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Abstract 

Smart contract development is often overlooked in security terms and the consequences 

of vulnerable smart contracts embedded within a Blockchain can lead to current and future 

unforeseen negative consequences. Solidity smart contracts are a rapidly developing area 

within Blockchain technology. Several static analysis tools have been developed to assist 

in the secure creation of smart contracts, and datasets are provided to facilitate testing of 

tools.  

This report describes the results of testing the Static Analysis tools, Osiris, Oyente and 

Slither against Solidity generated smart contracts which contained documented 

vulnerabilities, sourced from Smart Contract Weakness Classification and Test Cases 

(SWC) registry and SmartBugs repository. The Docker static analysis tool images can be 

utilised in testing to enhance security in smart contracts. The findings in this report 

demonstrated the dominance of Slither testing tool in scanning and detecting 

vulnerabilities, however False Negatives were present.  The experiment also highlighted 

the issue of vulnerability classification in datasets and re-classification of the dataset smart 

contracts for vulnerabilities is required. This investigation demonstrated that Docker 

proved to be an effective means of testing the tools.  

  

Keywords: Slither, Osiris, Oyente, SmartBugs, SWC Registry, smart contracts, 

vulnerabilities, Solidity, Static Analysis, testing.   

 

 

1 Introduction 
 

After the Colonial Pipeline attack in the USA, the White House signed in an Executive Order 

which marked a new dawn in standard setting for organisations and testing of their cyber and 

IT infrastructures. The European Union brought in the Cybersecurity Act 2019 Regulation 

(EU) 2019/881 which sets out certification standards for organisations which are utilising best 

practice cybersecurity measures.  

Blockchain is becoming part of critical structures, and Smart Contracts, programming 

scripts with functions and rules [1], allow autonomous actions/transactions once deployed on 

the blockchain. Industrial Standards Organisations have published standards relating to smart 

contracts to improve development and security, standards such as the International 

Standardization Organization, ISO 23455:2019 and the European Telecommunications 

Standards Institute (ETSI), GS PDL 011, both of which define a smart contract “…as a 

computer program stored in a distributed ledger, wherein the outcome of  executed programs 

is recorded on the distributed ledger” [2].  
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Solidity based smart contracts designed for Ethereum are vulnerable as highlight by 

Chen et al [3], who stated that the programming for Ethereum is a new “…paradigm with 

DApps running on top of blockchains with many autonomous contracts…” resulting in 

undiscovered vulnerabilities which require time to discover and resolve. Bouichou, Mezroui, 

and Oualkadi [4] describe Solidity as “…loosely typed languages don’t require the programmer 

to be specific…” resulting in vulnerabilities.  

Static Analysis tools and smart contracts tested by researchers in the past, require 

revisiting, due to the development of new static analysis tools and their suitability, new 

vulnerabilities discovered and the challenge of understanding of vulnerability classification.     

1.1 Research Question 
 

“How effective are different docker static analysis testing tools at detecting different 

vulnerabilities in Solidity generated Smart Contracts?”  

1.2 Objectives 
 

In addressing the research question, this report is organised as follows: Section 2 is the Related 

Work, where a literature review is presented in the following key categories: Vulnerabilities of 

Smart Contracts, Types of Smart Contract, and Categorizing of Vulnerabilities and Analytic 

Tools / Security Tools. Section 3 is the Research Methodology section outlining the research, 

equipment and the techniques utilised, and the dataset gathered and processed. Section 4 

describes the framework of the research, while section 5 elaborates on the final stages of the 

implementation, and section 6 discusses the evaluation of the research. Lastly, future works are 

discussed, and the conclusion is presented in section 7.  

  The research question posed is conducted on Docker Image Static Analysis tools Osiris, 

Oyente and Slither, noting that the three Docker Images. One previous study, Ren et al. [5] 

compared the above mentioned tools, focusing on runtime parameter. Testing in the present 

study is conducted against known smart contracts with known vulnerabilities, sourced form 

SWC registry [6] and Smartbugs [7]. All the known smart contract vulnerabilities listed in the 

SWC registry are tested without code alteration. Tests are conducted on smart contracts with 

either one or more vulnerabilities, noting the different levels of scanning capability of the tools.  

The objective is to compare the static analytic tools against known vulnerabilities 

testing the static analysis tools for True Positive, False Positive, False Negative and True 

Negative detection to determine the efficiency the different static analysis tools. 

 

2 Related Work 
 

2.1 Background 

 

Solidity, written in a high-level language, is a programming language for creating smart 

contracts, within an Ethereum Virtual Machine (EVM), where the EVM, acting as a sandbox 

for smart contracts in Ethereum [8] runs/complies the code. 
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Solidity [9] and Ethereum [10] are open source allowing many new developers access, 

bring collaboration and publication of readymade smart contracts. Solidity and the Ethereum 

platform has experienced a big demand [11] in 2022 noted by the increase of job vacancies. 

Despite the vulnerabilities of Solidity, 83% of developers [12] do not view security as a 

priority. For the above reason this report will focus on Solidity created smart contracts. 

2.2 Vulnerabilities  

 

Smart contracts vulnerabilities have led to a number of  real world attacks include, inter alia,  

the DAO in 2016 [13], PoWH Coin Ponzi Scheme [14],  the Parity MultiSig Wallet [15], The 

King of the Ether [13] and Coindash ICO attack [16] with  vulnerabilities;  re-entrancy, batch 

Transfer Overflow CVE-2018-10299, DELEGATECALL opcodes and DoS, Unchecked 

Return Values for Low Level Calls, Short Address respectively.  

