

National College of Ireland

BSc (Honours) in Computing - Evening

Data Analytics

2021/2022

Dejan Mijakovac

x18144861

x18144861@student.ncirl.ie

Opinion Mining for Automated Restaurant

Reviews Rating

Technical Report

1

Contents
Executive Summary ... 2

1.0 Introduction .. 3

1.1. Background ... 3

1.2. Aims... 4

1.3. Technology .. 5

1.4. Structure ... 7

2.0 Data ... 8

3.0 Methodology ... 13

4.0 Analysis ... 21

5.0 Results ... 39

6.0 Conclusions ... 56

7.0 Further Development or Research ... 57

8.0 References .. 58

9.0 Appendices .. 60

9.1. Project Proposal .. 60

 1.0 Objectives .. 62

 2.0 Background.. 62

 3.0 State of the Art .. 63

 4.0 Data ... 63

 5.0 Methodology & Analysis .. 64

 6.0 Technical Details .. 65

 7.0 Project Plan ... 66

 8.0 Bibliography ... 68

9.2. Reflective Journals .. 69

9.3. Outputs of models’ performance on test set ... 76

2

Executive Summary

Restaurant industry is a high grossing one, both in Ireland and worldwide. With most

businesses moving online during the COVID-19 pandemic, customers started to spend more

time online, writing online reviews. Not only were more reviews being written, but people

also relied more on those reviews when deciding whether to use a particular restaurant’s

service. All this put additional pressure on restaurants to maintain a positive online presence

and high ratings. This pressure has increased recently with the high levels of inflation, which

forces customers to reduce their outdoor dining and food orders. As a result of this, they are

even more careful when it comes to online ratings.

 The aim of this project was to, using the KDD methodology, develop a model which

can predict, solely on the basis of the textual review, the rating of a review, on a scale of 1 to

5. An additional aim was to develop a model which can predict the review sentiment, it being

negative, positive or neutral. While the sentiment analysis classification is a well-known topic

studied in the Natural Language Processing field, the idea to classify the reviews according to

rating is one that is not usually entertained due to the complexity of the classification process.

The textual reviews were vectorized using two different approaches – Count

Vectorizer and TfIdf Vectorizer - in order for them to be used by the machine learning

algorithms. Four out of five algorithms used are the ones typically used for sentiment analysis

(Logistic Regression, Support Vector Machines, Random Forest and Naïve Bayes), while

Neural Networks were introduced in this project due to the high number of features and

reviews that needed to be processed. As Neural Networks perform better with large, complex

datasets and highly-dimensional features, their choice was a logical one, especially for the

ratings classification.

 The final results show that Logistic Regression is the best-performing algorithm in both

use cases – ratings and sentiment classification. Furthermore, Support Vector Machines and

Neural Networks also perform very well. When sentiment classification is compared to the

results obtained using a tool already on the market (Vader), all models developed during the

project outperform it. This means that these models, especially the best-performing ones,

can be used either on restaurants’ websites to predict ratings or sentiment, or internally,

when reviewing customer feedback, to identify problems that need to be rectified and

positive feedback which helps to note what customers enjoy.

3

1.0 Introduction

1.1. Background

Restaurant industry is a very lucrative industry. Even during the year that was mostly

impacted by the COVID-19 pandemic (2020), the restaurant industry had an estimated worth

of $1.2 trillion (Aureliano-Silva, et al., 2021). If more local data is examined, Bord Bia reported

that people on the Irish market spent around €8.55 billion on restaurant dining in 2019, with

a significant increase of 4.5% when compared to 2018 (O'Brien, 2019). In addition to this,

whenever COVID-19 restrictions were eased, the spending in restaurants increased

significantly. For example, in 2021, in the month of June, a total of €332 million was spent on

meals in restaurants in the Republic of Ireland, an increase of 41% compared to the same

period in the previous year (Ihle, 2021). This means that the restaurants can make a good

profit once there are no restrictions or with minimal restrictions.

Quality online presence can help restaurants attract customers more than any other

factor, especially in these times. As lockdowns come and go, restaurants sometimes only open

for a short period of time. During that period, good online reviews are what will most likely

result in increased number of customers. Recent survey conducted by ReviewTrackers

showed that 94% of customers claim they avoided a business based on a bad review (Review

Trackers, 2021). Similarly, a survey of US customers’ attitudes towards local businesses

showcased just how much they rely on online reviews. 93% of them do an online search for

local businesses and 87% read their online reviews. The same survey also showed that

restaurants are number one on the list of industries for which the customers would read

online reviews (Murphy, 2020). All this shows just how much a restaurant’s revenue can be

impacted by online reviews.

COVID-19 pandemic resulted in people relying on online reviews even more, both as

active and as passive participants. As a direct result of COVID-19, 31% of people surveyed

claim they are reading more reviews than before (Murphy, 2020) and 70% of them use rating

filters when doing online search, mostly defaulting their filter to four stars and above (Review

Trackers, 2021). There are also factors showing more people are now actively engaging in

writing reviews. On one hand, the overall number of online reviews at the start of the

pandemic (February – May 2020) increased by 81% (PowerReviews, 2020). In addition to this,

around 72% of customers have written an online review (Murphy, 2020). Not only have

people been spending more time at home and online, but writing reviews with the help of

smartphones and better internet coverage has become faster and easier. Along with that, the

customers seem to be writing shorter and more focused reviews than before – since 2010, an

average online review reduced by 65% in the number of characters, resulting in around 200

characters on average (Review Trackers, 2021).

When all this is reviewed, it becomes logical that restaurants would start paying more

attention to reviews by trying to respond to them sooner, to pinpoint the issues that the

customers are most sensitive about and improve both their online presence and their

4

business practices. Having previously worked in customer support for an online website-

building service, most customer complaints related to e-commerce were about the ability to

automate the reviews process. Some businesses had problems with the fact that the

customer wrote a really nice review, but clicked on the wrong number of stars so it got

registered as a 1-star review, which reduced their overall rating. So, for them, a system where

the star rating would be generated solely based on the customers’ textual review would be

very beneficial.

However, this would only solve part of their problem. Most customers will not go

directly to the restaurant’s website to read the reviews. At this point, four services are proving

to be the ones where most customers post and / or read reviews. Those four services host

88% of all online reviews. Google is the absolute winner with 73% of the market, while Yelp

(6%), Facebook (3%), and TripAdvisor (3%) are the other three major forces (Review Trackers,

2021). For that reason, businesses would probably profit even more by having a model that

could analyse the reviews for them and classify them correctly. Finally, the restaurant owners

could focus on negative reviews to isolate what needs to be changed, or on the extremely

positive ones, which would showcase what needs to remain the same. And this is what this

project is focused on – trying to analyse restaurant reviews and build models which can

correctly classify reviews, according to their rating and sentiment.

1.2. Aims

The main goal of this project is to determine the overall rating of reviews on the scale

from 1 to 5, based solely on the text of the review. In addition to this, the goal is to build a

model that can classify the review as positive, negative or neutral. The actual field that is the

basis of the project, sentiment analysis, is also known as emotion AI or opinion mining and its

main purpose is to determine whether a review is positive or negative. In addition to this, it

can also be used to predict ratings for restaurant reviews (Zahoor, et al., 2020) and this is how

it is used in this project.

In order for these two goals to be achieved, a number of smaller goals needed to be

achieved as well. The first subset of these smaller goals is related to the actual process of

performing sentiment analysis. Before any of the actual work started, research was

conducted on previous works done on sentiment analysis. This step is crucial in order to avoid

steering the work in the wrong direction and prevent resource wastage. Then, quality

datasets, which meet the project requirements, were acquired. Once the data was found, it

was examined, processed and transformed so it could be ready for machine learning. Using

classification machine learning algorithms and the process of training, validating and tuning

the model, the best-performing algorithm was identified and tested against the final test data.

At last, in the final step of the process, the results were collated and presented using summary

tables and charts.

The other subset of smaller goals relates all the other work that was done in order to

ensure that the first subset of goals is achieved. First of all, a project plan was created so the

5

project execution could be monitored. Then, all the documentation was updated timely to

reflect all stages of the process. Furthermore, all the technology and tools needed to

complete the project were identified and explored. Finally, in order to present the final

results, as well as the results of the previous phases, data visualisation techniques were used.

Fulfilling all these goals ensured that well-performing models were being developed.

1.3. Technology

The technologies and tools used can be divided into two distinct groups. The first

group consists of tools used to manipulate the data, implement machine learning algorithms

and handle data visualization. Python (3.9) is the main programming language used in the

project. In order to run Python code, PyCharm IDE (integrated development environment)

was used locally at the start of the process. Google Colab notebooks were used mostly for

presentations as they offered a cleaner outline and were more convenient when a single line

of code needed to be run, especially on a project that has hundreds of lines of code. However,

as the project developed, the move was made towards Jupyter Notebooks and Anaconda.

One reason for this change was that with the increasing amounts of code, running it in

PyCharm was no longer feasible as the runtime was just too slow. Google Colab was

abandoned as the runtime of the code with the free account was also too slow. Python

libraries used to complete the project and their descriptions are available in Table 1.

Table 1 – Description of libraries used

Library Usage

Pandas Importing / exporting csv files, manipulating DataFrames

Openpyxl Importing / handling xlsx files

Re Cleaning data using Regular Expressions

Matplotlib Data visualization library

Seaborn Data visualization library

Plotly Data visualization library

NumPy Library used to process multidimensional arrays

NLTK Language processing library, items used from it for this
project:
RegexpTokenizer - text tokenization
FreqDist - frequency distribution
bigrams - used for analysing bigrams
trigrams - used for analysing bigrams
stopwords - used to identify stop-words in reviews
WordNetLemmatizer - used for lemmatizing reviews
SentimentIntensityAnalyzer – pre-built tool for sentiment
analysis, used only in the end to verify how the models built
perform compared to it

6

Scikit-Learn Machine learning library used for text vectorization and
building, training and testing models, items used for this
project:
CountVectorizer, TfIdfVectorizer - used to vectorize textual
data
GridSearchCV – used to find best hyperparameters for the
models
LogisticRegression - used to build, train and test models using
LogisticRregression algorithm
MultinomialNB - used to build, train and test models using
Naïve Bayes algorithm
RandomForestClassifier - used to build, train and test models
using Random Forest algorithm
LinearSVM - used to build, train and test models using
Support Vector Machines algorithm
confusion_matrix - builds confusion matrix for the current
implementation of one of the algorithms
accuracy_score - calculates the accuracy for the current
implementation of one of the algorithms
classification_report - lists the full set of metrics that outline
the model’s performance
make_pipeline – collates all the pre-processing and model-
building steps into one single call

tensorflow Library used for neural networks / deep learning, items used
for this project:
keras - deep learning API that enables Tensorflow to build
neural networks
Sequential – a model used for building neural networks
Dense – a type of layer added to the network
Activation – type of function passed into the layer
Droput – layer used to prevent overfitting
EarlyStopping – stops training when the relevant metric stops
improving
load_model – used to save and load neural networks models

selenium Automation / testing library used to scrape data from websites

time Library used to set delays between actions performed by the
machine during automated tasks

 Probably the two main choices that were the most difficult to make, in terms of

libraries used, are Scikit-Learn and TensorFlow. Scikit-Learn was, in the end, an obvious choice

for machine learning implementation as it has a very clean and uniform structure, as well as

good online documentation. Basically, once one model is built, it is easy to move to a

completely different algorithm as the basic syntax is similar enough (VanderPlas, 2017), which

is important when approaching the project in an iterative way. When it comes to TensorFlow,

the choice was primarily made due to its syntactic similarity to Scikit-Learn. This library is

7

primarily used to build either small or very large Neural Networks and relies on the Keras API,

Google’s deep learning tool (Géron, 2019).

The second group of tools are those used to manage the project completion. This set

of tools mostly consists of programs from the Microsoft Office package. Word was used for

all the documentation that was submitted, from project proposal, ethics declaration,

reflective journals, midterm submission document to the final technical document. Excel was

used mostly for initial review of files stored in xlsx or csv files. In order to create slides for

video presentations, PowerPoint was the preferred tool. As for the video-creation, videos

were recorded using Microsoft Teams and then edited using Kdenlive. An online tool was used

for project management – TeamGantt. As the name itself suggests, the tool is used to create

and host Gantt charts.

1.4. Structure

The document is divided into several main sections, each of which contains crucial

information on the project execution. Those are:

Data This section provides basic information on the datasets chosen. In
addition to this, it contains plots and charts which are the result of
data exploration. Its overall goal is to showcase the strengths and
weaknesses of each dataset and provide additional insight into what
changes needed to be made in the later stages of data manipulation.

Methodology Methodology explains the process of project completion. The stages
that are covered in detail in this section are data selection, pre-
processing and transformation. It also includes basic information on
the data mining and evaluation stages.

Analysis More detailed information on vectorization process, model building,
splitting data into training, validation and testing sets, and the
reasoning behind the choice of machine learning algorithms is
provided here.

Results This section outlines the overall results for all of the chosen machine
learning algorithms, taking into consideration different
hyperparameters, vocabulary sets, as well as different usage of
vectorizers and unigrams, bigrams and trigrams.

Conclusions

Final overview of the results with the clarification on the best
machine learning approach to use and potential future applications.

8

Further
Development or
Research

Details how the results could be further improved and what other
approaches can be taken to attempt this type of analysis.

2.0 Data

Zenodo Dataset

The first dataset acquired for the project was Social website reviews and ratings of

Dublin restaurants situated across 65 locations (Basheer & Kaushik, 2019). It is a public

secondary dataset and it was downloaded directly from the website in .xlsx format. Its size is

1.37MB. As seen from the title, it is a collection of restaurant reviews generated from social

media and focused on the Dublin area. The full dataset contains 10 000 reviews and 11

columns. The columns’ descriptions can be seen in Table 2.

Table 2 – Zenodo dataset description

Column name Description Data Type

Restaurant ID Restaurant names are anonymized
and replaced by an ID.

String

Location ID Restaurant location anonymized
and replaced by an ID.

String

Review A textual review written by a user for the
restaurant identified by the Restaurant ID and

the Location ID.

String

Review Sentiment Overall review sentiment – defaults to either
Positive or Negative. The dataset has 5000

positive and 5000 negative reviews.

String

Cuisine Dominant type of cuisine
offered by the restaurant.

String

Price Range Price range for a meal at the restaurant. It has
three default values – under 30€, 31-50€ and

more than 50€.

String

Food Rating User’s evaluation of food quality. User can
choose the rating between 1 and 5.

Integer

Service Rating User’s evaluation of the service in the
restaurant. User can choose the rating between

1 and 5.

Integer

Ambient Rating User’s evaluation of the ambient / atmosphere.
User can choose the rating between 1 and 5.

Integer

Overall Rating User’s evaluation of food quality. User can
choose the rating between 1 and 5.

Integer

Restaurant Rating

Overall restaurant rating which is a general
average of all the users’ overall ratings. This is
not a value derived from the values entered in

the columns 7-10.

Float

9

TripAdvisor Dataset

The second dataset was acquired primarily to account for the imbalance in the ratings

distribution of the first one. Unlike the first dataset, which has a low count of four-star

reviews, this dataset is perfectly balanced. The data was acquired by scraping the reviews of

40 different restaurants using Python and Selenium. The data was saved in a csv file, the size

of which is 1.04MB. There are 2000 reviews in the dataset, which consists of two columns

only – one containing the reviews (string) and the other one containing the ratings (integer).

Restaurant and user information were not used to create the dataset.

