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Executive Summary

Software has grown more complex, and the cost of fixing software bugs is increasing.
The ability to predict the occurrence of bugs after the contribution of a developer, or
to predict what types of bugs that contribution might cause can be an asset to any
company which develops software at a large scale.

This project explored the possibility of predicting a bug occurring after a contribution
by using the data from the title, body, and tags of the pull request (PR). Additionally,
the same data was be used to predict the category of a bug.

The data set was scraped from VSCode’s GitHub repository, and it comprises of pull
request information and issues information. Issues were assigned to pull requests
according to their dates, issues being after pull requests. The analysis used three
machine learning models to perform the predictions: Random Forest, Decision Trees,
and Linear Support Vector Machine (lSVM).

The results did not show any significant levels of accuracy in the predictions for the
models tested. This may have been due to inconsistent labeling across the project, and
under sampling when testing for the bug categories.
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1. Introduction

1.1 Background

As software gets increasingly complex, the time spent dealing with bugs increases. A
team can spend up to six months just trying to identify the source of a bug and fix it
(Software teams and their knowledge networks in large-scale software development |
Elsevier Enhanced Reader 2022). There are methods in place to track bugs, feature
work, component work, bug fixing. All this data is generated to make it easier to track
work, who has done what and to help engineers fix issues and bugs when they appear.
When dealing with a bug, it is helpful to have breadcrumbs leading you back to the
original Pull Request and seeing the code creating the code in its original context.

Data for large scale projects is readily available for open-source projects within the
GitHub API. The data used for this analysis was collected from the VSCode GitHub
repository (Visual Studio Code - Open Source ("Code - OSS") 2021). This project has
over 50 releases, 5 000 active issues, 117 000 closed issues, 230 open pull requests and
10 382 closed pull requests, so it is an excellent candidate for this analysis.

Software bug prediction is traditionally performed by looking at source code
(Delphine Immaculate, Farida Begam, and Floramary 2019). Machine Learning lends
itself perfectly to that, but to prepare the data set which contains the source code
there is a lot of human intervention needed. To minimize that effort but still get decent
results, one option is to reduce the number of features considered when performing the
analysis (Shivaji et al. 2009).

Another option is to not look at the code at all but look at other factors which can be
used as predictors for bugs in software. Reducing Features to Improve Bug Prediction
(A Novel Machine Learning Approach for Bug Prediction | Elsevier Enhanced Reader
2022) takes the actual number of bugs as a dependent variable and then uses linear
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regression on other metrics to decide on the best metrics to use as independent
variables.

The analysis attempted to use the titles and body of PRs as independent variables,
and number of bugs or category of bugs as dependent variables. Machine Learning and
Natural Language Processing (NLP) aided in this process.

1.2 Aims

This analysis aimed to implement a system able to predict the occurrence of bugs and
/ or type of bugs appearing because of a pull request (PR). We looked at the contents
of the title, body, and labels of the pull request, as well as information related to other
details, such as date or if the pull request is a bug fix associated with a certain bug.
The main benefactors of this project would be large scale projects, since those would
have generated enough data needed for this type of analysis. Smaller projects could
benefit as well, if they use a popular software stack (i.e., MERN stack for web
development).

This approach can also be used to identify problem areas of a code base, by looking at
the type of pull requests (PRs) and the type of issues they are addressing.

1.3 Technology

The main programming language used in the analysis is Python, and various python
libraries were added and used. The main library was pandas’ (pandas - Python Data
Analysis Library 2021), which is widely used in data science for its ease in both data
analysis and data manipulation.

The main IDE used was Data Spell (JetBrains DataSpell 2021), which is geared
towards data analysis and its main advantage is that it can handle Jupyter Notebook
files locally, with a local Jupyter notebook server running. Python within DataSpell
was used for most of the operations in this analysis. The reason for choosing the
Jupyter Notebook as the main format for the analysis is its flexibility and modularity
when it comes to manipulating and visualizing data. Other python libraries used are:

• numpy for mathematical functions
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• seaborn for correlation graphs and other data visualizations

• wordcloud for generating wordcloud visualization

• json for manipulationg JSON files

• requests for grabbing API data

• ATOMClassifier from the atom package for NLP machine learning

Aside from data analysis, acquiring the data set was used using three simple python
scripts, which were written, tested and ran using PyCharm IDE.

Since everything is going to be developed and tested on a Linux machine, the project
also made use of bash for general trouble shooting, setting up the DataSpell and
jupyter notebook environment and running quick tests for the API via curl before
extracting the data from the API.

For project management, Only Office’s project management tool was used to keep
track of general tasks and milestones while Nextcloud Deck kept track of specific tasks.
Git was used for version control for the main jupyter notebook file and for the python
data extraction files.

