

National College of Ireland
Bachelor of Science (Honours) in Computing

Software Development

2021/2022

Alan Mellowes

18467362

18467362@student.ncirl.ie

High availability Fintech Application

Technical Report

1

Contents
Executive Summary ... 4

1.0 Introduction .. 4

1.1. Background ... 4

1.2. Aims ... 5

1.3. Technology .. 6

1.4. Structure ... 8

2.0 System ... 9

2.1. Requirements .. 9

2.1.1. Functional Requirements .. 9

2.1.2 Non-Functional Requirements .. 15

1.1.1.1. Use Case Diagram ... 16

1.1.1.2. Requirement 1: Send money to a saved contact .. 16

1.1.1.3. Description & Priority .. 16

1.1.1.4. Use Case .. 16

1.1.1.5. Requirement 2: Send money to a acquaintance via PayPal API 19

1.1.1.6. Description & Priority .. 19

1.1.1.7. Use Case .. 19

1.1.1.8. Requirement 3: Search for cryptocurrencies .. 22

1.1.1.9. Description & Priority .. 22

1.1.1.10. Use Case .. 22

1.1.1.11. Requirement 4: Add money to vault ... 24

1.1.1.12. Description & Priority .. 24

1.1.1.13. Use Case .. 24

1.1.1.14. Requirement 5: send money to a friend via GooglePay ... 27

1.1.1.15. Description & Priority .. 27

1.1.1.16. Use Case .. 27

1.1.1.17. Requirement 5: Register new account .. 30

1.1.1.18. Description & Priority .. 30

1.1.1.19. Use Case .. 30

1.1.1.20. Requirement 8: Keep track of money spent ... 32

1.1.1.21. Description & Priority .. 32

1.1.1.22. Use Case .. 32

1.1.1.23. Requirement 9: Log out .. 34

1.1.1.24. Description & Priority .. 34

1.1.1.25. Use Case .. 34

2

3.0 Data Requirements ... 36

3.1 User Requirements ... 36

3.2 Environmental Requirements ... 36

3.3 Usability Requirements ... 37

4.0 Design & Architecture ... 38

4.1 Class diagram .. 39

4.2 Flowchart .. 44

4.3 User Personas ... 45

4.3.1 Persona 1 ... 46

4.3.2 Persona .. 47

4.3.2.1 Scenario 2 – Ian Mac ... 47

5.0 Implementation .. 48

5.1 Failover Clustering .. 48

5.2 PayPal Activity ... 51

5.3 Google Pay Activity ... 52

5.4 Stripe Activity .. 53

5.5 Daily analytics ... 55

5.6 Step Activity .. 60

6.0 Graphical User Interface (GUI) .. 64

6.1 GUI – Wireframes .. 64

7.0 Testing ... 77

8.0 Evaluation ... 94

9.0 Conclusions ... 95

10.0 Further Development or Research ... 96

11.0 References .. 97

12.0 Appendices .. 99

3.4 Project Proposal .. 99

1.0 Objectives .. 100

2.0 Background ... 100

3.0 State of the Art .. 101

4.0 Technical Approach ... 101

5.0 Technical Details .. 102

6.0 Special Resources Required ... 103

7.0 Project Plan ... 103

8.0 Testing ... 104

9.0 References ... 105

3

2.2. Ethics Approval Application (only if required) .. 105

3.5 Reflective Journals .. 105

4

Executive Summary
The objective of this report is to provide an application intended to be used by users
worldwide. The aim of my project is to provide an application that presents users with
multiple unique features you would normally need a variety of applications for. My
application looks at running through required steps to implementing a highly availability
application with a secure SQL database. I have developed an application using android
studio that allows users to send money, make payments, manage their savings, and monitor
cryptocurrencies. The main scope of my application is the fintech application side with
similar functionality to Revolut, it will look at dealing with transactions, savings monitoring
and investment management. In my report I will talk about how I would go about providing
high availability if the funding was made available. I have implemented a secure database to
simply compliment my application.