The level of security of a smart contract is reliant on the security of the programming 

language [3].  Emin Gün Sirer, a computer scientists who examined the DAO attack in the 

early stages, commented in a 2016 Article [17]  that Solidity and Ethereum Virtual Machine 

are “…more designed for loose web code…” application, commenting that smart contracts 

should be treat in the same way as writing for nuclear code.  

Smart contracts are deployed in EVM by way of complied bytecode. All rules and 

functions are programmed into the smart contract which invokes tasks/transactions as per 

programming. Once a smart contract is placed on the blockchain the smart contract is 

immutable, therefore any vulnerabilities or bugs in the coding will be permanent as the smart 

contract cannot be altered [13].  

Praitheeshan et al. [1] detected 19 software and 16 Ethereum issues stating that 

vulnerabilities in smart contracts are a result of software code implemented, the Solidity 

language scripts and the immutability of blockchain.  A number of challenges exist when 

utilising Solidity [1]: developers inexperience of this new technology, lack of best practices, 

immutability of smart contracts prevent updating of vulnerabilities.  

2.2.1 Types of smart contract vulnerability 

 

Vaibhav Saini listed 16 Solidity vulnerabilities  in a 2018 Article [18], which are as follows:  

• Re-entrancy 

• Integer Overflow:  

• Parity wallet attack:   

• Party Wallet Attack II: Killed wallet  

• Withdraw and not sent.  

• Time draft (timestamp dependence)  

• Separate public and private 

• 51% Attack 

• DelegateCall 

• Default Visibility  

• Default Visibility  

• Entropy Illusion. 

• Short Address 

• Unchecked CALL Return Values  

• Front Running (Race Condition) 

• DDoS 

• Constructors with Care  

• Uninitialized storage Pointers  

• Floating Points and Precision 

• Tx.Origin Authentication 
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2.3 Tools 

 

Static Analysis tools allow the examination of smart contracts for predefined common 

vulnerabilities without the need to deploy on the blockchain. The tools can examine the source 

code or compile the contract on a blockchain simulator (Virtual Machine) compiling the 

bytecode. While both paid and free static analysis tools for Solidity based smart contracts have 

been tested over the years, the research has not been exhausted. Further tools have yet to be 

examined and compared, and the varying metrics of the studies and datasets to be explained. 

Samreen and Alalfi [19] listed several static analysis tools which include: Oyente, SmartCheck 

which detects vulnerabilities patterns analysis, Mythril written in python  executes the EVM 

bytecode “symbolically” disassembling the code, Maian detects multiple transactions 

executing the EVM Bytecode symbolically, Securify extracts from known vulnerabilities  to 

create compliance and violation patterns and uses EVM bytecode as inputs, Vandel 

disassembles and decompiles bytecode, and EthIR which uses rule based Control Flow Graphs 

as input to a static analyser. Other publications mentioned  static tools such as Gigahorse [20], 

MadMax [20], Osiris [21], Slither [22], teEtherv , sComplier [3].  

2.4 Testing 

 

Sharma et al. [12], in a very recent study, examined 29 developers use of smart contract testing 

tools, discovering a detection rate of vulnerabilities of 15% amongst inexperienced developers 

and 55% amongst experienced developers. Sharma et al. [12] observed that developers found 

tools difficult to implement, and they had to use different tools for different vulnerabilities. 

Furthermore, some tools had to be employed outside the complier. From the study [12] 

participant usage was as follows:  17% use static analysis tools, 14% use Truffle testing suite, 

14% use Remix plugins, Myth was used by 7% and Slither by 3%. The study by Sharma et al. 

[12] was a review, and the authors did not conduct tool testing. 

ISO TR 23455:2019 published in 2019 set standards for smart contract development 

including security of smart contracts. ETSI published in December 2021, an Industrial 

Specifications [23] on the requirements for Smart Contract’s Architecture and Security, which  

gives guidance to testing. 

2.5 Vulnerabilities of Smart Contracts   

 

Saad et al. [24] examined attacks on smart contracts as part of Blockchain 2.0  focusing on 

Ethereum and Solidity, listing well-known attacks such as re-entrancy, over and under flow, 

replay, short address and reordering attacks, observing that attacks were due to poor 

programming or vulnerabilities in the program platform [24]. Saad et al. [24] stated that the 

flexibility in programming smart contracts contributed to vulnerabilities giving the example of 

re-entrancy attack which cannot occur on Bitcoin or Ripple. Saad et al [24] highlighted issues 

and an overview of fixes, but did not demonstrate the vulnerabilities through testing, nor did 

they suggest which testing tools to utilise.  

Alkhalifah et al. [25] concentrated on the vulnerability re-entrancy, noting this 

vulnerability led to two attacks out of seven well documented incidents between 2016 and 
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2018, concluding that vulnerabilities in smart contracts were due to coding errors by the 

developer. Alkhalifah et al. [25], iterated that coding practices  have not yet matured [26. p2], 

and referred the “code is law” concept, where once the smart contract is deployed on the 

Blockchain it is next to impossible to modify it.  