1.4 Structure

Below there is a quick overview of the project structure:

• Executive Summary of the report, highlighting major points and describing the
results

• Introduction presents the background and motivation of the project, what it aims
to solve, a brief overview of the technologies used and the present summary

• Data is a detailed description of the data set, where it was sourced from and an
outline of exploratory analysis

• Methodology is a description of how to get from the data to the analysis itself.
The methods are explained in detail, including preprocessing.

• Analysis detail the approach taken in processing the data and justify it
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• Results present the results of the analysis using figures, graphs, and tables to
outline the conclusions

• Conclusions explain the advantages and disadvantages of the approach taken in
the analysis. Other approaches were discussed, learning from the chosen approach

• Further Development or Research explores what path the project would take with
additional time and resources

2. Data

2.1 Overview

The data is collected using the GitHub API from VSCode’s GitHub page, via three
python scripts. There are three main data sets, collected from three endpoints:

https://api.GitHub.com/repos/microsoft/vscode/issues for VSCode’s GitHub issues.
This is where users can report any issue. These reports often come from people who
are not developers or contributors to the project, from product users. This is the
largest data set out of the three, the resulting file being almost 1GB in size.

Data set properties

issues.json
Initial Format JSON

Size 997.7 MB
After conversion to pandas dataframe

Columns 29
Rows 135172

https://api.GitHub.com/repos/microsoft/vscode/pulls for VSCode’s pull requests.
These are the pull requests submitted by developers. They can be regular developers
hired by Microsoft, regular developers who are not hired but volunteers, or just
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infrequent or one-time contributors. PRs can be either open or closed. The closed one
can be merged or simply closed.

Data set properties

pulls.json
Initial Format JSON

Size 259.7 MB
After conversion to pandas dataframe

Columns 36
Rows 10896

https://api.GitHub.com/repos/microsoft/vscode/releases for the releases. This is the
smallest of the sets, with only 53 entries. The most important field for this set is the
release date published_at, since this helped to track down issues and PRs. Due to its
small size, this data set was not of much use to this analysis.

Data set properties

releases.json
Initial Format JSON

Size 172.0 kB
After conversion to pandas dataframe

Columns 19
Rows 54

Together, the three sets had a total of 1.3GB, or 146 031 lines of data (records), when
converted in a table format.

The data is freely available by using the GitHub API (Endpoints available for GitHub
Apps 2021). It is recommended to register with GitHub and acquire an API key. There
is no cost to it and accessing the API without a key is limiting. The data sets used in
this project are available through the link provided in the code submission for this
project.

These three data sets are suitable because they offer a large quantity of data relevant
to the analysis. The focus was on the title and body for the issues and PRs. Then each
issue can have its date linked to a certain PR.
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2.2 Descriptive Statistics

Descriptive statistics are applied to the data sets to get a better understanding of the
layout of the data sets and to identify if key areas are lacking.

For the issues data set, just under 20% of entries which have no labels are assigned to
them. And a small number of entries with no body:

The issues data set has 24 762 entries with no labels, and 2387 entries with no body.
18% of the entries have no labels, and 1.7% have no body text. This highlights the
importance of not using only labels but converting the title and body text into labels -
like tags. Entries with no body text can be discarded, since they represent a small
percentage of the total.

For the pull requests data set, the situation is even more accentuated:

The pull requests data set has 8773 entries with no labels and 1133 entries with no
body. 81% of the entries have no labels at all, and 10% have no body text. For this
data set, all rows were kept, and keywords were extracted from title, even if there was
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no body text or label.

2.3 Exploratory Analysis

Exploratory data analysis (EDA) gave a quick look at the data before doing additional
transformations. Using visual tools outlined issues with the data set and help to
identify patterns.

As a quick way to visualize the data sets, a wordcloud script was run against the titles
in the data sets. Wordcloud is a type of visualization where the most frequently used
words or phrases in a data set are displayed larger. So, the more common the phrase
is, the larger it appeared in the image.

2.3.1 Issues Dataset

For the issues data set, it is obvious that Server fatal Error is a widespread problem
encountered by users, but a few unrendered characters also are visible in the
representation, from a non-Latin alphabet. The data set should be cleaned of
non-Latin characters.
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2.3.2 Pull Requests Dataset

For the pull requests data set, there are a few words which must be eliminated since
most of the titles seem to contain information not necessarily relevant to the PR itself.

3. Methodology

The methodology used for this project is KDD (Knowledge, Discovery & Data Mining).
KDD is an iterative process, which benefited multiple data sets analysis. Similar
methodology was employed in Deep learning in static, metric-based bug prediction
(Ferenc et al. 2020) which explored bug prediction via deep learning algorithms.

