

National College of Ireland

Computing

Cyber Security

2020/2021

William Redmond Lawlor

x18106170@student.ncirl.ie

The Ace Manager

Technical Report

2

Contents
Executive Summary ... 3

1.0 Introduction .. 3

1.1. Background ... 3

1.2. Aims .. 4

1.3. Technology .. 5

1.4. Structure .. 8

2.0 System ... 8

2.1. Requirements .. 8

2.1.1. Functional Requirements .. 9

2.1.2. Non-Functional Requirements .. 10

2.1.2.1. Use Case Diagram ... 11

2.1.3. Data Requirements .. 18

2.1.4. User Requirements .. 18

2.1.5. Environmental Requirements ... 18

Usability Requirements ... 18

2.2. Design & Architecture .. 19

2.3. Implementation ... 22

2.4. Graphical User Interface (GUI) .. 30

2.5. Testing ... 33

2.6. Evaluation ... Error! Bookmark not defined.

3.0 Conclusions .. Error! Bookmark not defined.

4.0 Further Development or Research .. 40

5.0 References .. 41

Bibliography .. 41

6.0 Appendices .. 42

6.1. Project Proposal ... 42

6.1.1 Objectives .. 42

6.1.2 Background ... 42

6.1.3 State of the Art .. 43

6.1.4 Technical Approach: .. 43

6.1.5 Technical Details .. 44

6.1.6 Special Resources Required .. 45

6.1.7 Project Plan ... 45

6.1.8 Testing ... 48

6.2. Ethics Approval Application (only if required) .. 48

3

6.3. Reflective Journals ... 49

6.4. Other materials used ... 54

Executive Summary

This technical report is going to discuss how a password manager will be created
using web languages, with the electron framework to create a desktop application. It
will be targeting the current weaknesses of other password managers on the market.

Using the web languages, and framework, as discussed above it, is taking
advantage of the strongest features to create a desktop application that has its
information stored in the cloud because the application is on a desktop it is more
secure than being stored simply in the web, and since the passwords are not stored
in the cloud, and encrypted it is harder to access them. As with many other
passwords, managers keep passwords in their system, or just in the cloud.

This application will enforce proper creation and storage of passwords and login
methods with multi-ways to login with two-step authentication. Then how the
passwords will be encrypted with the JavaScript libraries to create a vault on a
MongoDB Atlas Database separating two key decoder factors from each other.

As well, it can only decrypt one password at a time and will use to key unique data,
to be a session and tokens, to monitor the person’s interactions on the application to
continuously verify them as an authentic user of the application, like you would with a
social media token or any other type of website. This also includes the removal of a
master password to be able to recover access to all passwords at once, such as
using the same codes as you would log into your computer to gain access to your
passwords on google chrome.

1.0 Introduction
1.1. Background

This project has been chosen to be undertaken because it would pose a challenge to
develop a password manager application. By integrating both frontend and backend
coding, using frameworks together to create the application. This would make a
clearly defined easy to use interface that would be able to create, edit and delete a
password from the manager easily.

The motivation for this project started with the dissatisfaction with the current offers
for password storage, such as google chromes inbuilt one, and others on the market.
As with research, most people do not see the use of a password manager - (‘Study:
27% of Users “Don’t See the Point” of Password Managers’ 2022). Examples of
some serious databases included many of the popular ones today. –“In

4

2017, Las tPass reported a serious vulnerability in its browser add-ons and asked subscribers
to refrain from us ing it.” (‘Are Password Managers Safe to Use in 2022?’ 2022) and
again, in 2019 – “2019, serious vulnerabilities were found in the code of Dashlane,
Las tPass , 1Password, and KeePass . This applied to Windows 10 users and only if the
right malware was ins talled. Once again, the users didn't suffer any reported
casualties .”
(‘Are Pas s word Managers Safe to Us e in 2022?’ 2022).

Therefore, it is important to try an attempt to create a password manager by using
the best qualities of each of the market values at the moment such as taking
advantage of a cloud-based storage system and separating the decoders at the
same time.

Primarily most of the key information is stored together in a vault where it remembers
you, meaning that if a breach were to happen everything could be decoded at once.

While using the highest, and latest standards out there and available on the market
right now. There are also many concerns which needed to be addressed, with the
current level of password managers and how they are known/previously been
hacked.

Identity is controlled through to process. The token will be stored within the
application while the session is stored in the process, and only when both are
present in the system can you bring down any important pieces of information.

So, the idea will be to create a desktop application that acts as the interface for being
able to access everything stored within a vault on MongoDB linked to the user. Make
sure that nothing is decrypted until requested by the user, and that a master
password cannot decrypt all passwords at once. That everything is validated each
step of the way. To use the latest web technologies to back up and strengthen the
desktop application.

The goal to be achieved.

1. Make improvements to what already is on the market now.
2. Address problems with the storage of information on the market.
3. Make use of other products/frameworks to assist in the creation of a modern

easily accessible application.
4. It poses a real challenge to create as to how you would securely store such

password information for a user, and it will stretch the limits of previously
attempted projects through

1.2. Aims

The aims of this project are the following:

1. At all times, it is a challenge to create, and it involves thinking about each step

5

clearly on how the project is approached. This will, create and improve all forms
of coding, problem-solving, research, and evaluation.

2. A real learning experience, while it needs to be a challenge, should not be so
challenging that it harms the learning that is needed.

3. Make a clear and precise graphically user interface, that is easy to use and
understand for any user.

4. That it is storing the user passwords securely and separately from the main
system, with a way to easily decode them.

5. The ability to be able to add, edit and delete passwords that are in the system
directly from being able to view the passwords.

6. To make use of different languages and features together smoothly but don’t
realm the project so that it is concise.

7. Make an excellent login system and make ways for future-proofing the project.

8. Validation of each input into the system and restricting the way it interacts with
other features in the project.

9. Adding Sessions and Tokens throughout the project to act as increased buffers
for making commands within the system approved, and a needed requirement to
gain access to all areas.

10. To have a completed project by the end of the timeframe.

1.3. Technology

These are the following technologies that will be used within the project:

Framework:

1. Electron.JS: is an open-source framework that allows for the development of a desktop
application while using the following programming languages to create it.

- HTML
- CSS
- JavaScript

It is incorporated into the project using the Node.JS framework to be able to apply the
packages together. It will be used to create the graphical user interface to be able to display
to the user what is going on in the application. This is assisted by the chromium rendering
engine.

This application allows for cross-platform compatibilities with minor changes that can be
made to code that make it work across multiply operating systems. Acting as both a front-
end and back-end side of things with the ability to process this different information through
its render and main process.

2. Bootstrap: Is an open-source CSS framework, and will be applied to the pages to help

6

with the overall GUI of the application

Runtimes:

1. Node.JS: This is an event-driven application that is often used with web development, as
the application’s main bases are using web-based programming languages, it will help
include the packages. Acting as the runtime environment for the application that can assist
with cross-platform compatibilities of the application itself.

