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Executive Summary 
 

Restaurant industry is a high grossing one, both in Ireland and worldwide. With most 

businesses moving online during the COVID-19 pandemic, customers started to spend more 

time online, writing online reviews. Not only were more reviews being written, but people 

also relied more on those reviews when deciding whether to use a particular restaurant’s 

service. All this put additional pressure on restaurants to maintain a positive online presence 

and high ratings. This pressure has increased recently with the high levels of inflation, which 

forces customers to reduce their outdoor dining and food orders. As a result of this, they are 

even more careful when it comes to online ratings. 

 The aim of this project was to, using the KDD methodology, develop a model which 

can predict, solely on the basis of the textual review, the rating of a review, on a scale of 1 to 

5. An additional aim was to develop a model which can predict the review sentiment, it being 

negative, positive or neutral. While the sentiment analysis classification is a well-known topic 

studied in the Natural Language Processing field, the idea to classify the reviews according to 

rating is one that is not usually entertained due to the complexity of the classification process.  

The textual reviews were vectorized using two different approaches – Count 

Vectorizer and TfIdf Vectorizer - in order for them to be used by the machine learning 

algorithms. Four out of five algorithms used are the ones typically used for sentiment analysis 

(Logistic Regression, Support Vector Machines, Random Forest and Naïve Bayes), while 

Neural Networks were introduced in this project due to the high number of features and 

reviews that needed to be processed. As Neural Networks perform better with large, complex 

datasets and highly-dimensional features, their choice was a logical one, especially for the 

ratings classification. 

 The final results show that Logistic Regression is the best-performing algorithm in both 

use cases – ratings and sentiment classification. Furthermore, Support Vector Machines and 

Neural Networks also perform very well. When sentiment classification is compared to the 

results obtained using a tool already on the market (Vader), all models developed during the 

project outperform it. This means that these models, especially the best-performing ones, 

can be used either on restaurants’ websites to predict ratings or sentiment, or internally, 

when reviewing customer feedback, to identify problems that need to be rectified and 

positive feedback which helps to note what customers enjoy. 
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1.0 Introduction 
 

1.1. Background 
 

Restaurant industry is a very lucrative industry. Even during the year that was mostly 

impacted by the COVID-19 pandemic (2020), the restaurant industry had an estimated worth 

of $1.2 trillion (Aureliano-Silva, et al., 2021). If more local data is examined, Bord Bia reported 

that people on the Irish market spent around €8.55 billion on restaurant dining in 2019, with 

a significant increase of 4.5% when compared to 2018 (O'Brien, 2019). In addition to this, 

whenever COVID-19 restrictions were eased, the spending in restaurants increased 

significantly. For example, in 2021, in the month of June, a total of €332 million was spent on 

meals in restaurants in the Republic of Ireland, an increase of 41% compared to the same 

period in the previous year (Ihle, 2021). This means that the restaurants can make a good 

profit once there are no restrictions or with minimal restrictions. 

Quality online presence can help restaurants attract customers more than any other 

factor, especially in these times. As lockdowns come and go, restaurants sometimes only open 

for a short period of time. During that period, good online reviews are what will most likely 

result in increased number of customers. Recent survey conducted by ReviewTrackers 

showed that 94% of customers claim they avoided a business based on a bad review (Review 

Trackers, 2021). Similarly, a survey of US customers’ attitudes towards local businesses 

showcased just how much they rely on online reviews. 93% of them do an online search for 

local businesses and 87% read their online reviews. The same survey also showed that 

restaurants are number one on the list of industries for which the customers would read 

online reviews (Murphy, 2020). All this shows just how much a restaurant’s revenue can be 

impacted by online reviews. 

COVID-19 pandemic resulted in people relying on online reviews even more, both as 

active and as passive participants. As a direct result of COVID-19, 31% of people surveyed 

claim they are reading more reviews than before (Murphy, 2020) and 70% of them use rating 

filters when doing online search, mostly defaulting their filter to four stars and above (Review 

Trackers, 2021). There are also factors showing more people are now actively engaging in 

writing reviews. On one hand, the overall number of online reviews at the start of the 

pandemic (February – May 2020) increased by 81% (PowerReviews, 2020). In addition to this, 

around 72% of customers have written an online review (Murphy, 2020). Not only have 

people been spending more time at home and online, but writing reviews with the help of 

smartphones and better internet coverage has become faster and easier. Along with that, the 

customers seem to be writing shorter and more focused reviews than before – since 2010, an 

average online review reduced by 65% in the number of characters, resulting in around 200 

characters on average (Review Trackers, 2021). 

When all this is reviewed, it becomes logical that restaurants would start paying more 

attention to reviews by trying to respond to them sooner, to pinpoint the issues that the 

customers are most sensitive about and improve both their online presence and their 
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business practices. Having previously worked in customer support for an online website-

building service, most customer complaints related to e-commerce were about the ability to 

automate the reviews process. Some businesses had problems with the fact that the 

customer wrote a really nice review, but clicked on the wrong number of stars so it got 

registered as a 1-star review, which reduced their overall rating. So, for them, a system where 

the star rating would be generated solely based on the customers’ textual review would be 

very beneficial. 

However, this would only solve part of their problem. Most customers will not go 

directly to the restaurant’s website to read the reviews. At this point, four services are proving 

to be the ones where most customers post and / or read reviews. Those four services host 

88% of all online reviews. Google is the absolute winner with 73% of the market, while Yelp 

(6%), Facebook (3%), and TripAdvisor (3%) are the other three major forces (Review Trackers, 

2021). For that reason, businesses would probably profit even more by having a model that 

could analyse the reviews for them and classify them correctly. Finally, the restaurant owners 

could focus on negative reviews to isolate what needs to be changed, or on the extremely 

positive ones, which would showcase what needs to remain the same. And this is what this 

project is focused on – trying to analyse restaurant reviews and build models which can 

correctly classify reviews, according to their rating and sentiment. 

 

1.2. Aims 
 

The main goal of this project is to determine the overall rating of reviews on the scale 

from 1 to 5, based solely on the text of the review. In addition to this, the goal is to build a 

model that can classify the review as positive, negative or neutral. The actual field that is the 

basis of the project, sentiment analysis, is also known as emotion AI or opinion mining and its 

main purpose is to determine whether a review is positive or negative. In addition to this, it 

can also be used to predict ratings for restaurant reviews (Zahoor, et al., 2020) and this is how 

it is used in this project. 

In order for these two goals to be achieved, a number of smaller goals needed to be 

achieved as well. The first subset of these smaller goals is related to the actual process of 

performing sentiment analysis. Before any of the actual work started, research was 

conducted on previous works done on sentiment analysis. This step is crucial in order to avoid 

steering the work in the wrong direction and prevent resource wastage. Then, quality 

datasets, which meet the project requirements, were acquired. Once the data was found, it 

was examined, processed and transformed so it could be ready for machine learning. Using 

classification machine learning algorithms and the process of training, validating and tuning 

the model, the best-performing algorithm was identified and tested against the final test data. 

At last, in the final step of the process, the results were collated and presented using summary 

tables and charts.    

The other subset of smaller goals relates all the other work that was done in order to 

ensure that the first subset of goals is achieved. First of all, a project plan was created so the 
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project execution could be monitored. Then, all the documentation was updated timely to 

reflect all stages of the process. Furthermore, all the technology and tools needed to 

complete the project were identified and explored. Finally, in order to present the final 

results, as well as the results of the previous phases, data visualisation techniques were used. 

Fulfilling all these goals ensured that well-performing models were being developed.  

 

1.3. Technology 
 

The technologies and tools used can be divided into two distinct groups. The first 

group consists of tools used to manipulate the data, implement machine learning algorithms 

and handle data visualization. Python (3.9) is the main programming language used in the 

project. In order to run Python code, PyCharm IDE (integrated development environment) 

was used locally at the start of the process. Google Colab notebooks were used mostly for 

presentations as they offered a cleaner outline and were more convenient when a single line 

of code needed to be run, especially on a project that has hundreds of lines of code. However, 

as the project developed, the move was made towards Jupyter Notebooks and Anaconda. 

One reason for this change was that with the increasing amounts of code, running it in 

PyCharm was no longer feasible as the runtime was just too slow. Google Colab was 

abandoned as the runtime of the code with the free account was also too slow. Python 

libraries used to complete the project and their descriptions are available in Table 1. 

 

Table 1 – Description of libraries used 

Library Usage 

Pandas Importing / exporting csv files, manipulating DataFrames 

Openpyxl Importing / handling xlsx files 

Re Cleaning data using Regular Expressions 

Matplotlib Data visualization library 

Seaborn Data visualization library 

Plotly Data visualization library 

NumPy Library used to process multidimensional arrays 

NLTK Language processing library, items used from it for this 
project: 
RegexpTokenizer - text tokenization 
FreqDist - frequency distribution 
bigrams - used for analysing bigrams 
trigrams - used for analysing bigrams 
stopwords - used to identify stop-words in reviews 
WordNetLemmatizer - used for lemmatizing reviews 
SentimentIntensityAnalyzer – pre-built tool for sentiment 
analysis, used only in the end to verify how the models built 
perform compared to it 
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Scikit-Learn Machine learning library used for text vectorization and 
building, training and testing models, items used for this 
project: 
CountVectorizer, TfIdfVectorizer - used to vectorize textual 
data 
GridSearchCV – used to find best hyperparameters for the 
models 
LogisticRegression - used to build, train and test models using 
LogisticRregression algorithm 
MultinomialNB - used to build, train and test models using 
Naïve Bayes algorithm 
RandomForestClassifier - used to build, train and test models 
using Random Forest algorithm 
LinearSVM - used to build, train and test models using 
Support Vector Machines algorithm 
confusion_matrix - builds confusion matrix for the current 
implementation of one of the algorithms 
accuracy_score - calculates the accuracy for the current 
implementation of one of the algorithms 
classification_report - lists the full set of metrics that outline 
the model’s performance 
make_pipeline – collates all the pre-processing and model-
building steps into one single call 

tensorflow Library used for neural networks / deep learning, items used 
for this project: 
keras - deep learning API that enables Tensorflow to build 
neural networks  
Sequential – a model used for building neural networks 
Dense – a type of layer added to the network 
Activation – type of function passed into the layer 
Droput – layer used to prevent overfitting 
EarlyStopping – stops training when the relevant metric stops 
improving 
load_model – used to save and load neural networks models 

selenium Automation / testing library used to scrape data from websites 

time Library used to set delays between actions performed by the 
machine during automated tasks 

 

 Probably the two main choices that were the most difficult to make, in terms of 

libraries used, are Scikit-Learn and TensorFlow. Scikit-Learn was, in the end, an obvious choice 

for machine learning implementation as it has a very clean and uniform structure, as well as 

good online documentation. Basically, once one model is built, it is easy to move to a 

completely different algorithm as the basic syntax is similar enough (VanderPlas, 2017), which 

is important when approaching the project in an iterative way. When it comes to TensorFlow, 

the choice was primarily made due to its syntactic similarity to Scikit-Learn. This library is 
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primarily used to build either small or very large Neural Networks and relies on the Keras API, 

Google’s deep learning tool (Géron, 2019). 

The second group of tools are those used to manage the project completion. This set 

of tools mostly consists of programs from the Microsoft Office package. Word was used for 

all the documentation that was submitted, from project proposal, ethics declaration, 

reflective journals, midterm submission document to the final technical document. Excel was 

used mostly for initial review of files stored in xlsx or csv files. In order to create slides for 

video presentations, PowerPoint was the preferred tool. As for the video-creation, videos 

were recorded using Microsoft Teams and then edited using Kdenlive. An online tool was used 

for project management – TeamGantt. As the name itself suggests, the tool is used to create 

and host Gantt charts. 

 

1.4. Structure 
 

The document is divided into several main sections, each of which contains crucial 

information on the project execution. Those are: 

 

Data This section provides basic information on the datasets chosen. In 
addition to this, it contains plots and charts which are the result of 
data exploration. Its overall goal is to showcase the strengths and 
weaknesses of each dataset and provide additional insight into what 
changes needed to be made in the later stages of data manipulation. 
   

Methodology Methodology explains the process of project completion. The stages 
that are covered in detail in this section are data selection, pre-
processing and transformation. It also includes basic information on 
the data mining and evaluation stages. 
 

Analysis More detailed information on vectorization process, model building, 
splitting data into training, validation and testing sets, and the 
reasoning behind the choice of machine learning algorithms is 
provided here. 
 

Results This section outlines the overall results for all of the chosen machine 
learning algorithms, taking into consideration different 
hyperparameters, vocabulary sets, as well as different usage of 
vectorizers and unigrams, bigrams and trigrams. 
 

Conclusions 
 
 

Final overview of the results with the clarification on the best 
machine learning approach to use and potential future applications. 
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Further 
Development or 
Research 

Details how the results could be further improved and what other 
approaches can be taken to attempt this type of analysis. 

 

2.0 Data 
 

Zenodo Dataset 

The first dataset acquired for the project was Social website reviews and ratings of 

Dublin restaurants situated across 65 locations (Basheer & Kaushik, 2019). It is a public 

secondary dataset and it was downloaded directly from the website in .xlsx format. Its size is 

1.37MB. As seen from the title, it is a collection of restaurant reviews generated from social 

media and focused on the Dublin area. The full dataset contains 10 000 reviews and 11 

columns. The columns’ descriptions can be seen in Table 2. 

Table 2 – Zenodo dataset description 

Column name Description Data Type 

Restaurant ID Restaurant names are anonymized 
and replaced by an ID. 

String 

Location ID Restaurant location anonymized 
and replaced by an ID. 

String 

Review A textual review written by a user for the 
restaurant identified by the Restaurant ID and 

the Location ID. 

String 

Review Sentiment Overall review sentiment – defaults to either 
Positive or Negative. The dataset has 5000 

positive and 5000 negative reviews. 

String 

Cuisine Dominant type of cuisine 
offered by the restaurant. 

String 

Price Range Price range for a meal at the restaurant. It has 
three default values – under 30€, 31-50€ and 

more than 50€. 

String 

Food Rating User’s evaluation of food quality. User can 
choose the rating between 1 and 5. 

Integer 

Service Rating User’s evaluation of the service in the 
restaurant. User can choose the rating between 

1 and 5. 

Integer 

Ambient Rating User’s evaluation of the ambient / atmosphere. 
User can choose the rating between 1 and 5. 

Integer 

Overall Rating User’s evaluation of food quality. User can 
choose the rating between 1 and 5. 

Integer 

 
Restaurant Rating 

Overall restaurant rating which is a general 
average of all the users’ overall ratings. This is 
not a value derived from the values entered in 

the columns 7-10. 

Float 
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TripAdvisor Dataset 

The second dataset was acquired primarily to account for the imbalance in the ratings 

distribution of the first one. Unlike the first dataset, which has a low count of four-star 

reviews, this dataset is perfectly balanced. The data was acquired by scraping the reviews of 

40 different restaurants using Python and Selenium. The data was saved in a csv file, the size 

of which is 1.04MB. There are 2000 reviews in the dataset, which consists of two columns 

only – one containing the reviews (string) and the other one containing the ratings (integer). 

Restaurant and user information were not used to create the dataset. 