KDD has five stages:

Selection -> Pre-processing -> Transformation -> Data mining -> Evaluation

3.1 Selection

The selection process for this analysis consisted of two main steps.
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3.1.1 Choosing the data sets

First, a decision was made in relation to the data to be collected. GitHub’s API offers
a vast selection of data to pick from. One of the more important decisions regarding
this was whether to include user data in the analysis. The data collected is mostly user
generated, so collecting user’s data does make sense. But this analysis wants to point
out issues in the overall approach when managing a project, and not study or analyze
individual contributions to the project. On top of that, contributions to open-source
projects are not evenly distributed between the users. On large projects, there can be
at least two main types of contributors: Paid contributors who consistently push new
code to the project and volunteer contributors who may or may not be consistent or
may even be one-time contributors. This could easily be a source of bias when
analyzing data regarding users since the users who contribute more can also be
involved in producing more bugs.

So, the decision was made to not include any user related at all. The three chosen data
sets were issues, pull requests and releases since the data found in these sets are going
to be the most relevant to the analysis.

3.1.2 Choosing the project

The second decision was to select the project which was the subject of this analysis.
Again, this could have been handled in two separate ways:

• Select one large project with lots of reported issues, PRs, and releases

• Select multiple smaller - medium projects using the same stack or similar
technologies

Both approaches have cons and pros, but the inconsistency of choosing the second
option (different labels, different approaches in issue reporting, different contribution
rules) has pushed the decision towards the first option, choosing one large project.

As for which large project to choose for the analysis, there was initially a short-list of
open-source projects to choose from: VSCode, Linux, freeCodeCamp.

Linux, although present on GitHub, the GitHub repo is currently just an updated
clone of their GitLab repository. And they were moved on GitLab recently, so the
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dates might not be reliable or exact.

freeCodeCamp is considered as the largest open-source project on GitHub, but the
project is formed out of multiple projects, so there is no one freeCodeCamp project
where people contribute to, making it harder to perform a concise analysis.
VSCode is seen as the second largest open-source project on GitHub and its main
application, the VSCode IDE is a large monolith project. It also has the advantage of
consistent, paid developers so they also have a strict curation when it comes to
reporting and creating pull requests. This has made VSCode the final decision for the
project to be the subject of this analysis.

3.2 Pre-processing

This stage consisted of importing the data into the jupyter notebook and cleaning it.
Since this is human generated data, natural language and markdown, a fair amount of
cleaning was required. All three data sets needed similar cleaning for their title and
body fields.

First, the data was imported into python data frame format by pandas’
read_json(’file’) command, into three pandas data frames.

Then, the cleaning process was applied to the data frames.

• title have more rigid rules, so it was easier to clean overall. Main things which
were removed are emojis and non-English alphabet characters.

• body text allows markdown and some html tags. That makes it so there was a lot
of cleaning to be performed.

• All non-English alphabet characters also were eliminated
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4. Transformation

This stage consists of destructive or shape altering modifications of the data sets. After
the main data cleaning process, the next steps were also part of the transformation.
Body and title data were stripped of common English words to isolate key words in
issue reporting and pull requests.

Because the data sets were scraped and they are individual, the transformation process
was complex and extensive. From the data sets we had to do a series of
transformations which brought us to a data set with a predictor (dependent variable),
and with independent variables.

The analysis is tested the possibility of predicting issues or bugs based off PRs and
their content. It made sense to take the independent variables from the PRs data set,
and the dependent variable from the issues data set.

For the independent variables body, title and user were taken into consideration. For
the issues variable, labels assigned to issues were used. This can be done since most of
the issues do make use of labels.

Next step was to decide how to match the two data sets. There were about 10 000
entries in the PRs data set and over 100 000 entries in the issues data set. The goal
was to match them by date. The labels from issues which had a date following a PR,
but before the next PR had their labels associated with that PR. The dates to be
considered were the merge date for PRs and created date for issues. We were interested
only in merged PRs, so the unmerged PRs where dropped from the data set, which
reduced the data set to about 7800 entries. For example, below is an example of a PR
and its associated issues.
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PR Title Date
Terminal now supports linking local file paths containing ’$’ 2021-10-22 14:53:00+00:00
allowed characters: string -> record 2021-10-24 08:29:00+00:00

Issue Title Date
TypeScript: Error: Promise did not implement oncancel() 2021-10-23 19:24:00+00:00
[vb] Block comment is not colored 2021-10-24 10:02:00+00:00

In this case, the PR was associated with the first issue, second PR with the second
issue, because the date of the first issue is before the second PR and after the first PR.