This will allow for many packages to be installed into the system that will be used within the
application:

Package Name
and Version:

Purpose: NPM link:

@hapi/joi: 17.1.1 Validation for Input https://www.npmjs.com/package/@hapi/joi
Axios:
0.26.0

Restful API
interaction provides
access to the internal
API links

https://www.npmjs.com/package/axios

Bcryptjs:
2.4.3

Hashing login
passwords and
comparison of
entered passwords

https://www.npmjs.com/package/bcryptjs

Boxicons:
2.0.9

Icons https://www.npmjs.com/package/boxicons

Connect-
Mongodb-
session:
3.1.1

Database
connection:
Session’s checking

https://www.npmjs.com/package/connect-
mongodb-session

DOTENV:
16.0.0

Storage of key API
details and other
important key
information, which
does not go to
production

https://www.npmjs.com/package/dotenv

Electron.js:
17.1.2

The main framework
for GUI etc

https://www.npmjs.com/package/electron

Express: 4.17.2 Backend Server https://www.npmjs.com/package/express
Express-
Session:
1.17.2

Detects session and
uploads to MongoDB
for checking for the
session.

https://www.npmjs.com/package/express-
session

jQuery: 3.6.0 Extra JavaScript
library for password
display

https://www.npmjs.com/package/jquery

Jsonwebtoken:
8.5.1

Web-Tokens for
authentication

https://www.npmjs.com/package/jsonwebtoken

MongoDB: 4.2.2 Access MongoDB
through Node.JS and
Express server

https://www.npmjs.com/package/mongodb

Mongoose:6.3.2 Creating the
connection for the
application

https://www.npmjs.com/package/mongoose

7

2. Chromium: This is the open-source web browser that electron uses in the runtime. It is
developed and maintained by Google, so any issues that the chromium has, the electron.js
will also have the issues. Making it important to always keep it up to date.

Database:

1. MongoDB Atlas: This is a NoSQL database program meaning it is document-oriented, that
hosts its service that offers free clusters and paid clusters, which this application is using the
free model subscription.

This allows for any storage of data, IE passwords, login details, and session storage, which
can be recorded, encrypted in the application, sent encrypted through to the database and
returned in the same functions to be decrypted while maintaining the encryption.

Programming Languages:

HTML: This will be used to design the structure of the web pages and help organise and
separate everything equally into its sections.

CSS: The overall layout and structure of the pages, this acts as the user interface.

JavaScript: This will be the main controller for most of the applications, it is used to create
any necessary functions within the system.

This will also include the jQuery library from JavaScript

Python: This will be used to create a script that can be called on by JavaScript from the
application to be able to run. This script provides easier access to some features that could
be more difficult to create with JavaScript files in files such as password generation.

Restful API/Server:

Express: Is the Node.JS module that can create a local server within the background
that can be used to gain access to the database and offer token and session storage
checking by using JavaScript to control it. This also counts as its framework within
the application as well.

This will control all the routes of the applications, for login, creating the password,
editing, and deleting passwords in connection with the database. This is the main
controller for all system actions. It comminates with an electron to deliver results to
the user.

Miscellaneous:

1. Visual Studio Code: The IDE that the application will be developed in.

2. GitHub: Storage of the code and keep track of the progress.

3. Postman: API testing and making sure everything works as intended, can be used to

8

check for the URL addresses within the application on the Express server that runs in the
background.

1.4. Structure

In this following section the project’s system will discuss the following:

1. The requirements section: This will focus on the explanation of the system and
what would be required of the system to create and use it.

2. The functional requirements of the project: What will explain what is required to
complete the project

3. The non-functional requirements of the project: What is not completely needed
to be included in the project at this stage.

4. Use Case Descriptions and Use Case Diagrams: This will describe the
requirements and functions through the descriptions and use cases in much more
detail.

2.0 System
2.1. Requirements

There is a requirement for a Restful API to be built to act as the monitor for the
following functions you see below.

It includes both a server and authentication routes, schema and other functions to
produce the following as it is the connection from the application to the database as
well as the organiser of the information.

1. The user will be required to Register and Login: The user when doing so
needs an internet connection to do this because it will connect their account
name to their passwords so that they can be pulled down and accessed in the
environment.

2. They need to be able to do one of the following, use a USB or NFC, as part of
their login requirements.

3. They need to be able to understand how you access the USB file or the NFC
function on their device.

4. They will be able to see the application open into a new section/screen where
they will be able to view their passwords.

9

5. They will then be able to see that they can select multiply options such as
Password and Settings.

6. Password page will allow the user to be able to make a new password and
add it to their account be it generated or created by them.

7. Profile page will allow the user to be able to view the settings of the
application and make necessary changes to the account.

2.1.1. Functional Requirements

1. Create the application: Create the baseline for the application so that it can
connect itself to the database using the express server so that it is
possible to implement the other features of the application. Through the
Electron.js framework.

2. Create the database: Create the NoSQL MongoDB Atlas, so that the data
can be stored. Connection is established with the mongoose features
within the Restful API.

3. Restful API: A server is created to act as the access point between the
application and the MongoDB atlas access point, and an authentication file
will control the routers for the application that will allow for all further
functionality requirements to be able to work.

E.G: Generate Password will be called in electron, via the button press,
the API will pick up on the access route delivered to it via the electron
function, and call on the file to do the requirements to generate the
password and send it back to the user at the time of the press. Equal
exchange of information.

4. Connection to the database: Add the connection to the database so that
the information can be stored within the system. Via the Restful API

5. Login system: This system is used using express routes, in the
background of the application and Axios to use the routes. The user will
access the MongoDB database with their login details and gain access to
their account upon successful checking of their key login in details and this
will be used to open the other half of the application. This includes a
username, password, USB or NFC to gain access. Via Restful API

6. Password view and storage: Once logged in the server will send the
application the stored passwords in its system, while they are still

10

encrypted when the user goes to view them. They have unlocked
indivisibly not altogether. Via Restful API

7. Password generation and adding: The user will be able to add a new
password to the storage, by using the python file to create a generated
password, and then add that password to the storage on the data server.
Via Restful API

8. Password Editing: The ability for the user to be able to look at certain
passwords and be able to edit or delete them from the database. Via
Restful API

9. Hashing: Passwords are hashed within the system using Bcryptjs
functions. Via Restful API with bcryptjs

10. Password Vault Encryption: create an encrypted vault with the application,
that will send the passwords that are saved from the system to the
database, in an encrypted way so that when they come back to the
application, they are safe and secured by both the database and the
application. Via Restful API

11. USB-Security Key: One of the login methods required to gain access to
the system, which is a part of the login functionality is a separate sub-
function.

2.1.2. Non-Functional Requirements

1. Change the Login methods: Change the password and Pin Code regularly
and prompt the user.

2. Master Password: The ability to be able to set a master password to log
into the system, for the user as a back system.

3. Forgot Password Feature: The ability for the user to be able to say they forgot
their password and be able to change it within the login screen to be able to gain
access to the passwords again.

4. Setting System: Modify the way the person logins, views the application
and or uses the application.

5. Switching Screen: The ability for the system to be able to use separate
window frames in the application. Login method appearance is different to the
main window appearance and size.

6. NFC Read/Write: This allows the user to create, read and write an NFC tag
to be used in conjunction with the login system.

11

2.1.2.1. Use Case Diagram

Use Case Descriptions:

Requirement Number: 1
Requirement: How a user Logins
Requirement
Description:

Allows for the user to be able to log into the system and
view their passwords

Description and
Priority

How the user will log into the system, and what is there
to protect the content of the details in the system.

Scope: To display how the login system works as it connects to
the server and displays the main screen to the user

Description: What is required to log in to the application, and how
the system checks that it is successfully login into the
application.