 

Yelp Dataset 

The final dataset is the Yelp’s public dataset made available by the company for 

academic purposes (Yelp, 2021). The dataset contains information collected from different 

areas of the USA and Canada and is split into several different JSON files, each of them 

focussing on a different area (businesses, users, tips…). For the purpose of this paper, only 

review.json file was used. As this file is 6.45GB and holds more than 8 million reviews, from 

wide range of businesses, a subset of this dataset only including restaurant reviews was used. 

This subset contains 208 214 reviews and only two columns – stars (integer) and text (string). 

The description of the original dataset is available in Table 3. 

 

Table 3 – Yelp dataset description 

Column name Description Data Type 

review_id A unique ID for each review. String 

user_id ID of the review author. String 

business_id ID of the restaurant reviewed. String 

stars The rating user assigned to the restaurant, 
ranges from 1 to 5. 

Integer 

date Date of the review. String 

text The user’s textual review of the restaurant. Integer 

useful Number of times review was voted useful. Integer 

funny Number of times review was voted funny. Integer 

cool Number of times review was voted cool. Integer 

 

Exploratory Analysis 

 

Zenodo Dataset  

This dataset was imported using Pandas and openpyxl libraries, both of which are 

necessary for working with .xlsx files. Immediately after reviewing general information on the 

dataset, it became clear that an additional column exists that was not mentioned in the 

dataset description. Upon more detailed examination, it transpired that the column in 
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question (named Unnamed: 11), contains only one non-null value. Further investigation 

showed that the column’s only value is located in row 2589 and that the value entered is 

almost the mirror image of the value entered in the Review column. As there are no other 

entries in that column and there are no other null values in the dataset, it was possible to 

move to the next step. However, this check did find a useful piece of information which is 

useful for data cleaning. The actual review text in that row contains an escape character (\n) 

which needs to be removed. If that column is ignored, the resulting count of unique values 

for non-numerical columns can be seen in Table 4. 

 

Table 4 – Unique values distribution in Zenodo dataset 

Restaurant ID 211 
Location ID 65 
Review 9982 
Cuisine 43 

 

Note that Price Range and Review Sentiment are not included in the table as their 

unique values have previously been identified. 

Regarding other columns, it is interesting to note that not all reviews are unique. This 

is not surprising as there could easily be several reviews with the exact same text, especially 

if the review text is short and generic. An additional check was made to identify if these are 

complete duplicates, but full matches were not found, meaning that even if the review text is 

the same, the rest of the information is different. Furthermore, there are over 40 different 

types of cuisines included in the dataset, with Irish, Italian and British dominating. The ten 

most popular ones are presented in the chart in Figure 1. All this shows how data was 

collected on a very diverse set of restaurants, cuisines and locations. 

 

Figure 1 – Top 10 cuisine types in Zenodo dataset 
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When it comes to the numerical columns, Food Rating (Figure 2), Service Rating 

(Figure 3) and Ambient Rating (Figure 4) are mostly dominated by extremely positive reviews 

– five-star ratings account for around 50% in each of them.  However, there seems to be one 

main difference between them – users were much more inclined to give 1 star when it comes 

to service rating compared to the other categories. Also, in general, 4 stars do not seem to be 

awarded in any of the categories as often as other ones – only Ambient Rating has over 10% 

of 4-star ratings. 

     

Figure 2 – Food rating        Figure 3 – Service rating  Figure 4 – Ambience rating 

Similar results can be seen when the column of interest, Overall Rating, is reviewed. 

Again, the number of 4-star reviews is quite low, while 5-star ratings dominate the dataset. 

In case other datasets had the same imbalance, this might have impeded the model from 

correctly classifying 4-star reviews as the number of 4-star reviews it can be trained on is fairly 

limited. The distribution of rating preferences can be seen in the chart in Figure 5. 

 

Figure 5 – Distribution of ratings in Zenodo dataset 
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When all this is taken 

into consideration, it is no 

surprise that the dataset has 

almost identical number of 

positive and negative reviews, 

as evidenced in Figure 6. 

Ultimately, the balanced 

nature of the dataset was the 

main driver behind the 

decision to use it for the 

analysis. 

        

TripAdvisor Dataset  

This dataset was imported using Pandas. The dataset itself is perfectly balanced as it 

contains 2000 reviews and each rating has 400 occurrences in it. This can be seen in Figure 7. 

 

 

Figure 7 - Distribution of ratings in TripAdvisor dataset 

 

 

Figure 6 – Distribution of positive and negative reviews 
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Yelp Dataset 

The full dataset containing all reviews and ratings was imported using Pandas. Then, 

a smaller subset was selected, containing 208 214 reviews – those only belonging to 

restaurants. The smaller dataset does echo the overall distribution of the full dataset, as the 

positive reviews dominate. However, based on the overall high number of reviews available, 

this should still enable the model to correctly predict the correct rating. The distribution of 

ratings (or stars in this dataset) is available in Figure 8. 

 

Figure 8 - Distribution of ratings in Yelp dataset 

 

3.0 Methodology 
 

In order to complete the project, the KDD process methodology was followed. KDD 

stands for knowledge discovery from data and its main goal is to identify “valid, novel, 

potentially useful, and ultimately understandable patterns in data” (Fayyad, et al., 1996). This 

methodology relies on an interactive and iterative process where decisions are made by the 

researcher and that is especially important for this project. As there is a need to keep tuning 

the model and revisit previous phases in order to make different choices in regards to pre-

processing and transformation, this process is a perfect fit here. KDD consists of 5 major 

stages, each of which is explained in its own section. 

 

Data Selection 

When it comes to the data selection, KDD defines this phase as the one where the 

target dataset is selected, based on a subset of variables on which data exploration is to be 

performed and which can be used for feature generation and machine learning (Fayyad, et 

al., 1996).  
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In previous works conducted on a similar topic, the number of reviews used ranged 

from 700 (Huda, et al., 2019) to 4000 (Zahoor, et al., 2020). All of them specified the 

importance of having a balanced dataset which contains approximately the same number of 

positive and negative reviews. An unbalanced dataset of 200 positive and 500 negative ones 

proved to be a problem in one of them (Zahoor, et al., 2020). All of the datasets, among other 

columns, contained two most important ones – a textual review column and another column 

that served as the target column, which served for the validation of their model. That column 

had either a numerical rating (usually 0, 1 and 2 for negative, neutral and positive) or the 

information on whether the review was positive or negative. 

Based on that information, it was important to acquire datasets with the following 

characteristics: 

▪ contain textual reviews of restaurants only 

▪ contain a column that denotes if the review is positive, negative or neutral and /or a 

column that contains numerical rating (1-5 or 1-10) 

▪ contain at least 2000 rows as most previous research was done on smaller samples 

than that 

▪ the datasets are publicly available and have clear permissions available on their 

websites or allow for the licence to be granted by contacting the author(s) – clear 

permissions were preferrable as licence-granting process can sometimes be fairly 

long and defer the start of the project 

The Zenodo dataset met all those requirements. It is actually the only one that offers 

both the split into negative / positive reviews and the star rating in range between 1 and 5. 

The Yelp dataset met most requirements. It was publicly available on their website for 

academic purposes and it did offer ratings from 1 to 5. The only issue with that dataset is that 

it does not offer great balance between the ratings, but this is offset by the sheer volume of 

reviews available. The TripAdvisor dataset was created using Selenium to scrape the reviews 

from their website, with the goal to create a dataset that contains a perfect split between the 

5 different ratings. As the dataset does not contain any user or business information, the 

scraping process does not violate their policies. The full process of data exploration on these 

datasets is explained in the previous section. Table 5 contains the information on the other 

datasets considered and the reason why they were not chosen. 

 

Table 5 – Other datasets considered 

Name URL Suitability 

TripAdvisor reviews of 
hotels and restaurants 

by gender 

https://figshare.com/articles/dat
aset/TripAdvisor_reviews_of_hot
els_and_restaurants_by_gender/
6255284 

The dataset had clear 
licensing instructions, but it 
had neither the numerical 
rating nor the information 
on positivity / negativity of 
the review so training the 
model would not be 
possible. 
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Wake County 
Restaurant Reviews 

https://waketechanalytics.opend
atasoft.com/explore/dataset/wak
e-county-restaurant-
reviews/information/ 

There was no clear licensing 
information and the 
numerical ratings did not 
align with the actual review 
text. For example, 1-star 
reviews were sometimes 
very positive. 

TripAdvisor 
Restaurants Info for 

31 Euro-Cities 

https://www.kaggle.com/damien
beneschi/krakow-ta-restaurans-
data-
raw?select=TA_restaurants_curat
ed.csv 

Licensing not clear and the 
rating column is the overall 
restaurant rating and not the 
individual review rating. 

RecSys2013: Yelp 
Business Rating 

Prediction 

https://www.kaggle.com/c/yelp-
recsys-
2013/data?select=final_test_set.z
ip 

Licensing not fully 
transparent, the dataset 
seems like a modified 
version of the older Yelp 
dataset. 

Restaurant Customer 
Reviews 

https://www.kaggle.com/vignesh
warsofficial/reviews 

Again, licensing not fully 
clear. This dataset is widely 
used across Kaggle for 
sentiment analysis and 
opinion mining. Its main 
drawbacks are that it only 
identifies reviews as positive 
or negative and the total 
number of reviews is under 
1000. 

 

Pre-processing 

KDD defines this phase as the phase where noise or outliers are identified and 

removed if necessary. In addition to this, necessary information is collected that is later used 

for model-building (Fayyad, et al., 1996). This is further expanded by the processes used for 

this particular type of data analysis – sentiment analysis. In order to achieve better 

performance of the model, data pre-processing needs to be accompanied by the extraction 

of relevant features. Some researchers claim that this process includes noise removal, 

normalization, tokenization and vectorization (Krishna, et al., 2019), while others claim that 

tokenization and vectorization are part of the transformation phase, or actual processing 

phase, as they refer to it (Haque, et al., 2019). For the purpose of this paper, only vectorization 

has been classified as the transformation phase as all the other preceding processes seem to 

fit pre-processing definition better than transformation. 
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The steps covered in this phase are outlined below: 

a) Isolating null values 

This check is done to verify whether there are any null values in the columns 

considered important for the analysis. As mentioned before, there were null 

values in the extra column of the Zenodo dataset. However, as that column 

will not be used for further processing of the data, no action is taken. However, 

some of the items in the textual review column were quite short and 

uninformative – for example, one of them only contained the word “This”. As 

these entries cannot really help in predicting either the sentiment or the rating, 

seven of them were removed in total.  

b) Isolating escape characters in the reviews and removing them 

The next stages were all performed on textual reviews. During the data 

exploration stage, the row that contained the only entry in the unnamed 

column of the Zenodo dataset also pointed to the fact that there are some 

escape characters in the text. Specifically, the new line character (\n) was 

discovered. As this character was joined with the next word, there was a 

possibility that only the backslash character would be removed if a regular 

expression is applied to it. This would mean that instead of \nbe, the word 

would later be recorded as nbe. In order to prevent this, a check was done for 

the most common escape characters (\n and \t). Only new line escape 

characters were found and immediately replaced by an empty space using a 

function defined for that purpose. This would ensure that these characters are 

not present when the next step is performed. To present this in action, a 

sample review was taken as an example. This is what the review looked like 

before any pre-processing was done: 

 

“Cocktails were very impressive and a perfect end to a seriously tasty meal.      

:) 

 

A very deserved 4 5 star rating!!!.” 

 

Once the newline character was removed, the structure of the review 

changed: 

 

“Cocktails were very impressive and a perfect end to a seriously tasty meal.      

:)     A very deserved 4 5 star rating!!!.” 

 

c) Lowercasing the review text 

The next step was done in order to ensure that the words are properly 

recorded. At this point, the words Restaurant and restaurant would be 

considered as two different words as one is capitalized and the other one is 

not. This is solved by lowercasing the words. This was also done using a specific 



17 
 

function that takes in all the reviews and turns all of them to lowercase. The 

resulting review is: 

 

“cocktails were very impressive and a perfect end to a seriously tasty meal.      :)     

a very deserved 4 5 star rating!!!.” 

 

d) Removing special characters 

Once the review text was lowercased, special characters (dots, question marks, 

commas…) were removed using regular expressions. At this point, the review 

contains only lowercased words, with no special characters or numbers: 

 

“cocktails were very impressive and a perfect end to a seriously tasty meal           

a very deserved      star rating” 

 

e) Removing extra whitespace 

By examining the reviews in more detail, it transpired that the reviews 

contained plenty of whitespace. So, a special function was written to isolate 

those sections and replace all the excessive whitespace with only one space. 

This was crucial for the next steps where the reviews would be split into 

individual words. The resulting sample review now looks like this: 

 

“cocktails were very impressive and a perfect end to a seriously tasty meal a 

very deserved star rating” 

 

f) Tokenizing the review text 

Tokenization is defined as breaking a piece of text into individual words that 

bear a specific meaning (Haque, et al., 2019). By definition, a token is a 

sequence of characters that is treated as a group (Bird, et al., 2009). In this 

case, that group of characters are meaningful words. 

As all the reviews, at that point, contained reasonably clean text, it was 

necessary to split each of the reviews from sentence level to word level. This 

created a list of words for every row of the dataset, which allowed for further 

pre-processing. The process was completed using the NLTK library’s 

RegexpTokenizer. The tokenized sample review is now a list of following 

words: 

 

cocktails, were, very, impressive, and, a, perfect, end, to, a, seriously, tasty, 

meal, a, very, deserved, star, rating 

 

g) Removing stop-words 

The previous steps were done so the individual words can be checked against 

a list of words often referred to as stop-words. These words include common 

words, like I, the, is, are – the words that do not add much additional meaning 
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to the sentence.  These words were removed from the reviews with the help 

of stop-words collected by the NLTK library, with some additional words added 

after examining the data (yelp, com, biz, ca, www, http, us were very common, 

but convey no relevant meaning). The tokenized sample review with no stop-

words is a list of following words: 

 

cocktails, impressive, perfect, end, seriously, tasty, meal, deserved, star, rating 

 

h) Lemmatizing the reviews 

This part of the process ensures that the words are cleaned of suffixes. For 

example, the word cocktails becomes cocktail, which means that the plural and 

singular version of the word are now considered the same word. The sample 

review now contains these words: 

 

cocktail, impressive, perfect, end, seriously, tasty, meal, deserved, star, rating 

 

Transformation 

This phase is defined by the KDD methodology as the one where useful features are 

found to represent the data and transformation methods are used to reduce the number of 

variables under consideration for the data mining phase. It is also the phase where these 

features are chosen based on the type of algorithms which are to be used (Fayyad, et al., 

1996). For this reason, as the classification algorithms would best fit this use case, the process 

of transformation starts with creating the main feature that the classification will depend on 

– vectorized lists of words. 

 

The steps taken in this phase are: 

a) Creating the review corpus from the lemmatized text 

Now that the reviews have gone through the cleaning process, each of the 

reviews is joined back into a string. This string contains the lowercased review 

sentence cleaned of punctuation, special characters, excessive whitespace and 

stop-words. All of the individual strings form a list of reviews – the review 

corpus. This corpus can now be used to prepare the data for the machine 

learning process.  Note that corpus is sometimes used as the term for the 

whole dataset, especially in the context of text analysis. Each entry in the 

dataset (or row) is then called a document (Muller & Guido, 2017). 