The labels were stored in a new PR data frame, in the issues_lables column. To
achieve this while collecting info from over 90 000 rows of issues and storing them in
over 7 000 rows of PRs, looping through all the issues for each PR row was avoided,
because this would end up at 630 000 000 complete loops. This was shortened to a
maximum of the original 90 000 complete loops by sorting both the PRs data set and
the Issues data set by date. That means that iteration was done in order,and could
quit the search for issues associated with a PR after passing the date range and move
on to the next PR, and then continue going through the issues from where it were
previously. The code can be seen below:

This assigned each PR with a list of labels. The next step is to categorize those issues.
The analysis tried two approaches.
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The first approach is to make use of the verified label. This label checks if the issue has
been verified (Labels ů microsoft/vscode 2022). Another column was be added, which
contained the number of verified occurrences after a PR is merged. These were then
transformed to categorical variables. Results showed that PRs had the verified tag
mentioned up to 154 times per PR:

But because over half of the entries had 0 verified labels, the 2 chosen groups were 0
and above 0. This gives us an almost even distribution:

The second approach was to isolate the topmost relevant labels to be used as categories.
Relevancy in this case is indicated by what the label indicates. The label had to
indicate that the issue was pointing at a section of the project (editor, extensions).
The categories were arranged in a python dictionary, with the label name as key and
the total count in the issues data set as value and sorted the dictionary by values:
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It stood out that not all labels were relevant. Some labels, such as verified, duplicate,
debug, as-designed pointed out to the nature of the issue itself, and not to what area of
the project is referenced. Based on this list, the following labels were be used as
categories:

terminal, extensions, typescript, search, api, file-explorer

Since each PR had multiple issues assigned to it, there were repeating labels. Each PR
had one main category assigned to it, depending on which is the most common label
found in it.

This was achieved by a method which looped through the set and assign the most
found label as the main_issue. This method also assigned the verified attribute which
was used in the first part of the analysis.
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In that state, the set was unbalanced:

To address this, the data set was under sampled. Over sampling was an option but
because of the size of the data set it was impractical with the current hardware. On
top of that, over sampling with natural language data is not practical.

The first value was no label, so those entries were eliminated from the set. Under
sampling was done to match the lowest occurring label, search, and all other four
occurring labels were randomly reduced.

5. Analysis

The analysis process followed KDD methodology. This methodology is preferred due to
its iterative nature. For this analysis, because this was mostly human generated data,
a trial an error approach was used when it comes to cleaning and transforming the
data to see what gave the best results. KDD also accentuates the pre-processing and
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transformation stages of the analysis, which was relied on heavily.

Overall, KDD is a process best suited for learning and identifying the best way to do a
certain analysis (KDD and Data Mining 2021). This project is the first attempt at this
approach and KDD helped with identifying pitfalls in the analysis approach or large
issues / inaccuracies with the data sets. KDD is not without its faults, being expensive
and time-consuming, so not exactly appropriate for input coming from a data
warehouse. But this analysis identified the best way of processing and transforming the
data. Subsequent implementations can follow a different, more efficient methodology
once all the steps and their pitfalls are clear. KDD is more well suited for
research-oriented work, such as this analysis, while other methodologies, such as
SEMMA or CRISP are best suited for business needs (Shafique and H. Qaiser 2014).

When choosing which attributes to use as an independent variable, the first thought
was to make use of the label feature present in GitHub and many other versioning
systems. Although this would be ideal, in practice the labels were not used at all or
just sometimes (as seen above in descriptive data analysis) or used for other things (Do
not merge, Do not review). The decision was made to incorporate key words from the
title and body of the issue and / or pull request to identify the areas addressed with
the issue or pull request.

The analysis made use of the atom package in python, which streamlined the
preprocessing needed to perform NLP related machine learning. Before applying any
ML techniques, the data was cleaned and tokenized using atom’s clean() and tokenize()
functions.

The ML techniques were tested against two dependent variables with the same set of
independent variables.

First, the dependent variable had a value of either 0 or 1. 0 if the PR resulted in
issues, 1 if the PR did not result in issues.

Second, the dependent variable was categorical, a list of 6 labels from the issues
attributes:

terminal, extensions, typescript, search, api, file-explorer

After tokenization, the values were vectorized using the term frequency - inverse
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document frequency (tf-idf) strategy. Since there was a large amount of data,
vectorizing by this strategy made sure that very frequent terms were not in the way of
taking rarer, but more relevant terms into consideration (S. Qaiser and Ali 2018).

For each of these multiple ML techniques were applied, recording the results, after the
tokenization and vectorization of the independent variables and transformations to
dependent variable. To help with the decision of which techniques to use, atom’s
available_models() was used. This method provided a list of models which can be used
on the current data set. Since the data sets were balanced, accuracy was used as a
metric for the tested models. One other option was to look at weighted average for the
f1 scores, but that would be more appropriate for unbalanced sets.

6. Results

With the data set transformed and ready for the final analysis, we now have two data
sets, each with different dependent variables, as mentioned above: First data set has a
binary dependent variable, looking at the PRs which may or may not have caused
bugs. The second data set has a dependent variable which can be either one of the 6
labels mentioned in the Analysis section.