The number of vulnerabilities varies depending on the research. Bouichou, Mezroui, and 

Oualkadi [4] listed 13 vulnerabilities, examining 8 real world smart contracts attacks and  12 

testing tools, giving a good insight to the workings of the attacks, however, Bouichou et al. [4] 

limited the study to real world attacks. Chen et al [3] highlighted two security issues, firstly, 

permissionless i.e., allowing attackers in,  and secondly, immutability which  prevents 

vulnerability patching. Chen et al [3] viewed 40 vulnerabilities, 29 attacks with 51 defences, 

and focused on Ethereum, unlike Saad et al., Chen et al. discovered that 13 of the 25 Ethereum 

application layer vulnerabilities were not addressed/detected in their review, while observing 

that SmartCheck, performed well in discovering 10 out of 26 vulnerabilities. However, [3] the 

focus of the review was on defences and not on smart contract testing tools. 

2.6 Categorizing of Vulnerabilities  
 

Previous works tested smart contracts for known vulnerabilities (see Table 1 for examples), 

however, in many cases the vulnerability categorization was vague or the vulnerability in the 

smart contract was singularly classified [3], [19], [25]–[32]. Pervious papers did not conform 

to a standard classification of vulnerabilities and the labelling of vulnerabilities. In ten papers 

reviewed in this report [3], [5], [20], [26]–[32], which tested various tools, the dataset for the 

vulnerabilities was not consistent and nor were they fully comparable with each other. Each 

paper contained similarities in general labelling of the vulnerabilities, however, there was a 

degree of divergence with sampling specific vulnerabilities. This issue was highlighted by the 

ETSI in the 2021 published standard on smart contracts, stating that in testing, a well-structured 

approach was required and the test code should have clear indicators of error [23].  

This view was iterated by Ren et al. [5]. In previous studies [31] [29] [28], the 

vulnerabilities selected for testing were generally categorised into headline vulnerabilities such 

as re-entrancy without expanding on the vulnerability mechanism, while other studies did 

elaborate on the mechanism, e.g., fallback function [20] or call.value [5]. The consequence 

of the above resulted in difficulty in comparing previous research due to labelling of datasets. 

Noting SWC registry lists 36 vulnerabilities of which exist subcategories (vulnerability 

mechanism) of the headline vulnerabilities, and Smartbugs provides the code associated with 

the headline vulnerability. SWC 106 labels unprotected “selfdestruct” functionality 

vulnerability, also known as a suicide vulnerability [20], under the  headline vulnerability of 

“access control”. Papers [28] [20] [33] refer to “suicide” vulnerability, while papers [31] [20] 

[34] refer to this vulnerability as “selfdestruct”, and  paper [5] refers to the vulnerability as an 

“access control” vulnerability. As observed, there is a degree of interchangeability concerning 

the abovementioned vulnerability.   

 As a further example, the vulnerability “mishandled exception” is also known as 

“Uncheck Call Return Value” [3], and Choi et al. [28] considers “Gasless Send” as a 

“Mishandling Exception”. The above general labelling can cause confusion. The lack of a 

systematic labelling approach hinders comparison of tools.  
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 Ren et al. [5] reported that the selection of the dataset (smart contracts with 

vulnerabilities)  in many cases can skew particular results in favour of an author’s tool which 

is subject to the research. Chen and colleagues argue that real world vulnerabilities are different 

to artificial injected vulnerabilities where the latter effects a “universal conclusion”, 

highlighting the example of two contradictory results in terms of False Positive and False 

Negative for SmartCheck and Slither tools depending on the dataset utilised [5].  

 

Table 1: Vulnerability types and Previous Papers Published 

Publication 

Vulnerability  

[27] [3] [20] [26] [28] [5] [29] [30] [31] [32] 

Re-entrancy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Arithmetic  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ 

T Order Dependency ✓  ✓ ✓ ✓  ✓ ✓   

Access Control 

/Suicidal 

  ✓ ✓ ✓ ✓   ✓ ✓ 

Unchecked LLC ✓ ✓       ✓ ✓ 

Timestamp 

Dependency 

✓      ✓   ✓ 

Tx. Origin ✓    ✓    ✓  

Mishandling Exception  ✓ ✓ ✓ ✓ ✓  ✓   

DoS  ✓ ✓   ✓    ✓ 

Timestamp 

manipulation 

     ✓     

 

2.7 Analytic Tools / Security Tools  
 

Static Analysis is the examination of code or programmes when the smart contract is not 

executed (non-runtime). Methods of Static Analysis include: decomplication, complying, run-

based, CFG (Control Flow Graph and symbolic execution [1].  

Ghaleb  and Pattabiraman [27] compared their proposed SolidiFi tool against six static 

analysis tools using bug code snippets injected into “all possible locations” with an automated 

and systematic framework to evaluate the tools, with a focus on False Negatives. The injected 

smart contracts were examined by Oyente [35], Securify [15], Mythril [34], Slither, 

SmartCheck [30] and Manticore, checking for false negatives and undetected bugs, and 

presenting an explanation for the lack of detection. Osiris was not tested. The automated 

process of bug injection cannot be manually verified due to the large number of smart contracts 

injected, therefore comparison with other studies is difficult. The authors found Slither detected 

all re-entrancy vulnerabilities, however had a high False Positive return. Conducting the 

experiment with a smaller number of contracts with known vulnerabilities guarantees the 

vulnerability is known, and thus an improved analysis.  