Having used multiple applications for these different features I believe that this application
has potential in today’s market. The purpose of this report is to simply dive into some
technical details revolving my application. In the report I go through some important
questions about my project and what my overall goal is. As well as running through some
use cases and describing some snippets of code to explain how I implemented some of my
applications core functionalities.

1.0 Introduction
1.1. Background

The fintech sector is an ever-progressive platform, fintech statistics show from case studies
performed in Australia, the UK, and the US, have shown us that the fintech statistics have
risen from 16% in 2015, rising to 31% in 2017 and reaching up to 60% in 2019. In a popular
technology article, it was mentioned that “The global fintech market was worth $127.66
billion in 2018, and it is expected to reach $309.98 billion at a CAGR Of 24.8% through 2022.”
[prenewswire] [2019]. It is also estimated that 75% of millennials in the US switched to
digital banking, I expect that this will lead to massive growth opportunities for digital finance
services.

To this day, companies still seem to be experiencing issues with providing high availability
and highly secure systems. High availability, database security and developing have always
been areas of interest to me. I believe that implementing these three factors to a good
standard is necessary when creating a mobile application for an end user. When a system or
database fails, organisations require high availability protection. They require high
availability to keep their systems up and running and to mitigate loss of revenue, brand
damage and unhappy customers. The high availability method I plan on describing how to
implement is known as ‘Failover clustering’. Failover clustering is a collection of separate
servers that collaborate to boost the availability of systems and applications. If a service
fails, the services hosted on that node can be migrated automatically to a different,
available node.

5

There are many reasons as to why database security is important seen as sensitive and
personal data is on the line. Firebase help secure your data with Firebase Security Rules that
are flexible and extensible.

1.2. Aims
“The word “fintech” is simply a combination of the words “financial” and “technology”. It
describes the use of technology to deliver financial services and products to consumers”.
[Central bank, 2022] The helped me define the scope of my project, I aim to develop a
fully functionable fintech application that deals with payments, investment
management, savings monitoring whilst with the help of possible future funding,
providing high availability whist also ensuring the customers data is stored securely in a
Firebase database. For my application to be fully functionable it is necessary that it is
possible to deal with transactions, an example of this would be sending money to
someone or paying for a product. My aim for the savings monitoring feature is to
provide the user with access to a vault in which they can insert and monitor their virtual
money. I aim on providing the user with daily analytics to keep track of what they are
spending their money on.

A user can insert money on multiple occasions, it does not have to be one transaction.
The money inserted in this vault will be added up together and categorised by different
items of choice, the total balance will then be compared to the savings goal in which the
user originally entered. For example, when a user first opens a vault, they will be
prompted to insert a value which corresponds to their overall savings goal. Let us say
that a user has a goal of $1000. Whenever the user adds money to this vault, it will be
added to the original amount that was in the vault and be presented to the user.

 When dealing with the investment management feature, my aim is to provide the user
with the top 100 cryptocurrencies and their current market price. Let us say the user is
invested in Bitcoin, navigating to the investment management page the user will be able
to see what the current market price is for the coin as well as having the ability to search
for other cryptocurrencies.

 I cannot stress the importance of high availability, essentially it is one or more
databases that fail over together. I aim to provide high availability in the future by
walking through the steps of implementing failover clustering. My justification is that
failover clusters have a multitude of practical uses, including highly available clustered
roles and highly available or continuously available file sharing storage. The only reason I
can’t provide windows server failover clustering is cost. To provide this feature you must
own a standard version of Windows Server which is priced around 600 euro.