 

The final state of the sample review, after the textual transformation: 

 

“cocktail impressive perfect end seriously tasty meal deserved star rating” 
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b) Count Vectorizer 

In order for the machine learning algorithms to be able to perform the 

classification, the words in the corpus need to be transformed into numerical 

values. This process, of converting arbitrary data into well-behaved vectors, is 

called vectorization (VanderPlas, 2017). The first way of doing this is using the 

Count Vectorizer (also referred to as CV), which creates a numerical array out 

of the text. The process is done using the Scikit-Learn library and the theory 

behind it is explained in more detail in the Analysis section. 

   

c) TfIdf Vectorizer 

Similar to Count Vectorizer, Scikit-Learn’s TfIdf Vectorizer uses the textual 

reviews and transforms them to a numerical array so they can be used for 

machine learning. As with the previous vectorization technique, the theory 

behind it is further explained in the Analysis section.    

 

In addition to transforming the actual textual reviews, it was also necessary to 

organise the three datasets in a way that enables them to be joined into one dataset. The 

following steps were applied to get the dataset that contains both the independent and the 

target variables: 

a) Column name change 

As every dataset has different names for the textual review and the ratings 

columns, it was necessary to unify the naming convention first. The final choice 

for those two column names was review and rating so this needed to be 

reflected in each individual dataset. Columns in the Zenodo dataset were 

changed from Review and Overall Rating to review and rating, while the 

columns Restaurant ID, Location ID, Review Sentiment, Cuisine, Price Range, 

Food Rating, Service Rating, Ambience Rating, Restaurant Rating and 

Unnamed: 11 were dropped. The TripAdvisor dataset did not require major 

changes – only the reviews column was renamed to review. Finally, in the Yelp 

dataset, the columns text and stars were renamed to review and rating, while 

the rest were dropped (review_id, user_id, business_id, useful, funny, cool, 

date).  

 

b) Joining the datasets 

The three datasets were then combined to form a joint 

dataset, consisting of two columns (review and rating) 

and 220 207 reviews. When joining the data, the items 

were also randomized so that the reviews from the same 

dataset are not grouped together. An overview of the 

ratings distribution (Figure 9) shows that the joint 

datasets is now skewed towards higher ratings, with the 

lowest numbers being assigned to 1 and 2-star ratings. 

Figure 9 - Ratings 
distribution 
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c) Feature engineering the sentiment column  

Feature engineering Is denoted as using important 

information relevant for the problem and turning it 

into numbers that can be used to build the feature 

matrix (VanderPlas, 2017). This entailed creating the 

sentiment variable, that would classify the reviews as 

positive, negative or neutral. In this case, reviews that 

had the ratings 1 or 2 were labelled as negative (0), those that had rating 3 

were labelled as neutral (1) and the ones rated with 4 or 5 stars were labelled 

as positive (2). Again, as seen from Figure 10, the positive reviews dominate 

the dataset. Now, the final dataset contains three columns – review, rating and 

sentiment. 

 

Data mining 

The data mining process, which is sometimes used to denote the whole process of 

acquiring data, data-cleaning, transformation, model-building and evaluation, denotes the 

part of the process which involves machine learning and model-building in KDD. Machine 

learning itself deals with building mathematical models to help understand data. The models 

learn by observing data using customizable parameters. Once these models have been tuned, 

they can be used on new data to gain insights or predict a certain outcome (VanderPlas, 2017). 

When considering this problem, in both cases (rating and sentiment), the reviews need to be 

grouped in either 5 or 3 different groups. This means that the best fit for the problem are 

classification algorithms. These algorithms work on the same basic principle – a set of 

variables of features are selected as independent variables which the model uses in order to 

try to predict the class label, an item from a predefined list of possibilities. This is done by first 

training the model on a part of data, which is called the training set. Later on, the model needs 

to be validated on previously unseen data – usually referred to as test or holdout set (Muller 

& Guido, 2017). The performance of the model is measured using some kind of metric or a 

fitness function (Géron, 2019). 

Classification algorithms are divided into two subgroups – binary and multiclass (or 

multinomial). While binary classification attempts to group items into two categories, 

multinomial classification is used when there are more than two labels available for 

classification (Muller & Guido, 2017). During this part of the process, several different 

machine learning algorithms are used to classify the reviews. These algorithms are listed 

below, but the reasoning behind the choice, the theoretical background and their historical 

performance are explained in the Analysis section: 

▪ Logistic Regression 

▪ Naïve Bayes Classifier 

▪ Support Vector Machines 

▪ Random Forest Classifier 

▪ Neural Networks 

Figure 10 - Sentiment 
distribution 
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Interpretation / Evaluation 

Interpretation / evaluation is done using statistical approach once the machine 

learning results are obtained. The terms used to evaluate whether an algorithm performs well 

or not are accuracy, precision, recall, and F1-Score (Haque, et al., 2019). In addition to this, 

data visualization (different plots and charts using different tools), confusion matrices and 

summary tables containing results are also used to interpret and evaluate results. The overall 

process, as well as all the terms, are outlined in more detail in the Analysis and Results 

sections. 

 

4.0 Analysis 
 

For the actual analysis, several things needed to be considered – the algorithms to be 

used, the features to be used for the algorithms to classify the data, the ratio of train / 

validation and test data, and the process to be employed. All of these are explained in more 

detail below. Note that the in-depth explanations of algorithms and their performance review 

from previous researches are included in this section, instead of the Introduction. This was 

done as it was necessary to explain the full theoretical background behind sentiment analysis, 

pre-processing and transformation and provide detailed information on the dataset structure 

and its size, in order to be able to offer a fully feasible explanation on the decision-making 

process used for the choice of algorithms.  

  

Choice of Machine Learning Algorithm 

The first decision made regarding the analysis process was compiling a list of suitable 

machine learning algorithms. As the goal is to classify the reviews according to their ranking 

and sentiment, the choice had to be made between the classification algorithms. While 

exploring previous works on similar topics, four algorithms seemed to be the ones used the 

most often, with satisfactory results (Haque, et al., Huda, at al., Krishna, et al., Zahoor, et al.). 

Neural Networks were included as the fifth option primarily because of the sheer volume of 

the data and because they generally perform better than the traditional algorithms when the 

datasets are large and the number of features high, especially with the great increase in 

computers’ processing power in the last couple of decades (Géron, 2019). These advances are 

best observed on one of the recent projects, where the researchers worked on the ImageNet 

dataset, containing close to 1.5 million images, and managed to get the classification accuracy 

of 91% (Yu, et al., 2022).  
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Logistic Regression 

Logistic Regression is one of the algorithms most widely used in similar classifications. 

Its default use is for binary classification. In these cases, it uses discrete values and maps the 

function of any real value into 0 and 1 (Zahoor, et al., 2020). It usually does not default to 0 

or 1, but it relies on the estimated probability – if probability of belonging to a certain class is 

greater than 50%, then it assumes that the entry (document) belongs to class 1. If this is not 

the case, it labels the item as class 0 (Géron, 2019). 

However, Logistic Regression can also be used for multiclass classification. In that case, 

each class can be compared directly to all the other classes at the same time to determine if 

it belongs to that class or not – this is the so-called one-versus-rest approach. Another 

approach, called one-versus-one, compares the class against each of the other classes 

separately. So, while in the first case Logistic Regression would try to label the review as 1-

star or any other class, the second approach would separately try to classify review as 1-star 

or 2-star, then 1-star or 3-star, and so on. Scikit-Learn implements the multiclass version of 

the classifier by default in cases when it automatically detects that there are more than 2 

classes. However, to ensure the algorithm employs multinomial classification, this can be 

manually set by defining the parameter multi_class to be multinomial (Géron, 2019). 

Logistic Regression is a popular choice as the training process is faster than in most 

algorithms. Also, it scales well to large datasets (Muller & Guido, 2017), which is important as 

this project uses between 50 and 100 times more examples than similar projects. In the 

researches reviewed, its accuracy ranged between 64%, when classifying reviews as good, 

bad or excellent (Haque, et al., 2019), and 94% (Huda, et al., 2019), when performing binary 

classification.  

 

Naive Bayes 

Naïve Bayes range of classifiers is somewhat similar to the linear models, like Logistic 

Regression. The multinomial version of this algorithm, used in this project, is most commonly 

used is text classification, specifically using bag of words or TfIdf approaches (Albon, 2018), 

and some version of it has been used by all the researches consulted. The algorithm works in 

a way that it takes in the data counts, for example, the number of times a word appears in a 

sentence, and then uses the average value of each feature for each class. Finally, it classifies 

an entry by comparing it to the statistics of each of the classes. Once it finds the best match, 

it assigns that label to the entry (Muller & Guido, 2017). 

Many researchers use Naïve Bayes as the first algorithm to train their data as it is very 

fast, works well with large datasets, it is easily interpretable and does not have many 

parameters that need to be tuned. This ensures quick results that can indicate where to go 

next, in terms of algorithm selection (VanderPlas, 2017). The main problem with Naïve Bayes 

is that the performance of models built using it is often lower than those of other algorithms 

used for sentiment analysis (Muller & Guido, 2017). When it comes to the researches 
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consulted, the algorithm proved to be fairly dependable for binary classification as it achieved 

above 80% accuracy in all of the resources reviewed, peaking at 92.75% (Krishna, et al., 2019).  

 

Support Vector Machines 

This algorithm is mostly referred to as SVM. It is well-known for its “fast and 

dependable classification which resolves two-group classification problems” (Zahoor, et al., 

2020). Similar to Logistic Regression, it does indeed default to two categories, but it can also 

be used for multiclass classification problems. SVM algorithms work well for small and 

medium-sized datasets (Géron, 2019). In this case, as the dataset is quite large, the 

recommended version of the algorithm to be used is LinearSVC, as the basic implementation 

of the algorithm does not scale well if the sample size is over 10 000 (scikit-learn developers, 

2022a). 

This algorithm is a very popular one as it is fast at prediction once it has been trained. 

In addition to this, it is memory-efficient and works well with larger datasets (VanderPlas, 

2017). Furthermore, it performed extremely well in previous researches. Out of the four main 

papers reviewed, it had the best results in three of them, with its accuracy peaking at 95.23% 

when performing binary classification (Krishna, et al., 2019). However, its accuracy level did 

drop to 75.58% when the reviews were classified in three categories (Haque, et al., 2019). 

 

Random Forest 

Random Forest belongs to the so-called Ensemble methods. These methods use 

several different algorithms to classify data, based on the majority vote (Géron, 2019). In case 

of Random Forest, it is an expanded version of the Decision Tree algorithm. On its own, the 

Decision Tree algorithm “applies a series of questions and conditions to formulate the tree-

like structure where the leaf nodes will result in required classes” (Krishna, et al., 2019). This 

basically means that this tree is a flowchart consisting of the root node, which is split based 

on a certain condition. Each resulting node is then split further based on other conditions. 

This process ends once the leaf node is reached – the one that finally provides the label and 

classifies the document (Bird, et al., 2009). 

  Random Forest classifier forms a specified number of decision trees and integrates 

them in order to obtain more accurate classifications (Zahoor, et al., 2020). It is named after 

the way it operates – each tree is grown using different splitting criteria and different 

features, so this results in diverse trees, which are obtained completely randomly. By using 

that approach, the model obtains different perspectives on the possible class of a document 

and the final decision is made by aggregating the results of every tree built. For that reason, 

it outperforms regular Decision Trees (Géron, 2019). This algorithm is also often used for 

sentiment analysis and it was the best performing one, with its accuracy for binary 

classification at 95%, in one of the previous papers (Zahoor, et al., 2020).  
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Neural Networks 

 As mentioned previously, this approach has not really been used in previous research 

on the topic, but it seemed like it would be a good idea to include it as it has the potential to 

perform well with large datasets and high-dimensional data. Neural Networks (also called 

Artificial Neural Networks or ANNs) stand for a machine learning approach which tries to 

emulate the network of biological neurons found in human brain. This approach is considered 

to be very versatile, powerful, and scalable, which makes it ideal for a dataset with more than 

200 000 textual reviews (Géron, 2019).  

The functioning of this algorithm is based on MLPs (multilayer perceptrons). A typical 

network built using MLPs consists of one input layer, one or more hidden layers (middle 

layers) and a final layer - the output layer (Géron, 2019). In case of multiclass classification 

tasks, MLPs perform a series of calculations between every layer of the network in order to 

assign the correct label. The main problem with this approach is that the model, especially 

with larger datasets, can take a long time to train and tune. However, sometimes even a 

simple network can yield pretty good results (Muller & Guido, 2017).  

 

Train / validation / test split 

The only way of being certain that a model can perform well on new data is to evaluate 

it on the test set (Muller & Guido, 2017). In this case, the decision was made to split the data 

into three sets. The first set (training set / train set) is the one where all the iterative work is 

done – changes made to pre-processing, hyperparameters, use of algorithm. For training 

purposes, 80% of the dataset was chosen – a total of 176 165 reviews. These reviews were 

saved into a separate file (train_reviews.csv) for easier access. The changes made to the 

model are verified using the validation set, which consists of 10% of the data from the original 

dataset (22 021 reviews). This part of the dataset is primarily used to verify if the changes 

made to the model were effective or not. That dataset is constantly reused and was also saved 

in a separate file for easier access (validate_reviews.csv). Finally, as it is important for the final 

testing to be on a set of data never before encountered by the model, the safest way to do 

that was to separate a further 10% of the dataset and put it aside until the models are finely 

tuned. This way, the models can be trained and validated safely until the best configuration 

is found. The total of 22 021 test reviews were saved in a file named test_reviews.csv.  

As for the previous researches, the splits between training and validation sets differ. 

Some use 80:20 ratio (Krishna, et al., 2019), some 70:30 (Huda, et al., 2019), some 90:10 

(Haque, et al., 2019) and some experiment with ranges from 70:30 to 80:20 (Zahoor, et al., 

2020). The split used for the train / validation / test sets is 80:10:10. That way, the data can 

be trained, validated and tested, each time using more reviews than the previous researches 

used for the full set combined. The large training dataset was primarily selected due to the 

fact that the classification is done based on 5 or 3 categories, while all the previous papers 

classified the reviews only as positive / negative, only seldom trying to detect the neutral 

ones. This provides models with plenty of examples they can learn from. 
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Features 

In order to classify the review 

rating, only textual reviews are used 

as the independent variable. Even 

though some of the datasets contain 

other information that could be 

helpful in better classifying the 

reviews (type of cuisine and food, 

service, and ambience ratings), the 

goal is for the model to be trained to 

categorize the review solely based 

on the actual text of the review. The 

target variables are the rating and 

the sentiment columns. The rating 

column was already ready for machine 

learning as it contained integer values in the range from 1 to 5, while the sentiment column 

was feature engineered, as previously explained. When the training set is considered, it is 

visible that both the rating (Figure 11) and sentiment distributions (Figure 12) closely mirror 

the ones seen in the overall set, with higher ratings and positive reviews dominating the set.  

 

Figure 12 - Test set sentiment distribution 

 

However, the review column, where the actual textual reviews are, needed to be 

converted into a format that can be used by machine learning algorithms. This was done by 

cleaning the review text first, as explained in the Methodology section, followed by 

vectorizing the review text using two different methods, explained below. 

