrates Oyente to have less trustworthiness with a lower Accuracy value,

combined with lower Precision values. This is reflected in the lower F1-Score as a predictor

for Oyente ability to detect vulnerabilities. Overall, Osiris produced the higher F1-Score and

will give a better prediction at vulnerability detection, followed closely by Slither and next by

Oyente with the lowest prediction.

It is apparent from the experiment that categories vulnerability type in smart contracts

are uncertain. Several contracts contained vulnerabilities not labelled and if not manually check

would have skewed results. The sample size in this experiment was small to allow for manual

inspection.

17

7 Conclusion and Future Work

The question “How effective are different docker static analysis testing tools at detecting

different vulnerabilities in Solidity generated Smart Contracts?”

 The objective of the experiment was to test the effectiveness of static analysis tools in

docker at detecting smart contract vulnerabilities from a given dataset. There is no

standardisation in labelling of vulnerabilities and the reliance on developers to categorise

vulnerabilities is mishap. The experiment included testing the dataset and subsequently re-

categorizing smart contracts with additional vulnerabilities which were not originally labelled.

Works conducted included, running testing static analysis tools in docker, testing the smart

contracts against the tools, recording the results, and interrupting the results via the confusion

matrix.

 The objectives were achieved, and the research question addressed concerning how

effective the different static analysis tools were. The experiment produced meaningful results

allowing comparison between the tools. Furthermore, as anticipated the dataset required

adjustment, highlighting concerns regarding datasets used for testing. While the research

question involved different vulnerabilities, the level of reclassification of vulnerability smart

contract was noteworthy. This research has gone over some old ground, however, in past papers

the dataset was given little attention and in many cases the vulnerabilities listed were not

verified independently [5]. This research also demonstrated the issues concerning vulnerability

labelled datasets.

Vulnerabilities were observed in Re-entrancy, Unchecked LLC and Access Control

which can lead to the additional vulnerability of an arithmetic nature e.g., over/under flow

integrity.

Slither was found to be the most effective and versatile tool having the ability to read

more contracts and detect more vulnerability types. However, weakness in returning False

Negatives were discovered. Oyente and Osiris produced similar result throughout the

experiment, allowing for detection of unlabelled vulnerabilities. In this experiment Oyente

performance was considered the least effective. While Slither and Osiris are effective tools,

each has detection capabilities that the other does not, therefore a solution suggested going

forward is to setup a framework incorporating Osiris and Slither to conduct tests giving greater

scope in detection.

7.1 Future works

The static analysis tools did not scan all the same smart contracts and the number of contracts

read varied, with Slither scanning the most. In future works, to mitigate against this weakness,

the latest or a more recent version of the Solidity complier should be installed in the docker

image. However, in this experiment, attempts to build a docker image with a more recent

complier could not be achieved in the time available. Alternativity, increasing the dataset size

in the experiment may increase the quantity of contracts scanned. Increasing the sample size

will increase resources required to individual assess each contract for vulnerabilities and

rechecking after testing.

18

 This experiment while small demonstrated the capability Docker images Osiris, Oyente

and Slither at testing and the different levels of effectiveness of each of the tools at testing.

Futures work could consider utilising docker static analysis images for testing as part of a larger

framework. Furthermore, consideration should be given to a standardised classification

vulnerability dataset for testing and registry of vulnerabilities similar to the SEI CERT Oracle

Coding Standard for Java, hosted by Carnegie Mellon University.

References

[1] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, ‘Security Analysis Methods on

Ethereum Smart Contract Vulnerabilities: A Survey’. arXiv, Sep. 16, 2020. Accessed:

Mar. 05, 2022. [Online]. Available: http://arxiv.org/abs/1908.08605

[2] ‘ISO/TR 23455:2019(en), Blockchain and distributed ledger technologies — Overview

of and interactions between smart contracts in blockchain and distributed ledger

technology systems’. https://www.iso.org/obp/ui/#iso:std:iso:tr:23455:ed-1:v1:en

(accessed Jun. 04, 2022).

[3] H. Chen, M. Pendleton, L. Njilla, and S. Xu, ‘A Survey on Ethereum Systems Security:

Vulnerabilities, Attacks, and Defenses’, ACM Comput. Surv., vol. 53, no. 3, pp. 1–43,

May 2021, doi: 10.1145/3391195.