Di Angelo and Salzer [31] conducted a review of Ethereum smart contract static 

analysis tools arguing that little academic examination was previously conducted on the tools 

themselves, and that previous papers concentrated on methods, regardless of the tools’ 

“provenance”. Di Angelo and Salzer [31] examined 27 tools with the objective of creating a 
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guide for future developers. The report observed that some papers involved the examining of 

the author’s own tool, giving rise to perceived impartiality when comparing the author’s tool 

to others. Di Angelo and Salzer’s [31], survey included Osiris, Oyente, finding that Osiris only 

detected Arithmetic issues and Oyente detected Re-entrancy, Timestamp and Trans Order 

Dependency. Slither was not included in the study.   

Ji, Kim and Im [32] conducted testing of static analysis tools within docker containers 

testing against smart contract vulnerabilities in an attempt to demonstrate a proposed software 

tool to automate the  evaluation static analysis tools.  The proposed tool returned comparative 

performance indicators i.e., Recall, Precision, Accuracy and F1-Score for the static analysis 

tools.  Slither and Oyente were among the tools test, however Osiris was not tested. A dataset 

of 237 smart contracts was utilised and which included re-entrancy, access control, unchecked 

LLC, and integer overflow. This paper concluded that tools which had a high True Positive has 

low precision and accuracy rates, recommending Slither and Oyente for re-entrancy, Slither for 

Uncheck LLC.  

Perez and Livshits [26] argued that smart contract vulnerabilities may not always be 

exploitable. The authors reused the datasets of previous research, comprising of over 23,000 

vulnerable contracts from 800,000 contracts. The authors settled on 6 vulnerabilities: “…re-

entrancy (RE), unhandled exception (UE), locked Ether (LE), transaction order dependency 

(TO), integer overflows (IO) and unrestricted actions (UA).” Perez and  Livshits [26] tested 9 

static analysis tools including Oyente, which performed well recording that it detected 

RE,UE,TO and IO,  however, the study did not include Slither nor Osiris. 

Akca, Rajan, and Peng [36] examined their automated technique Solidity SolAnalyser, 

comparing it favourable to Oyente, Securify, Maian, SmartCheck and Mythril. This study 

involved generating approximately 13,000 mutated contracts from 1838 real contracts covering 

8 different vulnerabilities.  SolAnalyser utilised both static and dynamic analysis, combining 

ContractAnalyser and ExecutionValidator, creating SolAnalyser. This technique was 

compared to the abovementioned static analysis tools. Akca et al. [36] did observe that static 

analyses tools return a large number of False Positive. Of note, the study involved the authors 

own framework, giving rising the issues of impartiality.  

Praitheeshan et al. [1] conducted a survey of previous works, listing a number of static 

analysis tools and the vulnerabilities detected. This paper comprehensively explained the main 

vulnerabilities; however, the vulnerabilities were limited to two real world attacks, namely 

DAO and Parity. The tested tools included, Oyente, Zeus, Vandel Ethir, Securify, Maian and 

Gasper which detected the headline vulnerabilities Re-entrancy, Exception handling, 

Transaction ordering, Block timestamp dependency, Call stack depth limitations, Integer 

over/under flow, Suicidal contract, Use of Origin, Unchecked and failed send, No restriction 

write, No restriction transfer and Greedy contracts. While this paper explored the headline 

vulnerabilities, the paper was a survey without testing the tools and did not report on the Recall, 

Precision or Accuracy of the tools in detail, only to state that Securify had less False Positives 

than Oyente and Securify stating was better at detecting reentracy, but the findings lacked 

detail. 

Ren et al. [5] reported discrepancies between previous studies due to lack of a common 

framework for testing, common dataset and metrics to conduct correct comparison/evaluations 

based on runtime and evaluation metrics, testing Oyente, Osiris and Slither.[5] attempted to 
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create a baseline suite of tools and datasets for testing, selecting the dataset contracts form 

Etherscan (45,622) Solidify (9,369), CVE (124) and SWC (90). It was observed that the 

contract vulnerabilities gathered from Ehterscan API’s were self-determined, and the authors 

conducted manual injection of vulnerabilities into the dataset from Solidify. While the authors 

created a baseline from a large dataset, the process above could have led to errors due to lack 

of third-party confirmation of the exitance and type of vulnerable. Furthermore, the study did 

not test the tool’s ability to discover vulnerabilities.   

 Alkhalifah et al. [25] conducted testing on six “vulnerability-detection” tools to detect 

the re-entrancy vulnerability. The authors did discuss the short comings of the testing tools and 

their inability to discover new patterns in re-entrancy attack. The authors proposed a proof-of-

concept solution, involving monitoring the difference between the contract balance and the 

total balance of all participants.  Alkhalifah et al. [25] did not conduct  testing on the different 

tools but confined their study to a proof of concept concerning re-entrancy vulnerability. The 

authors mentioned Oyente but did not test the tool.   

Choi et al. [28] in their demonstration of SMARTIAN, a fuzzing testing tool, employed 

both statistical and dynamic analysis of smart contracts to contribute to the developing of the 

fuzzing testing. The static analysis was conducted to determine parameters for fuzzing and 

dynamic analysis conducted on dataflows for feedback. The experiment compared 

SMARTIAN against two fuzzer tools, ILF and sFuzz, and two symbolic executors Manticore 

and Mythril. The authors claimed SMARTIAN tested for 13 types of bugs, discovering 211 

bugs from 500 real world contracts without excessive false positives. This study, while 

comprehensive, did not involve Slither, Oyente and Osiris. Furthermore, the authors were 

testing their own solution give rise to potential impartiality.  