Yelp Dataset

The final dataset is the Yelp’s public dataset made available by the company for

academic purposes (Yelp, 2021). The dataset contains information collected from different

areas of the USA and Canada and is split into several different JSON files, each of them

focussing on a different area (businesses, users, tips…). For the purpose of this paper, only

review.json file was used. As this file is 6.45GB and holds more than 8 million reviews, from

wide range of businesses, a subset of this dataset only including restaurant reviews was used.

This subset contains 208 214 reviews and only two columns – stars (integer) and text (string).

The description of the original dataset is available in Table 3.

Table 3 – Yelp dataset description

Column name Description Data Type

review_id A unique ID for each review. String

user_id ID of the review author. String

business_id ID of the restaurant reviewed. String

stars The rating user assigned to the restaurant,
ranges from 1 to 5.

Integer

date Date of the review. String

text The user’s textual review of the restaurant. Integer

useful Number of times review was voted useful. Integer

funny Number of times review was voted funny. Integer

cool Number of times review was voted cool. Integer

Exploratory Analysis

Zenodo Dataset

This dataset was imported using Pandas and openpyxl libraries, both of which are

necessary for working with .xlsx files. Immediately after reviewing general information on the

dataset, it became clear that an additional column exists that was not mentioned in the

dataset description. Upon more detailed examination, it transpired that the column in

10

question (named Unnamed: 11), contains only one non-null value. Further investigation

showed that the column’s only value is located in row 2589 and that the value entered is

almost the mirror image of the value entered in the Review column. As there are no other

entries in that column and there are no other null values in the dataset, it was possible to

move to the next step. However, this check did find a useful piece of information which is

useful for data cleaning. The actual review text in that row contains an escape character (\n)

which needs to be removed. If that column is ignored, the resulting count of unique values

for non-numerical columns can be seen in Table 4.

Table 4 – Unique values distribution in Zenodo dataset

Restaurant ID 211
Location ID 65
Review 9982
Cuisine 43

Note that Price Range and Review Sentiment are not included in the table as their

unique values have previously been identified.

Regarding other columns, it is interesting to note that not all reviews are unique. This

is not surprising as there could easily be several reviews with the exact same text, especially

if the review text is short and generic. An additional check was made to identify if these are

complete duplicates, but full matches were not found, meaning that even if the review text is

the same, the rest of the information is different. Furthermore, there are over 40 different

types of cuisines included in the dataset, with Irish, Italian and British dominating. The ten

most popular ones are presented in the chart in Figure 1. All this shows how data was

collected on a very diverse set of restaurants, cuisines and locations.

Figure 1 – Top 10 cuisine types in Zenodo dataset

11

When it comes to the numerical columns, Food Rating (Figure 2), Service Rating

(Figure 3) and Ambient Rating (Figure 4) are mostly dominated by extremely positive reviews

– five-star ratings account for around 50% in each of them. However, there seems to be one

main difference between them – users were much more inclined to give 1 star when it comes

to service rating compared to the other categories. Also, in general, 4 stars do not seem to be

awarded in any of the categories as often as other ones – only Ambient Rating has over 10%

of 4-star ratings.

Figure 2 – Food rating Figure 3 – Service rating Figure 4 – Ambience rating

Similar results can be seen when the column of interest, Overall Rating, is reviewed.

Again, the number of 4-star reviews is quite low, while 5-star ratings dominate the dataset.

In case other datasets had the same imbalance, this might have impeded the model from

correctly classifying 4-star reviews as the number of 4-star reviews it can be trained on is fairly

limited. The distribution of rating preferences can be seen in the chart in Figure 5.

Figure 5 – Distribution of ratings in Zenodo dataset

12

When all this is taken

into consideration, it is no

surprise that the dataset has

almost identical number of

positive and negative reviews,

as evidenced in Figure 6.

Ultimately, the balanced

nature of the dataset was the

main driver behind the

decision to use it for the

analysis.

TripAdvisor Dataset

This dataset was imported using Pandas. The dataset itself is perfectly balanced as it

contains 2000 reviews and each rating has 400 occurrences in it. This can be seen in Figure 7.

Figure 7 - Distribution of ratings in TripAdvisor dataset

Figure 6 – Distribution of positive and negative reviews

13

Yelp Dataset

The full dataset containing all reviews and ratings was imported using Pandas. Then,

a smaller subset was selected, containing 208 214 reviews – those only belonging to

restaurants. The smaller dataset does echo the overall distribution of the full dataset, as the

positive reviews dominate. However, based on the overall high number of reviews available,

this should still enable the model to correctly predict the correct rating. The distribution of

ratings (or stars in this dataset) is available in Figure 8.

Figure 8 - Distribution of ratings in Yelp dataset

3.0 Methodology

In order to complete the project, the KDD process methodology was followed. KDD

stands for knowledge discovery from data and its main goal is to identify “valid, novel,

potentially useful, and ultimately understandable patterns in data” (Fayyad, et al., 1996). This

methodology relies on an interactive and iterative process where decisions are made by the

researcher and that is especially important for this project. As there is a need to keep tuning

the model and revisit previous phases in order to make different choices in regards to pre-

processing and transformation, this process is a perfect fit here. KDD consists of 5 major

stages, each of which is explained in its own section.

Data Selection

When it comes to the data selection, KDD defines this phase as the one where the

target dataset is selected, based on a subset of variables on which data exploration is to be

performed and which can be used for feature generation and machine learning (Fayyad, et

al., 1996).

14

In previous works conducted on a similar topic, the number of reviews used ranged

from 700 (Huda, et al., 2019) to 4000 (Zahoor, et al., 2020). All of them specified the

importance of having a balanced dataset which contains approximately the same number of

positive and negative reviews. An unbalanced dataset of 200 positive and 500 negative ones

proved to be a problem in one of them (Zahoor, et al., 2020). All of the datasets, among other

columns, contained two most important ones – a textual review column and another column

that served as the target column, which served for the validation of their model. That column

had either a numerical rating (usually 0, 1 and 2 for negative, neutral and positive) or the

information on whether the review was positive or negative.

Based on that information, it was important to acquire datasets with the following

characteristics:

▪ contain textual reviews of restaurants only

▪ contain a column that denotes if the review is positive, negative or neutral and /or a

column that contains numerical rating (1-5 or 1-10)

▪ contain at least 2000 rows as most previous research was done on smaller samples

than that

▪ the datasets are publicly available and have clear permissions available on their

websites or allow for the licence to be granted by contacting the author(s) – clear

permissions were preferrable as licence-granting process can sometimes be fairly

long and defer the start of the project

The Zenodo dataset met all those requirements. It is actually the only one that offers

both the split into negative / positive reviews and the star rating in range between 1 and 5.

The Yelp dataset met most requirements. It was publicly available on their website for

academic purposes and it did offer ratings from 1 to 5. The only issue with that dataset is that

it does not offer great balance between the ratings, but this is offset by the sheer volume of

reviews available. The TripAdvisor dataset was created using Selenium to scrape the reviews

from their website, with the goal to create a dataset that contains a perfect split between the

5 different ratings. As the dataset does not contain any user or business information, the

scraping process does not violate their policies. The full process of data exploration on these

datasets is explained in the previous section. Table 5 contains the information on the other

datasets considered and the reason why they were not chosen.

Table 5 – Other datasets considered

Name URL Suitability

TripAdvisor reviews of
hotels and restaurants

by gender

https://figshare.com/articles/dat
aset/TripAdvisor_reviews_of_hot
els_and_restaurants_by_gender/
6255284

The dataset had clear
licensing instructions, but it
had neither the numerical
rating nor the information
on positivity / negativity of
the review so training the
model would not be
possible.

15

Wake County
Restaurant Reviews

https://waketechanalytics.opend
atasoft.com/explore/dataset/wak
e-county-restaurant-
reviews/information/

There was no clear licensing
information and the
numerical ratings did not
align with the actual review
text. For example, 1-star
reviews were sometimes
very positive.

TripAdvisor
Restaurants Info for

31 Euro-Cities

https://www.kaggle.com/damien
beneschi/krakow-ta-restaurans-
data-
raw?select=TA_restaurants_curat
ed.csv

Licensing not clear and the
rating column is the overall
restaurant rating and not the
individual review rating.

RecSys2013: Yelp
Business Rating

Prediction

https://www.kaggle.com/c/yelp-
recsys-
2013/data?select=final_test_set.z
ip

Licensing not fully
transparent, the dataset
seems like a modified
version of the older Yelp
dataset.

Restaurant Customer
Reviews

https://www.kaggle.com/vignesh
warsofficial/reviews

Again, licensing not fully
clear. This dataset is widely
used across Kaggle for
sentiment analysis and
opinion mining. Its main
drawbacks are that it only
identifies reviews as positive
or negative and the total
number of reviews is under
1000.

Pre-processing

KDD defines this phase as the phase where noise or outliers are identified and

removed if necessary. In addition to this, necessary information is collected that is later used

for model-building (Fayyad, et al., 1996). This is further expanded by the processes used for

this particular type of data analysis – sentiment analysis. In order to achieve better

performance of the model, data pre-processing needs to be accompanied by the extraction

of relevant features. Some researchers claim that this process includes noise removal,

normalization, tokenization and vectorization (Krishna, et al., 2019), while others claim that

tokenization and vectorization are part of the transformation phase, or actual processing

phase, as they refer to it (Haque, et al., 2019). For the purpose of this paper, only vectorization

has been classified as the transformation phase as all the other preceding processes seem to

fit pre-processing definition better than transformation.

16

The steps covered in this phase are outlined below:

a) Isolating null values

This check is done to verify whether there are any null values in the columns

considered important for the analysis. As mentioned before, there were null

values in the extra column of the Zenodo dataset. However, as that column

will not be used for further processing of the data, no action is taken. However,

some of the items in the textual review column were quite short and

uninformative – for example, one of them only contained the word “This”. As

these entries cannot really help in predicting either the sentiment or the rating,

seven of them were removed in total.

b) Isolating escape characters in the reviews and removing them

The next stages were all performed on textual reviews. During the data

exploration stage, the row that contained the only entry in the unnamed

column of the Zenodo dataset also pointed to the fact that there are some

escape characters in the text. Specifically, the new line character (\n) was

discovered. As this character was joined with the next word, there was a

possibility that only the backslash character would be removed if a regular

expression is applied to it. This would mean that instead of \nbe, the word

would later be recorded as nbe. In order to prevent this, a check was done for

the most common escape characters (\n and \t). Only new line escape

characters were found and immediately replaced by an empty space using a

function defined for that purpose. This would ensure that these characters are

not present when the next step is performed. To present this in action, a

sample review was taken as an example. This is what the review looked like

before any pre-processing was done:

“Cocktails were very impressive and a perfect end to a seriously tasty meal.

:)

A very deserved 4 5 star rating!!!.”

Once the newline character was removed, the structure of the review

changed:

“Cocktails were very impressive and a perfect end to a seriously tasty meal.

:) A very deserved 4 5 star rating!!!.”

c) Lowercasing the review text

The next step was done in order to ensure that the words are properly

recorded. At this point, the words Restaurant and restaurant would be

considered as two different words as one is capitalized and the other one is

not. This is solved by lowercasing the words. This was also done using a specific

17

function that takes in all the reviews and turns all of them to lowercase. The

resulting review is:

“cocktails were very impressive and a perfect end to a seriously tasty meal. :)

a very deserved 4 5 star rating!!!.”

d) Removing special characters

Once the review text was lowercased, special characters (dots, question marks,

commas…) were removed using regular expressions. At this point, the review

contains only lowercased words, with no special characters or numbers:

“cocktails were very impressive and a perfect end to a seriously tasty meal

a very deserved star rating”

e) Removing extra whitespace

By examining the reviews in more detail, it transpired that the reviews

contained plenty of whitespace. So, a special function was written to isolate

those sections and replace all the excessive whitespace with only one space.

This was crucial for the next steps where the reviews would be split into

individual words. The resulting sample review now looks like this:

“cocktails were very impressive and a perfect end to a seriously tasty meal a

very deserved star rating”

f) Tokenizing the review text

Tokenization is defined as breaking a piece of text into individual words that

bear a specific meaning (Haque, et al., 2019). By definition, a token is a

sequence of characters that is treated as a group (Bird, et al., 2009). In this

case, that group of characters are meaningful words.

As all the reviews, at that point, contained reasonably clean text, it was

necessary to split each of the reviews from sentence level to word level. This

created a list of words for every row of the dataset, which allowed for further

pre-processing. The process was completed using the NLTK library’s

RegexpTokenizer. The tokenized sample review is now a list of following

words:

cocktails, were, very, impressive, and, a, perfect, end, to, a, seriously, tasty,

meal, a, very, deserved, star, rating

g) Removing stop-words

The previous steps were done so the individual words can be checked against

a list of words often referred to as stop-words. These words include common

words, like I, the, is, are – the words that do not add much additional meaning

18

to the sentence. These words were removed from the reviews with the help

of stop-words collected by the NLTK library, with some additional words added

after examining the data (yelp, com, biz, ca, www, http, us were very common,

but convey no relevant meaning). The tokenized sample review with no stop-

words is a list of following words:

cocktails, impressive, perfect, end, seriously, tasty, meal, deserved, star, rating

h) Lemmatizing the reviews

This part of the process ensures that the words are cleaned of suffixes. For

example, the word cocktails becomes cocktail, which means that the plural and

singular version of the word are now considered the same word. The sample

review now contains these words:

cocktail, impressive, perfect, end, seriously, tasty, meal, deserved, star, rating

Transformation

This phase is defined by the KDD methodology as the one where useful features are

found to represent the data and transformation methods are used to reduce the number of

variables under consideration for the data mining phase. It is also the phase where these

features are chosen based on the type of algorithms which are to be used (Fayyad, et al.,

1996). For this reason, as the classification algorithms would best fit this use case, the process

of transformation starts with creating the main feature that the classification will depend on

– vectorized lists of words.

The steps taken in this phase are:

a) Creating the review corpus from the lemmatized text

Now that the reviews have gone through the cleaning process, each of the

reviews is joined back into a string. This string contains the lowercased review

sentence cleaned of punctuation, special characters, excessive whitespace and

stop-words. All of the individual strings form a list of reviews – the review

corpus. This corpus can now be used to prepare the data for the machine

learning process. Note that corpus is sometimes used as the term for the

whole dataset, especially in the context of text analysis. Each entry in the

dataset (or row) is then called a document (Muller & Guido, 2017).

The final state of the sample review, after the textual transformation:

“cocktail impressive perfect end seriously tasty meal deserved star rating”

19

b) Count Vectorizer

In order for the machine learning algorithms to be able to perform the

classification, the words in the corpus need to be transformed into numerical

values. This process, of converting arbitrary data into well-behaved vectors, is

called vectorization (VanderPlas, 2017). The first way of doing this is using the

Count Vectorizer (also referred to as CV), which creates a numerical array out

of the text. The process is done using the Scikit-Learn library and the theory

behind it is explained in more detail in the Analysis section.

c) TfIdf Vectorizer

Similar to Count Vectorizer, Scikit-Learn’s TfIdf Vectorizer uses the textual

reviews and transforms them to a numerical array so they can be used for

machine learning. As with the previous vectorization technique, the theory

behind it is further explained in the Analysis section.