Since the data set is quite large, during the vectorization process we obtained a data
frame of sparse arrays.

That means that when selecting the model from atom’s avalable_models() method, we
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must make sure that the model accepts sparse.

Both sets have three models applied to them:

• Random Forest

• Decision Trees

• lSVM (linear Support Vector Machine)

Python’s atom again facilitates running these three models and interpreting the results.

atom.run(models="RF", metric="accuracy")

atom.run(models="Tree", metric="accuracy")

atom.run(models="lSVM", metric="accuracy")

6.1 First Set

In the transformation section of this analysis, it was mentioned that the first set is balanced.
The dependent variable has a value of 0 if the PR does not have any subsequent issues with the
“verified” label. And a value of 1 if it does have issues with the “verified” label.

The models are built by using the methods described above in the Analysis section. Bee swarm
plots highlight the impact on model output certain terms have, when trying to predict that
there are no bugs associated with the PRs:
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Random Forest Decision Trees

lSVM
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The plots show that pr_fix is the main word for the three models, with slight differences for
the next few other terms.

The test evaluation results from the three models can be seen in the table below:

It is immediately obvious that the results are not conclusive.

Accuracy and precision are around 50 percent, which is where it would be for random guesses.
Area Under Curve (roc_auc) is close to 50 percent as well, which shows that no clear
correlation can be drawn between the independent and dependent variables.

Next, a normalized confusion matrix plot comparing the three models confirms the fact that
the results are inconclusive.

All three models have similar performance. Decision Tree has the highest true positive rate at
about 0.46, while lSVM holds the highest true negative rate with 0.71. Random Forest and
lSVM have the highest false negative rates with 0.64 and 0.68 respectively, while Decision Tree
has the highest false positive rate with 0.43.

Based on these scores, we can conclude that neither of the models is able to accurately predict
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the possibility of a verified bug occurring after a certain PR. It is also interesting to note that
this graph points out the fact that the Decision Tree method tends towards declaring that a
PR will produce bugs, shown here by the high true positives and high false positives, while the
other two methods tend towards declaring that the PR will not produce a bug.

6.2 Second Set

The second set was originally unbalanced, so it had to be balanced. As pointed out in the
Transformation section of this analysis, the set was under sampled by taking out random
entries which had a main tag other than the search label. The dependent variable is
categorical, one of six labels:

terminal, extensions, typescript, search, api, file-explorer

This label represents the main issue found in subsequent issues to a PR. Main issue was
considered the label with most occurrences in the total number of issues.

The test evaluation results for the three models:

The results are inferior to the first set. This is caused by the fact that the set was under
sampled, while trying to predict six categories, as opposed to the first set which was not under
sampled and dealt with only two categories.

Accuracy and weighted f1 score are below 20%, which proves the inability of the models to
make any accurate predictions using this data.

The confusion matrices for the models do confirm the inadequacy of the constructed models:
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These results could be improved by oversampling, but that would not be enough. Reducing the
categories down to a maximum of four will be necessary to have any useful result with the
current data.

From the two sets, the first set clearly performed better under the three ML models, but it still
does not have enough accuracy to predict occurrence of bugs based off the contents of the PR
body and title.

7. Conclusion

This analysis tried a different approach to bug prediction. Tags, title and body text of the PRs
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and issues were used to try to predict the results, while other researchers used the code,
alongside past bug occurrences. Not using the code in the analysis has the purpose of
simplifying and universalizing the process, alongside a reduction in computational complexity.

From the results we can see that our model was not capable to accurately predict either the
existence of a bug after a certain PR or the main category of bugs overall after a certain PR.

The three models tested, Random Forest, Decision Tree and lSVM had comparable results and
the algorithms bias could also be seen in the results, with Decision Tree tending more towards
deciding that a PR will produce a bug and the other two towards deciding that a PR will not
produce a bug.

If we put the two sets against each other, we can see that the set in which we just account for a
PR either causing a bug or not performs better than the set where we try to predict the bug
category. This is caused by two factors. The under sampling of the bug category set has
reduced the amount of data available. Secondly, working with a reduced data set and trying to
predict 6 categories, as opposed to two, will yield worse results.

8. Future Development and Research

Although this analysis did not show promising results, these results can be improved with a few
adjustments.

With additional time and resources, the second data set, used to predict the category of the
main bug can be over sampled instead of under sampled. Fir the first data set, better labeling
would produce better results in this case.

On the development side of things, companies should engage in strict tagging practices for PRs
and issues. This will improve the overall accuracy of these and similar models.
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10. Appendices

10.1 Project Proposal

10.1.1 Objectives

The main and final goal of this project is to implement a system which is able to
predict with reasonable accuracy and confidence future bugs within a software project.
Due to the amount of data needed for predictions this can be successfully applied
mainly to large scale projects, which have high numbers of commits, reported issues,
pull requests and also released versions. This could be applied to smaller projects as
well, as long as they use a popular software stack in their development (i.e. MERN
stack for web development). In order to reach the main goal, there are several
objectives needed for success.