Figure 11 - Train set ratings distribution 
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Count Vectorizer 

Count vector is “a data set matrix notation in which each row represents a corpus 

document, each column represents a corpus term, and each cell represents the frequency 

count of a particular term in a particular document” (Huda, et al., 2019). This approach is 

based on the so-called bag of words model, where the words are represented based on their 

counts, while completely ignoring grammar and word order. Using this approach, all the 

words from all the reviews are collected into one list. After that, each of the reviews is 

considered as a separate document where the words absent from that particular review are 

recorded as 0 and those present are recorded as the number of times they appear in the 

review. The words with the lowest counts are removed from the bag of words as they are not 

used often so their potential influence on the overall rating is very low (Krishna, et al., 2019). 

 Scikit-Learn’s implementation is called CountVectorizer() and it stores the data in a 

SciPy sparse matrix, which omits items that are recorded as 0. Due to fact that many of the 

words do not appear in most of the reviews, omitting those entries prevents the waste of 

memory, while also not compromising the model-build process as those entries would not 

significantly contribute to the classification (Muller & Guido, 2017). However, as this 

vectorizer only relies on raw word counts, this results in overreliance on words that appear 

very frequently, but do not add much to the meaning. For that reason, this approach 

sometimes does not work well (VanderPlas, 2017). 

 

TF-IDF Vectorizer 

This vectorizer is the result of term frequency (TF) and inverse document frequency 

(IDF). Term frequency is calculated by dividing the number of times a term occurs in a 

document (one review) by the total number of terms in a document (in that same review). 

Inverse document frequency shows the importance of a given word across all the documents 

(all the individual reviews combined). It can be derived by calculating the logarithm of the 

quotient of the number of documents and the number of documents containing the term 

queried (Krishna, et al., 2019). The formula for this vectorizer can be seen in Figure 13. 

 

 

Figure 13 - TF-IDF formula 

  

In this formula, N is the number of documents in the dataset, while Nw is the total 

number of documents in the dataset that the word (w) appears in. tf (the term frequency) 

stands for the number of times the word (w) appears in the document (d) (Muller & Guido, 

2017). 
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 This vectorizer is implemented as TfIdfVectorizer() in Scikit-Learn and it is also saved 

as a SciPy sparse matrix. Its implementation is mostly preferred over CountVectorizer() as it 

generally performs better with most algorithms. 

 

N-grams 

Both of these vectorizers can be set up to generate data that takes different token 

lengths as input, also called n-grams. This means that, in order to properly test a model, it 

needs to be tested using different n-gram lengths as different models will react differently to 

the input length, as well as the pre-processing done. Most commonly used options are 

unigrams (one-word combinations), bigrams (two-word combinations) and trigrams (three-

word combinations) (Bird, et al., 2009). 

Most often occurring n-grams can be extracted using frequency distribution, which 

calculates the frequency of each vocabulary item in the corpus. NLTK library offers a very 

streamlined way to achieve this, using the FreqDist() method (Bird, et al., 2009). 

When the top 20 unigrams of the training set are explored (Figure 14), it is visible that 

some of the words do reflect the important items that might constitute a positive or a 

negative review. However, there are some words which, at first glance, do not seem like they 

would impact the review a lot – these not only include words like would, back, get but also 

words like food, place and service. For review analysis, it seems like the words great, good 

and like are the most important ones.  

 

 

Figure 14 – Most common unigrams in the training set 
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After reviewing bigrams (Figure 15), some of these words that could have easily been 

discarded when only unigrams are considered, show how important they are. Food now 

features in combinations like great food, good food and food great, while place now appears 

in great place and love place. This just shows how much more is gained when bigrams are also 

taken into account. 

 

Figure 15 - Most common bigrams in the training set 

Finally, trigrams in Figure 16 uncover even more information. Combinations like would 

highly recommend and would definitely recommend further consolidate the necessity of 

using different input lengths for machine learning. In addition to this, words like back gain 

extra meaning here in expressions like would go back and definitely come back.  

 

Figure 16 - Most common trigrams in the training set 
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Process 

 Due to the complex nature of the data itself, the memory and processing power 

needed to run the algorithms, and the overall number of different algorithms, the training / 

validation / testing process was split into several different stages in order to streamline it as 

much as possible. All the stages are explained below. 

 

Different n-gram counts and number of features 

As some researchers say, it is helpful to start with the so-called kitchen sink approach, 

where all the features are used in order to reduce the number of features to the ones that 

are actually important for model-building (Bird, et al., 2009). A different approach is taken 

here. Due to the large amount of reviews, the total number of features (words or expressions) 

extracted by both vectorizers is immense. For that reason, some initial testing was done, 

which confirmed that, for most models, performance plateaus when 3000 features are used. 

For that reason, instead of using tens of thousands of features to train the model, the 

parameter max_features is set when using both Count Vectorizer and TfIdf Vectorizer. This 

parameter helps to limit the number of most important features used to build the model. All 

the models are tested using 6 different configurations of maximum features – 500, 1000, 

1500, 2000, 2500 and 3000. 

In order to get the best performing models, another vectorizer parameter is used to 

create the feature set used by the machine learning algorithms – ngram_range. This 

parameter allows for different sets of n-grams to be defined when building the features 

(Muller & Guido, 2017). For the purpose of this stage, 6 different variations were used: 

• unigrams only 

• unigrams and bigrams 

• unigrams, bigrams and trigrams 

• bigrams only 

• bigrams and trigrams 

• trigrams only 

In this stage, the main metric used to evaluate the models’ performance is accuracy. 

This metric displays the overall percentage of reviews that were correctly classified. Basically, 

it is calculated by dividing the number of correctly classified reviews by the number of total 

reviews (Bird, et al., 2009). As with both use cases, ratings and sentiment classifications, there 

is no preference on which class is more important to predict so this metric is simple and 

compact enough to eliminate any models that are not performing well. 

For the purpose of this stage, a function was written which uses either Count 

Vectorizer or TfIdf Vectorizer to build the feature set and then train the selected model using 

all the combinations of n-grams and feature sizes outlined previously. By the end of this stage, 

only one n-gram range / feature size combination of each vectorizer for each of the machine 
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learning algorithms is kept for further tuning. These combinations are selected based on the 

accuracy levels obtained on the validation set.  

Note that all models are built using the Scikit-Learn’s default settings, except for: 

• Logistic Regression 

o multi_class hyperparameter is set to multinomial due to the nature of 

the classification task 

o max_iter hyperparameter is set to 1000 as the default number of 

iterations (100) is not enough for the model to classify the reviews 

• Support Vector Machines 

o dual hyperparameter for the LinearSVC is set to False as the number of 

reviews is higher than the number of features 

• Neural Network 

o Sequential is the model used to build the network as it is simple to 

manage – it consists of a single stack of layers sequentially connected 

o Input layer - dense layer with relu activation and 10 units – units 

signify the number of neurons used, dense means that every neuron 

in the current layer is connected to every neuron in adjacent layers, 

activation functions are aimed at introducing nonlinearity between 

the layers - relu stands for Rectified Linear Unit function and it is used 

due to its very fast computational time, the input_shape parameter is 

set to the number of features for each observation – this would range 

from 500 to 3000 (Albon, 2018) 

o Hidden layer – middle layer, dense, activation is also set to relu, 10 units 

used 

o Output layer – dense, 6 units for ratings classification, 3 for sentiment, 

activation function used is softmax as that is the one used for multiclass 

classification 

o When compiling, loss function is set to the one required for multiclass 

classification (sparse_categorical_crossentropy), optimizer is set to fast 

and efficient adam, the number of epochs to 200 (number of iterations 

over the dataset) and the batch_size to 128 (number of documents 

taken in at once) (Géron, 2019) 

 

Hyperparameter tuning on smaller samples 

 In order to get better results, one of the most common approaches is further tuning 

of hyperparameters as the default hyperparameters do not always provide the best 

performance, especially when more complex algorithms like Random Forest or Neural 

Networks are considered. This step is not only performed in order to get better results, but 

also to avoid overfitting of the model – when model performs well on training and validation 

sets, but does not perform well on the data that was never encountered before (test set) 

(Géron, 2019).  



31 
 

 The approach taken here is one of the most popular approaches used to tackle the 

problem – a combination of the so-called grid search and cross-validation. Grid search 

(implemented in Scikit-Learn as GridSearchCV) is done by compiling a dictionary consisting of 

hyperparameters and the values that are most likely to improve the performance of the 

model. Once that data is compiled, grid search searches through all the possible combinations 

of the hyperparameters defined in order to find the best option. As an extension of its 

function, it also uses cross-validation, evaluation of the same set of hyperparameters on 

several different versions of the dataset. This further reenforces whether the hyperparameter 

combination is a good fit or not as it is run on several different versions of training and 

validation data (Bird, et al., 2009).  

 As the overall size of the dataset did not allow for the efficient hyper-parametrization 

to be run, due to the processing power required, a smaller subset of the training set (15 000 

reviews) was used for grid search. The cross-validation was set to 3, which means that the 

subset was split in training and validations sets in three different ways, ensuring that the 

resulting set of hyperparameters is the one that has the lowest possibility of overfitting. The 

main metric used was accuracy, same as in the previous stage. Note that due to the 

complexity of the hyper- parametrization of Neural Networks, this approach was not included 

at this stage and its hyperparameters are only manually tuned. 

 

Logistic Regression Hyperparameters 

 Logistic Regression already had two hyperparameters set by default (max_iter and 

multi_class). Except for these two, the two most important hyperparameters to set were 

solver and C. With solver, it is a choice between 5 different algorithmic solutions used to 

classify the data using Logistic Regression. One of them (liblinear) is not suited for multiclass 

classification and two of them were not performing at all, even on smaller sets (sag and saga). 

This meant that the two possible solvers can be newton-cg and lbfgs. The choice of these two 

solvers also impacted the choice of the penalty hyperparameter, which is directly linked to 

the solver chosen so the l2 and none were used (scikit-learn developers, 2022b).  

Finally, another important hyperparameter was C, which determines the strength of 

the regularization. Its higher values mean less regularization, placing more importance on 

classifying each review correctly. Low values, on the other hand, will force the algorithm to 

try and fit the majority of reviews correctly (Muller & Guido, 2017). In this case, to account 

for those differences, the values of C were set to 0.6, 0.7, 0.8, 1, 5 and 10. 

 

Naïve Bayes 

 Multinomial Naïve Bayes only has a single parameter that can be tuned – alpha. This 

hyperparameter controls model complexity, in a similar way C does for Logistic Regression. 

When changing the alpha value, the algorithm adds virtual data points that have positive 

values for all the features. The result of this process is smoothing of the results. High alpha 

values result in more smoothing and models of smaller complexity and vice versa (Muller & 
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Guido, 2017). The alpha values used for hyper-parametrization are 0.01, 0.1, 0.6, 0.8, 1, 3, 5, 

10, 20, 50, 100. 

 

Support Vector Machines 

 Similar to Logistic Regression, SVM’s result depend on the value set for C so its values 

need to be carefully chosen (VanderPlas, 2017). In addition to this, several other 

hyperparameters can be tested – penalty (the type of normalization used for penalization), 

loss (the type of loss function) and class_weight. With the first two, all the available options 

were used for tuning (penalty as l1 and l2, loss as hinge and squared_hinge), while the last 

one seemed particularly important as the number of classes is not balanced, for the sentiment 

or the rating column. That option was used with two settings – balanced and None. The 

balanced option is supposed to help in dealing with unbalanced datasets (scikit-learn 

developers, 2022a). Note that the default hyperparameter dual is still kept as False. 

 

Random Forest 

 In terms of the grid search, this algorithm is the most demanding when it comes to 

the number of parameters that need to be adjusted and the processing power required. The 

most important parameter to adjust was max_features as it limits the number of features 

every tree examines. High numbers of features (close to the actual number of features used) 

reduce the randomness of the forest, which in turn eliminates its main advantage over the 

regular Decision Tree algorithm. Another important parameter is max_depth and this denotes 

how deep each of the trees is explored. Usually, with high number of features, low depth 

number is required to keep the randomness intact. The same way, in case of lower number 

of features, deeper trees are recommended as this allows them to get different results. 

max_depth was tested on values 70, 90 and 100, while max_features used were 4, 8, 12. 

 In addition to this, other important parameters include n_estimators (number of trees 

used by the algorithm – set to 150 and 200), bootstrap (set to True, used in combination with 

random_state to control the randomness of the tree), n_jobs (set to -1, this enables all 

processing power to be used and speeds up the training process), min_samples_leaf 

(minimum samples needed to constitute a leaf node - set to 2 and 4), min_samples_split 

(minimum samples to split a node – set to 16 and 20), random_state (controls the randomness 

of the trees – set to 42) and class_weight (works in the same way as for SVM) (Muller & Guido, 

2017). 
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Using hyperparameters obtained on full training / validation sets 

 Once the previous stage is completed, the hyperparameters obtained are used on the 

full training and validation datasets in order to further eliminate any models that are 

underperforming. The main metric considered is still accuracy, but other metrics are also 

calculated. Those metrics are based on the following terms: 

• True positives (TP) - relevant items that are correctly identified as relevant 

• True negatives (TN) - irrelevant items that are correctly identified as irrelevant 

• False positives (FP) - irrelevant items that are incorrectly identified as relevant 

• False negatives (FN) - relevant items that are incorrectly identified as irrelevant 

Based on these terms, the following metrics can be calculated: 

o Precision – shows how many of the identified items are relevant, formula 

TP / (TP+FP) 

o Recall – shows how many relevant items are identified, formula 

TP / (TP+FN) 

o F-Score – harmonic mean of precision and recall, formula 

(2 × Precision × Recall) / (Precision + Recall) 

Finally, for multiclass classification tasks, it is also a good idea to build a confusion 

matrix. Confusion matrix is a table where each cell shows how many predictions were 

correctly made per label. The diagonal entries, going from upper left to bottom right, show 

the number of items that were correctly classified. All the others show those incorrectly 

classified (Bird, et al., 2009). In this stage, in addition to accuracy, more focus is put on 

precision, in order to verify the correctly predicted items per class, and confusion matrices as 

they show where most errors are made in terms of classification.  

 

Manual hyperparameter tuning on best performing models 

 Once the best performing models are singled out, some hyperparameters can be 

manually adjusted, especially when certain trends are noticed either in confusion matrices or 

during the model tuning. At this stage, VotingClassifier, a classifier that works as an ensemble 

of the best models found can be tested (Géron, 2019). In addition to this, further 

experimentation can be done using the feature selection. In this case, only features that 

appear in more than a designated number of reviews can be selected when the model is built. 

This can be done using the min_df parameter when vectorizing the data using either Count 

Vectorizer or the TfIdf Vectorizer (Muller & Guido, 2017). 

 When it comes to Neural Networks, the hyperparameters which are tweaked the most 

are the number of layers, the number of neurons (inputs) per layer, types of activation 

functions, batch sizes, the class weight, in case of skewed datasets, and the type of optimizer. 
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In terms of the number of layers, the minimum is three, as initially tested. However, increasing 

the number of hidden (middle) layers can sometimes significantly improve the results. The 

number of inputs per layer is usually set up to resemble a pyramid. While the input layer 

needs to have the number of layers that is at least the same as the overall number of classes 

available, the hidden layers would have higher values. The first hidden layer usually defaults 

to 300, the second to 200 and the third to 100. This basic setup can be used and then further 

changed based on the results obtained. Another approach is to use the same number of 

inputs in all hidden layers so that is the second approach taken.  