In addition to transforming the actual textual reviews, it was also necessary to

organise the three datasets in a way that enables them to be joined into one dataset. The

following steps were applied to get the dataset that contains both the independent and the

target variables:

a) Column name change

As every dataset has different names for the textual review and the ratings

columns, it was necessary to unify the naming convention first. The final choice

for those two column names was review and rating so this needed to be

reflected in each individual dataset. Columns in the Zenodo dataset were

changed from Review and Overall Rating to review and rating, while the

columns Restaurant ID, Location ID, Review Sentiment, Cuisine, Price Range,

Food Rating, Service Rating, Ambience Rating, Restaurant Rating and

Unnamed: 11 were dropped. The TripAdvisor dataset did not require major

changes – only the reviews column was renamed to review. Finally, in the Yelp

dataset, the columns text and stars were renamed to review and rating, while

the rest were dropped (review_id, user_id, business_id, useful, funny, cool,

date).

b) Joining the datasets

The three datasets were then combined to form a joint

dataset, consisting of two columns (review and rating)

and 220 207 reviews. When joining the data, the items

were also randomized so that the reviews from the same

dataset are not grouped together. An overview of the

ratings distribution (Figure 9) shows that the joint

datasets is now skewed towards higher ratings, with the

lowest numbers being assigned to 1 and 2-star ratings.

Figure 9 - Ratings
distribution

20

c) Feature engineering the sentiment column

Feature engineering Is denoted as using important

information relevant for the problem and turning it

into numbers that can be used to build the feature

matrix (VanderPlas, 2017). This entailed creating the

sentiment variable, that would classify the reviews as

positive, negative or neutral. In this case, reviews that

had the ratings 1 or 2 were labelled as negative (0), those that had rating 3

were labelled as neutral (1) and the ones rated with 4 or 5 stars were labelled

as positive (2). Again, as seen from Figure 10, the positive reviews dominate

the dataset. Now, the final dataset contains three columns – review, rating and

sentiment.

Data mining

The data mining process, which is sometimes used to denote the whole process of

acquiring data, data-cleaning, transformation, model-building and evaluation, denotes the

part of the process which involves machine learning and model-building in KDD. Machine

learning itself deals with building mathematical models to help understand data. The models

learn by observing data using customizable parameters. Once these models have been tuned,

they can be used on new data to gain insights or predict a certain outcome (VanderPlas, 2017).

When considering this problem, in both cases (rating and sentiment), the reviews need to be

grouped in either 5 or 3 different groups. This means that the best fit for the problem are

classification algorithms. These algorithms work on the same basic principle – a set of

variables of features are selected as independent variables which the model uses in order to

try to predict the class label, an item from a predefined list of possibilities. This is done by first

training the model on a part of data, which is called the training set. Later on, the model needs

to be validated on previously unseen data – usually referred to as test or holdout set (Muller

& Guido, 2017). The performance of the model is measured using some kind of metric or a

fitness function (Géron, 2019).

Classification algorithms are divided into two subgroups – binary and multiclass (or

multinomial). While binary classification attempts to group items into two categories,

multinomial classification is used when there are more than two labels available for

classification (Muller & Guido, 2017). During this part of the process, several different

machine learning algorithms are used to classify the reviews. These algorithms are listed

below, but the reasoning behind the choice, the theoretical background and their historical

performance are explained in the Analysis section:

▪ Logistic Regression

▪ Naïve Bayes Classifier

▪ Support Vector Machines

▪ Random Forest Classifier

▪ Neural Networks

Figure 10 - Sentiment
distribution

21

Interpretation / Evaluation

Interpretation / evaluation is done using statistical approach once the machine

learning results are obtained. The terms used to evaluate whether an algorithm performs well

or not are accuracy, precision, recall, and F1-Score (Haque, et al., 2019). In addition to this,

data visualization (different plots and charts using different tools), confusion matrices and

summary tables containing results are also used to interpret and evaluate results. The overall

process, as well as all the terms, are outlined in more detail in the Analysis and Results

sections.

4.0 Analysis

For the actual analysis, several things needed to be considered – the algorithms to be

used, the features to be used for the algorithms to classify the data, the ratio of train /

validation and test data, and the process to be employed. All of these are explained in more

detail below. Note that the in-depth explanations of algorithms and their performance review

from previous researches are included in this section, instead of the Introduction. This was

done as it was necessary to explain the full theoretical background behind sentiment analysis,

pre-processing and transformation and provide detailed information on the dataset structure

and its size, in order to be able to offer a fully feasible explanation on the decision-making

process used for the choice of algorithms.

Choice of Machine Learning Algorithm

The first decision made regarding the analysis process was compiling a list of suitable

machine learning algorithms. As the goal is to classify the reviews according to their ranking

and sentiment, the choice had to be made between the classification algorithms. While

exploring previous works on similar topics, four algorithms seemed to be the ones used the

most often, with satisfactory results (Haque, et al., Huda, at al., Krishna, et al., Zahoor, et al.).

Neural Networks were included as the fifth option primarily because of the sheer volume of

the data and because they generally perform better than the traditional algorithms when the

datasets are large and the number of features high, especially with the great increase in

computers’ processing power in the last couple of decades (Géron, 2019). These advances are

best observed on one of the recent projects, where the researchers worked on the ImageNet

dataset, containing close to 1.5 million images, and managed to get the classification accuracy

of 91% (Yu, et al., 2022).

22

Logistic Regression

Logistic Regression is one of the algorithms most widely used in similar classifications.

Its default use is for binary classification. In these cases, it uses discrete values and maps the

function of any real value into 0 and 1 (Zahoor, et al., 2020). It usually does not default to 0

or 1, but it relies on the estimated probability – if probability of belonging to a certain class is

greater than 50%, then it assumes that the entry (document) belongs to class 1. If this is not

the case, it labels the item as class 0 (Géron, 2019).

However, Logistic Regression can also be used for multiclass classification. In that case,

each class can be compared directly to all the other classes at the same time to determine if

it belongs to that class or not – this is the so-called one-versus-rest approach. Another

approach, called one-versus-one, compares the class against each of the other classes

separately. So, while in the first case Logistic Regression would try to label the review as 1-

star or any other class, the second approach would separately try to classify review as 1-star

or 2-star, then 1-star or 3-star, and so on. Scikit-Learn implements the multiclass version of

the classifier by default in cases when it automatically detects that there are more than 2

classes. However, to ensure the algorithm employs multinomial classification, this can be

manually set by defining the parameter multi_class to be multinomial (Géron, 2019).

Logistic Regression is a popular choice as the training process is faster than in most

algorithms. Also, it scales well to large datasets (Muller & Guido, 2017), which is important as

this project uses between 50 and 100 times more examples than similar projects. In the

researches reviewed, its accuracy ranged between 64%, when classifying reviews as good,

bad or excellent (Haque, et al., 2019), and 94% (Huda, et al., 2019), when performing binary

classification.

Naive Bayes

Naïve Bayes range of classifiers is somewhat similar to the linear models, like Logistic

Regression. The multinomial version of this algorithm, used in this project, is most commonly

used is text classification, specifically using bag of words or TfIdf approaches (Albon, 2018),

and some version of it has been used by all the researches consulted. The algorithm works in

a way that it takes in the data counts, for example, the number of times a word appears in a

sentence, and then uses the average value of each feature for each class. Finally, it classifies

an entry by comparing it to the statistics of each of the classes. Once it finds the best match,

it assigns that label to the entry (Muller & Guido, 2017).

Many researchers use Naïve Bayes as the first algorithm to train their data as it is very

fast, works well with large datasets, it is easily interpretable and does not have many

parameters that need to be tuned. This ensures quick results that can indicate where to go

next, in terms of algorithm selection (VanderPlas, 2017). The main problem with Naïve Bayes

is that the performance of models built using it is often lower than those of other algorithms

used for sentiment analysis (Muller & Guido, 2017). When it comes to the researches

23

consulted, the algorithm proved to be fairly dependable for binary classification as it achieved

above 80% accuracy in all of the resources reviewed, peaking at 92.75% (Krishna, et al., 2019).

Support Vector Machines

This algorithm is mostly referred to as SVM. It is well-known for its “fast and

dependable classification which resolves two-group classification problems” (Zahoor, et al.,

2020). Similar to Logistic Regression, it does indeed default to two categories, but it can also

be used for multiclass classification problems. SVM algorithms work well for small and

medium-sized datasets (Géron, 2019). In this case, as the dataset is quite large, the

recommended version of the algorithm to be used is LinearSVC, as the basic implementation

of the algorithm does not scale well if the sample size is over 10 000 (scikit-learn developers,

2022a).

This algorithm is a very popular one as it is fast at prediction once it has been trained.

In addition to this, it is memory-efficient and works well with larger datasets (VanderPlas,

2017). Furthermore, it performed extremely well in previous researches. Out of the four main

papers reviewed, it had the best results in three of them, with its accuracy peaking at 95.23%

when performing binary classification (Krishna, et al., 2019). However, its accuracy level did

drop to 75.58% when the reviews were classified in three categories (Haque, et al., 2019).

Random Forest

Random Forest belongs to the so-called Ensemble methods. These methods use

several different algorithms to classify data, based on the majority vote (Géron, 2019). In case

of Random Forest, it is an expanded version of the Decision Tree algorithm. On its own, the

Decision Tree algorithm “applies a series of questions and conditions to formulate the tree-

like structure where the leaf nodes will result in required classes” (Krishna, et al., 2019). This

basically means that this tree is a flowchart consisting of the root node, which is split based

on a certain condition. Each resulting node is then split further based on other conditions.

This process ends once the leaf node is reached – the one that finally provides the label and

classifies the document (Bird, et al., 2009).

 Random Forest classifier forms a specified number of decision trees and integrates

them in order to obtain more accurate classifications (Zahoor, et al., 2020). It is named after

the way it operates – each tree is grown using different splitting criteria and different

features, so this results in diverse trees, which are obtained completely randomly. By using

that approach, the model obtains different perspectives on the possible class of a document

and the final decision is made by aggregating the results of every tree built. For that reason,

it outperforms regular Decision Trees (Géron, 2019). This algorithm is also often used for

sentiment analysis and it was the best performing one, with its accuracy for binary

classification at 95%, in one of the previous papers (Zahoor, et al., 2020).

24

Neural Networks

 As mentioned previously, this approach has not really been used in previous research

on the topic, but it seemed like it would be a good idea to include it as it has the potential to

perform well with large datasets and high-dimensional data. Neural Networks (also called

Artificial Neural Networks or ANNs) stand for a machine learning approach which tries to

emulate the network of biological neurons found in human brain. This approach is considered

to be very versatile, powerful, and scalable, which makes it ideal for a dataset with more than

200 000 textual reviews (Géron, 2019).

The functioning of this algorithm is based on MLPs (multilayer perceptrons). A typical

network built using MLPs consists of one input layer, one or more hidden layers (middle

layers) and a final layer - the output layer (Géron, 2019). In case of multiclass classification

tasks, MLPs perform a series of calculations between every layer of the network in order to

assign the correct label. The main problem with this approach is that the model, especially

with larger datasets, can take a long time to train and tune. However, sometimes even a

simple network can yield pretty good results (Muller & Guido, 2017).

Train / validation / test split

The only way of being certain that a model can perform well on new data is to evaluate

it on the test set (Muller & Guido, 2017). In this case, the decision was made to split the data

into three sets. The first set (training set / train set) is the one where all the iterative work is

done – changes made to pre-processing, hyperparameters, use of algorithm. For training

purposes, 80% of the dataset was chosen – a total of 176 165 reviews. These reviews were

saved into a separate file (train_reviews.csv) for easier access. The changes made to the

model are verified using the validation set, which consists of 10% of the data from the original

dataset (22 021 reviews). This part of the dataset is primarily used to verify if the changes

made to the model were effective or not. That dataset is constantly reused and was also saved

in a separate file for easier access (validate_reviews.csv). Finally, as it is important for the final

testing to be on a set of data never before encountered by the model, the safest way to do

that was to separate a further 10% of the dataset and put it aside until the models are finely

tuned. This way, the models can be trained and validated safely until the best configuration

is found. The total of 22 021 test reviews were saved in a file named test_reviews.csv.

As for the previous researches, the splits between training and validation sets differ.

Some use 80:20 ratio (Krishna, et al., 2019), some 70:30 (Huda, et al., 2019), some 90:10

(Haque, et al., 2019) and some experiment with ranges from 70:30 to 80:20 (Zahoor, et al.,

2020). The split used for the train / validation / test sets is 80:10:10. That way, the data can

be trained, validated and tested, each time using more reviews than the previous researches

used for the full set combined. The large training dataset was primarily selected due to the

fact that the classification is done based on 5 or 3 categories, while all the previous papers

classified the reviews only as positive / negative, only seldom trying to detect the neutral

ones. This provides models with plenty of examples they can learn from.

25

Features

In order to classify the review

rating, only textual reviews are used

as the independent variable. Even

though some of the datasets contain

other information that could be

helpful in better classifying the

reviews (type of cuisine and food,

service, and ambience ratings), the

goal is for the model to be trained to

categorize the review solely based

on the actual text of the review. The

target variables are the rating and

the sentiment columns. The rating

column was already ready for machine

learning as it contained integer values in the range from 1 to 5, while the sentiment column

was feature engineered, as previously explained. When the training set is considered, it is

visible that both the rating (Figure 11) and sentiment distributions (Figure 12) closely mirror

the ones seen in the overall set, with higher ratings and positive reviews dominating the set.

Figure 12 - Test set sentiment distribution

However, the review column, where the actual textual reviews are, needed to be

converted into a format that can be used by machine learning algorithms. This was done by

cleaning the review text first, as explained in the Methodology section, followed by

vectorizing the review text using two different methods, explained below.

Figure 11 - Train set ratings distribution

26

Count Vectorizer

Count vector is “a data set matrix notation in which each row represents a corpus

document, each column represents a corpus term, and each cell represents the frequency

count of a particular term in a particular document” (Huda, et al., 2019). This approach is

based on the so-called bag of words model, where the words are represented based on their

counts, while completely ignoring grammar and word order. Using this approach, all the

words from all the reviews are collected into one list. After that, each of the reviews is

considered as a separate document where the words absent from that particular review are

recorded as 0 and those present are recorded as the number of times they appear in the

review. The words with the lowest counts are removed from the bag of words as they are not

used often so their potential influence on the overall rating is very low (Krishna, et al., 2019).

 Scikit-Learn’s implementation is called CountVectorizer() and it stores the data in a

SciPy sparse matrix, which omits items that are recorded as 0. Due to fact that many of the

words do not appear in most of the reviews, omitting those entries prevents the waste of

memory, while also not compromising the model-build process as those entries would not

significantly contribute to the classification (Muller & Guido, 2017). However, as this

vectorizer only relies on raw word counts, this results in overreliance on words that appear

very frequently, but do not add much to the meaning. For that reason, this approach

sometimes does not work well (VanderPlas, 2017).

TF-IDF Vectorizer

This vectorizer is the result of term frequency (TF) and inverse document frequency

(IDF). Term frequency is calculated by dividing the number of times a term occurs in a

document (one review) by the total number of terms in a document (in that same review).

Inverse document frequency shows the importance of a given word across all the documents

(all the individual reviews combined). It can be derived by calculating the logarithm of the

quotient of the number of documents and the number of documents containing the term

queried (Krishna, et al., 2019). The formula for this vectorizer can be seen in Figure 13.

Figure 13 - TF-IDF formula

In this formula, N is the number of documents in the dataset, while Nw is the total

number of documents in the dataset that the word (w) appears in. tf (the term frequency)

stands for the number of times the word (w) appears in the document (d) (Muller & Guido,

2017).