6

1.3. Technology
Technologies to be used:

- Java
- Cryptocurrency API
- Google Pay API
- PayPal API
- Stripe API
- Failover Clusters
- Firebase database
- Detectors
- Sensors
- Espresso testing framework

When it comes to developing my mobile application, I have been using Android studio.
My reasoning is, Android Studio is considered the official IDE for android development. I
decided Java would be most suitable for my application, android studio’s source code is
in Java which also led me to pick this as my IDE. From researching a variety of
programming languages, I found Java to be the most suitable. This was due to a variety
of reasons; Java is a highly regarded language for banking applications where security is
amongst one of the main concerns. Seen as I plan to deal with everyday banking tasks
such as transactions and money storage, I figured this was a suitable candidate.

Stripe API

On the topic of banking, Stripe is a payment processing software and application
programming interface I plan to implement as it is compatible with mobile applications.
The Stripe API is organized around REST. Their API accepts form-encoded request
bodies, delivers JSON-encoded replies, and employs standard HTTP response codes,
authentication, and verbs. [stripe docs, 2020]

Database

The database I use for my application will look at storing sensitive data such as personal
user details. This is an important topic and should be considered to not only prevent
hacks but to also ensure the customer feels like their data is in safe hands instead of
feeling vulnerable which is the opposite of what we want. Now more than ever, it is
important for businesses to comprehend the risks and consequences at hand when
dealing with data breaches. Losing customer trust is one of the long-term repercussions
of a data breach, in the event of a data breach, afterwards the company will have to deal
with all sorts of implications. The company will be under pressure as their brand
reputation is at stake. If customers believe that the company is neglecting to take
additional steps to prevent future security breaches, they may seek for an alternative
programme that offers the same functionality but with improved security. From January
to September 2020, it was estimated that around 36 billion records were compromised,
according to these statistics it has been found that cybercriminals are still the main
drivers behind these breaches. It can be said that Database security is the business of

7

the entire organization as all people use the data held in the organizations database and
any loss or corruption would affect the day-to-day operation of the organization and the
performance of the people.

Encryption provides a way to encode data so that only authorized users can view the
data in an unencrypted state overall limiting the exposure of sensitive data.

Failover cluster

A high-availability cluster, also known as a failover cluster, ensures that if a fault causes
one system to fail, another system can be smoothly utilised to preserve the application's
availability. The cluster I plan on documenting will consist of 4 nodes which are
essentially servers. One of the machines will be a domain controller, another will be a
storage server whilst the other two are the two failover nodes. On these machines it is
essential that windows server standard edition is installed. Before a failover, each
member of an active high availability cluster actively processes data.

PayPal API

I have demonstrated how to utilise the Native Checkout SDK to develop a safe and secure
payment method for my mobile application. I've incorporated a Pay Now checkout option,
which enables the user to transfer funds to another user's PayPal account. The SDK
supports integrations on both the client and server sides. [developer.paypal, 2022]

Google Pay API

To submit a request for payment and receive a response, Google Pay supports generic
Unified Payments Interface (UPI) API calls. As I mentioned I intend on this application
being suitable for users worldwide, this feature is only applicable for users with an Indian
Google pay account. I have implemented Google Pay payments with the help of the official
documentation. [Google Pay, 2021]

Espresso Framework

As my programme involves extensive user interaction with the user interface, I wanted to
write UI unit tests to analyse the numerous application components with which the user
will interact. To assist me with testing my user interface I have implemented Espresso and
ran tests for multiple test cases. [developer.android, 2021]

Cryptocurrency API

With the aid of the aid of the official documentation of CoinMarketCap’s cryptocurrency
API I have managed to retrieve the top 100 cryptocurrencies in today’s market and
display the results to the user. The CoinMarketCap API is a set of RESTful JSON endpoints
with exceptional performance. [CoinMarketCap, 2021]

8

1.4. Structure
This report is a technical report which explores every detail of the mobile application I am
developing. The report consists of 12 main sections however there are also a variety of
subsections. In section 1 of the report, I answer some important questions about my project. I
discussed the goals of my project, why I decided to undertake it, the technology I plan on using
to achieve the tasks I have set out to do as well as how I plan on using specific technologies.