As the training set is skewed, class_weight argument can also be tested to make sure 

that the model knows that the dataset it not fully balanced. As for the optimizer, in addition 

to adam, SGD (Stochastic Gradient Descent) is also worth exploring as it traditionally performs 

well with Neural Networks. The batch size can also be explored as some researchers claim 

that the batch sizes under 32 perform well with Neural Networks. Finally in order to avoid 

overfitting, there are two important strategies to explore – EarlyStopping and Dropout. The 

first one observes the validation set while the training is undergoing. It is then used to 

interrupt the training process if there is no progress observed on the validation set for a pre-

defined number of epochs. The second one, Dropout, is said to be able to increase model’s 

accuracy by 1–2%. The rate set is usually between 10% and 50%. If the model is overfitting, 

the dropout rate can be further increased, but it can also be decreased if the model starts 

underfitting. In addition to this, the dropout rate should be increased for larger layers, but 

decreased for smaller ones. Finally, it can sometimes help to use Dropout only after the last 

hidden layer (Géron, 2019). 

 

Using different vocabulary sets to validate model performance 

 At this stage, the same models are run on validation set using different vocabulary 

sets. The reasoning for this is the fact that both vectorizers extract the most important 

features across the dataset. This approach usually favours unigrams, which might not always 

convey the clearest message on the review sentiment. Furthermore, as the dataset is skewed 

towards positive reviews, this also means that the models are more likely to correctly predict 

positive and 5-star reviews than any other category. By extracting the most common 

unigrams, bigrams and trigrams from each of the rating groups and using them to build a 

more balanced vocabulary might lead to better classification. As noted in the overview of the 

most popular bigrams and trigrams, only one item in both groups is negative (not good and 

would not recommend), with everything else highly positive or slightly neutral. When the 

comparison between the unigrams, bigrams and trigrams in 1-star reviews and 5-star reviews 

is made (Figures 17-22), there is noticeable difference. 
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Figure 17 - 1-star unigrams 

  

 

Figure 18 - 5-star unigrams 
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Figure 19 - 1-star bigrams 

 

 

 

Figure 20 - 5-star bigrams 
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Figure 21 - 1-star trigrams 

 

 

Figure 22 - 5-star trigrams 
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 When observing unigrams, it is evident that the difference is not that significant – it 

would be difficult to differentiate 1-star reviews from 5-star reviews. However, bigrams and 

trigrams are much different. 1-star bigrams are dominated by negation (not good, would not, 

not worth), while the 5-star bigrams are full of praise (highly recommend, great food, great 

service). Similarly, 1-star trigrams suggest that those people are not becoming returning 

customers (never go back, would not recommend, not going back). On the other hand, 5-star 

trigrams are dominated by extreme positivity (great food great, would highly recommend, 

definitely come back). For this reason, 5 different sets of vocabulary were created so that they 

can be used to test whether the models perform better using customized vocabulary. Each 

set contains the exact same number of bigrams, trigrams and unigrams per rating. That means 

that the first example in Table 6 has 4000 unigrams extracted, 800 for each of the categories, 

as well as 3000 bigrams and 3000 trigrams. Unique features is the overall count of features 

used per vocabulary set once the duplicates were removed. 

 

Table 6 – Customized vocabulary sets 

Name Unigram count Bigram count Trigram count Unique features 

Voc1 800 600 600 4139 

Voc2 600 800 600 4226 

Voc3 600 600 800 4453 

Voc4 800 700 500 4049 

Voc5 500 700 800 5422 

  

 

Using test set to verify the models’ performance 

 Last stage of the process is using the highest performing models in terms of accuracy 

and precision on the test set to verify how they perform on new data, the data they never 

encountered before. Once collected, the results are presented using summary tables and 

compared to the results obtained using the train and validation sets. 
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5.0 Results 
 

In this section, the overall results are presented for each individual stage of the 

training process. That way, a clear overview of the progress in the quality of results can be 

easily observed. 

 

Stage 1 - Different n-gram counts and number of features 

 While training different models using different n-gram ranges with different lengths 

of input features, it transpired that all of the algorithms performed best when n-gram ranges 

that consisted of unigrams and bigrams (1, 2) or unigrams, bigrams and trigrams (1, 3) were 

used to build the models. Another trend that emerged was that the preferred vectorizer was 

the TfIdf Vectorizer, as it was outperformed by Count Vectorizer on only two occasions. The 

final major trend that could be observed was that the performance with most algorithms 

stopped significantly increasing after the number of features reached 1500. However, it did 

continue to slightly increase after that. The minor outlier was Random Forest, where the 

performance mostly plateaued around 2500, when ratings were considered. The difference 

between Random Forest and other algorithms can be best seen in Figures 23 and 24, where 

its performance is compared to the one of Logistic Regression. Note that Random Forest had 

performed really badly with n-gram ranges that did not include unigrams – accuracy was well 

under 40% and for that reason, those results have not been added to the graph. 

 

Figure 23 - Logistic Regression performance based on the number of features 
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Figure 24 - Random Forest performance based on the number of features 

  

However, there was an even bigger outlier when it came to the number of features 

needed to perform well – Neural Networks. In this case, the performance peaked when using 

1000 or 1500 features and degraded from there. This can be seen in Figure 25. 

 

 

Figure 25 - Neural Networks performance based on the number of features 
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 As can be seen from the graphs, as well as from the results in Table 7, the performance 

significantly degraded when n-gram ranges that did not contain unigrams were used to build 

models. For that reason, all those options were eliminated going forward. In addition to this, 

as most models performed the best when using the combination of TfIdf Vectorizer, 3000 

features and n-gram range that consisted of unigrams, bigrams and trigrams, those 

combinations are explored again in the next phase, alongside the combinations that 

outperformed them. This does not apply to Neural Networks as they did not perform similarly 

to other algorithms in this stage. Finally, the best performing algorithm at this stage is Logistic 

Regression, both when classifying based on sentiment and ratings. The worst performance so 

far, when ratings are considered, belongs to Random Forest, almost 5% below the best 

performing option. In terms of sentiment, the lowest performer (Naïve Bayes) is a bit over 4% 

less accurate than Logistic Regression. This first stage shows that the performance of all 

algorithms when classifying reviews according to sentiment is quite good, with all of them 

able to correctly classify 4 out 5 reviews. However, the ratings are proving to be a much more 

complex challenge. 

 

Table 7 – Stage 1 results 

Algorithm Analysis 
Type 

Vectorizer Number of 
features 

N-gram 
range 

Highest 
Accuracy 

Logistic 
Regression 

Rating CV 3000 1, 2 61.74 

Rating TFIDF 3000 1, 3 62.32 

Sentiment CV 3000 1, 3 83.94 

Sentiment TFIDF 3000 1, 2 84.17 

SVM Rating CV 3000 1, 2; 1, 3 60.45 

Rating TFIDF 3000 1, 2 61.29 

Sentiment CV 3000 1, 3 83.44 

Sentiment TFIDF 3000 1, 2 84.05 

Random Forest Rating CV 3000 1, 3 57.3 

Rating TFIDF 2500 1, 2 57.5 

Sentiment CV 3000 1, 2 80.56 

Sentiment TFIDF 3000 1, 2 80.49 
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Naïve Bayes Rating CV 3000 1, 2 59.52 

Rating TFIDF 3000 1, 3 58.08 

Sentiment CV 3000 1, 2 79.47 

Sentiment TFIDF 3000 1, 3 79.88 

Neural 
Networks 

Rating CV 1500 1, 3 60.3 

Rating TFIDF 1500 1, 3 60.33 

Sentiment CV 1000 1, 2 81.37 

Sentiment TFIDF 1500 1, 2 81.97 

 

 

Stage 2 - Hyperparameter tuning on smaller samples 

 The performance of four algorithms improved during this stage. However, as all the 

resulting hyperparameters are run on the full train / validation dataset in the next stage, all 

the results are available in that section, in joint summary tables for each algorithm. As 

mentioned previously, hyperparameters for Neural Networks are adjusted manually in stage 

4 of the process so that approach will not be discussed here. 

 When it comes to Logistic Regression, the default Scikit-Learn implementation seemed 

to perform well in general as the hyperparameters obtained mainly reflected the defaults. 

There was one major difference when it comes to vectorizers – Count Vectorizer was 

responding better to lower values of C (around 0.6), while TfIdf Vectorizer was performing 

better when C was set to the default value of 1. In addition to this, models built using Count 

Vectorizer outperformed those built using TfIdf Vectorizer in this stage, both in sentiment and 

rating classification.  

 All models built using LinearSVC returned the exact same parameters. As the best fit 

for the values of the most important parameter (C) was also the lowest one tried (0.6), this 

was an indication that an even lower value of C might result in better performance. Similar to 

the Logistic Regression results, Count Vectorizer performed better at this stage. This seems 

to indicate that this vectorizer performs better on smaller datasets, as it was completely 

outperformed by TfIdf Vectorizer in the previous stage, when the dataset was 10 times larger. 

 Random Forest is the algorithm where the highest number of hyperparameters 

needed to be tuned in order to get better performance. Due to high processing requirements, 

the parameter values were incrementally changed, especially the important ones 

(max_depth, max_features, min_samples_split) to get better performance. Finally, models 

generally performed well when the number of features was low, but the depth of each tree 

was higher. The main difference, compared to the previous two algorithms, was the fact that 
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TfIdf Vectorizer performed better here – the main reason was probably that higher 

complexity model also preferred higher complexity vectorizer. 

 Finally, MultinomialNB has only one hyperparameter that needs to be adjusted to get 

better results – alpha. Generally, the main difference was again between the two vectorizers. 

Count Vectorizer seemed to prefer models of lower complexity so the alpha value returned 

was always higher. With TfIdf, the preferred alpha value was low, signifying that this 

vectorizer works better with more complex models. Finally, there was no significant 

difference between the results obtained in this step compared to the previous step, unlike 

the other algorithms. With all the other algorithms, accuracy was significantly higher in this 

stage so this indicates that Naïve Bayes performs at a similar level no matter the dataset size. 

 

Stage 3 - Using hyperparameters obtained on full training / validation sets 

 In this stage, the hyperparameters obtained in the previous stage were used on full 

training and validation sets to evaluate if there was any improvement. In addition to accuracy, 

precision was also observed in this stage. Finally, in case of all algorithms, only best 

performing combinations were kept for the next stage. Those advancing further are indicated 

in green.  

 Hyperparameters obtained for Logistic Regression improved the performance of the 

model using TfIdf Vectorizer to classify the reviews according to ratings slightly compared to 

stage 1. All the other combinations showed no improvement, while the performance of some 

also deteriorated. The accuracy results were generally lower that they were when performing 

grid search on a smaller sample, especially for models using Count Vectorizer. When looking 

at precision, all models seem to perform well when classifying the extremes – negative and 

positive sentiment or 1 and 5 stars. This is not related to the number of reviews available per 

rating / sentiment as the number of 1-star reviews is lower than the number of both 2-star 

and 3-star reviews, but its precision is still similar to the one obtained for 5-star reviews. This 

just shows that the models struggle to identify those reviews which are not full of praise or 

highly critical. Finally, models that are further explored in the next stage were all built using 

TfIdf Vectorizer. This further reinforces that Count Vectorizer might be more suitable for 

smaller datasets and simpler models. The full overview of the results can be seen in Table 8.   
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Table 8 – Stage 2 and 3 results – Logistic Regression 
Analysis 

Type 
Vectorizer Number 

of 
features 

N-
gram 
range 

Hyperparameters Grid 
search 

accuracy 

Validation 
set 

accuracy 

Validation 
set 

precision 

Rating CV 3000 1, 2 C=0.6 
max_iter=1000 

multi_class=multinomial 
solver=newton-cg 

83.63 61.7 1 - 0.66 
2 – 0.48 
3 – 0.5 

4 – 0.55 
5 – 0.7 

Rating CV 3000 1, 3 C=0.6 
max_iter=1000 

multi_class=multinomial 
solver=newton-cg 

83.73 61.69 1 - 0.65 
2 – 0.48 
3 – 0.5 

4 – 0.55 
5 – 0.7 

Rating TFIDF 3000 1, 3 C=0.7 
max_iter=1000 

multi_class=multinomial 
solver=newton-cg 

71.15 62.36 1 - 0.67 
2 – 0.49 
3 – 0.5 

4 – 0.55 
5 – 0.72 

Sentiment CV 3000 1, 3 C=0.6 
max_iter=1000 

multi_class=multinomial 
solver=newton-cg 

93.69 83.97 0 - 0.8 
1 – 0.55 
2 – 0.89 

Sentiment TFIDF 3000 1, 2 C=1 
max_iter=1000 

multi_class=multinomial 
solver=newton-cg 

87.27 84.17 0 - 0.8 
1 – 0.55 
2 – 0.89 

Sentiment TFIDF 3000 1, 3 C=1 
max_iter=1000 

multi_class=multinomial 

87.28 84.13 0 - 0.8 
1 – 0.55 
2 – 0.89 

 

 

 Support Vector Machines performance was similar to the one of Logistic Regression. 