27

 This vectorizer is implemented as TfIdfVectorizer() in Scikit-Learn and it is also saved

as a SciPy sparse matrix. Its implementation is mostly preferred over CountVectorizer() as it

generally performs better with most algorithms.

N-grams

Both of these vectorizers can be set up to generate data that takes different token

lengths as input, also called n-grams. This means that, in order to properly test a model, it

needs to be tested using different n-gram lengths as different models will react differently to

the input length, as well as the pre-processing done. Most commonly used options are

unigrams (one-word combinations), bigrams (two-word combinations) and trigrams (three-

word combinations) (Bird, et al., 2009).

Most often occurring n-grams can be extracted using frequency distribution, which

calculates the frequency of each vocabulary item in the corpus. NLTK library offers a very

streamlined way to achieve this, using the FreqDist() method (Bird, et al., 2009).

When the top 20 unigrams of the training set are explored (Figure 14), it is visible that

some of the words do reflect the important items that might constitute a positive or a

negative review. However, there are some words which, at first glance, do not seem like they

would impact the review a lot – these not only include words like would, back, get but also

words like food, place and service. For review analysis, it seems like the words great, good

and like are the most important ones.

Figure 14 – Most common unigrams in the training set

28

After reviewing bigrams (Figure 15), some of these words that could have easily been

discarded when only unigrams are considered, show how important they are. Food now

features in combinations like great food, good food and food great, while place now appears

in great place and love place. This just shows how much more is gained when bigrams are also

taken into account.

Figure 15 - Most common bigrams in the training set

Finally, trigrams in Figure 16 uncover even more information. Combinations like would

highly recommend and would definitely recommend further consolidate the necessity of

using different input lengths for machine learning. In addition to this, words like back gain

extra meaning here in expressions like would go back and definitely come back.

Figure 16 - Most common trigrams in the training set

29

Process

 Due to the complex nature of the data itself, the memory and processing power

needed to run the algorithms, and the overall number of different algorithms, the training /

validation / testing process was split into several different stages in order to streamline it as

much as possible. All the stages are explained below.

Different n-gram counts and number of features

As some researchers say, it is helpful to start with the so-called kitchen sink approach,

where all the features are used in order to reduce the number of features to the ones that

are actually important for model-building (Bird, et al., 2009). A different approach is taken

here. Due to the large amount of reviews, the total number of features (words or expressions)

extracted by both vectorizers is immense. For that reason, some initial testing was done,

which confirmed that, for most models, performance plateaus when 3000 features are used.

For that reason, instead of using tens of thousands of features to train the model, the

parameter max_features is set when using both Count Vectorizer and TfIdf Vectorizer. This

parameter helps to limit the number of most important features used to build the model. All

the models are tested using 6 different configurations of maximum features – 500, 1000,

1500, 2000, 2500 and 3000.

In order to get the best performing models, another vectorizer parameter is used to

create the feature set used by the machine learning algorithms – ngram_range. This

parameter allows for different sets of n-grams to be defined when building the features

(Muller & Guido, 2017). For the purpose of this stage, 6 different variations were used:

• unigrams only

• unigrams and bigrams

• unigrams, bigrams and trigrams

• bigrams only

• bigrams and trigrams

• trigrams only

In this stage, the main metric used to evaluate the models’ performance is accuracy.

This metric displays the overall percentage of reviews that were correctly classified. Basically,

it is calculated by dividing the number of correctly classified reviews by the number of total

reviews (Bird, et al., 2009). As with both use cases, ratings and sentiment classifications, there

is no preference on which class is more important to predict so this metric is simple and

compact enough to eliminate any models that are not performing well.

For the purpose of this stage, a function was written which uses either Count

Vectorizer or TfIdf Vectorizer to build the feature set and then train the selected model using

all the combinations of n-grams and feature sizes outlined previously. By the end of this stage,

only one n-gram range / feature size combination of each vectorizer for each of the machine

30

learning algorithms is kept for further tuning. These combinations are selected based on the

accuracy levels obtained on the validation set.

Note that all models are built using the Scikit-Learn’s default settings, except for:

• Logistic Regression

o multi_class hyperparameter is set to multinomial due to the nature of

the classification task

o max_iter hyperparameter is set to 1000 as the default number of

iterations (100) is not enough for the model to classify the reviews

• Support Vector Machines

o dual hyperparameter for the LinearSVC is set to False as the number of

reviews is higher than the number of features

• Neural Network

o Sequential is the model used to build the network as it is simple to

manage – it consists of a single stack of layers sequentially connected

o Input layer - dense layer with relu activation and 10 units – units

signify the number of neurons used, dense means that every neuron

in the current layer is connected to every neuron in adjacent layers,

activation functions are aimed at introducing nonlinearity between

the layers - relu stands for Rectified Linear Unit function and it is used

due to its very fast computational time, the input_shape parameter is

set to the number of features for each observation – this would range

from 500 to 3000 (Albon, 2018)

o Hidden layer – middle layer, dense, activation is also set to relu, 10 units

used

o Output layer – dense, 6 units for ratings classification, 3 for sentiment,

activation function used is softmax as that is the one used for multiclass

classification

o When compiling, loss function is set to the one required for multiclass

classification (sparse_categorical_crossentropy), optimizer is set to fast

and efficient adam, the number of epochs to 200 (number of iterations

over the dataset) and the batch_size to 128 (number of documents

taken in at once) (Géron, 2019)

Hyperparameter tuning on smaller samples

 In order to get better results, one of the most common approaches is further tuning

of hyperparameters as the default hyperparameters do not always provide the best

performance, especially when more complex algorithms like Random Forest or Neural

Networks are considered. This step is not only performed in order to get better results, but

also to avoid overfitting of the model – when model performs well on training and validation

sets, but does not perform well on the data that was never encountered before (test set)

(Géron, 2019).

31

 The approach taken here is one of the most popular approaches used to tackle the

problem – a combination of the so-called grid search and cross-validation. Grid search

(implemented in Scikit-Learn as GridSearchCV) is done by compiling a dictionary consisting of

hyperparameters and the values that are most likely to improve the performance of the

model. Once that data is compiled, grid search searches through all the possible combinations

of the hyperparameters defined in order to find the best option. As an extension of its

function, it also uses cross-validation, evaluation of the same set of hyperparameters on

several different versions of the dataset. This further reenforces whether the hyperparameter

combination is a good fit or not as it is run on several different versions of training and

validation data (Bird, et al., 2009).

 As the overall size of the dataset did not allow for the efficient hyper-parametrization

to be run, due to the processing power required, a smaller subset of the training set (15 000

reviews) was used for grid search. The cross-validation was set to 3, which means that the

subset was split in training and validations sets in three different ways, ensuring that the

resulting set of hyperparameters is the one that has the lowest possibility of overfitting. The

main metric used was accuracy, same as in the previous stage. Note that due to the

complexity of the hyper- parametrization of Neural Networks, this approach was not included

at this stage and its hyperparameters are only manually tuned.

Logistic Regression Hyperparameters

 Logistic Regression already had two hyperparameters set by default (max_iter and

multi_class). Except for these two, the two most important hyperparameters to set were

solver and C. With solver, it is a choice between 5 different algorithmic solutions used to

classify the data using Logistic Regression. One of them (liblinear) is not suited for multiclass

classification and two of them were not performing at all, even on smaller sets (sag and saga).

This meant that the two possible solvers can be newton-cg and lbfgs. The choice of these two

solvers also impacted the choice of the penalty hyperparameter, which is directly linked to

the solver chosen so the l2 and none were used (scikit-learn developers, 2022b).

Finally, another important hyperparameter was C, which determines the strength of

the regularization. Its higher values mean less regularization, placing more importance on

classifying each review correctly. Low values, on the other hand, will force the algorithm to

try and fit the majority of reviews correctly (Muller & Guido, 2017). In this case, to account

for those differences, the values of C were set to 0.6, 0.7, 0.8, 1, 5 and 10.

Naïve Bayes

 Multinomial Naïve Bayes only has a single parameter that can be tuned – alpha. This

hyperparameter controls model complexity, in a similar way C does for Logistic Regression.

When changing the alpha value, the algorithm adds virtual data points that have positive

values for all the features. The result of this process is smoothing of the results. High alpha

values result in more smoothing and models of smaller complexity and vice versa (Muller &

32

Guido, 2017). The alpha values used for hyper-parametrization are 0.01, 0.1, 0.6, 0.8, 1, 3, 5,

10, 20, 50, 100.

Support Vector Machines

 Similar to Logistic Regression, SVM’s result depend on the value set for C so its values

need to be carefully chosen (VanderPlas, 2017). In addition to this, several other

hyperparameters can be tested – penalty (the type of normalization used for penalization),

loss (the type of loss function) and class_weight. With the first two, all the available options

were used for tuning (penalty as l1 and l2, loss as hinge and squared_hinge), while the last

one seemed particularly important as the number of classes is not balanced, for the sentiment

or the rating column. That option was used with two settings – balanced and None. The

balanced option is supposed to help in dealing with unbalanced datasets (scikit-learn

developers, 2022a). Note that the default hyperparameter dual is still kept as False.

Random Forest

 In terms of the grid search, this algorithm is the most demanding when it comes to

the number of parameters that need to be adjusted and the processing power required. The

most important parameter to adjust was max_features as it limits the number of features

every tree examines. High numbers of features (close to the actual number of features used)

reduce the randomness of the forest, which in turn eliminates its main advantage over the

regular Decision Tree algorithm. Another important parameter is max_depth and this denotes

how deep each of the trees is explored. Usually, with high number of features, low depth

number is required to keep the randomness intact. The same way, in case of lower number

of features, deeper trees are recommended as this allows them to get different results.

max_depth was tested on values 70, 90 and 100, while max_features used were 4, 8, 12.

 In addition to this, other important parameters include n_estimators (number of trees

used by the algorithm – set to 150 and 200), bootstrap (set to True, used in combination with

random_state to control the randomness of the tree), n_jobs (set to -1, this enables all

processing power to be used and speeds up the training process), min_samples_leaf

(minimum samples needed to constitute a leaf node - set to 2 and 4), min_samples_split

(minimum samples to split a node – set to 16 and 20), random_state (controls the randomness

of the trees – set to 42) and class_weight (works in the same way as for SVM) (Muller & Guido,

2017).

33

Using hyperparameters obtained on full training / validation sets

 Once the previous stage is completed, the hyperparameters obtained are used on the

full training and validation datasets in order to further eliminate any models that are

underperforming. The main metric considered is still accuracy, but other metrics are also

calculated. Those metrics are based on the following terms:

• True positives (TP) - relevant items that are correctly identified as relevant

• True negatives (TN) - irrelevant items that are correctly identified as irrelevant

• False positives (FP) - irrelevant items that are incorrectly identified as relevant

• False negatives (FN) - relevant items that are incorrectly identified as irrelevant

Based on these terms, the following metrics can be calculated:

o Precision – shows how many of the identified items are relevant, formula

TP / (TP+FP)

o Recall – shows how many relevant items are identified, formula

TP / (TP+FN)

o F-Score – harmonic mean of precision and recall, formula

(2 × Precision × Recall) / (Precision + Recall)

Finally, for multiclass classification tasks, it is also a good idea to build a confusion

matrix. Confusion matrix is a table where each cell shows how many predictions were

correctly made per label. The diagonal entries, going from upper left to bottom right, show

the number of items that were correctly classified. All the others show those incorrectly

classified (Bird, et al., 2009). In this stage, in addition to accuracy, more focus is put on

precision, in order to verify the correctly predicted items per class, and confusion matrices as

they show where most errors are made in terms of classification.

Manual hyperparameter tuning on best performing models

 Once the best performing models are singled out, some hyperparameters can be

manually adjusted, especially when certain trends are noticed either in confusion matrices or

during the model tuning. At this stage, VotingClassifier, a classifier that works as an ensemble

of the best models found can be tested (Géron, 2019). In addition to this, further

experimentation can be done using the feature selection. In this case, only features that

appear in more than a designated number of reviews can be selected when the model is built.

This can be done using the min_df parameter when vectorizing the data using either Count

Vectorizer or the TfIdf Vectorizer (Muller & Guido, 2017).

 When it comes to Neural Networks, the hyperparameters which are tweaked the most

are the number of layers, the number of neurons (inputs) per layer, types of activation

functions, batch sizes, the class weight, in case of skewed datasets, and the type of optimizer.

34

In terms of the number of layers, the minimum is three, as initially tested. However, increasing

the number of hidden (middle) layers can sometimes significantly improve the results. The

number of inputs per layer is usually set up to resemble a pyramid. While the input layer

needs to have the number of layers that is at least the same as the overall number of classes

available, the hidden layers would have higher values. The first hidden layer usually defaults

to 300, the second to 200 and the third to 100. This basic setup can be used and then further

changed based on the results obtained. Another approach is to use the same number of

inputs in all hidden layers so that is the second approach taken.

As the training set is skewed, class_weight argument can also be tested to make sure

that the model knows that the dataset it not fully balanced. As for the optimizer, in addition

to adam, SGD (Stochastic Gradient Descent) is also worth exploring as it traditionally performs

well with Neural Networks. The batch size can also be explored as some researchers claim

that the batch sizes under 32 perform well with Neural Networks. Finally in order to avoid

overfitting, there are two important strategies to explore – EarlyStopping and Dropout. The

first one observes the validation set while the training is undergoing. It is then used to

interrupt the training process if there is no progress observed on the validation set for a pre-

defined number of epochs. The second one, Dropout, is said to be able to increase model’s

accuracy by 1–2%. The rate set is usually between 10% and 50%. If the model is overfitting,

the dropout rate can be further increased, but it can also be decreased if the model starts

underfitting. In addition to this, the dropout rate should be increased for larger layers, but

decreased for smaller ones. Finally, it can sometimes help to use Dropout only after the last

hidden layer (Géron, 2019).

Using different vocabulary sets to validate model performance

 At this stage, the same models are run on validation set using different vocabulary

sets. The reasoning for this is the fact that both vectorizers extract the most important

features across the dataset. This approach usually favours unigrams, which might not always

convey the clearest message on the review sentiment. Furthermore, as the dataset is skewed

towards positive reviews, this also means that the models are more likely to correctly predict

positive and 5-star reviews than any other category. By extracting the most common

unigrams, bigrams and trigrams from each of the rating groups and using them to build a

more balanced vocabulary might lead to better classification. As noted in the overview of the

most popular bigrams and trigrams, only one item in both groups is negative (not good and

would not recommend), with everything else highly positive or slightly neutral. When the

comparison between the unigrams, bigrams and trigrams in 1-star reviews and 5-star reviews

is made (Figures 17-22), there is noticeable difference.

35

Figure 17 - 1-star unigrams

Figure 18 - 5-star unigrams

36

Figure 19 - 1-star bigrams

Figure 20 - 5-star bigrams

37

Figure 21 - 1-star trigrams

Figure 22 - 5-star trigrams

38

 When observing unigrams, it is evident that the difference is not that significant – it

would be difficult to differentiate 1-star reviews from 5-star reviews. However, bigrams and

trigrams are much different. 1-star bigrams are dominated by negation (not good, would not,

not worth), while the 5-star bigrams are full of praise (highly recommend, great food, great

service). Similarly, 1-star trigrams suggest that those people are not becoming returning

customers (never go back, would not recommend, not going back). On the other hand, 5-star

trigrams are dominated by extreme positivity (great food great, would highly recommend,

definitely come back). For this reason, 5 different sets of vocabulary were created so that they

can be used to test whether the models perform better using customized vocabulary. Each

set contains the exact same number of bigrams, trigrams and unigrams per rating. That means

that the first example in Table 6 has 4000 unigrams extracted, 800 for each of the categories,

as well as 3000 bigrams and 3000 trigrams. Unique features is the overall count of features

used per vocabulary set once the duplicates were removed.