[4] A. Bouichou, S. Mezroui, and A. E. Oualkadi, ‘An overview of Ethereum and Solidity

vulnerabilities’, in 2020 International Symposium on Advanced Electrical and

Communication Technologies (ISAECT), Nov. 2020, pp. 1–7. doi:

10.1109/ISAECT50560.2020.9523638.

[5] M. Ren et al., ‘Empirical evaluation of smart contract testing: what is the best choice?’,

in Proceedings of the 30th ACM SIGSOFT International Symposium on Software

Testing and Analysis, New York, NY, USA, Jul. 2021, pp. 566–579. doi:

10.1145/3460319.3464837.

[6] ‘SWC-100 · Overview’. http://swcregistry.io/ (accessed Jul. 10, 2022).

[7] ‘smartbugs/dataset at master · smartbugs/smartbugs · GitHub’.

https://github.com/smartbugs/smartbugs/tree/master/dataset (accessed Aug. 05, 2022).

[8] A. Panarello, N. Tapas, G. Merlino, F. Longo, and A. Puliafito, ‘Blockchain and IoT

Integration: A Systematic Survey’, Sensors, vol. 18, no. 8, Art. no. 8, Aug. 2018, doi:

10.3390/s18082575.

[9] S. Solidity Team, ‘Solidity Programming Language’, Solidity Programming Language.

https://soliditylang.org// (accessed Aug. 04, 2022).

[10] ‘Ethereum’, ethereum.org. https://ethereum.org (accessed Aug. 04, 2022).

[11] ‘The HUGE growth of the solidity developer salary in 2022’, Plexus Resource

Solutions, Mar. 08, 2022. https://www.plexusrs.com/growth-solidity-developer-salary/

(accessed Jun. 04, 2022).

[12] T. Sharma, Z. Zhou, A. Miller, and Y. Wang, ‘Exploring Security Practices of Smart

Contract Developers’. arXiv, Apr. 24, 2022. Accessed: May 13, 2022. [Online].

Available: http://arxiv.org/abs/2204.11193

[13] N. Atzei, M. Bartoletti, and T. Cimoli, ‘A survey of attacks on Ethereum smart

contracts’, 1007, 2016. Accessed: Mar. 05, 2022. [Online]. Available:

http://eprint.iacr.org/2016/1007

[14] E. Banisadr, ‘How $800k Evaporated from the PoWH Coin Ponzi Scheme Overnight’,

Medium, Feb. 03, 2019. https://medium.com/@ebanisadr/how-800k-evaporated-from-

the-powh-coin-ponzi-scheme-overnight-1b025c33b530 (accessed Jun. 04, 2022).

19

[15] B. Mueller, ‘Smashing Ethereum Smart Contracts for Fun and Real Profit’, HITB

SECCONF Amsterdam and ConsenSys Diligence, p. 54, 2018.

[16] S. User, ‘Blockchain Attack Vectors: Vulnerabilities of the Most Secure Technology’,

Apriorit. https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors (accessed

May 06, 2022).

[17] ‘Thoughts on The DAO Hack’, Hacking Distributed.

https://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/ (accessed Jun. 04,

2022).

[18] vasa, ‘HackPedia: 16 Solidity Hacks/Vulnerabilities, their Fixes and Real World

Examples’, HackerNoon.com, Aug. 15, 2020.

https://medium.com/hackernoon/hackpedia-16-solidity-hacks-vulnerabilities-their-fixes-

and-real-world-examples-f3210eba5148 (accessed May 08, 2022).

[19] N. F. Samreen and M. H. Alalfi, ‘A Survey of Security Vulnerabilities in Ethereum

Smart Contracts’, arXiv:2105.06974 [cs], May 2021, Accessed: Apr. 22, 2022.

[Online]. Available: http://arxiv.org/abs/2105.06974

[20] M. Zhang, X. Zhang, Y. Zhang, and Z. Lin, ‘TXSPECTOR: Uncovering Attacks in

Ethereum from Transactions’, p. 19, Aug. 2020.

[21] C. F. Torres, J. Schütte, and R. State, ‘Osiris: Hunting for Integer Bugs in Ethereum

Smart Contracts’, in Proceedings of the 34th Annual Computer Security Applications

Conference, San Juan PR USA, Dec. 2018, pp. 664–676. doi:

10.1145/3274694.3274737.