Use Case Diagram:

Flow Description
Precondition: 1. The application is started up

2. Connected to the internet successfully.
3. The user has set up the application before to be able to

log in to the system

Activation When the user goes to enter their login details into the system.
Main Flow 1. The user enters two of the required passwords details to

login the system, such as the password and pin code

12

NFC – Card tag, with a password and Pin
USB, with an NFC tag and a pin
or Another combination

2. The System will then verify these details by comparing the
information to the server information

3. The system will return to the user that they have
successfully logged into the system and bring them to the
main screen

4. The System will then pull down the passwords for that
user, and the user will be able to view them

5. The User will now be able to copy their password to be
used or view their passwords in the system

Alternative Flow 1. The user enters the wrong login details into the system.
2. The system checks the wrong login details against the user
3. The system will return that the credentials are wrong and

ask the user to enter them again.
4. The user attempts to enter them again, and successfully

enters the right one
5. The system informs the user that they have entered the

correct details and will now be brought to the main menu
Exceptional Flow 1. The user enters the wrong details into the system

2. The system checks that the wrong login details
3. The user enters in the details again and fails to enter

them correctly
4. The system checks again, and fails again as the details

are wrong informing the user
5. The system counts up each failed entry and at three

failed attempts, informs the user to try again in five
minutes

Termination The user is now able to see the main screen and gain access to
their passwords to use at will until they log out

Post Condition The system is now waiting for what the user wants to do next

13

Requirement Number: 2
Requirement: Login into the system’s main function
Description and
Priority

 The user login details are correct, and the server is
producing their password.

Scope: To display what is happening in the background of the
login process to the main screen to view the passwords

Description: The user has logged into the system and is now looking
at their passwords on the main screen.

Use Case Diagram:

Flow Description
Precondition: 1. The user has been able to connect to the internet

successfully
2. The user logs in successful into the system with their

details

Activation The user has entered their details correctly into the system

and would now like to view a password or make certain
changes to a password.

Main Flow 1. The user has successfully logged into the system.
2. The system has successfully connected to the server

and given the okay to proceed, requests the password
from the server that is linked to the account

3. The user is now on the main screen viewing their
passwords

4. The user now has access to the setting menu where
they can make further changes to the login details or
passwords

14

Alternative Flow 1. The user has failed to log in, so it is attempted again
2. The system stops them from login and doesn’t call

down the passwords at all
3. The user successfully logs in to the system, and the

passwords are then called down for the user to see
4. They can access the settings menu and reset anything

they wish too
Exceptional Flow 1. The user has failed to log into the system several

times.
2. The system doesn’t call down any passwords for the

account
3. The system attempts to ask the user to wait before

offering to reset the password
Termination The user is now on the main screen looking at the entire

application
Post Condition The system is waiting for the user to proceed with an input

15

Requirement Number: 3
Requirement: NFC – Setup and Login
Description and
Priority

 Set up the ability for the electron.js system and node.js
to be able to pick up the NFC device on the computer
and be able to interact with it for the user to be able to
read and write to a tag on the system.

Scope: Working tag in the system for the user with NFC
Description: The user is set up and able to use the tag

Use Case Diagram:

Flow Description
Precondition: 1. The User is setting up the NFC card and wants to use

it as a login detail that is connected to the system.
2. They have successfully logged into the system and

have entered the setting menu
Activation The user is attempting to set up the NFC on the system
Main Flow 1. The user is tapping the card into the NFC device

and gets a response back
2. The system has picked up a new card on the

system and is now writing a login detail to the NFC
device

3. The system informs the user that they are now able
to use it as a login requirement and are asked if
they want to test it out

4. The user logs out of the system and enters login
details one at a time, and taps the NFC tag when
prompted by the system

16

5. The system has now logged them into the system
with the NFC tag

Alternative Flow 1. The user is attempting to set up the NFC tag, and is
informed that it is not getting picked up and to attempt
it again

2. The user attempts to tap the card again against the
NFC device

3. The system picks up the card properly and informs the
user that it was successful this time

4. The user can log in with the NFC card
Exceptional Flow 1. The user is unable to use the NFC function on the

device and will have to troubleshoot what is going on
2. The system is informing them that they cannot use

that function at the moment and to try again
3. The system does not allow the user to use the NFC

function as a required login as it is not properly set up
in the system just yet for that account user

Termination The user is now able to use the NFC system within the
application itself

Post Condition The system is now in the main menu waiting for a response
or logged out and ready to be logged into

17

Requirement Number: 4
Requirement: USB – Setup and Login
Description and
Priority

 Set up the ability for the electron.js system and node.js
to be able to pick up the USB device on the computer
and be able to interact with it for the user to be able to
read and write to a tag on the system.

Scope: Work with a USB device to act as a login method
Description: The user sets up a USB device to login into the system

Use Case Diagram:

Flow Description
Precondition: 1. The User is setting up the USB and wants to use it as

a login detail that is connected to the system.
2. They have successfully logged into the system and

have entered the setting menu
Activation The User has plugged a USB into the system, and now wants

it to be used as the security key to log into the system
Main Flow 1. The user has placed the USB into the system for

the first time in the setting menu when setting it up
2. The system asks the user to select which USB

device they want to use and informs them of the
risks

3. The user reads the warning and selects the correct
USB they wish to use

4. The system now writes the key file/s to the USB
and encrypts them, it is now set up

18

5. The system asks if the user wants to go to the
main menu or test out the login

6. The user picks one of the options
Alternative Flow 1. The user places a USB into the system for the first

time, and attempts to make it a security key
2. The system asks for the user to select the key and

inform them of the risks
3. The user selects the USB and reads the risks
4. The system attempts to write to the system and

informs them it has failed
5. The user is asked to reselect the USB and attempt

again
6. The system attempts again, and this time is successful
7. The system asks the user its options again, the main

menu or log out and test it
Exceptional Flow 1. The user attempts to use the USB to create the files

on the USB to act as a security key
2. The system attempts to write the files to the system

and fails to write to it and informs the user to use a
different USB after another attempt.

3. The user places a new USB key and selects it
4. The System writes to that USB successfully and

informs the user
Termination The user is now able to use that USB as a login method
Post Condition The system is now in the main menu waiting for a response

or logged out and ready to be logged into

2.1.3. Data Requirements

2.1.4. User Requirements

2.1.5. Environmental Requirements

Usability Requirements

19

2.2. Design & Architecture

Design:

User case design

20

Sequence Diagram.

1. Electron.js: The job of this framework is to act as the interface and controller
for the user, meaning the HTML, and CSS pages are displayed using the frame
to create a window frame for them to be used in.

While using JavaScript to act as the middleware for the application, essentially
acting as the middleman for the functions within the application.

So, when a button or action is being taken within the applications like you would
on a website, it checks for what is to happen for the course of action to be taken
and responds accordingly.

Architecture:

1. Electron: When it is turned, it displays the information calling the server upon

21

start-up to connect to the database. Then the two windows that are used, the
main service and the login window, act as listeners for the actions on the
application.

2. Express/Restful API: When the server is started upon a successful a session
will be created and logged on the server to be checked at each point, as the
server prevents access to other parts of the application until doing so.

It controls the login method, the ability to get at passwords, and any access
around the site through its routing methods. It always checks for the token and
authentication in the server, when accessing a point and will block the action
completely.