Table 6 – Customized vocabulary sets

Name Unigram count Bigram count Trigram count Unique features

Voc1 800 600 600 4139

Voc2 600 800 600 4226

Voc3 600 600 800 4453

Voc4 800 700 500 4049

Voc5 500 700 800 5422

Using test set to verify the models’ performance

 Last stage of the process is using the highest performing models in terms of accuracy

and precision on the test set to verify how they perform on new data, the data they never

encountered before. Once collected, the results are presented using summary tables and

compared to the results obtained using the train and validation sets.

39

5.0 Results

In this section, the overall results are presented for each individual stage of the

training process. That way, a clear overview of the progress in the quality of results can be

easily observed.

Stage 1 - Different n-gram counts and number of features

 While training different models using different n-gram ranges with different lengths

of input features, it transpired that all of the algorithms performed best when n-gram ranges

that consisted of unigrams and bigrams (1, 2) or unigrams, bigrams and trigrams (1, 3) were

used to build the models. Another trend that emerged was that the preferred vectorizer was

the TfIdf Vectorizer, as it was outperformed by Count Vectorizer on only two occasions. The

final major trend that could be observed was that the performance with most algorithms

stopped significantly increasing after the number of features reached 1500. However, it did

continue to slightly increase after that. The minor outlier was Random Forest, where the

performance mostly plateaued around 2500, when ratings were considered. The difference

between Random Forest and other algorithms can be best seen in Figures 23 and 24, where

its performance is compared to the one of Logistic Regression. Note that Random Forest had

performed really badly with n-gram ranges that did not include unigrams – accuracy was well

under 40% and for that reason, those results have not been added to the graph.

Figure 23 - Logistic Regression performance based on the number of features

40

Figure 24 - Random Forest performance based on the number of features

However, there was an even bigger outlier when it came to the number of features

needed to perform well – Neural Networks. In this case, the performance peaked when using

1000 or 1500 features and degraded from there. This can be seen in Figure 25.

Figure 25 - Neural Networks performance based on the number of features

41

 As can be seen from the graphs, as well as from the results in Table 7, the performance

significantly degraded when n-gram ranges that did not contain unigrams were used to build

models. For that reason, all those options were eliminated going forward. In addition to this,

as most models performed the best when using the combination of TfIdf Vectorizer, 3000

features and n-gram range that consisted of unigrams, bigrams and trigrams, those

combinations are explored again in the next phase, alongside the combinations that

outperformed them. This does not apply to Neural Networks as they did not perform similarly

to other algorithms in this stage. Finally, the best performing algorithm at this stage is Logistic

Regression, both when classifying based on sentiment and ratings. The worst performance so

far, when ratings are considered, belongs to Random Forest, almost 5% below the best

performing option. In terms of sentiment, the lowest performer (Naïve Bayes) is a bit over 4%

less accurate than Logistic Regression. This first stage shows that the performance of all

algorithms when classifying reviews according to sentiment is quite good, with all of them

able to correctly classify 4 out 5 reviews. However, the ratings are proving to be a much more

complex challenge.

Table 7 – Stage 1 results

Algorithm Analysis
Type

Vectorizer Number of
features

N-gram
range

Highest
Accuracy

Logistic
Regression

Rating CV 3000 1, 2 61.74

Rating TFIDF 3000 1, 3 62.32

Sentiment CV 3000 1, 3 83.94

Sentiment TFIDF 3000 1, 2 84.17

SVM Rating CV 3000 1, 2; 1, 3 60.45

Rating TFIDF 3000 1, 2 61.29

Sentiment CV 3000 1, 3 83.44

Sentiment TFIDF 3000 1, 2 84.05

Random Forest Rating CV 3000 1, 3 57.3

Rating TFIDF 2500 1, 2 57.5

Sentiment CV 3000 1, 2 80.56

Sentiment TFIDF 3000 1, 2 80.49

42

Naïve Bayes Rating CV 3000 1, 2 59.52

Rating TFIDF 3000 1, 3 58.08

Sentiment CV 3000 1, 2 79.47

Sentiment TFIDF 3000 1, 3 79.88

Neural
Networks

Rating CV 1500 1, 3 60.3

Rating TFIDF 1500 1, 3 60.33

Sentiment CV 1000 1, 2 81.37

Sentiment TFIDF 1500 1, 2 81.97

Stage 2 - Hyperparameter tuning on smaller samples

 The performance of four algorithms improved during this stage. However, as all the

resulting hyperparameters are run on the full train / validation dataset in the next stage, all

the results are available in that section, in joint summary tables for each algorithm. As

mentioned previously, hyperparameters for Neural Networks are adjusted manually in stage

4 of the process so that approach will not be discussed here.

 When it comes to Logistic Regression, the default Scikit-Learn implementation seemed

to perform well in general as the hyperparameters obtained mainly reflected the defaults.

There was one major difference when it comes to vectorizers – Count Vectorizer was

responding better to lower values of C (around 0.6), while TfIdf Vectorizer was performing

better when C was set to the default value of 1. In addition to this, models built using Count

Vectorizer outperformed those built using TfIdf Vectorizer in this stage, both in sentiment and

rating classification.

 All models built using LinearSVC returned the exact same parameters. As the best fit

for the values of the most important parameter (C) was also the lowest one tried (0.6), this

was an indication that an even lower value of C might result in better performance. Similar to

the Logistic Regression results, Count Vectorizer performed better at this stage. This seems

to indicate that this vectorizer performs better on smaller datasets, as it was completely

outperformed by TfIdf Vectorizer in the previous stage, when the dataset was 10 times larger.

 Random Forest is the algorithm where the highest number of hyperparameters

needed to be tuned in order to get better performance. Due to high processing requirements,

the parameter values were incrementally changed, especially the important ones

(max_depth, max_features, min_samples_split) to get better performance. Finally, models

generally performed well when the number of features was low, but the depth of each tree

was higher. The main difference, compared to the previous two algorithms, was the fact that

43

TfIdf Vectorizer performed better here – the main reason was probably that higher

complexity model also preferred higher complexity vectorizer.

 Finally, MultinomialNB has only one hyperparameter that needs to be adjusted to get

better results – alpha. Generally, the main difference was again between the two vectorizers.

Count Vectorizer seemed to prefer models of lower complexity so the alpha value returned

was always higher. With TfIdf, the preferred alpha value was low, signifying that this

vectorizer works better with more complex models. Finally, there was no significant

difference between the results obtained in this step compared to the previous step, unlike

the other algorithms. With all the other algorithms, accuracy was significantly higher in this

stage so this indicates that Naïve Bayes performs at a similar level no matter the dataset size.

Stage 3 - Using hyperparameters obtained on full training / validation sets

 In this stage, the hyperparameters obtained in the previous stage were used on full

training and validation sets to evaluate if there was any improvement. In addition to accuracy,

precision was also observed in this stage. Finally, in case of all algorithms, only best

performing combinations were kept for the next stage. Those advancing further are indicated

in green.

 Hyperparameters obtained for Logistic Regression improved the performance of the

model using TfIdf Vectorizer to classify the reviews according to ratings slightly compared to

stage 1. All the other combinations showed no improvement, while the performance of some

also deteriorated. The accuracy results were generally lower that they were when performing

grid search on a smaller sample, especially for models using Count Vectorizer. When looking

at precision, all models seem to perform well when classifying the extremes – negative and

positive sentiment or 1 and 5 stars. This is not related to the number of reviews available per

rating / sentiment as the number of 1-star reviews is lower than the number of both 2-star

and 3-star reviews, but its precision is still similar to the one obtained for 5-star reviews. This

just shows that the models struggle to identify those reviews which are not full of praise or

highly critical. Finally, models that are further explored in the next stage were all built using

TfIdf Vectorizer. This further reinforces that Count Vectorizer might be more suitable for

smaller datasets and simpler models. The full overview of the results can be seen in Table 8.

44

Table 8 – Stage 2 and 3 results – Logistic Regression
Analysis

Type
Vectorizer Number

of
features

N-
gram
range

Hyperparameters Grid
search

accuracy

Validation
set

accuracy

Validation
set

precision

Rating CV 3000 1, 2 C=0.6
max_iter=1000

multi_class=multinomial
solver=newton-cg

83.63 61.7 1 - 0.66
2 – 0.48
3 – 0.5

4 – 0.55
5 – 0.7

Rating CV 3000 1, 3 C=0.6
max_iter=1000

multi_class=multinomial
solver=newton-cg

83.73 61.69 1 - 0.65
2 – 0.48
3 – 0.5

4 – 0.55
5 – 0.7

Rating TFIDF 3000 1, 3 C=0.7
max_iter=1000

multi_class=multinomial
solver=newton-cg

71.15 62.36 1 - 0.67
2 – 0.49
3 – 0.5

4 – 0.55
5 – 0.72

Sentiment CV 3000 1, 3 C=0.6
max_iter=1000

multi_class=multinomial
solver=newton-cg

93.69 83.97 0 - 0.8
1 – 0.55
2 – 0.89

Sentiment TFIDF 3000 1, 2 C=1
max_iter=1000

multi_class=multinomial
solver=newton-cg

87.27 84.17 0 - 0.8
1 – 0.55
2 – 0.89

Sentiment TFIDF 3000 1, 3 C=1
max_iter=1000

multi_class=multinomial

87.28 84.13 0 - 0.8
1 – 0.55
2 – 0.89

 Support Vector Machines performance was similar to the one of Logistic Regression.

However, almost all models here recorded improvements in terms of accuracy compared to

stage 1. The other interesting difference is that these models are better at classifying those

reviews that should be neutral or the rating of which is 2, 3 or 4 stars. Overall, the best

performing models again use TfIdf Vectorizer built using unigrams and bigrams or unigrams,

bigrams and trigrams. Summary results are available in Table 9.

45

Table 9 – Stage 2 and 3 results – Support Vector Machines
Analysis

Type
Vectoriz

er
Number

of
features

N-gram
range

Hyperparameters Grid
search

accuracy

Validation
set

accuracy

Validation
set

precision

Rating CV 3000 1, 2 C=0.6
dual=False
penalty=l1

81.83 60.5 1 - 0.63
2 – 0.49
3 – 0.52
4 – 0.54
5 – 0.66

Rating CV 3000 1, 3 C=0.6
dual=False
penalty=l1

79.39 60.48 1 - 0.63
2 – 0.49
3 – 0.52
4 – 0.54
5 – 0.66

Rating TFIDF 3000 1, 2 C=0.6
dual=False
penalty=l1

73.28 61.48 1 - 0.63
2 – 0.5

3 – 0.51
4 – 0.54
5 – 0.69

Rating TFIDF 3000 1, 3 C=0.6
dual=False
penalty=l1

73.22 61.43 1 - 0.63
2 – 0.5

3 – 0.51
4 – 0.53
5 – 0.69

Sentiment CV 3000 1, 3 C=0.6
dual=False
penalty=l1

93.29 83.42 0 - 0.79
1 – 0.57
2 – 0.87

Sentiment TFIDF 3000 1, 2 C=0.6
dual=False
penalty=l1

87.61 84.06 0 - 0.78
1 – 0.59
2 – 0.88

Sentiment TFIDF 3000 1, 3 C=0.6
dual=False
penalty=l1

87.59 84.04 0 - 0.78
1 – 0.59
2 – 0.88

 Random Forest classifier has the most complex list of hyperparameters of all the

algorithms tested in this stage. For that reason, the highest number of different combinations

were tuned. This tuning process also resulted in more significant improvements compared to

the other algorithms. However, the results are still not comparable to the ones obtained using

Logistic Regression or SVM. Not only is accuracy not as high, but the bias towards predicting

top and bottom categories is much more visible with models built using Random Forest. The

overall results are available in Table 10. Note that the parameters used for all the models have

been omitted from the table (class_weight=balanced, n_jobs=-1, random_state=42).

46

Table 10 – Stage 2 and 3 results – Random Forest
Analysis

Type
Vectorize

r
Number

of
features

N-gram
range

Hyperparameters Grid
search

accuracy

Validation
set

accuracy

Validation
set

precision

Rating CV 3000 1, 3 max_depth=90
max_features=12

min_samples_leaf=2
min_samples_split=20

n_estimators=200

87.83 58.7 1 - 0.55
2 – 0.45
3 – 0.45
4 – 0.54
5 – 0.68

Rating TFIDF 2500 1, 2 max_depth=90
max_features=8

min_samples_leaf=2
min_samples_split=16

n_estimators=200

90.47 58.54 1 - 0.55
2 – 0.47
3 – 0.45
4 – 0.53
5 – 0.68

Rating TFIDF 2500 1, 3 max_depth=110
max_features=8

min_samples_leaf=2
min_samples_split=20

n_estimators=200

91.32 58.9 1 - 0.55
2 – 0.49
3 – 0.46
4 – 0.53
5 – 0.69

Rating TFIDF 3000 1, 3 max_depth=110
max_features=12

min_samples_leaf=2
min_samples_split=16

n_estimators=200

92.09 59.24 1 - 0.56
2 – 0.47
3 – 0.47
4 – 0.53
5 – 0.69

Sentiment CV 3000 1, 2 max_depth=90
max_features=12

min_samples_leaf=2
min_samples_split=16

n_estimators=200

94.94 81 0 - 0.73
1 – 0.45
2 – 0.9

Sentiment CV 3000 1, 3 max_depth=90
max_features=12

min_samples_leaf=2
min_samples_split=16

n_estimators=200

94.71 80.89 0 - 0.73
1 – 0.45
2 – 0.90

Sentiment TFIDF 3000 1, 2 max_depth=90
max_features=12

min_samples_leaf=2
min_samples_split=16

n_estimators=150

96.62 81.52 0 - 0.73
1 – 0.48
2 – 0.89

Sentiment TFIDF 3000 1, 3 max_depth=90
max_features=12

min_samples_leaf=2
min_samples_split=20

n_estimators=200

96.65 81.5 0 - 0.74
1 – 0.48
2 – 0.89

MultinomialNB is the only classifier where models built using Count Vectorizer

performed better than the ones built using TfIdf. This does only happen when predicting

rating, but it does come with a price. This classifier, when using Count Vectorizer, mainly

focusses on predicting the highest class – the chasm between the classes is most obvious

here. When using TfIdf, the overall accuracy is a bit lower, but the model produces more

balanced results, by paying more attention to classification of all the classes as best as

possible. The overall results for sentiment analysis are the worst compared to other

algorithms. When it comes to ratings, only Random Forest performs worse.

47

Table 11 – Stage 2 and 3 results – Naïve Bayes
Analysis

Type
Vectorizer Number

of
features

N-gram
range

Hyperparameters Grid
search

accuracy

Validation
set

accuracy

Validation
set

precision

Rating CV 3000 1, 2 alpha=10 64.40 59.5 1 - 0.58
2 – 0.42
3 – 0.45
4 – 0.54
5 – 0.72

Rating CV 3000 1, 3 alpha=5 64.80 59.48 1 - 0.58
2 – 0.42
3 – 0.44
4 – 0.54
5 – 0.72

Rating TFIDF 3000 1, 3 alpha=0.1 65.23 58.14 1 - 0.62
2 – 0.48
3 – 0.46
4 – 0.47
5 – 0.67

Sentiment CV 3000 1, 2 alpha=10 82.22 79.47 0 - 0.75
1 – 0.41
2 – 0.92

Sentiment CV 3000 1, 3 alpha=10 82.23 79.42 0 - 0.75
1 – 0.41
2 – 0.92

Sentiment TFIDF 3000 1, 3 alpha=0.1 81.49 79.91 0 - 0.8
1 – 0.54
2 – 0.81

Stage 4 - Manual hyperparameter tuning on best performing models

 This stage of the process was the most significant one in terms of the improvement in

overall results. The first model that underwent the manual tuning was Logistic Regression and

there was little that the model responded to in terms of the hyperparameter changes. The

only thing that actually had effect was changing the number of features used to build the

model. In general, model preferred more features, but filtered in a different way than before.