However, almost all models here recorded improvements in terms of accuracy compared to 

stage 1. The other interesting difference is that these models are better at classifying those 

reviews that should be neutral or the rating of which is 2, 3 or 4 stars. Overall, the best 

performing models again use TfIdf Vectorizer built using unigrams and bigrams or unigrams, 

bigrams and trigrams. Summary results are available in Table 9. 
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Table 9 – Stage 2 and 3 results – Support Vector Machines 
Analysis 

Type 
Vectoriz

er 
Number 

of 
features 

N-gram 
range 

Hyperparameters Grid 
search 

accuracy 

Validation 
set 

accuracy 

Validation 
set 

precision 

Rating CV 3000 1, 2 C=0.6 
dual=False 
penalty=l1 

81.83 60.5 1 - 0.63 
2 – 0.49 
3 – 0.52 
4 – 0.54 
5 – 0.66 

Rating CV 3000 1, 3 C=0.6 
dual=False 
penalty=l1 

79.39 60.48 1 - 0.63 
2 – 0.49 
3 – 0.52 
4 – 0.54 
5 – 0.66 

Rating TFIDF 3000 1, 2 C=0.6 
dual=False 
penalty=l1 

73.28 61.48 1 - 0.63 
2 – 0.5 

3 – 0.51 
4 – 0.54 
5 – 0.69 

Rating TFIDF 3000 1, 3 C=0.6 
dual=False 
penalty=l1 

73.22 61.43 1 - 0.63 
2 – 0.5 

3 – 0.51 
4 – 0.53 
5 – 0.69 

Sentiment CV 3000 1, 3 C=0.6 
dual=False 
penalty=l1 

93.29 83.42 0 - 0.79 
1 – 0.57 
2 – 0.87 

Sentiment TFIDF 3000 1, 2 C=0.6 
dual=False 
penalty=l1 

87.61 84.06 0 - 0.78 
1 – 0.59 
2 – 0.88 

Sentiment TFIDF 3000 1, 3 C=0.6 
dual=False 
penalty=l1 

87.59 84.04 0 - 0.78 
1 – 0.59 
2 – 0.88 

 

 Random Forest classifier has the most complex list of hyperparameters of all the 

algorithms tested in this stage. For that reason, the highest number of different combinations 

were tuned. This tuning process also resulted in more significant improvements compared to 

the other algorithms. However, the results are still not comparable to the ones obtained using 

Logistic Regression or SVM. Not only is accuracy not as high, but the bias towards predicting 

top and bottom categories is much more visible with models built using Random Forest. The 

overall results are available in Table 10. Note that the parameters used for all the models have 

been omitted from the table (class_weight=balanced, n_jobs=-1, random_state=42). 
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Table 10 – Stage 2 and 3 results – Random Forest 
Analysis 

Type 
Vectorize

r 
Number 

of 
features 

N-gram 
range 

Hyperparameters Grid 
search 

accuracy 

Validation 
set 

accuracy 

Validation 
set 

precision 

Rating CV 3000 1, 3 max_depth=90 
max_features=12       

min_samples_leaf=2 
min_samples_split=20 

n_estimators=200  

87.83 58.7 1 - 0.55 
2 – 0.45 
3 – 0.45 
4 – 0.54 
5 – 0.68 

Rating TFIDF 2500 1, 2 max_depth=90 
max_features=8       

min_samples_leaf=2 
min_samples_split=16 

n_estimators=200 

90.47 58.54 1 - 0.55 
2 – 0.47 
3 – 0.45 
4 – 0.53 
5 – 0.68 

Rating TFIDF 2500 1, 3 max_depth=110 
max_features=8       

min_samples_leaf=2 
min_samples_split=20 

n_estimators=200 

91.32 58.9 1 - 0.55 
2 – 0.49 
3 – 0.46 
4 – 0.53 
5 – 0.69 

Rating TFIDF 3000 1, 3 max_depth=110 
max_features=12       

min_samples_leaf=2 
min_samples_split=16 

n_estimators=200 

92.09 59.24 1 - 0.56 
2 – 0.47 
3 – 0.47 
4 – 0.53 
5 – 0.69 

Sentiment CV 3000 1, 2 max_depth=90 
max_features=12       

min_samples_leaf=2 
min_samples_split=16 

n_estimators=200 

94.94 81 0 - 0.73 
1 – 0.45 
2 – 0.9 

Sentiment CV 3000 1, 3 max_depth=90 
max_features=12       

min_samples_leaf=2 
min_samples_split=16 

n_estimators=200 

94.71 80.89 0 - 0.73 
1 – 0.45 
2 – 0.90 

Sentiment TFIDF 3000 1, 2 max_depth=90 
max_features=12       

min_samples_leaf=2 
min_samples_split=16 

n_estimators=150 

96.62 81.52 0 - 0.73 
1 – 0.48 
2 – 0.89 

Sentiment TFIDF 3000 1, 3 max_depth=90 
max_features=12       

min_samples_leaf=2 
min_samples_split=20 

n_estimators=200 

96.65 81.5 0 - 0.74 
1 – 0.48 
2 – 0.89 

 

MultinomialNB is the only classifier where models built using Count Vectorizer 

performed better than the ones built using TfIdf. This does only happen when predicting 

rating, but it does come with a price. This classifier, when using Count Vectorizer, mainly 

focusses on predicting the highest class – the chasm between the classes is most obvious 

here. When using TfIdf, the overall accuracy is a bit lower, but the model produces more 

balanced results, by paying more attention to classification of all the classes as best as 

possible. The overall results for sentiment analysis are the worst compared to other 

algorithms. When it comes to ratings, only Random Forest performs worse.  
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Table 11 – Stage 2 and 3 results – Naïve Bayes 
Analysis 

Type 
Vectorizer Number 

of 
features 

N-gram 
range 

Hyperparameters Grid 
search 

accuracy 

Validation 
set 

accuracy 

Validation 
set 

precision 

Rating CV 3000 1, 2 alpha=10 64.40 59.5 1 - 0.58 
2 – 0.42 
3 – 0.45 
4 – 0.54 
5 – 0.72 

Rating CV 3000 1, 3 alpha=5 64.80 59.48 1 - 0.58 
2 – 0.42 
3 – 0.44 
4 – 0.54 
5 – 0.72 

Rating TFIDF 3000 1, 3 alpha=0.1 65.23 58.14 1 - 0.62 
2 – 0.48 
3 – 0.46 
4 – 0.47 
5 – 0.67 

Sentiment CV 3000 1, 2 alpha=10 82.22 79.47 0 - 0.75 
1 – 0.41 
2 – 0.92 

Sentiment CV 3000 1, 3 alpha=10 82.23 79.42 0 - 0.75 
1 – 0.41 
2 – 0.92 

Sentiment TFIDF 3000 1, 3 alpha=0.1 81.49 79.91 0 - 0.8 
1 – 0.54 
2 – 0.81 

 

 

Stage 4 - Manual hyperparameter tuning on best performing models 

 This stage of the process was the most significant one in terms of the improvement in 

overall results. The first model that underwent the manual tuning was Logistic Regression and 

there was little that the model responded to in terms of the hyperparameter changes. The 

only thing that actually had effect was changing the number of features used to build the 

model. In general, model preferred more features, but filtered in a different way than before. 

Instead of using 3000 top features, using all the features that appeared a minimum of 10 or 

15 times in the dataset yielded best results. Overall, this model’s accuracy increased by 0.67% 

when classifying reviews according to ratings and 0.71% according to sentiment. 

 With Support Vector Machines, the only hyperparameter that ensured better results 

are obtained was C. That, in addition to the use of all the features generated by TfIdf 

Vectorizer, resulted in accuracy improvement of 1.54% for ratings classification and 1.10% for 

sentiment classification. This meant that SVM’s performance for ratings was only 0.01% lower 

than the one for Logistic Regression and that it became the best sentiment classifier. 
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 Random Forest did not improve much during this stage (0.03% for ratings, 0.47% for 

sentiment). Additional increase in max_depth and tweaking both max_features and 

min_samples_split did help, but the performance decayed if more than 3000 features were 

used. In addition to this, trying to limit the number of features based on the number of times 

they appeared in the dataset did not help either. 

 Multinomial Naïve Bayes was one of the models which improved the most during this 

phase, with accuracy for ratings classification increasing by 2.15% and the one for sentiment 

by 3.16%. These improvements were the result of changes made to the alpha hyperparameter 

and the limiting of number of features used, based on the minimum number of occurrences 

in the dataset. However, even with these massive improvements, Naïve Bayes was still not 

able to compete with the best models as its initial results were quite low. 

 The majority of manual adjustments were made to the Neural Networks as they did 

not undergo the grid search stage of the process. When working with different parameters, 

several basic configurations transpired – the model performed best when the number of 

hidden layers was set to 6 and when each of them had 50 units. In addition to this, smaller 

batch sizes worked better than the larger one, with the ideal one being set to 16. Finally, SGD 

optimizer was performing better than the one used in the previous steps (adam). In spite of 

all these changes, the biggest improvements in performance were achieved when monitoring 

accuracy across the validation set during the training and forcing the training to stop if the 

performance has not improved for 30 epochs. After that, the model would roll back to the 

best performing epoch. Along with that change, it transpired that the dropout rate of 20% 

added only before the output layer was also improving the overall accuracy. Finally, all these 

changes made led to an improvement of accuracy in the range between 1.43 (sentiment) and 

1.66 (ratings). 

 Finally, the Voting Classifier was used on the validation set, consisting of the highest 

performing versions of the Logistic Regression, SVM, Random Forest and Naïve Bayes models. 

Its performance equalled the one of Logistic Regression in terms of accuracy, while also 

making it third best performing sentiment classifier, just behind SVM and Logistic Regression. 

Its performance was increased by using the features which appeared at least 20 (rating) or 50 

(sentiment) times across the dataset. The overall results for this stage are available in Tables 

12 and 13, based on rating or sentiment classification. 
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Table 12 – Stage 4 results – best performing models - rating 

Algorithm Vectorizer setup Hyperparameters Accuracy Precision 

Logistic 
Regression 

TFIDF, (1, 3), 
min_df=10 

C=1 
max_iter=1000 

multi_class=multinomial 
solver=newton-cg 

63.03 1 - 0.69 
2 – 0.50 
3 – 0.51 
4 – 0.55 
5 – 0.72 

SVM TFIDF, (1, 3) C=0.6 
dual=False 
penalty=l1 

 

63.02 1 - 0.66 
2 – 0.51 
3 – 0.51 
4 – 0.55 
5 – 0.72 

Random 
Forest 

TFIDF, (1, 3), 
max_features=3000 

max_depth=190 
max_features=12       

min_samples_leaf=2 
min_samples_split=16 

n_estimators=200 

59.27 1 - 0.56 
2 – 0.47 
3 – 0.47 
4 – 0.53 
5 – 0.70 

Naïve 
Bayes 

CV, (1, 3), 
min_df=15 

alpha=5 61.65 1 - 0.61 
2 – 0.46 
3 – 0.47 
4 – 0.55 
5 – 0.74 

Neural 
Networks 

TFIDF, (1, 3), 
max_features=1500 

6 hidden layers 
50 units per layer 

SGD optimizer 
Learning rate=0.01 

batch_size=16 
epochs=100 

EarlyStopping with settings: 
monitor=val_accuracy 

mode=max 
patience=30 

restore_best_weights=True 

61.99 1 - 0.66 
2 – 0.47 
3 – 0.49 
4 – 0.55 
5 – 0.71 

Voting 
Classifier 

TFIDF, (1, 3), 
min_df=5 

Logistic Regression, SVM, 
Random Forest and Naïve Bayes 

best performing models 

63.03 1 - 0.63 
2 – 0.50 
3 – 0.51 
4 – 0.56 
5 – 0.73 
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Table 13 – Stage 4 results – best performing models - sentiment 

Algorithm Vectorizer setup Hyperparameters Accuracy Precision 

Logistic 
Regression 

TFIDF, (1, 3), 
min_df=15 

C=1 
max_iter=1000 

multi_class=multinomial 

84.89 0 - 0.82 
1 – 0.57 
2 – 0.89 

SVM TFIDF, (1, 3) C=0.72 
dual=False 
penalty=l1 

85.16 0 - 0.80 
1 – 0.58 
2 – 0.90 

Random 
Forest 

TFIDF, (1, 3), 
max_features=3000 

max_depth=190 
max_features=12       

min_samples_leaf=2 
min_samples_split=20 

n_estimators=200 

81.99 0 - 0.74 
1 – 0.50 
2 – 0.89 

Naïve 
Bayes 

TFIDF, (1, 3), 
min_df=5 

alpha=0.1 83.07 0 - 0.79 
1 – 0.53 
2 – 0.87 

Neural 
Networks 

TFIDF, (1, 2), 
max_features=1500 

6 hidden layers 
50 units per layer 

SGD optimizer 
Learning rate=0.01 

batch_size=16 
epochs=100 

EarlyStopping with settings: 
monitor=val_accuracy 

mode=max 
patience=30 

restore_best_weights=True 

83.40 0 - 0.80 
1 – 0.53 
2 – 0.88 

Voting 
Classifier 

TFIDF, (1, 3), 
min_df=50 

Logistic Regression, SVM, 
Random Forest and Naïve Bayes 

best performing models 

84.66 0 - 0.78 
1 – 0.58 
2 – 0.90 
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Stage 5 - Using different vocabulary sets to validate model performance 

When using different 

manually created vocabulary 

sets to verify the 

performance of the models 

built, only one model 

showed an improvement in 

results – Neural Networks. 

When classifying the reviews 

according to ratings, this 

model outperformed all the 

others when the vocabulary 

set 4 was used, reaching 

accuracy of 63%. This was 

1.01% higher than its result 

in the previous stage. In 

general, most algorithms 

performed best with vocabulary 

sets 1 and 4, both of which had a slightly higher number of unigrams and bigrams. The 

performance of all the models per vocabulary set can be seen in Figure 26. 

 

 When trying to 

classify the reviews by 

sentiment, Neural Networks 

was again the highest 

performing model, but SVM 

and Logistic Regression were 

much closer now. Again, only 

Neural Networks actually 

improved the overall 

accuracy in this step, by 

0.78%. This would indicate 

that this model apparently 

performs better with a 

vocabulary set that is more 

curated for a slightly 

imbalanced distribution in the dataset, while the other models prefer the features generated 

directly by Scikit-Learn. The performance of all the models is charted in Figure 27. 

 

 

   

Figure 26 - Vocabulary testing - ratings 

Figure 27 - Vocabulary testing - sentiment 
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Stage 6 - Using test set to verify the models’ performance 

 In the final stage of the project, the models were run on the test set, the set none of 

them have encountered before. With this set, there were no major changes in performance 

– all the models performed similarly to how they performed on the validation set. Four out of 

six models increased their accuracy when classifying based on the ratings and half of them 

when classifying based on the sentiment. The best performing model in both categories 

emerged to be Logistic Regression, with 63.31% accuracy when classifying the reviews 

according to rating and 85.09% when classifying according to sentiment. The close second is 

SVM, followed by the Voting classifier and Neural Networks. Naïve Bayes shows a really solid 

performance, while Random Forest is the model showing lowest scores in both sentiment and 

ratings prediction. 

 The major difference in performance between the highest and the lowest performing 

models can best be explained by looking at the confusion matrices. When comparing the 

ratings classification results of Logistic Regression model in Figure 28 and Random Forest in 

Figure 29, it is immediately noticeable that the Logistic Regression model outperforms 

Random Forest in correctly classifying 4 out of 5 classes. Not only is it better at correctly 

predicting the correct labels, but it is also closer when mislabelling. For example, the number 

of 5-star reviews classified as 1-star reviews by Random Forest is higher than the sum of 5-

star reviews classified as 1, 2 and 3-star reviews by Logistic Regression. In addition to this, 

Logistic Regression is much better at classifying those middle ratings (2, 3 and 4), which is 

what most models struggled with the most. 

 

 

   Figure 28 - Logistic Regression ratings confusion matrix             Figure 29 – Random Forest ratings confusion matrix 
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 When other metrics for ratings classification are considered, this further reinforces 

the Logistic Regression’s dominance. The most important indicator after accuracy, precision, 

is also the highest in Logistic Regression, with both Recall and F-1 Score looking solid. The 

worst performance, when those supporting metrics are considered, is the one by Random 

Forest. The graphical representation is available in Figure 30. 

 

Figure 30 – Test set metrics for rating 

 Sentiment classification confusion matrices for Logistic Regression (Figure 31) and 

Random Forest (Figure 32) show a similar tendency to the one discussed when ratings were 

examined. Logistic Regression outperforms Random Forest in each of the classes this time, 

while also keeping its mislabelling closer. However, in spite of that, it is worth noting that both 

models do still struggle to label the neutral reviews correctly.  

 

  Figure 31 - Logistic Regression sentiment confusion matrix        Figure 32 – Random Forest sentiment confusion matrix 
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 Finally, when supporting metrics are examined for sentiment analysis, precision is again the 

highest in Logistic Regression. However, a bit more solid performance across Recall and F-1 Score is 

seen with the Voting Classifier and SVM. However, the Logistic Regression model still holds the highest 

results for the two most important metrics, which makes it the best choice for this type of analysis. 

Another thing worth noticing is that the performance of Random Forest holds up better in this analysis 

as it does outperform Naïve Bayes in terms of Recall and F-1 Score. The graphic representation of 

these results can be seen in Figure 33. 

 

Figure 33 - Test set metrics for sentiment 

 

 After verifying the performance of all the models built, their performance for 

sentiment analysis was also compared to one of the tools already available on the market. 