First objective is to collect the data. Luckily, data for large scale projects is readily
available for open source projects within the Github API. Using that, I plan to collect
data related to issues, pull requests and releases from a large project, VSCode (Visual
Studio Code - Open Source ("Code - OSS") 2021). With over 50 releases, 5 000 active
issues, 117 000 closed issues, 230 open pull requests and 10 382 closed pull requests I
believe that this will be a good starting point for the project.

The next step is to prepare the collected data. The API endpoints I will be using
contain granular data and metadata, so I will have to carefully select the data I need.
Data from different endpoints will have to be linked so that issues correspond to
certain pull requests and pull requests are associated with their relevant releases.

After that, the data must be cleaned. I will be focusing on collecting tags, and then
collecting key words from titles and body text for the issues and pull requests.

Last, I will have to analyse the data to try to predict bugs and types of bugs which
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may appear and include the process and the findings in a detailed report.

10.1.2 Background

I currently work in software development. I have noticed that we do take the effort to
tag our pull requests, issues and contributions so that we can track and find our
previous work more easily. But on top of that, the data generated by being thorough
with tagging and naming of issues during development could be used more efficiently to
attempt to predict bugs and issues which might appear when adding new features or
making certain changes.

During software development, sometimes you will have issues appear without being
sure what exactly caused the issue, or developers might spend precious time tracking
down the source of the issue in order to fix it. With a bug prediction system in place,
these issues could be either prevented entirely, or simply expected. So when the issue
does appear you will know exactly what causes it.

10.1.3 State of the Art

In October 2020, there was a hackathon organized by Machine Hack which covers
pretty much this subject (GitHub Bugs Prediction Challenge 2021). My approach is
different by improving on the focus of data set and it’s specificity. I plan on targeting a
single large open source project in order to get data which is cohesive, compared to
using an extremely large data set which contains data from different types of projects,
programming languages or even from projects which are not software development
related (repos comprising only out of config files). The hackathon was also only
collection info from titles. I plan on collecting body text data as well, and process that.

10.1.4 Data

As mentioned before, the data needed for the project will all be collected from the
Github API, for the VSCode project.

Github has a completely open API which can be queried by anyone even without any
credentials, but it is limited. Credentials are required only to have a high allowance of
queries.
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To collect the data, I will be using mainly three end points:

https://api.github.com/repos/microsoft/vscode/issues for issues

https://api.github.com/repos/microsoft/vscode/pulls for pull requests

https://api.github.com/repos/microsoft/vscode/releases for releases

A comprehensive list of endpoints is available in the official Github API documentation
(Endpoints available for GitHub Apps 2021).

Each of the endpoints have all the data needed to perform my analysis. The main
attributes of interest for each of the endpoints are title , body , and created_at . On
top of that, the endpoints contain more data which will be considered to be included in
the analysis, or will be used in excluding certain results from the analysis. For example,
the pulls endpoint contains a field called type which can be either User (individual
user / contributor) or Organization (Microsoft). This can be included in the analysis
to determine if the type of user who contributes the pull request has any influence.

In order to be able to build and test smoothly, I plan on first download all the needed
data from the Github API in .json , to avoid hitting API query caps.

10.1.5 Methodology & Analysis

The methodology used for the analysis will be KDD (Knowledge, Discovery & Data
Mining). KDD has the advantage of being iterative. Since the project will require 3
data sets to be blended into one, the KDD process can be applied to each data set and
then again at each step of combining the data in order to ensure that each step of the
process is done correctly and that the output is relevant. This will also help in
exploring the viability of including additional fields from any endpoint into the
analysis, such as the type field mentioned above in the Data section. Also, similar
methodology has been used in Deep learning in static, metric-based bug prediction
(Ferenc et al. 2020) which explores bug prediction via deep learning algorithms.

KDD has five main stages: Selection -> Pre-processing -> Transformation -> Data
mining -> Evaluation. These will also be the main project activities and be part of the
milestones.
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Selection

For selection, I have identified the three main API endpoints which I will be using, and
the minimum fields needed in order to perform the analysis. On top of that, I will
explore the possibility of using additional fields from each endpoint which may be fit to
the analysis.

Pre-processing

At this stage, I will collect the raw data from the API and storing it into .json files.
After that, the data can be easily loaded into python for further processing. Here, I
will isolate only the attributes which are of interest for the analysis so the data set will
be ready for the next step.