Instead of using 3000 top features, using all the features that appeared a minimum of 10 or

15 times in the dataset yielded best results. Overall, this model’s accuracy increased by 0.67%

when classifying reviews according to ratings and 0.71% according to sentiment.

 With Support Vector Machines, the only hyperparameter that ensured better results

are obtained was C. That, in addition to the use of all the features generated by TfIdf

Vectorizer, resulted in accuracy improvement of 1.54% for ratings classification and 1.10% for

sentiment classification. This meant that SVM’s performance for ratings was only 0.01% lower

than the one for Logistic Regression and that it became the best sentiment classifier.

48

 Random Forest did not improve much during this stage (0.03% for ratings, 0.47% for

sentiment). Additional increase in max_depth and tweaking both max_features and

min_samples_split did help, but the performance decayed if more than 3000 features were

used. In addition to this, trying to limit the number of features based on the number of times

they appeared in the dataset did not help either.

 Multinomial Naïve Bayes was one of the models which improved the most during this

phase, with accuracy for ratings classification increasing by 2.15% and the one for sentiment

by 3.16%. These improvements were the result of changes made to the alpha hyperparameter

and the limiting of number of features used, based on the minimum number of occurrences

in the dataset. However, even with these massive improvements, Naïve Bayes was still not

able to compete with the best models as its initial results were quite low.

 The majority of manual adjustments were made to the Neural Networks as they did

not undergo the grid search stage of the process. When working with different parameters,

several basic configurations transpired – the model performed best when the number of

hidden layers was set to 6 and when each of them had 50 units. In addition to this, smaller

batch sizes worked better than the larger one, with the ideal one being set to 16. Finally, SGD

optimizer was performing better than the one used in the previous steps (adam). In spite of

all these changes, the biggest improvements in performance were achieved when monitoring

accuracy across the validation set during the training and forcing the training to stop if the

performance has not improved for 30 epochs. After that, the model would roll back to the

best performing epoch. Along with that change, it transpired that the dropout rate of 20%

added only before the output layer was also improving the overall accuracy. Finally, all these

changes made led to an improvement of accuracy in the range between 1.43 (sentiment) and

1.66 (ratings).

 Finally, the Voting Classifier was used on the validation set, consisting of the highest

performing versions of the Logistic Regression, SVM, Random Forest and Naïve Bayes models.

Its performance equalled the one of Logistic Regression in terms of accuracy, while also

making it third best performing sentiment classifier, just behind SVM and Logistic Regression.

Its performance was increased by using the features which appeared at least 20 (rating) or 50

(sentiment) times across the dataset. The overall results for this stage are available in Tables

12 and 13, based on rating or sentiment classification.

49

Table 12 – Stage 4 results – best performing models - rating

Algorithm Vectorizer setup Hyperparameters Accuracy Precision

Logistic
Regression

TFIDF, (1, 3),
min_df=10

C=1
max_iter=1000

multi_class=multinomial
solver=newton-cg

63.03 1 - 0.69
2 – 0.50
3 – 0.51
4 – 0.55
5 – 0.72

SVM TFIDF, (1, 3) C=0.6
dual=False
penalty=l1

63.02 1 - 0.66
2 – 0.51
3 – 0.51
4 – 0.55
5 – 0.72

Random
Forest

TFIDF, (1, 3),
max_features=3000

max_depth=190
max_features=12

min_samples_leaf=2
min_samples_split=16

n_estimators=200

59.27 1 - 0.56
2 – 0.47
3 – 0.47
4 – 0.53
5 – 0.70

Naïve
Bayes

CV, (1, 3),
min_df=15

alpha=5 61.65 1 - 0.61
2 – 0.46
3 – 0.47
4 – 0.55
5 – 0.74

Neural
Networks

TFIDF, (1, 3),
max_features=1500

6 hidden layers
50 units per layer

SGD optimizer
Learning rate=0.01

batch_size=16
epochs=100

EarlyStopping with settings:
monitor=val_accuracy

mode=max
patience=30

restore_best_weights=True

61.99 1 - 0.66
2 – 0.47
3 – 0.49
4 – 0.55
5 – 0.71

Voting
Classifier

TFIDF, (1, 3),
min_df=5

Logistic Regression, SVM,
Random Forest and Naïve Bayes

best performing models

63.03 1 - 0.63
2 – 0.50
3 – 0.51
4 – 0.56
5 – 0.73

50

Table 13 – Stage 4 results – best performing models - sentiment

Algorithm Vectorizer setup Hyperparameters Accuracy Precision

Logistic
Regression

TFIDF, (1, 3),
min_df=15

C=1
max_iter=1000

multi_class=multinomial

84.89 0 - 0.82
1 – 0.57
2 – 0.89

SVM TFIDF, (1, 3) C=0.72
dual=False
penalty=l1

85.16 0 - 0.80
1 – 0.58
2 – 0.90

Random
Forest

TFIDF, (1, 3),
max_features=3000

max_depth=190
max_features=12

min_samples_leaf=2
min_samples_split=20

n_estimators=200

81.99 0 - 0.74
1 – 0.50
2 – 0.89

Naïve
Bayes

TFIDF, (1, 3),
min_df=5

alpha=0.1 83.07 0 - 0.79
1 – 0.53
2 – 0.87

Neural
Networks

TFIDF, (1, 2),
max_features=1500

6 hidden layers
50 units per layer

SGD optimizer
Learning rate=0.01

batch_size=16
epochs=100

EarlyStopping with settings:
monitor=val_accuracy

mode=max
patience=30

restore_best_weights=True

83.40 0 - 0.80
1 – 0.53
2 – 0.88

Voting
Classifier

TFIDF, (1, 3),
min_df=50

Logistic Regression, SVM,
Random Forest and Naïve Bayes

best performing models

84.66 0 - 0.78
1 – 0.58
2 – 0.90

51

Stage 5 - Using different vocabulary sets to validate model performance

When using different

manually created vocabulary

sets to verify the

performance of the models

built, only one model

showed an improvement in

results – Neural Networks.

When classifying the reviews

according to ratings, this

model outperformed all the

others when the vocabulary

set 4 was used, reaching

accuracy of 63%. This was

1.01% higher than its result

in the previous stage. In

general, most algorithms

performed best with vocabulary

sets 1 and 4, both of which had a slightly higher number of unigrams and bigrams. The

performance of all the models per vocabulary set can be seen in Figure 26.

 When trying to

classify the reviews by

sentiment, Neural Networks

was again the highest

performing model, but SVM

and Logistic Regression were

much closer now. Again, only

Neural Networks actually

improved the overall

accuracy in this step, by

0.78%. This would indicate

that this model apparently

performs better with a

vocabulary set that is more

curated for a slightly

imbalanced distribution in the dataset, while the other models prefer the features generated

directly by Scikit-Learn. The performance of all the models is charted in Figure 27.

Figure 26 - Vocabulary testing - ratings

Figure 27 - Vocabulary testing - sentiment

52

Stage 6 - Using test set to verify the models’ performance

 In the final stage of the project, the models were run on the test set, the set none of

them have encountered before. With this set, there were no major changes in performance

– all the models performed similarly to how they performed on the validation set. Four out of

six models increased their accuracy when classifying based on the ratings and half of them

when classifying based on the sentiment. The best performing model in both categories

emerged to be Logistic Regression, with 63.31% accuracy when classifying the reviews

according to rating and 85.09% when classifying according to sentiment. The close second is

SVM, followed by the Voting classifier and Neural Networks. Naïve Bayes shows a really solid

performance, while Random Forest is the model showing lowest scores in both sentiment and

ratings prediction.

 The major difference in performance between the highest and the lowest performing

models can best be explained by looking at the confusion matrices. When comparing the

ratings classification results of Logistic Regression model in Figure 28 and Random Forest in

Figure 29, it is immediately noticeable that the Logistic Regression model outperforms

Random Forest in correctly classifying 4 out of 5 classes. Not only is it better at correctly

predicting the correct labels, but it is also closer when mislabelling. For example, the number

of 5-star reviews classified as 1-star reviews by Random Forest is higher than the sum of 5-

star reviews classified as 1, 2 and 3-star reviews by Logistic Regression. In addition to this,

Logistic Regression is much better at classifying those middle ratings (2, 3 and 4), which is

what most models struggled with the most.

 Figure 28 - Logistic Regression ratings confusion matrix Figure 29 – Random Forest ratings confusion matrix

53

 When other metrics for ratings classification are considered, this further reinforces

the Logistic Regression’s dominance. The most important indicator after accuracy, precision,

is also the highest in Logistic Regression, with both Recall and F-1 Score looking solid. The

worst performance, when those supporting metrics are considered, is the one by Random

Forest. The graphical representation is available in Figure 30.

Figure 30 – Test set metrics for rating

 Sentiment classification confusion matrices for Logistic Regression (Figure 31) and

Random Forest (Figure 32) show a similar tendency to the one discussed when ratings were

examined. Logistic Regression outperforms Random Forest in each of the classes this time,

while also keeping its mislabelling closer. However, in spite of that, it is worth noting that both

models do still struggle to label the neutral reviews correctly.

 Figure 31 - Logistic Regression sentiment confusion matrix Figure 32 – Random Forest sentiment confusion matrix

54

 Finally, when supporting metrics are examined for sentiment analysis, precision is again the

highest in Logistic Regression. However, a bit more solid performance across Recall and F-1 Score is

seen with the Voting Classifier and SVM. However, the Logistic Regression model still holds the highest

results for the two most important metrics, which makes it the best choice for this type of analysis.

Another thing worth noticing is that the performance of Random Forest holds up better in this analysis

as it does outperform Naïve Bayes in terms of Recall and F-1 Score. The graphic representation of

these results can be seen in Figure 33.

Figure 33 - Test set metrics for sentiment

 After verifying the performance of all the models built, their performance for

sentiment analysis was also compared to one of the tools already available on the market.

Vader, that is often used for sentiment analysis, is available through the NLTK library and

classifies the reviews based on the compound score – the score calculated on the basis of

overall positivity, negativity or neutrality of the review. In case the compound score is equal

to or higher than 0.05, the review is classified as positive. Negative reviews have the

compound score that is equal to or less than -0.05, while the neutral reviews are those in the

middle (Rai, 2021).

 The Vader tool was run on the test set using the same pre-processing steps first, but

as that library actually covers most of pre-processing steps utilised in this project (like

lowercasing words) by default, it achieved better scores when no manual pre-processing was

done. Overall, Vader performs worse than all the models used in the paper, achieving

55

accuracy of 73.69% when trying to classify the reviews as positive, negative or neutral. This is

11.44% less than the highest-performing Logistic Regression and 8.29% less than the

underperforming Random Forest model. The biggest problems it had, as seen from Figure 34,

was correctly classifying neutral reviews. This was also the case with models built during this

project, but Vader’s precision was really low for those reviews – only 18%. This might indicate

that Vader is more capable of working with shorter pieces of text, but really underperforms

when it has to handle longer reviews. Longer reviews are better handled by more robust

models, like the ones built using machine learning algorithms. The final accuracy results

obtained for the test set are available in Table 14.

Figure 34 - Vader sentiment confusion matrix

Table 13 – Stage 6 results – accuracy on the test set

Ratings Analysis Sentiment Analysis

Algorithm Accuracy Algorithm Accuracy

Logistic Regression 63.31% Logistic Regression 85.13%

SVM 63.26% SVM 85.09%

Random Forest 59.24% Random Forest 81.98%

Naïve Bayes 62% Naïve Bayes 83.12%

Neural Networks 63% Neural Networks 83.92%

Voting Classifier 63.16% Voting Classifier 84.86%

 Vader 73.69%

56

6.0 Conclusions

The primary goal of the project was to build a model that could classify the reviews

according to ratings ranging from 1 to 5. In addition to this, an additional model was supposed

to be developed to classify the reviews based on their sentiment – positive, negative or

neutral. The approach that was followed was KDD, an iterative process that focussed on

completing all the individual stages with great care, but also included willingness to return to

the previous steps and make the necessary changes that would result in better model

performance. Using KDD and extensive literature review, it was also easier to identify the

potential opportunities for innovation.

The main strengths of this project are that it is very well researched, it uses really large

datasets and a wide range of technologies, that the correct methodology was followed and,

finally, that the models produced perform well. When classifying ratings, the models achieved

satisfactory levels of accuracy, in spite of the fact that the reviews analysed were very long

and complex. Considering the fact that only the review text was used to determine ratings,

the models were able to identify 1-star and 5-star reviews quite consistently, especially

Logistic Regression and SVM. When the sentiment analysis is considered, all the models

performed at an accuracy level higher than 80%, which definitely indicates that they have

high potential for usability outside of this project. Specifically, when compared to a tool that

is already being used on the market to perform the same type of analysis (Vader) and which

actually underperforms in comparison with the models developed. Finally, using Neural

Networks that has not been referenced in previous research as an option for sentiment

analysis was a great choice, both as an innovation point and because this model performed

really well in both ratings and sentiment classification.

While this project has many advantages, there are a couple of limitations. The main

one is that the models developed have certain problems classifying the middle ranges –

neutral sentiment or 2, 3 and 4-star ratings. However, the mislabelling errors are major, as

most errors are usually move the review classification by only one class – a 2-star review will

most often get misclassified as a 1-star or 3-star review. Nevertheless, this would probably be

a problem for a business that wanted to implement the ratings model on a public-facing

website. It might be of better use internally, for the business to classify the reviews or

comments left on their website. Except for that, the other disadvantage would be the fact

that the models produced run offline so the business would need to re-train the data as new

reviews are collected in order to have the most up-to-date features when model is run. This

can be done once a week and then the model can be redeployed with the newest information.

However, in spite of these minor issues, the models perform well overall, especially the

sentiment classifiers, so they can be readily used in any environment.

57

7.0 Further Development or Research

One of the potential reasons as to why the accuracy was lower for the ratings

classification is the imbalanced nature of the dataset. The dataset that heavily relies on 5-star

and 4-star ratings might have prevented better prediction of those mid-range reviews. With

a more balanced dataset, it would be good to also add reviews from other sources – from

Facebook, Twitter, Instagram and Google to other review-centric websites. That way, an even

more robust model, with more important features could be built.

With all the additional reviews, all the pre-processing and training could be done in

the cloud, using one of the online methods. That way, the model’s performance could be

updated in real time, which would not only cut down on the processing time, but also

automate the process even further.

If the model is running in the cloud, it could also be deployed on a live website, where

it could run on a trial basis, collect reviews and perform classification. In that first stage, the

user could be given the predicted classification and asked to evaluate if it is correct or not. If

not, there would be an option to change the rating – that way, the model would be able to

learn from its mistake.