In section 2 I have listed all functional and non-functional requirements in order whilst also
providing multiple use case diagrams as well as a description of what is being carried out in the
use case. In this section I also go on to describe the design, system architecture and components
used followed up by describing the main algorithms used in my project. I provided some
screenshots of my applications most visited screens in which I designed using Adobe XD.

Section 3 of my report goes onto exploring user requirements and limitations, environment
requirements and limitations, as well as usability requirements and limitations.

In section 4 of the report, I designed a class diagram using lucid chard to show what methods are
contained in each activity as well as giving a general idea of how the activity relate to each other.
A more detailed flow of my application is depicted in the flowchart diagram I have designed. I
have also created two user personas to assist me in creating a system that users require, rather
than a system that users desire.

Section 5 of the report goes into detail about how I implemented some of my applications core
functionality. The implementation section is extremely important as I also provide the necessary
steps that should be followed to implement windows server failover clustering. This section
includes snippets of code along with explanations as what the code does.

Section 6 simply shows the stages of my applications user interface design. I originally did some
general wireframes to get an idea of page layout and overall app structure. I later moved to
AdobeXD and designed a blue/white colour schemed navigable and consistent user interface.

In section 7 I explored different types of testing. I ran through manual tests in which I
documented after each merge was performed. I learn how to implement automated testing
using Espressos testing framework. These tests can be run through android studio by running
the testing activities instead of the application.

 Section 8 covers an evaluation of what my application successfully achieved in comparison to
the original proposal.

In section 9 I concluded my findings and provided a list of the advantages and disadvantages of
my project. I also underlined the strength and weakness of my application.

Section 10 explores what future work I would like to include. I mention that with the help of
some funding I would be able to successfully implement windows server failover clustering.

9

2.0 System
2.1. Requirements

2.1.1. Functional Requirements

User requirement Make payment using Stripe API
Main Task A user wishes to upgrade their current card. The user goes to the upgrade

card activity and activates the Stripe API. The user then completes their
payment.

Subtask User has to be logged into wave and PayPal
Functional system

requirement
1. User opens wave
2. User logs into their Wave account
3. User selects ‘payments’ activity on the home screen.
4. Users selects the ‘Upgrade Card’ activity.
5. User clicks on the card being sold for 10 euro
6. User is presented with Stripe API
7. User enters card details
8. User confirms payment

Description Users can upgrade to a better credit card. The card is being sold for 10
euro and offers incentives such as Free travel insurance and unlimited
withdrawals without any fees being applied.

User requirement Send money via PayPal API
Main Task A user is presented with multiple options of payment. They decided

they would like to send money to a contact via PayPal. They choose
the PayPal payment method, enter their login details, recipients
name, and payment amount. The user then confirms the payment.

Subtask User has to be logged into wave and PayPal
Functional system

requirement
1. User opens wave
2. User logs into their Wave account
3. User selects ‘payments’ activity on the home screen.
4. Users selects the ‘PayPal’ payment method.
5. User enters recipient’s email
6. User enters amount they wish to send
7. User logs into PayPal account
8. User confirms payment

Description Users can make a payment to another person using PayPal API

10

User requirement Send money via Google API
Main Task A user is presented with multiple options of payment. They decided they

would like to send money to a contact via Google Pay. They choose the
Google Pay payment method, enter their login details, recipients UPID,
and payment amount. The user then confirms the payment.

Subtask User has to be logged into wave and own an Indian Google Pay account
Functional system

requirement
1. User opens wave
2. User logs into their Wave account
3. User selects ‘payments’ activity on the home screen.
4. Users selects the ‘Google Pay’ payment method.
5. User enters recipient’s details
6. User enters amount they wish to send
7. User presses pay and gets redirected to Google Pays API
8. User confirms payment

Description Users from India can make a payment to another person from India using
Google Pay API.