Chen et al. [3] outlined a number static tools which detected vulnerabilities referring to 

previous works, however, the paper did not conduct testing to confirm these claims. 

 

3 Research Methodology 
 

A framework comprising of static analysis smart contract tools running in Docker was 

established. The selected smart contract dataset was categorised based on vulnerabilities and 

tested by the static analysis tools within Docker. The preliminary results were examined to 

ensure the category/classification of the smart contract based on vulnerabilities corresponded 

with the results. If required, the smart contract maybe recorded as having an additional 

vulnerability assigned to that smart contract which was not originally classified according to 

the dataset source. The additional classification procedure is set out below. Additional 

classification may occur when a smart contract is labelled as having a certain vulnerability, but 

when tested by the tool, another vulnerability is detected. The “other vulnerability” maybe 

originally observed as a False Positive. On examination of the smart contract and supported by 

a detection by another static analysis testing tool, the vulnerability is deemed to exist and a 

return of True Positive, instead of False Positive, will be recorded, after which the results will 

be collated and compared.   

 The dataset of the smart contracts was copied into the Docker containers of the static 

analysis tool, and the tool was executed against the smart contracts. The results were returned 

and compared against the expected detection for that tool for each vulnerability, see Fig.1.   
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Fig.1. Workflow of Data Process 

3.1 Equipment utilised  
 

Equipment and software utilised as set out in the configuration manual  

3.2 Data Selection 
 

The dataset was selected from SWC Registry [6] and Smartbugs repository in GitHub [7].  

3.3 Data Verification 
 

Each individual smart contract was researched, and any attached commentary viewed to 

determine the type of vulnerability associated with the contract.  

3.4 Data Integration 
 

Each smart contract was individually selected and uploaded into VS Code to be complied and 

saved to a testing file. The contracts were viewed but were not altered from the original.  

3.5 Data Testing  
 

The experiment tested 207 smart contracts. Each static analysis tool is designed to test for 

certain vulnerabilities. The smart contracts selected form Smartbugs contained Re-entrancy, 

Access Control, Arithmetic and Unchecked Low-Level Call (Unchecked LLC) vulnerabilities 

and the dataset form SWC covers a greater range of vulnerabilities. The static analysis tools 

tested were not designed to detect all the vulnerabilities tested, a factor which was taken into 

consideration when determining detection rates. Smart contracts vulnerabilities which fall 

outside the scope of the test tools are considered neutral smart contracts for the purpose of the 

test and have an expected result of True Negative.  

 Solidity complier version of the testing tool effects the ability of the tools to read certain 

contracts. The solidity complier version in docker images Oyente and Osiris is pre-0.4.25, 

impacting on scanning a number of SWC smart contracts, while Slither complier version 

0.4.25+ facilitated scanning all but a few of the contracts. Oyente read 72, Osiris read 69 and 

Slither read 185 contracts.   

3.6 Testing tools  
 

Three docker images based static analytical/ symbolic execution tools, Slither, Oyente and 

Osiris were tested in the experiment. The image of each  tool was pulled from Docker Hub [37] 
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and executed in Docker as containers. The smart contracts are copied into the docker container 

of each tool and tested.  

3.7 Evaluation 
 

The smart contract testing result are separated into the following confusion matrix: 

True Positive (TP): The occurrence that the tool correctly detected a stated vulnerability. 

True Negative (NP): The occurrence that the tool correctly failed to detect a stated vulnerability 

as predicted. 

False Positive (FP): The occurrence that the tool incorrectly detected a stated vulnerability. 

False Negative (FN): The occurrence that the tool incorrectly failed to detect a stated 

vulnerability. 

3.8.1 Detection of unlabelled vulnerability  
 

This concerns two stages. Stage One, as illustrated in Table 2, compares the result i.e., the 

detection or non-detection with the documentation for the tool, ascertaining if the outcome is 

expected as per documentation. If the expected detection corresponds with the actual detection, 

the result will be a True Positive. However, if a detection for a vulnerability which is not listed 

or documented for that smart contract, then the process progresses to the next stage. Stage Two, 

as illustrated in Table 3, compares the result from another static analysis testing tool for the 

same smart contract. If two static analysis tools listed in Table 4 detect the same vulnerability 

in a smart contract which was not listed nor documented for that vulnerability, the result will 

be determined a True Positive, otherwise the result will be considered a False Positive. 

3.8.1 Partial Detection vulnerability  
 

Failing to detect a listed vulnerability while also detecting another unlisted vulnerability will 

be considered a False Negative for the undetected vulnerability, and the unlisted vulnerability 

detected will be further examined by a Stage Two process as mentioned above. 

On occasion two smart contracts exist, where one contract contains the vulnerability, 

and the other contract is considered the “fixed” contract of the first, with no vulnerability.  If a 

smart contract with a vulnerability is not detected i.e., False Negative, then the corresponding 

“fixed” contract will be not counted as a Ture Negative if the test indicates so, as it cannot be 

determined if the True Negative is as result of the “fix”. 