It will encrypt the passwords using two methods, for login details it will use
Bcryptjs, and for passwords, it will create the vault system to encrypt the
passwords that will be sent to the database. It will then ensure that the
application has the only method to decrypt the password at the time.

These actions are also waited to be detected by the electron.js server before
beginning, meaning there is a tiny delay in some of the mostly unnoticeable
actions.

It also makes sure to end all route actions upon completion of the task.

3. MongoDB Atlas: It stands alone from everything else other than verifying login
details with the encryption and storing the passwords outside the application at
the time.

22

2.3. Implementation

Password Generation: Python Script that takes one of a letter, upper case, and
numbers as well as special characters and generates a code out of it. Sends it into a
temporary list.

Code Snippet:

Being called by the express server from the button calls on the electron.

Output:

23

Frameless Window to create a custom title bar in the application:

By setting the frame to false, it removes the normal look of the application, this
occurs when creating the Window class for the code:

24

Upon successful login, it will use a bar as seen below.

Here is the HTML code:

JavaScript Code that provides functionality to the buttons:

These are the types of listening that the electron.js part of the application is out there
listening for to take actions on the server.

25

Express Server:

Here below we can see the requirements for each server. All the variables that have
gone into creating the server.

Next is the start-up:

26

API Folder Path structure:

Session Verify code:

When this function is called from the system it targets Sessions ID that is created
upon successful login of the system and then tells the system to move on from it.
Except the session is logged to the server and upon exiting the app, the session is
deleted from the database.

This is the same with the token.

Token Verify Code:

27

Checks for the JWT web token in the application with the Electron system.
An example of what these functions look like within the system.

the route in which is created for /add Password is followed by the two functions to be
checked out first then they will be accepted into successfully adding the password.

Here is where they are created.

Login methods, the information is first validated and validated at the point of the
HTML entry, using email input field and password input fields, checks that the email

28

exists in the database, then if the password is right followed up by the token creation.
A different process oversees checking the sessions.

Upon the acceptance of the details, session start() is called to access that point and
create the sessions; and the route for /Login creates the JWT Token.

Upon logout, any session stored with the electron is deleted, and any sessions on
the database are found and deleted.

29

Example of one of the schema

30

2.4. Graphical User Interface (GUI)

Initial Mock Up Design:

Final Version: Main Screen

31

Final Version: Login Screen

Final Version: Register Screen

32

33

2.5. Testing

1. Writing Test case scenarios and verifying them.

Test
Case ID

Test Scenario Test
Case

Pre-
Conditions

Steps Test Data Expected
Result

Post
Conditions

Actual
Result

PASS/
FAIL

TC_Login
01

Verify Login Enter a Valid
email and
password

Registered
Account

1. Enter Email
2. Enter
Password
3. Click Login

Valid Email
and
Password

Successful
Login, the
screen
switched.

The server is
still running in
the
background.
Token and
Session are
created and
validated

Successfully
logged in
with token
and session
in the
database.

Pass

TC_Login
02

Verify Login Enter one
invalid
condition

Registered
Account

1. Enter a
valid email,
2. Enter an
invalid
password
3. Click login

Valid Email,
Invalid
Password

The
prompted text
informs of
failure to log
in

The server is
still running in
the
background
waiting for
the correct
entry

Rejected
access to
application

Pass

TC_Login
03

Verify Login
with
additional
login

Enter valid
email and
password,
and USB or
NFC details

The account
is required to
have USB
And NFC set
up after
registration.

1. Click
USB/NFC,
and let them
go green.
2. Enter a
Valid email or
password
3. Click login

Valid Email
and
Password
Approved
USB/NFC
login

Successful
Logged into
the
application

The server is
still running in
the
background,
Token and
Session are
created and
validated

Successfully
logged in
with token
and session
in the
database.

Pass

34

Test
Case ID

Test Scenario Test
Case

Pre-
Conditions

Steps Test Data Expected
Result

Post
Conditions

Actual
Result

PASS/
FAIL

TC_Login
04

Verify Login
with
additional
login

Enter an
account with
USB and
NFC
requirements
without them

Registered
Account and
USB and
NFC set up

1. Enter Email
2. Enter
Password
3. Click Login

Valid Email
and
Password

Failure Attempt again Failure Pass

TC_
Registrati
on 01

Register
Account

Enter a valid
Name, Email,
and
password

No previous
account with
the same
email

1. Enter a
valid name
2. Enter a
Valid email
3. Enter a
valid
password
4. Click the
register
button

Valid Name,
email and
password

Registered to
database

Can now log
into the
system

Registered
to database

Pass

TC_
Registrati
on 02

Register an
account with
the same
email

Enter valid
name, used
email and
password

An account
with the same
email

1. Enter a
valid name,
2. enter
invalid/used
email
3. enter a
valid
password
4 clicked the
register
button

Valid Name,
invalid
email, and
valid
password

Cannot use
this email,
please try
again

Not
registered

Not
registered

Pass

35

TC_AddP
assword_
01

Logged in
users add a
password to
the system

Add a
password to
their account

Logged in
with a valid
account,
token and
session
approved

1. Login
successful,
access the
Password
page

Enter valid
title and
password

Added to
database

Added to
database

Successfully
added and
viewable

Pass

Test
Case ID

Test Scenario Test
Case

Pre-
Conditions

Steps Test Data Expected
Result

Post
Conditions

Actual
Result

PASS/
FAIL

TC_ANY
ACTION
ON SITE

SESSIO
N
TOKEN
STATE

Logged in
user without
valid token or
session

User
attempts to
access a
password/cre
ate a
password or
delete a
password etc
any action

Logged in,
but session
and token are
now invalid

1. logged.
2. Remove
sessions from
the server
3. Token has
been
refreshed.

Any Action Rejected
result

Forced to
close the
application

Rejected
and forced
to log out

PASS

TC_ANY
ACTION
ON SITE

SESSIO
N
TOKEN
STATE

Logged in
user with
valid token or
session

User
attempts to
access a
password/cre
ate a
password or
delete a
password etc
any action

Logged in,
with valid
session and
token are
valid

1. Logged in
and look
around for
what they
want

Any Action Allowed
Action

Gets
intended
results

Got
intended
action
results

PASS

TC_Load
Password

Logged in
user goes to
search for a
password

Password is
viewed
successfully.

Logged in,
and has
registered
passwords in
the database

1. Logged in
successfully
2. Has valid
session and
token ID

Valid
Tokens and
Sessions.

Requests
titles from the
database and
loads them
onto the table

Retrieved all
password
titles.

Gotten
passwords

Pass

36

and view its
details

3. Clicks load
passwords

Test
Case ID

Test Scenario Test
Case

Pre-
Conditions

Steps Test Data Expected
Result

Post
Conditions

Actual
Result

PASS/
FAIL

TC_Edit
Password

The selected
password or
title is edited
in the system.

Changing the
password via
inputs into
the system

Logged in
and has load
password
titles and
selected one.
The button
has been
enabled
Has
passwords in
the system

1. logged in
and has a
valid session
and log
2. selected
and loaded
passwords in
the system
3. clicked edit
password

Valid Token
and log in,
Valid new
password
and title

Updated in
the system.

Updated in
the system

Updated in
the system

Pass

TC_Delet
e
Password

The selected
Password
title is being
deleted.