User requirement Create an account stored in Firebase database
Main Task If the user wishes to access the applications features, it is necessary that

they have an existing account. Creating an account gives the user the
option to send money, purchase items, keep track of their savings, and
monitor cryptocurrencies

Subtask User must have a valid email address.
Functional system

requirement
1. User opens wave
2. User clicks register button
3. User fills out form.
4. Users completes submission.

Description User can create an account

User requirement Login
Main Task If the user wishes to access the applications features, it is necessary that

they have an existing account. When the user logs in they are presented
with the opportunity to send money, purchase items, keep track of their
savings, and monitor cryptocurrencies

Subtask User must have a valid email address.
Functional system

requirement
1. User opens wave
2. User clicks login button
3. User fills out form.
4. Users submits credentials.

Description User can login to an existing account

11

User requirement Add money to savings vault
Main Task The user heads to the savings activity. The user decided to create a vault

in which they enter the amount of money they would like to save. The
user can add virtual money.

Subtask User must be logged in.
Functional system

requirement
1. User opens wave
2. User logs into their Wave account
3. User clicks savings activity
4. Users clicks on ‘Vault’ activity
5. User inputs amount
6. User selects option on what they are saving for

Description User can add money to a savings vault

User requirement Remove money to savings vault
Main Task The user heads to the savings activity. The user decided to create a vault

in which they enter the amount of money they would like to save. The
user has entered the wrong value. The user deletes the item they created.

Subtask User must be logged in.
Functional system

requirement
1. User opens wave
2. User logs into their Wave account
3. User clicks savings activity
4. Users clicks on ‘Vault’ activity
5. User deletes item in vault.

Description User can withdraw from savings vault

User requirement Update money in savings vault
Main Task The user heads to the savings activity. The user decided to create a vault

in which they enter the amount of money they would like to save. The
user has entered the wrong value. The user decides to update the item
they originally entered.

Subtask User must be logged in.
Functional system

requirement
1. User opens wave
2. User logs into their Wave account
3. User clicks savings activity
4. Users clicks on ‘Vault’ activity
5. User updates item in vault.

Description User can update money in savings vault.

12

User requirement Keep track of money spent today
Main Task The user heads to the savings activity. The user wants to budget their

money. The user heads to the ‘Money spent today’ activity. The user
enters money they have spent today. The user can apply CRUD
functionality to items in this activity.

Subtask User must be logged in.
Functional system

requirement
1. User opens wave
2. User logs into their Wave account
3. User clicks savings activity
4. User clicks on ‘Money spent today’ activity
5. User creates item
6. User enters details, how much money they spent etc.
7. User can perform CRUD functionality.

Description User can budget their spendings. This activity allows the user to monitor
any money they have spent today.

User requirement Keep track of money spent this week
Main Task The user heads to the savings activity. The user wants to budget their

money. The user heads to the ‘Money spent this week’ activity. User
analyses data.

Subtask User must be logged in.
Functional system

requirement
1. User opens wave
2. User logs into their Wave account
3. User clicks savings activity
4. User clicks on ‘Money spent this week’ activity
5. User analyses data

Description User can budget their spendings. This activity allows the user to monitor
their spendings from this week.

User requirement Keep track of money this month
Main Task The user heads to the savings activity. The user wants to budget their

money. The user heads to the ‘Money spent this month’ activity. User
analyses data.

Subtask User must be logged in.
Functional system

requirement
1. User opens wave
2. User logs into their Wave account
3. User clicks savings activity
4. User clicks on ‘Money spent this month’ activity
5. User analyses data.

Description User can budget their spendings. This activity allows the user to monitor
their spendings from this month.

13

User requirement Search for a cryptocurrency
Main Task The user heads to the cryptocurrency activity. The user searches for a

cryptocurrency.
Subtask User must be logged in.

Functional system
requirement

1. User opens wave
2. User logs into their Wave account
3. User clicks cryptocurrency activity
4. User searches for a cryptocurrency
5. User analyses current price.

Description Users can monitor the top 100 cryptocurrency prices. The
cryptocurrencies are retrieving using coinmarketcaps API.