Transformation

In order to be processed, the data needs to be curated first. The main approach used
will be trimming the most common words in the English data from the title and
body attributes content and storing the remaining words in arrays. To have the data

ready for the next step, I will combine the three separate data sets into one, with
relations between them by the date of the release, then the date of the pull request

Data mining

At this stage the data will be split between one training set and one testing set. Then,
the data set will be fed to a machine learning algorithm which will attempt to identify
correlations between certain types of pull requests and certain types of issues.

Interpretation

Here we will look at the results of the previous step and draw conclusions about
the success and viability of the method.

10.1.6 Technical Details

I will use python as a primary language for the project. Python is one of the
most popular languages for data science (Costa 2020) and it has a wide variety of
libraries used in data analysis.

A few of the libraries which I will use in the analysis are:
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• numpy - will be useful when manipulating arrays

• json - to be able to interact with the JSON format in which data will be
after being retrieved from the API

• datetime - to extract and manipulate the date and time after processing the
json files

• wordcloud - will be used in some of the earlier visualizations. After
processing the title and body text attributes and filtering out the most
common words it will be interesting to visualize the remaining data in a
word cloud format

• matplotlib - to create graphs

I will use either python or bash to automate the process of getting the data from
Github’s API and into files.

10.1.7 Project Plan

Below we can see the plan from October until December, for the mid point
submission and presentation.

The plan from January to April, when the paper should be in its final stages:
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And the task list for January - April:
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10.2 Reflective Journals

10.2.1 October

What?

October is the fist month for the project so it was mostly spent researching the topics I
would be interested in.

Since I am working in software development, both of my main ideas revolved around
exploring data which is related to the field. One of my ideas was to explore how
contributions to open source projects have been affected by the COVID pandemic,
more specifically to compare contribution from large companies against contribution
from individual volunteers. But when looking more carefully at the idea, it becomes
obvious that there aren’t many options for predictive analysis, even if the findings
might be interesting to look at.

Main project I will use is VS Code. It has over 5 000 open issues, over 10 000 pull
requests and 50 releases at the time of writing this document. Pull requests and issues
will be grouped by date, according to the release dates. That way, any specific release
will have certain pull requests which were merged before the date of release. The issues
reported between releases will be assigned to the release which immediately predates
them. Then I will perform analysis on the tags associated with pull requests, release
and issues. On top of that, the titles and text of pull requests and issues will be
processed by stripping them of common English words in order to extract key words.
These words will be added to the tags so that they can be included in the analysis.
The goal is to try to determine what kind of issues might arise from different type or
pull requests, releases, or in general, what kind of issues will appear when adding
certain features.

This can be extremely useful when preparing new features for a software project
because you can preemptively take actions to prevent certain bugs / issues from
appearing. So I decided to go with my second idea, which is to use data collected from
github about large open source projects in order to try to predict bugs. Github API
data is freely available to use. I plan on getting project data for at least one large open
source project.

First, I had to submit a short project pitch in video form. Next, we were assigned
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project supervisors.

So What?

Currently I am waiting on a final approval for the project, from my project supervisor
and from a second reviewer.

In the meantime, I am exploring the technologies I can use. I will most likely use
python3 and it’s data processing specific libraries, such as pandas, numpy and ntlk or
tensorflow for text analysis. For data visualization, I will make use mainly of
matplotlib for numerical data and wordcloud for word cloud type visualizations of tags
and key words in releases.

Now What?

The next step is to get the data from the github API. I have already tested the api
endpoints I will be using to make sure that I can get everything I need. Next, I will set
up a Jupyter Notebook for my project. Since I will be getting a lot of information from
the github API, I plan of getting the data separately and saving it in .json files, and
importing and using that in Jupyter Notebook. This will avoid me reaching github API
quotas while testing and running my code.
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10.2.2 November

What?

This month I received approval for my project idea. At the beginning of the month, I
also submitted my Project Plan.

The Project Plan covers objectives, background, state of the art, data, methodology
and technical details. At this point I was not able to go int a lot of details regarding
the data or analysis since I was not yet very familiar with the dataset or with what
analysis I was goint to perform.

I did know where the data sets are going to be sourced from though, and I was able to
come up with a comprehensive project plan for all the steps until the mid term
submission.

After the Project Plan submission, I started work on sourcing the data sets. This has
been achieved by using three python scripts which access the GitHub API and get the
JSON data in three .json files. The data sets total 1.3 GB of drive space and they will
be loaded in Data Spell IDE and perform analysis using python. I was also able to look
into the data sets in Data Spell and identify which attributes are going to be most
useful and do the initial clean up of the data, alongside with some exploratory analysis.

So What?

This sets up the stage for the Technical Report which will be submitted as part of the
midterm submission in the end of December. Getting to the point of having some
descriptive statistics of the data sets and the basic exploratory analysis was important
as now I have a good idea of how the data sets look and how I will approach the
project and the Technical report.

Now What?