Finally, in addition to exploring some new pre-processing options, other tools and

approaches could also be researched. In addition to Scikit-Learn and TensorFlow, it would be

beneficial to explore PyTorch and do more work with deep learning as customizing the input

vocabulary really did show major improvements with Neural Networks. Overall, all these

improvements could have been made during the project development or could be done in

the future, but the main idea behind them is the same – use new technologies, find more data

and move everything online.

58

8.0 References

Albon, C., 2018. Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to

Deep Learning. 1st ed. Sebastopol: O’Reilly Media, Inc..

Aureliano-Silva, L., Leung, X. & Spers, E. E., 2021. The effect of online reviews on restaurant visit

intentions: applying signaling and involvement theories. Journal of Hospitality and Tourism

Technology, 12(4), pp. 672-688.

Basheer, A. & Kaushik, A., 2019. Social websites reviews and ratings of Dublin restaurants situated

across 65 locations. [Online]

Available at: https://zenodo.org/record/3356793#.YcMa-Gj7SUl

[Accessed 05 11 2021].

Bird, S., Klein, E. & Loper, E., 2009. Natural Language Processing with Python. 1st ed. Sebastopol:

O’Reilly Media, Inc..

Fayyad, U., Piatetsky-Shapiro, G. & Smyth, P., 1996. The KDD Process for extracting useful knowledge

from volumes of data. Communications of the ACM, 39(11), pp. 27-34.

Géron, A., 2019. Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow. 2nd ed.

Sebastopol: O’Reilly Media, Inc..

Haque, F., Manik, M. H. & Hashem, M., 2019. Opinion Mining from Bangla and Phonetic Bangla

Reviews Using Vectorization Methods. Khulna, 4th International Conference on Electrical

Information and Communication Technology.

Huda, S. M. A., Shoikot, M., Hossain, A. & Ila, I. J., 2019. An Effective Machine Learning Approach for

Sentiment Analysis on Popular Restaurant Reviews in Bangladesh. Ipoh, 1st International Conference

on Artificial Intelligence and Data Sciences (AiDAS).

Ihle, J., 2021. Consumers embrace the ‘going out economy’ as lockdowns ease. [Online]

Available at: https://www.independent.ie/business/irish/consumers-embrace-the-going-out-

economy-as-lockdowns-ease-40702879.html

[Accessed 05 11 2021].

Krishna, A., Aich, A., V, A. & Hegde, C., 2019. Analysis of Customer Opinion Using Machine Learning

and NLP Techniques. International Journal of Advanced Studies of Scientific Research, 3(9), pp. 128-

132.

Muller, A. C. & Guido, S., 2017. Introduction to Machine Learning with Python: A Guide for Data

Scientists. 1st ed. Sebastopol: O’Reilly Media, Inc..

Murphy, R., 2020. Local Consumer Review Survey 2020. [Online]

Available at: https://www.brightlocal.com/research/local-consumer-review-

survey/?SSAID=314743&SSCID=c1k5_o3fca

[Accessed 05 11 2021].

O'Brien, B., 2019. Irish consumers to spend €8.55 billion on ‘dining out’ in 2019. [Online]

Available at: https://www.agriland.ie/farming-news/irish-consumers-to-spend-e8-55-billion-on-

dining-out-in-2019/

[Accessed 01 12 2021].

59

PowerReviews, 2020. PowerReviews Market Trends Snapshot – June 2020. [Online]

Available at: https://www.powerreviews.com/insights/market-trends-june-2020/

[Accessed 05 11 2021].

Rai, A., 2021. Python | Sentiment Analysis using VADER. [Online]

Available at: https://www.geeksforgeeks.org/python-sentiment-analysis-using-vader/

[Accessed 8 May 2022].

Review Trackers, 2021. Online Reviews Statistics and Trends: A 2022 Report by ReviewTrackers.

[Online]

Available at: https://www.reviewtrackers.com/reports/online-reviews-survey/

[Accessed 10 12 2021].

scikit-learn developers, 2022a. sklearn.svm.SVC. [Online]

Available at: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

[Accessed 15 April 2022].

scikit-learn developers, 2022b. sklearn.linear_model.LogisticRegression. [Online]

Available at: https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

[Accessed 15 April 2022].

van Lohuizen, A.-W. & Trujillo-Barrera, A., 2020. The influence of online reviews on restaurants: The

roles of review valence, platform and credibility. Journal of Agricultural and Food Industrial

Organization, 18(2).

VanderPlas, J., 2017. Python Data Science Handbook: Essential Tools for Working with Data. 1st ed.

Sebastopol: O’Reilly Media, Inc..

Yelp, 2021. Yelp Open Dataset. [Online]

Available at: https://www.yelp.com/dataset/

[Accessed 20 February 2022].

Yu, J. et al., 2022. CoCa: Contrastive Captioners are Image-Text Foundation Models, s.l.: arXiv.

Zahoor, K., Bawany, N. Z. & Hamid, S., 2020. Sentiment Analysis and Classification of Restaurant

Reviews using Machine Learning. Giza, 21st International Arab Conference on Information

Technology (ACIT).

60

9.0 Appendices

9.1. Project Proposal

National College of Ireland

Project Proposal

Opinion Mining for Automated Restaurant

Reviews Rating

7/11/2021

BSc (Honours) in Computing - Evening

Data Analytics

2021/2022

Dejan Mijakovac

x18144861

x18144861@student.ncirl.ie

61

Contents
1.0 Objectives.. 62

2.0 Background ... 62

3.0 State of the Art .. 63

4.0 Data ... 63

5.0 Methodology & Analysis ... 64

6.0 Technical Details ... 65

7.0 Project Plan ... 66

8.0 Bibliography .. 68

62

1.0 Objectives
The main objective of the project is to develop a model that can correctly classify

restaurant rating on the scale from 1 to 5, based on a non-numerical textual review provided

by users. In order to complete the project, a number of other goals will have to be completed.

Those goals can be grouped in two different categories – the ones required to complete the

technical part of the project and the ones required to manage project completion. In terms

of the first category, it will be important to find datasets that contain restaurant reviews, with

classification already provided. Ideally, the dataset would contain both a numerical rating and

categorical (positive / negative / neutral). Next goal would be to do some exploratory analysis

and use data visualisation to find the general trends. After that, the data needs to be cleaned

and transformed so it is ready for the machine learning process. The primary goal of the

machine learning process would be to find the algorithm that performs best on this dataset.

Once the right algorithm is found and the model fully tuned, it needs to be checked against

the final test data.

The second set of goals is primarily concerned with managing the project work by creating

a detailed project plan in order to manage project execution. Once the project plan is in place,

the main focus shifts to updating the project documentation regularly. One last goal in this

category is to research every stage of the project plan in detail.

2.0 Background
Restaurant industry is a very lucrative industry. Even during 2020, when many restaurants

were close for a longer period of time, due to the COVID-19 pandemic, the restaurant industry

was estimated to be worth around $1.2 trillion (Aureliano-Silva, et al., 2021). Similarly, if only

the Irish data is considered, around €8.55 billion was spent on dining in restaurants 2019. That

number increased by 4.5% in comparison to 2018 (O'Brien, 2019).

Online reviews are extremely important for the restaurant industry and this became really

clear during the COVID-19 pandemic. Recent survey of US customers’ attitudes towards

online presence of local business showed just how important a positive online presence is.

93% of people surveyed claim to have searched local businesses online, while 87% read their

online reviews. The same survey also indicated that customers were most likely to read online

reviews on restaurants when compared to all other industries (Murphy, 2020). This points to

the conclusion that restaurants should indeed pay attention to online reviews.

Restaurant staff probably does not receive all the feedback in live interaction and for that

reason they can use online reviews to make the business more successful. Currently, four

websites hold 88% of all online reviews. Out of those 88%, Google is the industry leader with

73% of the market, followed by Yelp (6%), Facebook (3%), and TripAdvisor (3%). (Review

Trackers, 2021). In addition to this, many online reviews are classified incorrectly as the users

selected the incorrect start rating when writing their review. With that in mind, restaurants

would benefit from a model that could analyse those third-party reviews and classify them

correctly, allowing the restaurant owners to focus on quality feedback provided. This is what

63

this project is set out to do – build a model able to predict the rating based on the textual

review that can be used on third-party reviews or even incorporated on a website.

3.0 State of the Art
This topic has been explored in the past, with most researchers attempting to classify the

review sentiment by its polarity. This means that they tried to classify the reviews into either

two or three categories. While most work uses positive / negative classification, some also

add the neutral category. The first research reviewed used four different machine learning

algorithms and a dataset of 4000 reviews. Its best performing algorithm was random forest

with an accuracy of 95% (Zahoor, et al., 2020). The second researched paper had a dataset of

1500 reviews and used three different machine algorithms. Their best result was obtained

when Support Vector Machine (SVM) algorithm was used, with a much lower level of

accuracy– 75.58% (Haque, et al., 2019). Third paper reviewed had the lowest number of

reviews in the dataset – only 700. Although they used four different algorithms to classify the

data, the highest performing was once again SVM with an accuracy of 95% (Huda, et al., 2019).

The last paper reviewed had just over 1000 reviews in the dataset and while 5 algorithms

were used for classification, the best performing was, once again, SVM with 95% of accuracy

(Krishna, et al., 2019).

 There are two main differences between their approach compared to the one undertaken

in this project. While their classification only focussed on two categories (positive / negative),

this project will attempt to provide a classification into 5 categories. In addition to this,

primarily because more are categories are considered, the dataset used will also be larger

compared to the ones used in previous research. For that reason, the machine learning

accuracy might come closer to the levels achieved than otherwise would be possible.

4.0 Data
As mentioned in the previous section, the number of reviews for this type of analysis

ranges from 700 to 4000. All the researchers specified the importance of having a balanced

dataset which contains approximately the same number of positive and negative reviews.

One of them had an unbalanced dataset of 200 positive and 500 negative reviews, which

proved to be a problem when testing the model (Zahoor, et al., 2020). All of the datasets,

among other columns, contained two most important ones – a textual review column and

another column that served as the target column, which served for the validation of their

model. That column had either a numerical rating or the information on whether the review

was positive or negative.

64

Based on that information, it is important to acquire a dataset that has the following

characteristics:

o contains textual reviews of restaurants only

o contains a column that denotes if the review is positive, negative or neutral and /or a

column that contains numerical rating (1-5 or 1-10)

o contains at least 2000 rows as most previous research was done on smaller samples

than that

o the dataset is publicly available and has the clear permissions available on their

website or allows for the licence to be granted by contacting the author(s) – clear

permissions are preferrable as licence-granting process can sometimes be fairly long

and differ the start of the project

Once the dataset is found, it will be downloaded directly, or accessed using API, depending

on the process outlined on the website.

5.0 Methodology & Analysis
In order to complete the project, the plan is to follow the KDD (Knowledge, Discovery and

Data Mining) approach. This methodology is a data analytics methodology that has been used

for the last 30 years and differs from the others as it relies on the iterative process (Fayyad,

et al., 1996). In this case, as there will be a need for constant refinement for the model to

become precise in its classification, there will exist a need to go back to one of the previous

steps in order to get better results. Through this repetition, the model should become much

better at classifying.

In terms of the actual organisational part, the classic stages of KDD – data selection, pre-

processing, transformation, data mining and interpretation / evaluation (Fayyad, et al., 1996).

For the selection phase, relevant sources of data need to be found and the dataset explored.

In addition to becoming familiar with the dataset, this phase is also used to research the rest

or the process needed to complete the project.

During the pre-processing phase, the idea is to clean the datasets of unnecessary columns,

deal with the missing data and eliminate the datasets that prove to be irrelevant for the

project. In the transformation phase, review text needs to be transformed in a format

acceptable for machine learning. During the data mining phase, the idea is to use different

machine learning approaches to train the model to successfully classify the data on both

validation and test part of the dataset. Finally, in the interpretation / evaluation phase, the

results are evaluated using charts and summary tables.

The machine learning algorithms planned for use based on the literature review are:

▪ Logistic Regression

▪ Naïve Bayes

▪ Support Vector Machine

▪ Decision Tree

▪ Random Forest

65

Regarding work organization, it will be done in two-week sprints, consisting of activities

logically linked to one another. The focus of the first semester would be on finding the data,

cleaning it from irrelevant information and showing some trends using data visualisations.

The main driver for those tasks would be the mid-term presentation as the first major

milestone. During second semester, there will be two major milestones. First one would be

the reading week where at least one model used should be performing well. The second major

milestone would be Easter break. At that point, all the project work should be done. This will

allow a couple of extra weeks to work on documentation or account for delays in project

work.

6.0 Technical Details
For the project management part of the project, Microsoft Office products will mostly be

used. Microsoft Word will be used for all the documentation. Excel will be used to review

datasets in the data selection phase. In order to create slides for video presentations,

PowerPoint will be used. The videos themselves will be recorded using Microsoft Teams and

then hosted using Microsoft Stream. The only non-MS Office tool used will be an online

project management tool – TeamGantt. As the name itself suggests, the tool is used to create

and host Gantt charts. Gantt chart created using that tool is used for the project plan in this

document.

The technical side of the project, the code used to import and clean the data, create data

visualisations and train, validate and test the models will be done using Python 3.9. In order

to run Python code, PyCharm IDE (integrated development environment) will be used locally.

Google Colab notebooks will mostly be used for presentations as they offer a cleaner outline

and are more convenient when a single line of code needs to be run, especially on a project

that potentially has hundreds of lines of code. Python libraries used to complete the project

and their descriptions are available in the table below.

Library Usage

Pandas Importing / exporting csv files, manipulating DataFrames

Openpyxl Importing / handling xlsx files

Re Cleaning data using Regular Expressions

Matplotlib Data visualization library

Seaborn Data visualization library

Plotly Data visualization library

NLTK Language processing library

Scikit-learn Machine learning library used for building, training and testing
models

66

7.0 Project Plan

Project plan has been adjusted for the change of project idea so it starts on the 8/11.

67

The gap between the two semesters is purely down to exam preparation.

Note that some extra time is provisioned here in case of delays in project work – the final two

weeks before the project deadline are meant to be used in case of delays or in case some

additional adjustments are needed.

68

8.0 Bibliography
Aureliano-Silva, L., Leung, X. & Spers, E. E., 2021. The effect of online reviews on restaurant visit

intentions: applying signaling and involvement theories. Journal of Hospitality and Tourism

Technology, 12(4), pp. 672-688.

Fayyad, U., Piatetsky-Shapiro, G. & Smyth, P., 1996. The KDD Process for extracting useful knowledge

from volumes of data. Communications of the ACM, 39(11), pp. 27-34.

Haque, F., Manik, M. H. & Hashem, M., 2019. Opinion Mining from Bangla and Phonetic Bangla

Reviews Using Vectorization Methods. Khulna, 4th International Conference on Electrical

Information and Communication Technology.

Huda, S. M. A., Shoikot, M., Hossain, A. & Ila, I. J., 2019. An Effective Machine Learning Approach for

Sentiment Analysis on Popular Restaurant Reviews in Bangladesh. Ipoh, 1st International Conference

on Artificial Intelligence and Data Sciences (AiDAS).

Krishna, A., Aich, A., V, A. & Hegde, C., 2019. Analysis of Customer Opinion Using Machine Learning

and NLP Techniques. International Journal of Advanced Studies of Scientific Research, 3(9), pp. 128-

132.

Murphy, R., 2020. Local Consumer Review Survey 2020. [Online]

Available at: https://www.brightlocal.com/research/local-consumer-review-

survey/?SSAID=314743&SSCID=c1k5_o3fca

[Accessed 05 11 2021].