Vader, that is often used for sentiment analysis, is available through the NLTK library and 

classifies the reviews based on the compound score – the score calculated on the basis of 

overall positivity, negativity or neutrality of the review. In case the compound score is equal 

to or higher than 0.05, the review is classified as positive. Negative reviews have the 

compound score that is equal to or less than -0.05, while the neutral reviews are those in the 

middle (Rai, 2021).  

 The Vader tool was run on the test set using the same pre-processing steps first, but 

as that library actually covers most of pre-processing steps utilised in this project (like 

lowercasing words) by default, it achieved better scores when no manual pre-processing was 

done. Overall, Vader performs worse than all the models used in the paper, achieving 
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accuracy of 73.69% when trying to classify the reviews as positive, negative or neutral. This is 

11.44% less than the highest-performing Logistic Regression and 8.29% less than the 

underperforming Random Forest model. The biggest problems it had, as seen from Figure 34, 

was correctly classifying neutral reviews. This was also the case with models built during this 

project, but Vader’s precision was really low for those reviews – only 18%. This might indicate 

that Vader is more capable of working with shorter pieces of text, but really underperforms 

when it has to handle longer reviews. Longer reviews are better handled by more robust 

models, like the ones built using machine learning algorithms. The final accuracy results 

obtained for the test set are available in Table 14. 

 

Figure 34 - Vader sentiment confusion matrix 

 

Table 13 – Stage 6 results – accuracy on the test set 

Ratings Analysis Sentiment Analysis 

Algorithm Accuracy Algorithm Accuracy 

Logistic Regression 63.31% Logistic Regression 85.13% 

SVM 63.26% SVM 85.09% 

Random Forest 59.24% Random Forest 81.98% 

Naïve Bayes 62% Naïve Bayes 83.12% 

Neural Networks 63% Neural Networks 83.92% 

Voting Classifier 63.16% Voting Classifier 84.86% 

  Vader 73.69% 
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6.0 Conclusions 
 

The primary goal of the project was to build a model that could classify the reviews 

according to ratings ranging from 1 to 5. In addition to this, an additional model was supposed 

to be developed to classify the reviews based on their sentiment – positive, negative or 

neutral. The approach that was followed was KDD, an iterative process that focussed on 

completing all the individual stages with great care, but also included willingness to return to 

the previous steps and make the necessary changes that would result in better model 

performance. Using KDD and extensive literature review, it was also easier to identify the 

potential opportunities for innovation. 

The main strengths of this project are that it is very well researched, it uses really large 

datasets and a wide range of technologies, that the correct methodology was followed and, 

finally, that the models produced perform well. When classifying ratings, the models achieved 

satisfactory levels of accuracy, in spite of the fact that the reviews analysed were very long 

and complex. Considering the fact that only the review text was used to determine ratings, 

the models were able to identify 1-star and 5-star reviews quite consistently, especially 

Logistic Regression and SVM. When the sentiment analysis is considered, all the models 

performed at an accuracy level higher than 80%, which definitely indicates that they have 

high potential for usability outside of this project. Specifically, when compared to a tool that 

is already being used on the market to perform the same type of analysis (Vader) and which 

actually underperforms in comparison with the models developed. Finally, using Neural 

Networks that has not been referenced in previous research as an option for sentiment 

analysis was a great choice, both as an innovation point and because this model performed 

really well in both ratings and sentiment classification.  

While this project has many advantages, there are a couple of limitations. The main 

one is that the models developed have certain problems classifying the middle ranges – 

neutral sentiment or 2, 3 and 4-star ratings. However, the mislabelling errors are major, as 

most errors are usually move the review classification by only one class – a 2-star review will 

most often get misclassified as a 1-star or 3-star review. Nevertheless, this would probably be 

a problem for a business that wanted to implement the ratings model on a public-facing 

website. It might be of better use internally, for the business to classify the reviews or 

comments left on their website. Except for that, the other disadvantage would be the fact 

that the models produced run offline so the business would need to re-train the data as new 

reviews are collected in order to have the most up-to-date features when model is run. This 

can be done once a week and then the model can be redeployed with the newest information. 

However, in spite of these minor issues, the models perform well overall, especially the 

sentiment classifiers, so they can be readily used in any environment. 
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7.0 Further Development or Research 
 

One of the potential reasons as to why the accuracy was lower for the ratings 

classification is the imbalanced nature of the dataset. The dataset that heavily relies on 5-star 

and 4-star ratings might have prevented better prediction of those mid-range reviews. With 

a more balanced dataset, it would be good to also add reviews from other sources – from 

Facebook, Twitter, Instagram and Google to other review-centric websites. That way, an even 

more robust model, with more important features could be built. 

With all the additional reviews, all the pre-processing and training could be done in 

the cloud, using one of the online methods. That way, the model’s performance could be 

updated in real time, which would not only cut down on the processing time, but also 

automate the process even further. 

If the model is running in the cloud, it could also be deployed on a live website, where 

it could run on a trial basis, collect reviews and perform classification. In that first stage, the 

user could be given the predicted classification and asked to evaluate if it is correct or not. If 

not, there would be an option to change the rating – that way, the model would be able to 

learn from its mistake. 

Finally, in addition to exploring some new pre-processing options, other tools and 

approaches could also be researched. In addition to Scikit-Learn and TensorFlow, it would be 

beneficial to explore PyTorch and do more work with deep learning as customizing the input 

vocabulary really did show major improvements with Neural Networks. Overall, all these 

improvements could have been made during the project development or could be done in 

the future, but the main idea behind them is the same – use new technologies, find more data 

and move everything online. 
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1.0    Objectives 
The main objective of the project is to develop a model that can correctly classify 

restaurant rating on the scale from 1 to 5, based on a non-numerical textual review provided 

by users. In order to complete the project, a number of other goals will have to be completed. 

Those goals can be grouped in two different categories – the ones required to complete the 

technical part of the project and the ones required to manage project completion. In terms 

of the first category, it will be important to find datasets that contain restaurant reviews, with 

classification already provided. Ideally, the dataset would contain both a numerical rating and 

categorical (positive / negative / neutral). Next goal would be to do some exploratory analysis 

and use data visualisation to find the general trends. After that, the data needs to be cleaned 

and transformed so it is ready for the machine learning process. The primary goal of the 

machine learning process would be to find the algorithm that performs best on this dataset. 

Once the right algorithm is found and the model fully tuned, it needs to be checked against 

the final test data.  

The second set of goals is primarily concerned with managing the project work by creating 

a detailed project plan in order to manage project execution. Once the project plan is in place, 

the main focus shifts to updating the project documentation regularly. One last goal in this 

category is to research every stage of the project plan in detail. 

 

2.0 Background 
Restaurant industry is a very lucrative industry. Even during 2020, when many restaurants 

were close for a longer period of time, due to the COVID-19 pandemic, the restaurant industry 

was estimated to be worth around $1.2 trillion (Aureliano-Silva, et al., 2021). Similarly, if only 

the Irish data is considered, around €8.55 billion was spent on dining in restaurants 2019. That 

number increased by 4.5% in comparison to 2018 (O'Brien, 2019).  

Online reviews are extremely important for the restaurant industry and this became really 

clear during the COVID-19 pandemic. Recent survey of US customers’ attitudes towards 

online presence of local business showed just how important a positive online presence is. 

93% of people surveyed claim to have searched local businesses online, while 87% read their 

online reviews. The same survey also indicated that customers were most likely to read online 

reviews on restaurants when compared to all other industries (Murphy, 2020). This points to 

the conclusion that restaurants should indeed pay attention to online reviews. 

Restaurant staff probably does not receive all the feedback in live interaction and for that 

reason they can use online reviews to make the business more successful. Currently, four 

websites hold 88% of all online reviews. Out of those 88%, Google is the industry leader with 

73% of the market, followed by Yelp (6%), Facebook (3%), and TripAdvisor (3%).  (Review 

Trackers, 2021). In addition to this, many online reviews are classified incorrectly as the users 

selected the incorrect start rating when writing their review. With that in mind, restaurants 

would benefit from a model that could analyse those third-party reviews and classify them 

correctly, allowing the restaurant owners to focus on quality feedback provided. This is what 
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this project is set out to do – build a model able to predict the rating based on the textual 

review that can be used on third-party reviews or even incorporated on a website. 

  

3.0 State of the Art 
This topic has been explored in the past, with most researchers attempting to classify the 

review sentiment by its polarity. This means that they tried to classify the reviews into either 

two or three categories. While most work uses positive / negative classification, some also 

add the neutral category. The first research reviewed used four different machine learning 

algorithms and a dataset of 4000 reviews. Its best performing algorithm was random forest 

with an accuracy of 95% (Zahoor, et al., 2020). The second researched paper had a dataset of 

1500 reviews and used three different machine algorithms. Their best result was obtained 

when Support Vector Machine (SVM) algorithm was used, with a much lower level of 

accuracy– 75.58% (Haque, et al., 2019). Third paper reviewed had the lowest number of 

reviews in the dataset – only 700. Although they used four different algorithms to classify the 

data, the highest performing was once again SVM with an accuracy of 95% (Huda, et al., 2019). 

The last paper reviewed had just over 1000 reviews in the dataset and while 5 algorithms 

were used for classification, the best performing was, once again, SVM with 95% of accuracy 

(Krishna, et al., 2019). 

 There are two main differences between their approach compared to the one undertaken 

in this project. While their classification only focussed on two categories (positive / negative), 

this project will attempt to provide a classification into 5 categories. In addition to this, 

primarily because more are categories are considered, the dataset used will also be larger 

compared to the ones used in previous research. For that reason, the machine learning 

accuracy might come closer to the levels achieved than otherwise would be possible. 

 

4.0 Data 
As mentioned in the previous section, the number of reviews for this type of analysis 

ranges from 700 to 4000. All the researchers specified the importance of having a balanced 

dataset which contains approximately the same number of positive and negative reviews. 

One of them had an unbalanced dataset of 200 positive and 500 negative reviews, which 

proved to be a problem when testing the model (Zahoor, et al., 2020). All of the datasets, 

among other columns, contained two most important ones – a textual review column and 

another column that served as the target column, which served for the validation of their 

model. That column had either a numerical rating or the information on whether the review 

was positive or negative. 
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Based on that information, it is important to acquire a dataset that has the following 

characteristics: 

o contains textual reviews of restaurants only 

o contains a column that denotes if the review is positive, negative or neutral and /or a 

column that contains numerical rating (1-5 or 1-10) 

o contains at least 2000 rows as most previous research was done on smaller samples 

than that 

o the dataset is publicly available and has the clear permissions available on their 

website or allows for the licence to be granted by contacting the author(s) – clear 

permissions are preferrable as licence-granting process can sometimes be fairly long 

and differ the start of the project 

Once the dataset is found, it will be downloaded directly, or accessed using API, depending 

on the process outlined on the website. 

 

5.0 Methodology & Analysis 
In order to complete the project, the plan is to follow the KDD (Knowledge, Discovery and 

Data Mining) approach. This methodology is a data analytics methodology that has been used 

for the last 30 years and differs from the others as it relies on the iterative process (Fayyad, 

et al., 1996). In this case, as there will be a need for constant refinement for the model to 

become precise in its classification, there will exist a need to go back to one of the previous 

steps in order to get better results. Through this repetition, the model should become much 

better at classifying. 

In terms of the actual organisational part, the classic stages of KDD – data selection, pre-

processing, transformation, data mining and interpretation / evaluation (Fayyad, et al., 1996). 

For the selection phase, relevant sources of data need to be found and the dataset explored. 

In addition to becoming familiar with the dataset, this phase is also used to research the rest 

or the process needed to complete the project. 

During the pre-processing phase, the idea is to clean the datasets of unnecessary columns, 

deal with the missing data and eliminate the datasets that prove to be irrelevant for the 

project. In the transformation phase, review text needs to be transformed in a format 

acceptable for machine learning. During the data mining phase, the idea is to use different 

machine learning approaches to train the model to successfully classify the data on both 

validation and test part of the dataset. Finally, in the interpretation / evaluation phase, the 

results are evaluated using charts and summary tables. 

The machine learning algorithms planned for use based on the literature review are: 

▪ Logistic Regression 

▪ Naïve Bayes 

▪ Support Vector Machine 

▪ Decision Tree 

▪ Random Forest 
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Regarding work organization, it will be done in two-week sprints, consisting of activities 

logically linked to one another. The focus of the first semester would be on finding the data, 

cleaning it from irrelevant information and showing some trends using data visualisations. 

The main driver for those tasks would be the mid-term presentation as the first major 

milestone. During second semester, there will be two major milestones. First one would be 

the reading week where at least one model used should be performing well. The second major 

milestone would be Easter break. At that point, all the project work should be done. This will 

allow a couple of extra weeks to work on documentation or account for delays in project 

work. 

 

6.0 Technical Details 
For the project management part of the project, Microsoft Office products will mostly be 

used. Microsoft Word will be used for all the documentation. Excel will be used to review 

datasets in the data selection phase. In order to create slides for video presentations, 

PowerPoint will be used. The videos themselves will be recorded using Microsoft Teams and 

then hosted using Microsoft Stream. The only non-MS Office tool used will be an online 

project management tool – TeamGantt. As the name itself suggests, the tool is used to create 

and host Gantt charts. Gantt chart created using that tool is used for the project plan in this 

document. 

The technical side of the project, the code used to import and clean the data, create data 

visualisations and train, validate and test the models will be done using Python 3.9. In order 

to run Python code, PyCharm IDE (integrated development environment) will be used locally. 

Google Colab notebooks will mostly be used for presentations as they offer a cleaner outline 

and are more convenient when a single line of code needs to be run, especially on a project 

that potentially has hundreds of lines of code. Python libraries used to complete the project 

and their descriptions are available in the table below. 

 

 

 

 

Library Usage 

Pandas Importing / exporting csv files, manipulating DataFrames 

Openpyxl Importing / handling xlsx files 

Re Cleaning data using Regular Expressions 

Matplotlib Data visualization library 

Seaborn Data visualization library 

Plotly Data visualization library 

NLTK Language processing library 

Scikit-learn Machine learning library used for building, training and testing 
models 
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7.0 Project Plan 
 

Project plan has been adjusted for the change of project idea so it starts on the 8/11. 
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The gap between the two semesters is purely down to exam preparation. 

 

 

 

 

Note that some extra time is provisioned here in case of delays in project work – the final two 

weeks before the project deadline are meant to be used in case of delays or in case some 

additional adjustments are needed. 
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9.2. Reflective Journals 
 

Month: October 

What?  

The first month of a new project, especially such a large one, always brings about a varied set of 

tasks to complete. The first thing to do was to prepare the project pitch, which not only meant 

making a decision on how to record the video and where to stream it, but also to decide on the 

project topic and do some preliminary research about the topic chosen. Once the video was done 

and uploaded, we were supposed to start working on the project proposal and wait for a supervisor 

to be assigned to us so they can inform us whether our project idea has been accepted or not, give 

us feedback on the things we might need to change with the project itself and maybe give us some 

pointers on what to focus first. In the meantime, we were also supposed to research datasets we 

might want to use so we can include them in the Ethics Form. 

So What?  