Next is to start writing the Technical Report and fine tune the technical part of the
analysis. More descriptive statistics can be added to have a better idea of what the
dataset contains. I should also do more research on methodologies and analysis and try
to identify more exploratory analysis methods.
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10.2.3 December

What?

December is the last month of the semester and the submission month for the midterm
project. The month has been busy with work on the project (and other submissions).
Good progress has been made as part of the midterm submission and the project is
beginning to take shape.

I have done work on the first four sections of the technical report: Introduction, Data,
Methodology and Analysis.

I started to work with the data sets, which means that I was able to expand on the
initial Project Proposal with actual results for the Data section, specifically descriptive
statistics to have a look at the data sets and some exploratory analysis. For
Methodology, I was able to fill in the Selection, Preprocessing and Transformation
sections. And for Analysis, I covered the theory as an intro.

As part of the submission, my Project Plan received a small update as well.

So What?

This has been all part of the mid term submission due at the end of December. All of
the sections are still a work in progress, since as I go forward with the analysis I will be
able to fill in more sections - Analysis covers only the theory intro for example.

Now What?

Next I will focus on filling in the Data and Methodology sections while classes catch up
and I learn how to implement analysis methods as well. Methodology section needs
more input and info regarding similar academic work. And Data will need more
examples for descriptive statistics and exploratory analysis.
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10.2.4 January

What?

January was split between exams and off from college between the two semesters.
During the exam period I did not make progress to the project, but during the break I
reviewed my mid term submission to find areas where I can improve.

So What?

The main area of improving is adding more academic research references. I need to
support and motivate my approach better, and academic references will help with that.
Had my first supervisor meeting as well, but there was not much to report and talk
about since the results are not out yet at this point.

One other thing to complete is the Project Showcase section, so I took advantage of the
downtime and filled in that section.

Now What?

Mid point submission feedback will be out at the beginning of February. The
supervisor meeting will be in the same day, so that will provide me with a good
direction to take when starting out working on the project again.
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10.2.5 February

What?

February is the kick-off month for the new semester. This month I also received
mid-term grade and feedback. After that I was able to start working again on the
project, with a better idea of the direction I should be heading towards.

So What?

The grade I got for the midterm submission is not what I would have wished for, but
expected considering the circumstances - first semester was overloaded with
assignments and assessments, and I ended up rushing a few sections of the submission
in order to meet the deadline.

I also received valuable feedback from the supervisor. During the scheduled feedback
meeting the supervisor pointed out where I am lacking, areas such as not being clear
enough about my objectives and lacking a clear plan for the whole approach. Aside
from that, the supervisor directed me to look into alternative approaches. I will be
checking quality of pull requests against the user name, and also check for the PR diff
and see how that correlates with issues in the code base.

Now What?

I will be cleaning up certain points of my submission to clarify the sections which were
pointed out by my supervisor. Then I am going to focus on my data set and try to
identify the best methods to use when processing the data.
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10.2.6 March

What?

March consisted on building up the technical part of the project. During this period,
classes also proceeded and we touched on and learnt new methods which will prove
themselves useful in my analysis.

So What?

The new methods learnt have helped in doing analysis on the quality of a pull request
against user names. I also plan on looking at PR diffs and correlate them to issues in
order to find patterns, especially related to diffs of certain sizes, or PRs done in certain
sections of the project.

Now What?

Next steps will be to try to finalize the technical part and have a fully formed analysis
code-side of the project. Then I can start writing down the analysis part of the project
and the conclusion. I also have to do a sweep of the code and see what parts might be
redudant and remove them, and refine the whole analysis, since currently I have
different attempts and approaches for the same types of analysis.
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10.2.7 April

What?

April was the month I finished off the technical part of the project. I ended up focusing
on Random Forest for the ML part of the analysis.

To prepare the data, I applied the KDD process a few times, since I wanted to test out
different attributes and how they influence the quality of the predictions.

On top of that, the data needed additional transformations to prepare it for the
analysis. I used the most occuring labels from issues as the dependent variable and
then used the text from the body of the PRs as an independent variable.

So What?

The results for the predictions are not satisfactory, and this is a strong indicator that
simply using information from the PR body, title or user is most definitely not
sufficient if the purpose is to predict bug occurrences or certain types of bugs.

More analysis on the actual code itself could help more with this. From the data
transformation process I learnt that the way data is registered and structured by
github is not good for performing any kind of data driven analysis. There was a lot of
data transformation necessary in order to get the data in a usable form.

Now What?

Currently the technical report is being written and about to be finished soon. I would
like to do a bit more analysis and experiment more with the data if time allows.
Working with such a vast data set has been interesting and was an opportunity to
learn much about scraping, transformation and data mining.

There have been a few points where I had to employ methods tailored to the fact that
my data set was large, so that processes wouldn’t end up taking hours, and working
with different data sets scraped by me forced me to think out of the box when creating
a usable data set.
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