 

Table 2: Expected detection by Static Analysis tool according to documentation for 

vulnerabilities in Smart Contract 

Expected Detection Non-Detection Future 

Examination 

Classification 

✓ ✓   TP 

✓  ✓  TN 

 ✓  Revert (FP)  

  ✓  FN 
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Table 3: Revert -Vulnerability detected by an alternative Static Analysis Tool 

Revert (FP) Alternative Tool Classification 

 ✓ TP 

  FP 
 

Table 4: Alternative Static Analysis Tool Combination 

 Osiris  Oyente Slither  

Osiris   ✓ ✓ 

Oyente  ✓  ✓ 

Slither ✓ ✓  

 

4 Design Specification 
 

The collected dataset of smart contracts is compiled in VS Code then organised and saved into 

separate folders depending on the source of the smart contract, i.e., SWC or SmartBugs 

registry, and vulnerability type. Utilising a community edition docker engine installed on an 

Ubuntu 18.04.6 OS, the selected docker images for Smart Contract Static Analysis tools i.e., 

Oyente, Osiris and Slither are “pull” from the Docker Hub repository [37]. Within the Docker 

engine, set up docker containers for Oyente, Osiris and Slither from their retrospect images.  

The aforementioned smart contracts files will be copied into Oyente, Osiris and Slither docker 

containers via Docker, then execute the Static Analysis commands unique to each tool to test 

the individual smart contracts, see Fig.2.  

 

 
Fig.2. Design Specification of Docker hosting Static Analysis tools  testing on Smart Contracts  

 

5 Implementation 
 

VS Code was utilised to compile and organise the dataset sourced form SWC registry and 

SmartBugs.  

Docker Community Edition Engine was utilised to run Docker images, creating 

containers from Oyente, Osiris and Slither Static Analysis testing tools. The Docker images 

mentioned above scanned the smart contracts for vulnerabilities, and the results were outputted 

onto the docker terminal. The raw data results captured detection and non-detection both 

expected and unexpected of vulnerabilities and copied into an editor (Notepad ++). 

Comparison of the raw data results were made with the original documented smart contract 

and of the documented capability of the static analysis tools.  Recorded results were entered a 
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spread sheet, including data handling errors. Statistical analysis was conducted creating a 

confusion matrix. Recall, Precision Accuracy and F1-Score were calculated, determining the 

capability and the predictability of each of the tools.   

 

6 Evaluation 
 

The 207 smart contracts tested by all tools resulted in both expect returns and some unexpected 

returns. Slither testing tool was the most comprehensive tool examining 185 smart contracts as 

Slither’s solidity complier was able to read both newer and older contracts. Contracts with a 

complier 04.25.0 and earlier prove problematic for Oyente and Osiris. However, Oyente and 

Osiris read 72 and 69 smart contracts respectively. Oyente and Osiris have similar overall 

quantitative detection rate outcomes, noting a slight divergence on which contracts gave a 

particular result.  

6.1 Dataset Classification  

 

In determining if an unclassified vulnerability exists within a smart contract, the evaluation 

was conducted per Section 4.24 smart contracts were additionally classified as containing 

further vulnerabilities. When a new vulnerability was discovered originating from a particular 

classified smart contract, then that particular contract was additionally classified as containing 

a second vulnerable. For example, on examination, originally Unchecked LLC classified 

contracts were found to have an additional Re-entrancy vulnerability and 6 Arithmetic 

vulnerabilities as show in Table 5. Oyente and Osiris had a corelation of 1, discovering the 

same new vulnerabilities in contracts.  

 Table 5 shows the origin of newly discovered vulnerabilities within smart contracts. 

The column “SC Original Classification” is the original vulnerable type classified smart 

contract where the additional vulnerability was discovered. The top row “Additional 

Classification” represents the newly discovered vulnerability to be included in the experiment. 

A total of 24 smart contracts were re-classified with additional vulnerabilities. From examining 

previous publications, reclassification of SmartBugs smart contract was not conducted during 

testing.  

Table 5: Additional classified Smart Contract with Vulnerabilities 

                    Additional    

Classification  

 

SC Original  

Classifications 

 

Re-entrancy 

 

Access 

Control 

 

Arithmetic 

 

Unchecked 

LLC 

 

Total 

Re-entrancy   16  16 

Access Control   1  1 

Arithmetic      

Unchecked LLC 1  6  7 

Total  1  23  24 
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6.2 Experiment Osiris  
 

Table 6, 7 and 8 show the raw data captured for each Static Analysis tool, in terms of True 

Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) when testing 

the tool’s effectiveness at detecting vulnerabilities within the smart contract tested. Table 6, 7, 

and 8 show the smart contracts as per their vulnerability classification under Column 

“Vulnerabilities” and the detection rate under Rows labelled “TP”,”TN”, “FP” and “FN”.  

 

Table 6: Dataset tested by Osiris 

Vulnerabilities  Read TP TN FP FN 

SmartBugs Dataset      

Re-entrancy 18/31 18 0 0 1 

Access Control 4/18 0 3 2 0 

Arithmetic 10/15 32 0 1 1 

Unchecked LLC 18/26 0 5 12 0 

Total 50 59 8 15 2 

SWC Dataset      

Total  19 20 5 11 4 

Datasets Total  69 79 13 26 6 

6.3 Experiment Oyente 
 

Table 7: Dataset tested by Oyente  

Vulnerabilities  Read TP TN FP FN 

SmartBugs Dataset      

Re-entrancy 18/31 18 0 0 1 

Access Control 4/18 0 4 2  

Arithmetic 10/15 32 0 1 1 

Unchecked LLC 20/26 0 4 16 0 

Total  48 50 8 19 2 

SWC Dataset       

Total  20/117 5 11 0 4 

Datasets Total  72 31 19 19 6 

6.4 Experiment Slither  
 

Table 8: Datasets tested by Slither 

Vulnerabilities  Read TP TN FP FN 

SmartBugs Dataset       

Re-entrancy 29/31 28 0 0 1 

Access Control 18/18 14 0 0 3 

Arithmetic 15/15 0 0 5* 0 

Unchecked LLC 26/26 26 0 0 3 

Total  88 68 0 0 7 

      