O'Brien, B., 2019. Irish consumers to spend €8.55 billion on ‘dining out’ in 2019. [Online]

Available at: https://www.agriland.ie/farming-news/irish-consumers-to-spend-e8-55-billion-on-

dining-out-in-2019/

[Accessed 01 12 2021].

Review Trackers, 2021. Online Reviews Statistics and Trends: A 2022 Report by ReviewTrackers.

[Online]

Available at: https://www.reviewtrackers.com/reports/online-reviews-survey/

[Accessed 10 12 2021].

Zahoor, K., Bawany, N. Z. & Hamid, S., 2020. Sentiment Analysis and Classification of Restaurant

Reviews using Machine Learning. Giza, 21st International Arab Conference on Information

Technology (ACIT).

69

9.2. Reflective Journals

Month: October

What?

The first month of a new project, especially such a large one, always brings about a varied set of

tasks to complete. The first thing to do was to prepare the project pitch, which not only meant

making a decision on how to record the video and where to stream it, but also to decide on the

project topic and do some preliminary research about the topic chosen. Once the video was done

and uploaded, we were supposed to start working on the project proposal and wait for a supervisor

to be assigned to us so they can inform us whether our project idea has been accepted or not, give

us feedback on the things we might need to change with the project itself and maybe give us some

pointers on what to focus first. In the meantime, we were also supposed to research datasets we

might want to use so we can include them in the Ethics Form.

So What?

I did decide on a topic I feel strongly about – the impact of socio-economic factors on covid-19

vaccine hesitancy in the EU. That was the first step. Then, I had a look at some datasets that would

be required for the project and the first glance at them seems to indicate there indeed might be a

link between the factors I want to explore and the vaccine hesitancy. The video upload went ok, not

great. While filming, I realized that I might need to leave out some technical details in order to fit it

within 3 minutes and I was pretty certain this might lead to some amendments being suggested for

the project idea. In terms of the technical part, I did decide to use Python and R to analyse the data.

I do want to do some machine learning to verify the data, but I definitely need more input from the

supervisor to see if this would be best done using logistic regression, neural nets or something else.

I also have a “nice-to-have” feature – if there is enough time, I’d like to display the charts / graphs

on a website powered by Python and either Flask or Django (maybe use React to handle frontend).

Finally, the supervisor was assigned to me at the end of the month and, as I suspected, mentioned

that there will be a need for some changes to be implemented. However, he is still waiting for the

other reviewer to upload the feedback so it is still uncertain what needs to be changed. Overall, the

biggest successes are definitely the completion of all the deliverables so far and the fact that I was

able to make a decision on the topic. The challenges are definitely fully defining the scope of the

project and organising the workload while taking into consideration all the continuous assessments

and projects in the first semester.

Now What?

The things I would like to complete in the following month are:

- Check in with the supervisor on Tuesday to see if there is feedback available from the other marker

and then set up a meeting so we can discuss the changes that need to be implemented

70

- Research the approach on how to complete the project in a bit more detail and complete the

project proposal before 7/11

- File the Ethics Form for the datasets I have already found by 7/11

- After 7/11, start searching for other compatible datasets that would be suitable for the project

- Do some initial data cleaning for a smaller part of the dataset, maybe do all the socio-economic

factors vs vaccination rates for two countries (one at the top end and one of the ones with lower

vaccination rates, I might just compare Croatia and Ireland as I am familiar with situation in both

countries)

- Try plotting some graphs using R to show the comparison between the two

Month: November

What?

The main event this month happened during the first week of November – the proposed project

idea was rejected by one of the markers so the supervisor informed me that we would need to look

at the college approved projects and pick one of them. After examining the options provided, I have

chosen Opinion Mining for Automated Restaurant Reviews Rating as this was the topic that suited

the specialization the most. Once the topic was chosen, the most important first milestones to meet

were writing up a project proposal and the ethics form. As I have been notified of the change in

topic only a couple of days before the submission date, I needed to focus on quickly exploring the

topic so I can include some basic pieces of information in the submission documents and build a

foundation on which I can explore the topic further during November and build the project.

So What?

After having a couple of meetings with the supervisor about how to proceed with the project, I

researched the basic information behind the topic and included the information in the project

proposal documentation. I have also managed to find datasets that do fit in with the topic, but most

of them did not have a clearly formulated disclaimer that would allow me to use it with no issues.

Finally, I managed to submit two of them as part of the ethics form, right on time. Once the upload

was done, it allowed me to focus more on further exploration of the topic. During November, I have

decided to move the data exploration and pre-processing from R into Python. On one hand, the

decision was made because I already have experience coding in Python and my knowledge of R is

still pretty basic. On the other hand, Python also offers more versatility in later stages of the project,

not only in terms of different libraries that can be used for machine learning, but also when it comes

to the avenues that can be taken in the final stages of the project – if I do decide to deploy the

model to work with restaurant reviews on a live website, that would be much easier done using

Python and Django or Flaks than R. In addition to doing the technical research, I also focussed

heavily on researching the process relating to sentiment analysis and opinion mining – which steps

need to be taken in each of the phases and which machine learning algorithms would work best.

71

While I still have not decided on the best machine learning approach, the exploration and pre-

processing phases are pretty clear at this point. In order to complete these initial steps, I have also

in the process of finishing an online course on Pandas as this is going to be the first library that will

enable me to pre-process and clean the dataset. As far as the datasets are concerned, the decision

was made to use one main dataset that has both the numerical scale attached to each of the reviews

(1-5) and the general sentiment (positive/negative). Other datasets can be kept as backup for now,

but this one should be more than enough as it has 10000 reviews stored. The initial data exploration

showed that the dataset is appropriate for the project as it is well balanced, with the same amount

of positive and negative reviews, and no faulty or missing values.

Now What?

The things I need to complete in the following month are:

- Finish pre-processing phase – remove stopwords, special characters, lemmatize the words

- Analyse unigrams, bigrams and trigrams – generate charts showing most common expressions

- Generate wordclouds to see which words dominate the dataset

- Finish Pandas course and identify which other libraries / frameworks will be necessary to complete

the project

- Shortlist the machine learning approaches that would be most suitable for the project

- Complete documentation for mid-point submission – update proposal to reflect the changes

made, create PowerPoint presentation and record the video showcasing the progress, fill out the

documentation with relevant information gathered so far

Month: December

What?

The focus of this month’s efforts was mainly on getting as much as possible done for the mid-

point submission. The information was provided that, as a part of the submission, a draft of the

final documentation, sections 1 to 4, will also need to be included in the submission, along with

the project proposal and the video showcasing the work already completed. This created plenty of

additional work as each part of the process needed to be documented in detail to have the

document draft ready.

So What?

Regarding the actual work on the code, the goals set for this month were met, and even

surpassed. All the pre-processing steps and data visualisations were completed, two different

ways of transforming the reviews from textual into numerical form were used. At this point, in

terms of technologies, a wide array of libraries were employed – NLTK for pre-processing of

textual data, Pandas for manipulating DataFrames, Plotly, Seaborn and Matplotlib for data

visualisations and scikit learn is the library chosen for the machine learning part of the project. In

terms of actual machine learning algorithms, five were chosen for the project, based on the

review of previous works done on sentiment analysis – logistic regression, support vector

machine, decision trees, random forest and naïve Bayes. The work has been started just before

the submission on logistic regression, generating first results, the accuracy of which is above 65%.

72

This is an encouraging first step as the results when using 5 categories with this algorithm are

usually much lower. Finally, Google Colab is proving to be a great help when running machine

learning scenarios – as the dataset is quite large for this type of project, in some cases the code

cannot be run locally so Google Colab is a great backup option there.

As for the documentation, most of the planned work was completed – Project Proposal is now

much more solid, the introduction, pre-processing and transformation stages are well-organised,

with enough visual representation of the work done so far. The sections that will definitely need a

lot more work are those relating to machine learning algorithms, but these are still a work in

progress as that part of the work has only started.

The video itself did not go as planned. The original plan was to record shorter videos, one for each

section and then combine them using wave.video, an online video-editing platform. However,

their service experienced prolonged downtime periods around the time of submission so a one-

take video was recorded in the end using Microsoft Teams. The downside of this is lower video

quality, but it exposed even more that 10 minutes are far from enough to explain the whole

project and the work done so far coherently. The positive thing is that everything was completed

and submitted on time.

When it comes to the supervisor meetings, they are happening regularly, once a week. I am really

satisfied with the collaboration as I feel the supervisor has good sense of direction for the project

and always brings in some fresh ideas and a new perspective on the problem.

Now What?

The things I need to complete in the following month are:

- Explore other machine learning algorithms in more detail

- Complete all the planned scenarios with logistic regression – train and validate using different

combinations of pre-processing and experiment with model-tuning

Month: January

What?

Most of January went towards exam preparation and execution. Once this was done, the plan was

to continue with the logistic regression and further exploration of machine learning to prepare for

the rest of the work on the project. However, the announcement was made that the final project

bio, along with project overview and the images that are going to be displayed on the project

showcase page need to be completed / selected by early / mid February. In addition to this, the

final submission date has also been moved so there will be one additional week available to

complete the project and the project documentation.

So What?

Due to those announcements, the project plan has been tweaked slightly – even though the

logistic regression work was continued, its completion has been pushed by a week in order to

allow for the time to finish the bio and other information required for the showcase website.

Considering the fact that the final submission has been pushed by a week, this would not delay

the work needed to complete the project on time. It will, however, allow more time focussed on

73

the actual code towards the end that was supposed to be used for the project showcase

information.

Now What?

The things that are to be completed in the following month are:

- Finalise all the planned scenarios with logistic regression – train and validate using different

combinations of pre-processing and experiment with model-tuning – along with adding this

information to the final document

- Finalise everything related to the showcase – bio, project description, images, technologies,

poster

- Theory background and training / validation using Naïve Bayes with the documentation

- Theory background on Support Vector Machine and starting training / validation

Month: February

What?

Early February was used for completing all the project showcase profile details – from writing a

bio, project description to selecting and resizing / cropping images. Towards the end of that work,

the feedback was provided for the work done during the first semester and it transpired that

some additional input would be needed. That means that additional datasets needed to be

sourced in order to continue with the machine learning stages of the project.

So What?

Due to this fact, the rest of the work completed in February revolved around sourcing additional

datasets. The two sources added were reviews scraped from TripAdvisor using Selenium and

Yelp’s open dataset. Each of these datasets has its own specifics – TripAdvisor is not really clear on

their scraping policy so the outcome on that dataset will be known once the Ethics form

submission is reviewed. As for Yelp, this is a massive dataset, with over 8 million reviews of

restaurants. This has two knock-on effects on the overall project. The first one is that all the

background research on the machine learning approaches to be used is pushed before actual

work on the data. This way, all the preparation for all the machine learning approaches will be

done while the new datasets are being evaluated by the college. The second effect is that some of

the previously planned machine learning techniques might need to be dropped as they work well

with smaller datasets only. This means that a move towards more deep learning techniques will

probably happen.

Now What?

The things that are to be completed in the following month are:

- Find more effective ways of loading large datasets faster (like the Yelp dataset)

- Explore batch training options for machine learning models – the textual reviews need to be

vectorized and this requires a lot of memory so batch training would be a good workaround for

memory issues

74

- Explore deep learning and write the generic code snippets that can be used to loop through

different models and train / validate data using different parameters

- Complete the exploratory data analysis, pre-processing and transformation phases of the new

datasets and update the final document with that data

- Finally complete the Logistic Regression part of the project with the new datasets included

Month: March

What?

Before the mid-term break, there was a meeting with Siobhan from the Careers Office where

feedback was provided on what needs to be changed in the project description. In addition to this,

the supervisor proposed having a Kanban board with all the active task so it is easier to track the

overall progress. Finally, the Easter break is approaching and the first results obtained from

machine learning models were not encouraging in terms of achieving high accuracy (over 80%) so

there was more pressure added to get better results.

So What?

The first changes were made to the project description to include more technical details on the

technologies used. Afterwards, the decision was made to also include a second target column to

the dataset – this one focussing on whether the review was good, bad or neutral and the three

machine learning techniques used so far (Logistic Regression, Support Vector Machines, Random

Forest) showed much better results. The hyper parametrization using SearchGrid CV additionally

improved the results. Finally, a Kanban board was set up through Monday.com for the supervisor

to be able to have a better overview which items are being worked on.

Now What?

The things that are to be completed in the following month are:

- Finish all the machine learning techniques with the train and validate sets

- Compile plots and charts using data visualization tools to show how models with the best

parameters were found

- Update the documentation reflecting all the work that has been done

- Regularly keep updated the board containing active tasks so that the supervisor can see the

progress before the weekly meetings

75

Month: April

What?

A lot of the time this month was spent on either finishing continuous assessments or working on

terminal assessments, which were all pretty huge. However, the work on the project continued in

the background, with it getting the full focus after the 22/04. As most of the work with the first

three algorithms was done, it was important to get more done with the last two approaches used

(naïve bayes classifier and neural nets).

So What?

All the algorithms were put through all the phases initially planned – training, hyper-

parametrization and validation of the results on the validation set. All this did lead to an

improvement in performance, but some additional tweaking can be done in the last two weeks.

Additional literature has been consulted in order to find more ideas on how to improve the

performance. Finally, the documentation has been updated with the changes made.

Now What?

The things that are to be completed in the final phase of the project:

- Tweak the vocabulary that goes into the TfIdf and CountVectorizer and train the model using

that data – this should account for the data being skewed towards positive reviews

- Use VotingClassifier to try to get better classification results using several algorithms at the same

time on the dataset

- Run the most successful configurations on the test set

- Update the documentation reflecting all the work that has been done

- Create the project poster as part of the submission

- Record the final presentation video

76

9.3. Outputs of models’ performance on test set

1. Logistic Regression ratings accuracy

2. Logistic Regression ratings - confusion matrix

3. Logistic Regression ratings – all metrics

77

4. Logistic Regression sentiment accuracy

5. Logistic Regression sentiment - confusion matrix

6. Logistic Regression sentiment – all metrics

78

7. Support Vector Machines ratings accuracy

8. Support Vector Machines ratings – confusion matrix

9. Support Vector Machines ratings – all metrics

79

10. Support Vector Machines sentiment accuracy

11. Support Vector Machines sentiment – confusion matrix

12. Support Vector Machines sentiment – all metrics

80

13. Random Forest ratings accuracy

14. Random Forest ratings - confusion matrix

15. Random Forest ratings – all metrics

81

16. Random Forest sentiment accuracy

17. Random Forest sentiment - confusion matrix

18. Random Forest sentiment – all metrics

82

19. Naïve Bayes ratings accuracy

20. Naïve Bayes ratings - confusion matrix

21. Naïve Bayes ratings – all metrics

83

22. Naïve Bayes sentiment accuracy

23. Naïve Bayes sentiment - confusion matrix

24. Naïve Bayes sentiment – all metrics

84

25. Neural Networks ratings accuracy

26. Neural Networks ratings - confusion matrix

27. Neural Networks ratings – all metrics

85

28. Neural Networks sentiment accuracy

29. Neural Networks sentiment - confusion matrix

30. Neural Networks sentiment – all metrics

86

31. Voting Classifier ratings accuracy

32. Voting Classifier ratings - confusion matrix

33. Voting Classifier ratings – all metrics

87

34. Voting Classifier sentiment accuracy

35. Voting Classifier sentiment - confusion matrix

36. Voting Classifier sentiment – all metrics

88

37. Vader sentiment accuracy

38. Vader sentiment – confusion matrix

39. Vader sentiment – all metrics