Removal of
password
from the
system

Logged in
and has load
password
titles and
selected one.
The button
has been
enabled
Has
passwords in
the system

1. Logged in
2. Valid
Sessions and
Tokens
3. selected
password to
be deleted
4. clicked the
delete button

Valid token
and session
alongside
valid logged
in
credentials

Found, and
delete the
password,
and removed
it from the
table

No longer
found in the
MongoDB
database

Deleted
from the
system and
row

Pass

37

Tried out the python script in the terminal of the application as Node.js can add a
python shell into the dependency’s files.

Then check out the results vs how long it takes to hack this password.

(‘How Long Would it Take to Crack Your Password? Find Out! - Randomize’ 2022)
The password however is hashed out on the website, but the above score would be
good for the password as a result. For the basis of that testing.

1.1. Evaluation

The end-user will be provided with a product that is easy for them to use, as upon
opening the application it will deliver all the functionalities that have been set out
in the above document sections. From initial testing, the application is already
quick and responsive at the present, and with further development is likely to
keep up with this.

2.0 Conclusions

The Advantages:

1. The systems architecture allows for the exchange of data IE: Passwords to
happen only when it has been requested by the user. For example, when you open
google chrome and store passwords there, you can only see that within the app data
of the system and back them up to a new chrome browser if so desired.

When you open the ace manager, it brings you to the main page after login but does
not load the passwords until it has been requested by the user. This means that if
the user just wishes to store new passwords, they never load their passwords even
as temporary data, or even see the passwords in the system.

2. As the main is a programming language used is JavaScript – with the use of
HTML and CSS, you can store the token in a browser however because Electron JS
will store those tokens in the local app data, it would be possible to be able to create
forgery tokens, however, this is avoided with three features.

Creating unique data, one JWT token, and a session, at the point of login, each
button click, has a verification function which checks the status of the session and
Token stored within the MongoDB database, which will also delete them upon
logout, meaning that they are separated and need active data on the server linked to
their account to tor account.

Acting as a barrier for the user and an extra layer of protection.

Acting as a barrier for the user and an extra layer of protection.

3. Each password is only decoded in the system, upon being requested by the user
to do so. As well, when selecting and loading the password to be revealed the
system does not decrypt the password or actively store it, a list of encoded stars is
put in their places for visual effect. Upon request to be decrypted, it finds the
matching Password Title, and Username in the system and then decrypts using the
secret code placed in the .env file.

4. Electron.JS Framework to be worked with multiply JavaScript and NPM libraries
that there are many ways to be able to develop and use the project with careful
planning and understanding. Which can also help improve

5. It is also possible to completely take this project and plug it into an Azure Microsoft
server, or Amazon service and use them as a host alongside their database with
very minimal changes to the overall JavaScript system and have a fully-fleshed-out
website, and cloud storage again at the same time.

Meaning that if you wished to integrate into a web service as well, you can have both
at the same time and any maintenances required for them, can be done at the same
time, mostly the same development team if that was a route you went down.

6. With the NFC and USB systems, a master password is not as necessary to be
able to recover certain pieces of information

7. Won’t allow for automatic sign-on into your (Changes, 2021) Won’t allow for
automatic sign-on into your chosen activity, as well the application will be free to use,
and unlock other password managers which cost money such as 1Password.

8. Node.js: Highly Scalable - (Kopachovets, 2020), as it is event-based, it increases
speed and performance in many areas, opening the market for developers to draw
on a pool of knowledge from other developers. (pokusew, 2021), integrates well with
Electron.js

The Disadvantages:

1. Electron has a high demand for computer resources meaning that lower specs
devices will increase the processing time for the application.

39

2. any issues involved with any of the services, will also be the same weakness of
the application meaning that it, itself is avoidably a singular failure point, which can
be the biggest and hardest issue to tackle when building any type of electron
application.

Node.js: Limited by CPU, (Kopachovets, 2020) and call back can place the
application into a loop, by mistake causing it to crash. With an overwhelming amount
of access to modules, it can be hard to vet each of these modules and determine if
they are what you need to be able to determine their effectiveness in your
application.

With both combined, it shows that there is heavy ram and CPU usage of the
application, which means low-end pcs will struggle to be able to use them.

3. If the user does not change their passwords regularly, they will not cause issues if
any one of their passwords is compromised.

4. Electron requires a lot of in-depth knowledge of both web-based languages, and
how the framework itself works to take full advantage of it.

5. Requires consistent updates of every package regularly.

The Limitations:

1. Electron.js and Node.js are updated regularly, so it is required that the application
also be updated when this is updated so, this can present problems if any major
changes are implemented into these features.

The application itself is limited by what it is coded with, while multiple languages can
be used with it, you have to be careful with how it will perform.

2. Not everyone will have access to the same tools to advantage of the login system.
Especially with the high cost of any NFC system to read the cards.

3. any issues as subject to what is available on the market right now from the
Node.js Modules/dependencies; a lot of applications, but there is a big community
behind it. Electron.js also works well with a fully experienced development team
behind it as people being able to work on multiply-problems at once can get the
system working faster.

Limited by how your approach to JavaScript, and the use of other languages.

There are many ways to build the electron.js application such as with React, and
TypeScript. Narrowing down how you want to be the application can require certain
things to be able to move forward.

40

Also limited by how the person intends to use the application, will they be using it
effectively?

3.0 Further Development or Research

1. Bio-metric Login System

The best approach to this type of application with more time and resources is to build a fully
integrated biometric login system. One of the better ways to do this will be to mimic the
styles other banking applications have to allow for logging in. They offer the normal
protection applied to the phone and then act as approval methods for login into the system.

Face and fingerprint identification would help boost the security of the system overall. Acting
as an additional safeguard to the user/application. You could use using your phone to push
for one of these options and then apply the push to approve the login.

However, because of the security requirements for a biometric system, you have to create a
singular database for being able to store that information and add even more additional
safeguards to be able to protect that data as it is extremely personal data that will be stored
in comparison to a username, password, etc. So, it will require much more attention and
precautions than a regular database. This main point to add to this is that this is not a one-
person job as well and requires a lot of foresight in the development of the system.

2. Mobile Phone Application

This will allow for the users to also be able to access their passwords on the go as they go
about the place, and as it is a personal device, following the correct development path will
allow for increased security, as said above, you will be able to link it together for security
approval, and include other key features. Such as key access to bio-metric add-on modules.

3. USB security key improvements

More research and development into fully functional keys and a secure key as a product for
the application, there are several similar USB keys on the market now for this such as the
Yubico Security Key, they are built-in with their security features rather than just uploading a
single key file onto the USB to be selected by the user.

4. Redevelopment of the application

Given the level of development that is needed to be put into the project, it would be wise to
employ ass team of developers to be able to build this as a product.

41

4.0 References

Bibliography
Akbarieh, E., 2021. Introducing the Electron.js framework, its advantages and disadvantages.
[Online]
Available at: https://ded9.com/introducing-the-electron-js-framework-its-advantages-and-
disadvantages/
[Accessed 20 12 2021].

Baocang, 2021. node usb detection. [Online]
Available at: https://www.npmjs.com/package/@baocang/node-usb-detection
[Accessed 20 12 2021].

Changes, E. B., 2021. Breaking Changes. [Online]
Available at: https://www.electronjs.org/docs/latest/breaking-changes
[Accessed 20 12 2021].

Driver, M. -., 2021. MongoDB NodeJs Driver. [Online]
Available at: https://www.npmjs.com/package/mongodb
[Accessed 20 12 2021].