I did decide on a topic I feel strongly about – the impact of socio-economic factors on covid-19 

vaccine hesitancy in the EU. That was the first step. Then, I had a look at some datasets that would 

be required for the project and the first glance at them seems to indicate there indeed might be a 

link between the factors I want to explore and the vaccine hesitancy. The video upload went ok, not 

great. While filming, I realized that I might need to leave out some technical details in order to fit it 

within 3 minutes and I was pretty certain this might lead to some amendments being suggested for 

the project idea. In terms of the technical part, I did decide to use Python and R to analyse the data. 

I do want to do some machine learning to verify the data, but I definitely need more input from the 

supervisor to see if this would be best done using logistic regression, neural nets or something else. 

I also have a “nice-to-have” feature – if there is enough time, I’d like to display the charts / graphs 

on a website powered by Python and either Flask or Django (maybe use React to handle frontend). 

Finally, the supervisor was assigned to me at the end of the month and, as I suspected, mentioned 

that there will be a need for some changes to be implemented. However, he is still waiting for the 

other reviewer to upload the feedback so it is still uncertain what needs to be changed. Overall, the 

biggest successes are definitely the completion of all the deliverables so far and the fact that I was 

able to make a decision on the topic. The challenges are definitely fully defining the scope of the 

project and organising the workload while taking into consideration all the continuous assessments 

and projects in the first semester. 

Now What?  

The things I would like to complete in the following month are: 

- Check in with the supervisor on Tuesday to see if there is feedback available from the other marker 

and then set up a meeting so we can discuss the changes that need to be implemented 
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- Research the approach on how to complete the project in a bit more detail and complete the 

project proposal before 7/11 

- File the Ethics Form for the datasets I have already found by 7/11 

- After 7/11, start searching for other compatible datasets that would be suitable for the project 

- Do some initial data cleaning for a smaller part of the dataset, maybe do all the socio-economic 

factors vs vaccination rates for two countries (one at the top end and one of the ones with lower 

vaccination rates, I might just compare Croatia and Ireland as I am familiar with situation in both 

countries) 

- Try plotting some graphs using R to show the comparison between the two 

 

Month: November 

 
What?  
 

The main event this month happened during the first week of November – the proposed project 

idea was rejected by one of the markers so the supervisor informed me that we would need to look 

at the college approved projects and pick one of them. After examining the options provided, I have 

chosen Opinion Mining for Automated Restaurant Reviews Rating as this was the topic that suited 

the specialization the most. Once the topic was chosen, the most important first milestones to meet 

were writing up a project proposal and the ethics form. As I have been notified of the change in 

topic only a couple of days before the submission date, I needed to focus on quickly exploring the 

topic so I can include some basic pieces of information in the submission documents and build a 

foundation on which I can explore the topic further during November and build the project. 

 
So What?  
 

After having a couple of meetings with the supervisor about how to proceed with the project, I 

researched the basic information behind the topic and included the information in the project 

proposal documentation. I have also managed to find datasets that do fit in with the topic, but most 

of them did not have a clearly formulated disclaimer that would allow me to use it with no issues. 

Finally, I managed to submit two of them as part of the ethics form, right on time. Once the upload 

was done, it allowed me to focus more on further exploration of the topic. During November, I have 

decided to move the data exploration and pre-processing from R into Python. On one hand, the 

decision was made because I already have experience coding in Python and my knowledge of R is 

still pretty basic. On the other hand, Python also offers more versatility in later stages of the project, 

not only in terms of different libraries that can be used for machine learning, but also when it comes 

to the avenues that can be taken in the final stages of the project – if I do decide to deploy the 

model to work with restaurant reviews on a live website, that would be much easier done using 

Python and Django or Flaks than R. In addition to doing the technical research, I also focussed 

heavily on researching the process relating to sentiment analysis and opinion mining – which steps 

need to be taken in each of the phases and which machine learning algorithms would work best. 



71 
 

While I still have not decided on the best machine learning approach, the exploration and pre-

processing phases are pretty clear at this point. In order to complete these initial steps, I have also 

in the process of finishing an online course on Pandas as this is going to be the first library that will 

enable me to pre-process and clean the dataset. As far as the datasets are concerned, the decision 

was made to use one main dataset that has both the numerical scale attached to each of the reviews 

(1-5) and the general sentiment (positive/negative). Other datasets can be kept as backup for now, 

but this one should be more than enough as it has 10000 reviews stored. The initial data exploration 

showed that the dataset is appropriate for the project as it is well balanced, with the same amount 

of positive and negative reviews, and no faulty or missing values. 

 
Now What?  
 

The things I need to complete in the following month are: 

- Finish pre-processing phase – remove stopwords, special characters, lemmatize the words 

- Analyse unigrams, bigrams and trigrams – generate charts showing most common expressions 

- Generate wordclouds to see which words dominate the dataset 

- Finish Pandas course and identify which other libraries / frameworks will be necessary to complete 

the project 

- Shortlist the machine learning approaches that would be most suitable for the project 

- Complete documentation for mid-point submission – update proposal to reflect the changes 

made, create PowerPoint presentation and record the video showcasing the progress, fill out the 

documentation with relevant information gathered so far 

 

 

Month: December 

What?  

The focus of this month’s efforts was mainly on getting as much as possible done for the mid-

point submission. The information was provided that, as a part of the submission, a draft of the 

final documentation, sections 1 to 4, will also need to be included in the submission, along with 

the project proposal and the video showcasing the work already completed. This created plenty of 

additional work as each part of the process needed to be documented in detail to have the 

document draft ready.  

So What?  

Regarding the actual work on the code, the goals set for this month were met, and even 

surpassed. All the pre-processing steps and data visualisations were completed, two different 

ways of transforming the reviews from textual into numerical form were used. At this point, in 

terms of technologies, a wide array of libraries were employed – NLTK for pre-processing of 

textual data, Pandas for manipulating DataFrames, Plotly, Seaborn and Matplotlib for data 

visualisations and scikit learn is the library chosen for the machine learning part of the project. In 

terms of actual machine learning algorithms, five were chosen for the project, based on the 

review of previous works done on sentiment analysis – logistic regression, support vector 

machine, decision trees, random forest and naïve Bayes. The work has been started just before 

the submission on logistic regression, generating first results, the accuracy of which is above 65%. 
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This is an encouraging first step as the results when using 5 categories with this algorithm are 

usually much lower. Finally, Google Colab is proving to be a great help when running machine 

learning scenarios – as the dataset is quite large for this type of project, in some cases the code 

cannot be run locally so Google Colab is a great backup option there. 

As for the documentation, most of the planned work was completed – Project Proposal is now 

much more solid, the introduction, pre-processing and transformation stages are well-organised, 

with enough visual representation of the work done so far. The sections that will definitely need a 

lot more work are those relating to machine learning algorithms, but these are still a work in 

progress as that part of the work has only started.  

The video itself did not go as planned. The original plan was to record shorter videos, one for each 

section and then combine them using wave.video, an online video-editing platform. However, 

their service experienced prolonged downtime periods around the time of submission so a one-

take video was recorded in the end using Microsoft Teams. The downside of this is lower video 

quality, but it exposed even more that 10 minutes are far from enough to explain the whole 

project and the work done so far coherently. The positive thing is that everything was completed 

and submitted on time. 

When it comes to the supervisor meetings, they are happening regularly, once a week. I am really 

satisfied with the collaboration as I feel the supervisor has good sense of direction for the project 

and always brings in some fresh ideas and a new perspective on the problem. 

Now What?  

The things I need to complete in the following month are: 

- Explore other machine learning algorithms in more detail 

- Complete all the planned scenarios with logistic regression – train and validate using different 

combinations of pre-processing and experiment with model-tuning 

 

Month: January 

What?  

Most of January went towards exam preparation and execution. Once this was done, the plan was 

to continue with the logistic regression and further exploration of machine learning to prepare for 

the rest of the work on the project. However, the announcement was made that the final project 

bio, along with project overview and the images that are going to be displayed on the project 

showcase page need to be completed / selected by early / mid February. In addition to this, the 

final submission date has also been moved so there will be one additional week available to 

complete the project and the project documentation. 

So What?  

Due to those announcements, the project plan has been tweaked slightly – even though the 

logistic regression work was continued, its completion has been pushed by a week in order to 

allow for the time to finish the bio and other information required for the showcase website. 

Considering the fact that the final submission has been pushed by a week, this would not delay 

the work needed to complete the project on time. It will, however, allow more time focussed on 
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the actual code towards the end that was supposed to be used for the project showcase 

information. 

Now What?  

The things that are to be completed in the following month are: 

- Finalise all the planned scenarios with logistic regression – train and validate using different 

combinations of pre-processing and experiment with model-tuning – along with adding this 

information to the final document 

- Finalise everything related to the showcase – bio, project description, images, technologies, 

poster 

- Theory background and training / validation using Naïve Bayes with the documentation 

- Theory background on Support Vector Machine and starting training / validation 

 

Month: February 

What?  

Early February was used for completing all the project showcase profile details – from writing a 

bio, project description to selecting and resizing / cropping images. Towards the end of that work, 

the feedback was provided for the work done during the first semester and it transpired that 

some additional input would be needed. That means that additional datasets needed to be 

sourced in order to continue with the machine learning stages of the project. 

So What?  

Due to this fact, the rest of the work completed in February revolved around sourcing additional 

datasets. The two sources added were reviews scraped from TripAdvisor using Selenium and 

Yelp’s open dataset. Each of these datasets has its own specifics – TripAdvisor is not really clear on 

their scraping policy so the outcome on that dataset will be known once the Ethics form 

submission is reviewed. As for Yelp, this is a massive dataset, with over 8 million reviews of 

restaurants. This has two knock-on effects on the overall project. The first one is that all the 

background research on the machine learning approaches to be used is pushed before actual 

work on the data. This way, all the preparation for all the machine learning approaches will be 

done while the new datasets are being evaluated by the college. The second effect is that some of 

the previously planned machine learning techniques might need to be dropped as they work well 

with smaller datasets only. This means that a move towards more deep learning techniques will 

probably happen. 

Now What?  

The things that are to be completed in the following month are: 

- Find more effective ways of loading large datasets faster (like the Yelp dataset) 

- Explore batch training options for machine learning models – the textual reviews need to be 

vectorized and this requires a lot of memory so batch training would be a good workaround for 

memory issues 
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- Explore deep learning and write the generic code snippets that can be used to loop through 

different models and train / validate data using different parameters 

- Complete the exploratory data analysis, pre-processing and transformation phases of the new 

datasets and update the final document with that data 

- Finally complete the Logistic Regression part of the project with the new datasets included 

 

Month: March 

What?  

Before the mid-term break, there was a meeting with Siobhan from the Careers Office where 

feedback was provided on what needs to be changed in the project description. In addition to this, 

the supervisor proposed having a Kanban board with all the active task so it is easier to track the 

overall progress. Finally, the Easter break is approaching and the first results obtained from 

machine learning models were not encouraging in terms of achieving high accuracy (over 80%) so 

there was more pressure added to get better results. 

So What?  

The first changes were made to the project description to include more technical details on the 

technologies used. Afterwards, the decision was made to also include a second target column to 

the dataset – this one focussing on whether the review was good, bad or neutral and the three 

machine learning techniques used so far (Logistic Regression, Support Vector Machines, Random 

Forest) showed much better results. The hyper parametrization using SearchGrid CV additionally 

improved the results. Finally, a Kanban board was set up through Monday.com for the supervisor 

to be able to have a better overview which items are being worked on. 

Now What?  

The things that are to be completed in the following month are: 

- Finish all the machine learning techniques with the train and validate sets 

- Compile plots and charts using data visualization tools to show how models with the best 

parameters were found 

- Update the documentation reflecting all the work that has been done 

- Regularly keep updated the board containing active tasks so that the supervisor can see the 

progress before the weekly meetings 

 

 

 

 

 

 



75 
 

Month: April 

What?  

A lot of the time this month was spent on either finishing continuous assessments or working on 

terminal assessments, which were all pretty huge. However, the work on the project continued in 

the background, with it getting the full focus after the 22/04. As most of the work with the first 

three algorithms was done, it was important to get more done with the last two approaches used 

(naïve bayes classifier and neural nets).  

So What?  

All the algorithms were put through all the phases initially planned – training, hyper-

parametrization and validation of the results on the validation set. All this did lead to an 

improvement in performance, but some additional tweaking can be done in the last two weeks. 

Additional literature has been consulted in order to find more ideas on how to improve the 

performance. Finally, the documentation has been updated with the changes made.   

Now What?  

The things that are to be completed in the final phase of the project: 

- Tweak the vocabulary that goes into the TfIdf and CountVectorizer and train the model using 

that data – this should account for the data being skewed towards positive reviews 

- Use VotingClassifier to try to get better classification results using several algorithms at the same 

time on the dataset 

- Run the most successful configurations on the test set  

- Update the documentation reflecting all the work that has been done 

- Create the project poster as part of the submission 

- Record the final presentation video 
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9.3. Outputs of models’ performance on test set 
 

1. Logistic Regression ratings accuracy 

 

 

 

 

2. Logistic Regression ratings - confusion matrix 

 

 

 

 

3. Logistic Regression ratings – all metrics 
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4. Logistic Regression sentiment accuracy 

 

 

 

 

5. Logistic Regression sentiment - confusion matrix 

 

 

 

 

6. Logistic Regression sentiment – all metrics 
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7. Support Vector Machines ratings accuracy 

 

 

 

 

8. Support Vector Machines ratings – confusion matrix 

 

 

 

 

9. Support Vector Machines ratings – all metrics 
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10. Support Vector Machines sentiment accuracy 

 

 

 

 

11. Support Vector Machines sentiment – confusion matrix 

 

 

 

 

12. Support Vector Machines sentiment – all metrics 
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13. Random Forest ratings accuracy 

 

 

 

 

14. Random Forest ratings - confusion matrix 

 

 

 

 

15. Random Forest ratings – all metrics 
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16. Random Forest sentiment accuracy 

 

 

 

 

17. Random Forest sentiment - confusion matrix 

 

 

 

 

18. Random Forest sentiment – all metrics 
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19. Naïve Bayes ratings accuracy 

 

 

 

 

20. Naïve Bayes ratings - confusion matrix 

 

 

 

 

21. Naïve Bayes ratings – all metrics 
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22. Naïve Bayes sentiment accuracy 

 

 

 

 

23. Naïve Bayes sentiment - confusion matrix 

 

 

 

 

24. Naïve Bayes sentiment – all metrics 
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25. Neural Networks ratings accuracy 

 

 

 

 

26. Neural Networks ratings - confusion matrix 

 

 

 

 

27. Neural Networks ratings – all metrics 
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28. Neural Networks sentiment accuracy 

 

 

 

 

29. Neural Networks sentiment - confusion matrix 

 

 

 

 

30. Neural Networks sentiment – all metrics 
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31. Voting Classifier ratings accuracy 

 

 

 

 

32. Voting Classifier ratings - confusion matrix 

 

 

 

 

33. Voting Classifier ratings – all metrics 
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34. Voting Classifier sentiment accuracy 

 

 

 

 

35. Voting Classifier sentiment - confusion matrix 

 

 

 

 

36. Voting Classifier sentiment – all metrics 
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37. Vader sentiment accuracy 

 

 

 

 

38. Vader sentiment – confusion matrix 

 

 

 

39. Vader sentiment – all metrics 

 

 