[22] J. Feist, G. Grieco, and A. Groce, ‘Slither: A Static Analysis Framework For Smart

Contracts’, in 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in

Software Engineering for Blockchain (WETSEB), May 2019, pp. 8–15. doi:

10.1109/WETSEB.2019.00008.

[23] ETSI, ‘GS PDL 011 Permissioned Distributed Ledger (PDL); Specification of

Requirements for Smart Contracts’ Architecture and Security’. Accessed: Jun. 05, 2022.

[Online]. Available:

https://www.etsi.org/deliver/etsi_gs/PDL/001_099/011/01.01.01_60/gs_PDL011v01010

1p.pdf

[24] M. Saad et al., ‘Exploring the Attack Surface of Blockchain: A Comprehensive Survey’,

IEEE Communications Surveys Tutorials, vol. 22, no. 3, pp. 1977–2008, 2020, doi:

10.1109/COMST.2020.2975999.

[25] A. Alkhalifah, A. Ng, P. A. Watters, and A. S. M. Kayes, ‘A Mechanism to Detect and

Prevent Ethereum Blockchain Smart Contract Reentrancy Attacks’, Frontiers in

Computer Science, vol. 3, 2021, Accessed: Apr. 20, 2022. [Online]. Available:

https://www.frontiersin.org/article/10.3389/fcomp.2021.598780

[26] D. Perez and B. Livshits, ‘Smart Contract Vulnerabilities: Vulnerable Does Not Imply

Exploited’, 2021, pp. 1325–1341. Accessed: May 01, 2022. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity21/presentation/perez

[27] A. Ghaleb and K. Pattabiraman, ‘How effective are smart contract analysis tools?

evaluating smart contract static analysis tools using bug injection’, in Proceedings of the

29th ACM SIGSOFT International Symposium on Software Testing and Analysis,

Virtual Event USA, Jul. 2020, pp. 415–427. doi: 10.1145/3395363.3397385.

[28] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha, ‘SMARTIAN: Enhancing

Smart Contract Fuzzing with Static and Dynamic Data-Flow Analyses’, in 2021 36th

IEEE/ACM International Conference on Automated Software Engineering (ASE), Nov.

2021, pp. 227–239. doi: 10.1109/ASE51524.2021.9678888.

[29] C. Benabbou and Ö. Gürcan, ‘A Survey of Verification, Validation and Testing

Solutions for Smart Contracts’, in 2021 Third International Conference on Blockchain

20

Computing and Applications (BCCA), Nov. 2021, pp. 57–64. doi:

10.1109/BCCA53669.2021.9657040.

[30] T. Petar, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and M. Vechev, ‘Securify:

Practical Security Analysis of Smart Contracts’, in Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, New York, NY, USA,

Oct. 2018, pp. 67–82. doi: 10.1145/3243734.3243780.

[31] M. di Angelo and G. Salzer, ‘A Survey of Tools for Analyzing Ethereum Smart

Contracts’, in 2019 IEEE International Conference on Decentralized Applications and

Infrastructures (DAPPCON), Apr. 2019, pp. 69–78. doi:

10.1109/DAPPCON.2019.00018.

[32] S. Ji, D. Kim, and H. Im, ‘Evaluating Countermeasures for Verifying the Integrity of

Ethereum Smart Contract Applications’, IEEE Access, vol. 9, pp. 90029–90042, 2021,

doi: 10.1109/ACCESS.2021.3091317.

[33] Z. A. Khan and A. S. Namin, ‘A Survey on Vulnerabilities of Ethereum Smart

Contracts’. arXiv, Dec. 28, 2020. Accessed: Jul. 21, 2022. [Online]. Available:

http://arxiv.org/abs/2012.14481

[34] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y.

Alexandrov, ‘SmartCheck: Static Analysis of Ethereum Smart Contracts’, in 2018

IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering

for Blockchain (WETSEB), May 2018, pp. 9–16.

[35] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, ‘Making Smart Contracts

Smarter’, in Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, Vienna Austria, Oct. 2016, pp. 254–269. doi:

10.1145/2976749.2978309.

[36] S. Akca, A. Rajan, and C. Peng, ‘SolAnalyser: A Framework for Analysing and Testing

Smart Contracts’, in 2019 26th Asia-Pacific Software Engineering Conference

(APSEC), Dec. 2019, pp. 482–489. doi: 10.1109/APSEC48747.2019.00071.

[37] ‘Docker Hub Container Image Library | App Containerization’. https://hub.docker.com/

(accessed Aug. 09, 2022).