Expert, 2021. The Pros and Cons of Password Managers. [Online]
Available at: https://expert.services/blog/managing-your-website/security/password-managers
[Accessed 20 12 2021].

Expert, 2021. Top 5 most common passwords. [Online]
Available at: https://expert.services/blog/managing-your-website/security/weak-passwords
[Accessed 20 12 2021].

Foundation, O., n.d. Electronjs.org. [Online]
Available at: https://www.electronjs.org/
[Accessed 20 12 2021].

Foundation, O., n.d. Node.js. [Online]
Available at: https://nodejs.org/en/about/
[Accessed 20 12 2021].

Kopachovets, O., 2020. How to Benefit From Using Node.js for Your Next Project?. [Online]
Available at: https://procoders.tech/blog/advantages-of-using-node-js/
[Accessed 20 12 2021].

L., S., 2021. Electron.js: Create Cross-Platform Desktop Apps Using Web Technologies. [Online]
Available at: https://www.cleveroad.com/blog/electronjs-framework
[Accessed 20 12 2021].

MongoDB, 2021. MongoDB Data Encryption. [Online]
Available at: https://www.mongodb.com/basics/mongodb-encryption
[Accessed 20 12 2021].

pokusew, 2021. nfc-pcsc. [Online]
Available at: https://www.npmjs.com/package/nfc-pcsc
[Accessed 20 12 2021].

42

5.0 Appendices

5.1. Project Proposal

6.1.1 Objectives

This project will set out to achieve an easy-to-use desktop application, that focuses
on the generation and storage of a password for the user. The application will be
created using an open-source software framework called Electron.JS, a service that
allows the emulation of a desktop application using web-based technologies.

It will provide the user with a way to log into the system using multi-factor
authentication. One of the authentications must include a bio-metric form of logging
in. Such as facial recognition or fingerprint. The second will be a password or pin
code, with the user being able to choose which one they wish to use. This will also
include the development of a USB, that can be plugged into the device to act as a
password as well.

When the user wishes to store and or generate a password, they will be able to label
it or add a link to it, for the password. If the password is generated it will follow the
guidelines of using passwords made set for the requirements of the website as well
as following the advice of NIST. While an entered password will be checked for a
meeting of requirements (L., 2021)and inform the user of its strength, as well as if it
came as another password, it would recommend changing it. These passwords will
be stored in an SQL database that is encrypted and offers features to stop hackings
from accessing this data. Highly encrypted password storage

6.1.2 Background

I choose to undertake this project because I wanted to put my skills to the test using
different technologies in conjunction with each other. As well, I wasn’t completely
happy with the range of password managers that are out there currently. I want to be
able to make one that I would be happy to use daily as well as anyone else. That the
application also wouldn’t be related to google or an anti-virus program. As well the
best forms of password managers come in the form of a desktop application. Which I
feel confident I can program; this type of application will be able to include bio-metric
login which I am very interested in programming and adding to this project.

I will meet the objectives I have set out in section 1.0, by taking it one set at a time.
Evaluating and researching what needs to be done to achieve each step of the
project. Regularly evaluate each stage at which I am at in the project and what features
should be adapted and changed or even completely removed from the project. I believe
using an Agile methodology will be the best approach to achieve it, as this project will be

43

needed to be in stages to be completed. As well regularly research what methods are
needed for encrypting data and what are the current tools at the time for dealing with data
security, as this data will always need to be protected for the user. I will also need to try
slowly approach this project and not be quick about it, as I do not want to overlook anything
in the objectives of this project.

6.1.3 State of the Art

Similar applications that exist to my project idea are:

Google Password Manager: This stores and also generates a password for you when you
are filling out forms/login into a website with its auto-complete feature. This however stores
your password in your browser and can be accessed by using the same password you
would use to log in to your desktop or laptop. This particular feature I want to avoid as it is
just a single password or pin to get access to these features.

LastPass: This is a recommended application password manager that uses multi-factor
authentication, and is free to use, however, it is an outdated desktop application with its
website being known to be hacked in 2015.

My project will differ from the above by using newer technologies and the current practices
out there for the protection of data, including using multi-factor authentication that includes
bio-metric forms of login in and exclude a singular method of logging as well as not many
other applications out there are using Bio-metric login methods. So, this is how I believe my
project will stand out from others; as well I don’t want any access to the web currently in this
project so while many of the applications offer form filling, I will not be using them currently;
they are not completely secure as it is possible to look at them with a script on a website.

6.1.4 Technical Approach:

The approach I will take for this project in its development will be the scrum methodology; as
I am very familiar with it, and it will help be able to break the project down into approachable
steps that I want to be able to evaluate where I am daily in the project, what needs to be
done that day, what is the objective I will be at by the end of the week then what the project
will look like in a one or two week period. Then be able to realise during this sprint, where I
will hopefully be during the end of the month and see where I need to make changes for the
next sprint, and or the changes I need to make to the scope of the project so that I am happy
with what I am going to be doing throughout the project.

Then hopefully will be able to identify my requirements through this development approach
as I will need to adapt as I go on through the project. I will be able to identify the
requirements by breaking down each step by the features I wish to include in the project,
and then figure out what each of these needs to be coded/created in the project as a whole.
Then be able to identify the steps required to be able to protect them from being accessed
by outside sources. As the project includes a database and uses an open-source framework,
I will need to be able careful when using these features so that I implement the protection
features as I go along to improve my abilities to be able to test the project every month.

44

Breaking down the requirements into tasks will require me to objectively look at the project
requirements after I have created them. So that I can break them down into timeslots and
figure out which is going to require me the most amount of time to be able to develop. What I
will need to research for them to be completed. Identify if they have a relationship with the
database or another feature so that I can know if they require additional steps to protect
them, and then be able to tick off the completion of said requirements in the sprint and
overall evaluation of the project as a whole.

By charting out a product backlog with due dates on everything and organisation on them.
This will allow me to objectively look at the project always and keep me on track with all the
activities in the project as well as allow me to be able to research project features and define
them more during each step of the project so that I am happy with what I am doing with the
identified requirements of the project.

By meeting the end of the product sprint, I will be able to look at the project and what
activities have been completed and then adapt the project for the next cycle. The sprints
allow me to look at each milestone of the project and be satisfied with them. It will allow me
to be able to discuss with another person where I might be lacking in the project or where I
am wasting time, or plan for further stuff in the future of its development.

This will hopefully always give me a good overall approach to the project and know exactly
where I am at all times because I feel like this is one of the key necessities to the project.

6.1.5 Technical Details

I will be implementing the open source-frame Electron.JS which is developed and
maintained by GitHub, it uses a Node.js runtime environment, to allow for the creation of a
desktop application.

This allows for HTML, CSS, and JavaScript to be used in conjugation with each other for the
creation of the application allowing me not to have to use Java, or C# to develop the project
completely.

The JavaScript will give me access to its library and available resources. I will be able to use
APIs in the project that should be able to help me pull words into the system to create a
functional passwords system, based on phases – “TheElephantInTheRoom”

PASSWORD API, which can compare passwords with a known list of breached passwords,
will help with one of the features of informing the user if a password they have entered into
the storage part of the database has been breached and recommending that they change it.

Hashing API will allow for the passwords to be hashed in the database and protected further,
it is not recommended that you create your hashing but looking at the options available for
the project will be good. This is an important approach to the protection of the data within the
project. It is also an algorithm at the same time.