SWC Dataset      

Total 97 47 12 7 34 
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Datasets Total  185 111 12 7 41 

*Revert 5 vulnerabilities as follows = 2 to SWC 100 and 3 to SWC 131 

 

6.5 Results  

Table 9 shows the confusion matrix for each of the Static Analysis tools and the vulnerabilities 

the tools attempted to detect. The data captured from Tables 6, 7 and 8 was utilised to generate 

the confusion matrix in Tables 9 and 10. Table 10 shows the combined result for each Static 

Analysis tool for the entire vulnerability dataset employed. 

 
 

Table 9: Vulnerability Type against Static Analysis Tool 

Static Analysis 

Tool 

Vulnerability 

 

 

Osiris 

 

Oyente 

 

Slither 

Re-entrancy    

Recall 0.947368 0.947368 0.965517 

Precision 1 1 1 

Accuracy 0.947368 0.947368 0.965517 

F1-Score 0.972973 0.972973 0.982456 

Access Control    

Recall 0 0 0.823529 

Precision 0 0 1 

Accuracy 0 0 0.823529 

F1-Score 0 0 0.903226 

Arithmetic    

Recall 1 0.969697 0 

Precision 0.969697 0.969697 0 

Accuracy 0.941176 0.941176 0 

F1-Score 0.984629 0.969697 0 

Unchecked LLC    

Recall 0 0 0.896552 

Precision 0 0 1 

Accuracy 0 0 0.896552 

F1-Score 0 0 0.945455 

SWC    

Recall 0.833333 0.555555 0.580246 

Precision 0.645161 1 0.870370 

Accuracy 0.625000 0.800000 0.590000 

F1-Score 0.727272 0.714285 0.672000 
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Table 10: Overall Combined Datasets 

 Recall Precision Accuracy F1-Score 

Osiris 0.929412 0.752381 0.741935 0.831579 

Oyente 0.873016 0.591399 0.643411 0.705129 

Slither 0.735100 0.940678 0.719298 0.825279 

 

6.6 Discussion 
 

The experiment was limited by the number of tools tested and the level of understanding of 

vulnerabilities within Solidity. Research was hampered by the lack of coordination within the 

community to categorise vulnerabilities, an opinion shared by other researchers (e.g., [23] and 

[5]), hence the introduction of reclassification in this experiment. SmartBugs and SWC 

Registry do provide a valuable service in providing documented and categorised datasets. 

Whilst writing this report, SWC added SWC 136 to the registry demonstrating the commitment 

to maintaining a registry of vulnerabilities.  

Using the confusion matrix, a Ture Positive and Ture Negative are desired. However, 

this experiment tested for vulnerabilities, therefore, the consequence of a False Negative i.e., 

undetected vulnerability is more severe than a False Positive i.e., wrongly detected 

vulnerability. An undetected vulnerability will be a security risk to smart contracts deployment. 

A False Positive may result in increased production time to find a nonexciting vulnerability. 

Precision values measure the influence of the False Positive, and a type I error, while Recall 

measures the influence of False Negative and is a type II error.  

An imbalance in the dataset existed in the experiment, as some tools read more 

contracts than others and some tools were not designed to detect certain vulnerabilities. F1 

Score metric is an appropriate metric to handle this imbalanced data. The F1 -Score is the 

weight average of Recall and Precision, i.e., the metric harmonises the mean of Recall and 

Precision. The closer to the value 1 an F1-Score is, the closer the model is in predicting the 

classification of an outcome.  

6.6.1 Discussion Individual Vulnerabilities  

 

Examining for Re-entrancy vulnerability, Slither recorded the highest prediction (Table 9) with 

a low level of False Negatives as indicated by the highest Recall value in Table 9. Both Osiris 

and Oyente produced the same a high prediction score (Table 9) indicating all Static Analysis 

tools tested are be suitable for Re-entrancy testing, agreeing with [32] who recommended 

Slither and Oyente in their research. It is noted  [31] did not record re-entrancy detection for 

Osiris. While [27] found Slither detected all occurrence of re-entrancy, it had a high rate of 

False Positives, which contradicts this report’s findings.  The Oyente results (Table 7) in this 

experiment contradicted [1] where the authors stated Oyente they returned false warnings for 

re-entrancy  from “…problematic smart contracts”.  

Access Control was only detected by Slither with a strong prediction score F1 Score in 

Table 9. While the Recall value indicates a number of False Negatives. These findings echo 

[32] stating “There was no effective countermeasure for detecting the ‘Access Control’...”. 
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Concerning Arithmetic vulnerability (SmartBugs dataset) detection, Osiris and Oyente 

performed well with Osiris returning a stronger prediction as observed in Table 9. This 

experiment returned low False Positives (Table 7) for Oyente which contradicts two previous 

studies [27, 32]   in which a high degree of False Positive was found. An explanation for this 

divergence was not established, noting different datasets utilised.  [31] did not record detection 

for Arithmetic vulnerabilities for Oyente which contradicts [27] and [32].  

Slither was not designed to detect Arithmetic vulnerabilities such as Over/Under Flow 

Integers, however, Slither returned 5 detections for a different vulnerability type on testing.  