It also gives me access to python scripts, which offers me excellent access to creating
protection for my application, as well as access to the database features in other

45

implementations that may come in handy for the project. It has many advantages and
benefits to the project.

SQL will be used to create the local database and be able to access data within the
application itself.

 Special Resources Required:

6.1.6 Special Resources Required

1. USB: As a feature of the security key will be a USB stick, it is a special resource that is
required to be able to use the application itself, that will create the encrypted file which is
decrypted by the application to gain access to that account.

2. NFC Scanner: This would allow for a key card to act as a password as well for the user
allowing them to tap the card and log in with a bio-metric password, for them.

6.1.7 Project Plan

For my First Step, I will be implementing create a GUI diagram, to be implemented
into the project start away. This will take me less than two days as I want to be
happy with the GUI before proceeding with anything, as I don’t want to throw stuff
together and hope it works; I need to carefully do everything with a clear plan in
mind.

This will allow me to research and plan out the other features in a more detailed
manner and figure out what is connected to what; and how everything will work
together with each other. Continuous research, in particular for bio-metric
implementations into the application, and how I will store that data in the database.

The next step while researching will be to create and test out a basic database and
make sure I edit information from the application itself. Following that, I will then be
able to make the first stage of the application, the login system, with a password and
pin.

This will allow me to test out and figure out the security features that I will need to
add and how I will add them.

From here I can begin to test out the facial recognition as I have webcams on hand
to test them out while I acquire additional parts for the fingerprint scanner and bio-
metric forms of logging into the system.

Once I get that running, I research those features again with my new knowledge and

46

test using the facial recognition with the application itself. From here, I’ll have a good
working prototype and have met one of the requirements I have set out. I will still be
far from done.

I’ll be able to have a clearer retrospect of the project and refine anything if I need to.

Below I have included a Gantt Chart with how I think the project will currently
progress up until the mid-point presentation.

47

Gantt Chart of timetable up until the final presentation:

08/11 13/11 18/11 23/11 28/11 03/12 08/12 13/12 18/12

Build Electron Application
Design GUI Plan

Implent the GUI Plan
Research Bio-Metric Login

Create Database with basics
Implement basic password

Implement login system
Test out facial recongition

Test out facial recongition to login
Research Bio-metric login

Research Hashing Algorithms
Research NFC Tags/API

Implement fingerprint scanner
Test Fingerprint scanner to login
Research USB encryption + code

Pick Up USB in the application
Test out the System for bugs

Fix any bugs in the system
Evalute where the project is
Continue USB development

Develop password generation
Update Database where need

Implement Hashing passwords into database
Modify GUI/Features where neccessy

Final Tests for prototype
Preparation for Mid Point Presation

48

6.1.8 Testing

One of the main methods I will be using for evaluating my system will be manually
testing all the inputs. I will need to first make sure everything is working as I intend
them to, for example. That when I click on adding the password to the system, it is all
not letting me access information I shouldn’t be able to.

Another way to do, this will be able to use Unit Testing on the application as I
progress on the project to make sure everything is working as indeed. Each step of
the project will also require me to test it out for bugs, which I can make notes of and
fix as I progress through. This can be achieved by being able to use Selenium with it
as it works with JavaScript. It supports web-based automation in the project.

Testing the database to make sure it follows proper procedures such as ACID and
validates how data is accessed at all stages of the project.

Then one of the final tests I will need to perform will be acting in two roles, one as a
user creating and making an account for the first time, and then acting like a hacker
trying to get into the system.

5.2. Ethics Approval Application (only if required)

49

5.3. Reflective Journals

Supervision & Reflection Template

Student Name William Redmond Lawlor
Student Number 18106170
Course Computing: Cyber Security

Month: October

What?
Reflect on what has happened in your project this month?
For October I set about finishing up the project idea. I did this by evaluating what ideas I
already had, and what changes I would possibly need to make for them. My main idea was
to create a password manager, I adapted this idea as much as possible to meet the
requirements for the software project. I set out to make the necessary changes such as
additional security features, and how they would be implemented. How I would generate a
password for the user; How much time I would need to implant each feature and what should
I get done and over with first to increase productivity on the project as a whole. As well as
what technologies I would be using.
So What?
Consider what that meant for your project progress. What were your successes? What
challenges remain?
I feel this meant that I went from having an idea, to a solid plan for my software project
overall. It also meant that with the new ideas and new angles. I could look at the project
more objectively to progress on it. The challenge however that remained was how I was
going to develop the application at hand and how I was going to do it, this was met with
looking at new technologies and programming languages to look at.
I was able to choose which technologies I wanted to use, and from the additional security
features, how I could more structurally implement the ideas in betters forms/ways. Such is
one of the key features of finalising the language/technologies I would be using: Electron
has been a good option. This allows me to use HTML, CSS, JavaScript, Python, APIs, and
several other languages in conjunction with each other to achieve my project goal.
Multi-Factor Authentication was added to the idea of the project, this creates a big challenge,
as the user of the application should be able to choose which authentication factors, they
want to use to log into the application itself. This helped flesh out the project progress for
this month.
Now What?
What can you do to address outstanding challenges?
To address the current challenges I have started by learning how to set up an electron
environment, not related to my project and begin programming different things into it to
become more familiar with it. I have also looked into how to integrate multi-factor
authentication into the project as well.
Another is creating an ideal timeline of what will be needed to be done each month, so I
have set up a rough estimation for myself at the moment until I can grasp more on electron
and what other details may be needed to be added to the project on time.

Student Signature William Redmond Lawlor

Supervision & Reflection Template

50

Student Name William Redmond Lawlor
Student Number 18106170
Course Computing – Cyber Security

Month: November

What?
Reflect on what has happened in your project this month?
- Created the graphical user interface for the project

- Created the basis for the project and organised the file structure; understanding how to

access the files through electron.js

- Read and learn about python coding to be able to create a password generator and

implement it into the project.

- Implemented an SQLite3 database into the application

- Got up to speed on calling and installing applications required with node.js.

So What?
Consider what that meant for your project progress. What were your successes? What
challenges remain?
I am now hopefully past most of the major blocks for the project and now that I have more
time to organise my thoughts on the project. I will be able to progress much more quickly
on the project.
I have had to realise what ideas may or may not work on the application itself. So, I have
had to evaluate much more how I am going to introduce biometric data into the application
Compare SQLite against MongoDB and other databases to be able to consider what to use
for the local database or if I should just create a single file for the system altogether.

Now What?
What can you do to address outstanding challenges?
To address the outstanding challenges in the project, I need to re-organise what I have left
to do and evaluate what is going on. See what can and cannot be done, such as for the
biometric data. See where I am not happy with the target and understand how long it is
taking me to be able to implement each stage of the project into the system itself; I feel like
some parts I may have completely underestimated and need more time to see how they
function. This will come with time, but hopefully, after this month I have a stronger
understanding.
Electron.js is an interesting open-source project to be able to use for the project given that
it is using Node.js with it to be able to function.
That while using python with the project is hard but not impossible and take it one step at a
time when trying to use the project. I believe I have been able to clearly define which parts
are not going to be joined together and which parts are not going to be together.

Student Signature William Redmond Lawlor

51

Supervision & Reflection Template

Student Name William Redmond Lawlor
Student Number 18106170
Course Computing – Cyber Security

Month: December

What?
Reflect on what has happened in your project this month?
Preparing a prototype for the mid-point presentation meant reading through the documentation
for myself and figuring out which functional requirements I wanted to be able to show off for the
presentation. This meant for I needed to evaluate what was completable for this stage of the
project, I believe that having the ability to switch between the main three pages and how they
would look for the user in theory would be the best thing to do.
The write up for the project also took a lot longer than expected so, in the end, I ended up putting
more of an effect into the write up to be able to complete it first. Then try to add as much to the
project first as I possibly could.
Finished creating a frameless window for the main design of the application, as an electron
feature you can make your title bar using HTML, CSS and JavaScript to create functionality for the
buttons, and give access to this function on all pages that require it.

Created a Parent and Child Windows for the application to be able to switch between the pages
seamlessly especially for the login function of the application, separating it from the main part of
the application.
The applications folder organisation: making it easier to view files for me and link to the files
directly. It also allows for an easier flow between the pages and accessing the JavaScript files to
provide the coded need for most functionalities.
So What?
Consider what that meant for your project progress. What were your successes? What challenges
remain?

That the functional and non-functional requirements could nearly be fully set in stone from the
document requirements and what I was now seeing was more possible for me to be able to do this
month without further research and what would be required moving forward for myself.
This included that was the python script going to be completely necessary for the project, as, I could
write the same script into the JavaScript section of the project and still get the same results.
Would dragging in an API to check the passwords also pose a risk to the project that I would have
to deal with for the moment, I think it would be best to exclude it from the project and instead
implement a list of the common passwords over ten years and disable from being entered into the
database to encourage the user not to be able to use them within the database.
The MongoDB database connection, should it be used using the node.js functionality or just purely
be used using the python connection method, for the moment, I believe using the node.js is the
best way to interact with the project database for the moment seeing as node.js is built for that
type of work.
This progress has allowed me to move forward fast now on the project seeing as I am coming to a
further understanding of what is needed to be able to perform the functions of the project.

Now What?
What can you do to address outstanding challenges?

52

One problem I can address is the write up by trying to do it alongside writing up the features of the
project and hopefully it will allow me to be able to improve the documentation overall as well as
how I approach the use case diagrams etc, I feel that I could be clearer with them.
With a list of functional and non-functional requirements, I now have a clearer vision of the inner
workings of the project for myself rather than mental plans, allowing me to take further steps ahead
each time I add a feature to the project.
The challenge now is finishing off the project and making a clean cut application that I like and being
able to test thoroughly for vulnerabilities.

Student Signature William Redmond Lawlor

Supervision & Reflection Template

Student Name William Redmond Lawlor
Student Number 18106170
Course Computing – Cyber Security

Month: January

What?
Reflect on what has happened in your project this month?
This month I worked on learning about adding different authentication features such as token-
based and certification based to the project with the focus being on creating an express server in
the local environment of the Electron.js system upon start-up of the application and then
incorporating this into the login system, from here, it also means I will be possibly able to run the
pythons scripts much easier through that local server to be able to access them using an available
child-spawn process. Then can chain them together to hash/encrypt them on the database through
the various python and JavaScript.
With token-based authentication, I can leave it being checked in the background for five minutes
before it expires, and a new one is needed to be requested. This can be done through JavaScript.
This is the same with certification, but more research is still required before adding it to the project.

Limit testing the server as much as possible, learning how it interacts with the server at the time,
when within the framework vs, when I am testing it outside the framework by itself so that I know
I have it working.
Working on the connection between the database and the server with the mongo DB atlas
database, as some of the uploads were not working out correctly, as well as getting dummy data
down onto the testing environment so that I know I am actually connected to the server and
working with me properly. So that I can develop the crud functionality.
Finishing up the information on the password creation HTML, CSS, and JavaScript pages/files.
Getting the problem that was occurring such as with the express serving shutting down between
parent and window switches. Looking into what was needed to be able to understand exactly what
was happening to the express as there were problems occurring
So What?
Consider what that meant for your project progress. What were your successes? What challenges
remain?
Set up a separate environment for the express server to work outside of the electron.js system, so
that I could make sure it was working first possible problems that could occur were first happening
only with the express server itself and then moving it onto the actual application with the electron

53

framework so that I could then tackle those problems from then on. One for testing it out and
another for being there.
I was then able to implement tokens into the express server using JWT, a service on the node.js to
be able to use it. Now it meant getting the application up and running with electron.js, so this
meant checking out what the best approaches were, which was creating a rendering file at the start
of the application and then using postman to check if it was working.
There was a lot to learn about the express and how it would function within the application as well,
so learning how to swift through the problems and find the answers to what was going on was
important and helpful in gaining a much further grasp of what was going to be needed to be done.
Now What?
What can you do to address outstanding challenges?
Will the express server always be able to work with the project? Or will it cause further problems
down the line? Routing functions of the express server also allow for testing in postman, do I need
to separate the implementations for the project to secure it.
So, I have to move more carefully than before and get on track with the other login methods so that
they can be done all at once.

Student Signature William Redmond Lawlor

Supervision & Reflection Template

Student Name William Redmond Lawlor
Student Number 18106170
Course Computing – Cyber Security

Month: March

What?
Reflect on what has happened in your project this month?
This month, I created the session for the server and application so now that when the user logs on
to the database, we can see that in the database and compare them to each other to act like a
real person is there.

Made a lot of changes to API and how it works and put in the preparation work for how the
application was going to run with the system in place.

Found out exactly what I was going to need to do to be able to test the system and make
preparation for it.

Made changes to how the technical report by reading it and working out what needed to be done
with it.

Make a working login system.
So What?
Consider what that meant for your project progress. What were your successes? What challenges
remain?

54

Getting the tokens working on the system at the moment as they are required to be placed within
the header, might take several attempts to do.

Integrate the login system into the application, so that it is easier to be able to use it fully tested
outside the electron application.

Re-reading the technical report more so that it is clear in my head

Make sure to identify all the technologies with the application for the report and make sure I will
be to discuss them.
Create a vault for the application so that passwords are hashed and secure within the database

Now What?
What can you do to address outstanding challenges?
Re-writing the technical report so that it is easier to read, and better overall as some points were
not communicated well within it during the midpoint submission.
Still working on what is going on within the electron project. Moving important file information
onto the .env fly to act as a point of protection for the application for URLs etc.
Preparing for the testing cycle.

Student Signature William Redmond Lawlor

5.4. Other materials used

Any other reference material used in the project for example evaluation surveys
etc.

	Executive Summary
	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.2. Non-Functional Requirements
	2.1.2.1. Use Case Diagram
	2.1.3. Data Requirements
	2.1.4. User Requirements
	2.1.5. Environmental Requirements
	Usability Requirements
	2.2. Design & Architecture
	2.3. Implementation
	2.4. Graphical User Interface (GUI)
	2.5. Testing
	1.1. Evaluation

	2.0 Conclusions
	3.0 Further Development or Research
	4.0 References
	Bibliography
	5.0 Appendices
	5.1. Project Proposal
	6.1.1 Objectives
	6.1.2 Background
	6.1.3 State of the Art
	6.1.4 Technical Approach:
	6.1.5 Technical Details
	6.1.6 Special Resources Required
	6.1.7 Project Plan
	6.1.8 Testing
	5.2. Ethics Approval Application (only if required)
	5.3. Reflective Journals
	5.4. Other materials used