For example, Slither detected an issue in the smart contract “overflow_single_tx.sol” on lines 

36, 42 and 48 recording it as “unused local variable” a SWC 131 vulnerability, which can cause 

“increase in computation and unnecessary gas consumption”. The same code lines were 

labelled by SmartBugs as “overflow escapes to publicly-readable storage”, an Arithmetic 

vulnerability. Of the 5 detections above, 2 were “Secret” SWC 100 vulnerabilities, and 3 were 

SWC 131 vulnerabilities, therefore the detections were recorded as SWC detections.   

Unchecked LLC vulnerabilities were only detected by Slither with a high degree of 

predictability (Table 9), which were similar to previous findings [32].  Osiris and Oyente 

respectively show a high degree of False Positives for Unchecked LLC smart contracts (Tables 

6 and 7). On examination, the False Positives were attributed to falsely detecting nonexciting 

vulnerabilities of another type and not Unchecked LLC.  

Tests conducted on the SWC registry dataset, considered the tools detection design. As 

observed from Table 9, Osiris returned the highest predictive value (F1 Score) and Recall value 

(Table 9). Both Oyente and Slither returned low Recall values indicating a high False Negative, 

undetected vulnerabilities. Oyente’s F1 Score was marginal higher than Slither, however, the 

low Recall gives rise to concerns using Oyente and Slither for the SCW registry vulnerabilities. 

Oyente and Osiris have a very strong correlation examining Smartbugs contracts, however, 

Oyente and Osiris diverge on the examination of the SWC registry contracts.  

6.6.2 Discussion Combined Vulnerabilities   

 

Observing the overall results, as presented in Table 10, Slither’s Precision value exceeds 

Osiris and Oyente, with Oyente mostly likely to miss a detection with to lowest value for 

Recall. Table 10 illustrates Oyente to have less trustworthiness with a lower Accuracy value, 

combined with lower Precision values.  This is reflected in the lower F1-Score as a predictor 

for Oyente ability to detect vulnerabilities. Overall, Osiris produced the higher F1-Score and 

will give a better prediction at vulnerability detection, followed closely by Slither and next by 

Oyente with the lowest prediction.  

It is apparent from the experiment that categories vulnerability type in smart contracts 

are uncertain. Several contracts contained vulnerabilities not labelled and if not manually check 

would have skewed results. The sample size in this experiment was small to allow for manual 

inspection.  
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7 Conclusion and Future Work 
 

The question “How effective are different docker static analysis testing tools at detecting 

different vulnerabilities in Solidity generated Smart Contracts?”  

 The objective of the experiment was to test the effectiveness of static analysis tools in 

docker at detecting smart contract vulnerabilities from a given dataset. There is no 

standardisation in labelling of vulnerabilities and the reliance on developers to categorise 

vulnerabilities is mishap. The experiment included testing the dataset and subsequently re-

categorizing smart contracts with additional vulnerabilities which were not originally labelled. 

Works conducted included, running testing static analysis tools in docker, testing the smart 

contracts against the tools, recording the results, and interrupting the results via the confusion 

matrix.   

 The objectives were achieved, and the research question addressed concerning how 

effective the different static analysis tools were. The experiment produced meaningful results 

allowing comparison between the tools. Furthermore, as anticipated the dataset required 

adjustment, highlighting concerns regarding datasets used for testing. While the research 

question involved different vulnerabilities, the level of reclassification of vulnerability smart 

contract was noteworthy. This research has gone over some old ground, however, in past papers 

the dataset was given little attention and in many cases the vulnerabilities listed were not 

verified independently [5]. This research also demonstrated the issues concerning vulnerability 

labelled datasets. 

Vulnerabilities were observed in Re-entrancy, Unchecked LLC and Access Control 

which can lead to the additional vulnerability of an arithmetic nature e.g., over/under flow 

integrity.   

Slither was found to be the most effective and versatile tool having the ability to read 

more contracts and detect more vulnerability types. However, weakness in returning False 

Negatives were discovered. Oyente and Osiris produced similar result throughout the 

experiment, allowing for detection of unlabelled vulnerabilities. In this experiment Oyente 

performance was considered the least effective. While Slither and Osiris are effective tools, 

each has detection capabilities that the other does not, therefore a solution suggested going 

forward is to setup a framework incorporating Osiris and Slither to conduct tests giving greater 

scope in detection.   

7.1 Future works  

 

The static analysis tools did not scan all the same smart contracts and the number of contracts 

read varied, with Slither scanning the most. In future works, to mitigate against this weakness, 

the latest or a more recent version of the Solidity complier should be installed in the docker 

image. However, in this experiment, attempts to build a docker image with a more recent 

complier could not be achieved in the time available. Alternativity, increasing the dataset size 

in the experiment may increase the quantity of contracts scanned. Increasing the sample size 

will increase resources required to individual assess each contract for vulnerabilities and 

rechecking after testing.  
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 This experiment while small demonstrated the capability Docker images Osiris, Oyente 

and Slither at testing and the different levels of effectiveness of each of the tools at testing. 

Futures work could consider utilising docker static analysis images for testing as part of a larger 

framework. Furthermore, consideration should be given to a standardised classification 

vulnerability dataset for testing and registry of vulnerabilities similar to the SEI CERT Oracle 

Coding Standard for Java, hosted by Carnegie Mellon University.   
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