User requirement Monitor daily spending analytics
Main Task The user heads to the daily analytics activity. The user presses the pie

chart to analyse what they have spent their money on.
Subtask User must be logged in.

User must have logged daily spendings.
Functional system

requirement
1. User opens wave
2. User logs into their Wave account
3. User clicks savings activity
4. User clicks the daily spending analytics activity
5. User clicks pie chart
6. User analyses daily spendings

Description Users is presented with a pie chart which depicts what they have spent
their money on in the last 24 hours.

User requirement Nearest ATM
Main Task The user heads settings activity. The user clicks the map activity.

Subtask User must be logged in.
User must have Google maps downloaded.

Functional system
requirement

1. User opens wave
2. User logs into their Wave account
3. User clicks settings activity
4. User clicks the daily spending analytics activity
5. User clicks map activity
6. User locates nearest ATM

Description Users that may wish to withdraw money from an ATM but are unsure as
to where the nearest ATM is. The user can click the map icon which will
direct them to the nearest ATM.

14

User requirement Health activity
Main Task The user heads to settings activity. The user presses the health activity

and monitors their current step count.
Subtask User must be logged in.

User must have accepted app permissions.
Functional system

requirement
1. User opens wave
2. User logs into their Wave account
3. User clicks settings activity
4. User clicks the health activity
5. User monitors their step count

Description The health of my users is important. This activity helps users feel good about their
achievements as it returns the total count of steps they have made since they have
opened the app, as well as returning the step count since they first installed my
app.

15

2.1.2 Non-Functional Requirements
A non-functional requirement describes how a system should behave and what its
functional limitations are. Non-functional requirements server a great deal of
importance “Well you can develop application only with Functional requirement but
without NFR the product will be buggy, non-reliable and incomplete.” [Vishwas Ng,
2019].

Non-functional Rationale
Emails should have a maximum latency of one
minute.

When a user creates an account for the first time,
they should expect to receive a verification email
within 1 minutes of doing so. This principle also
applies when a user resets their password.

Each request should be processed in 7 seconds or
less.

This non-functional requirement applies to many
processes in my application. Whether the user is
creating an account, signing out, making a
payment, or anything else, all of the following
processes should take no more than 7 seconds to
complete.

Security The application will be secure. This ranges from
makings sure payments are secure to storing user
login credentials. The firebase database provides
security features that protect any data uploaded
to the application.

Availability The term "application availability" refers to the
ability of people to successfully user my
application. Signing into an account you have
registered in the firebase database can be used
to gain access, if my application shows the
expected content, it means it is available. We can
improve overall application availability by
carrying out tests to ensure that my application is
capable of handling multiple scenarios created by
the user.

Recoverability Any application can cause disaster if it is not
managed and secured properly. Using a disaster
recovery method allows my application to
relocate temporarily in the event of a security
breach or natural disaster. A disaster recovery
app ensures that a business can continue
operations until it is safe to return to its original
location or a new permanent location.

Capacity This refers to the number of users who are online
at the same time. This refers to the number of
users my application can handle while each user
performs actions such as paying, creating an
account, and so on.

Scalability This refers to my application's ability to handle an
increase in workload when adding resources. This
app should be scalable across all Android devices.

16

1.1.1.1. Use Case Diagram
1.1.1.2. Requirement 1: Send money to a saved contact

01
MakePayment

Purchase a better
credit card

Make payment
card using Stripe

API

1

Identifier: 01.MakePayment

1.1.1.3. Description & Priority
Priority 1 (highest)

This requirement (“Purchase a better credit card”) is considered one of the most
important requirements within my application. This is due to it being one of the
core functions, which is why the priority is so high.

The function ‘MakePayment’ allows the user to purchase an upgraded credit
card. The rationale behind this, is that the upgraded credit card offers the user
unlimited withdrawals with now fees applied as well as free travel insurance. The
transaction is handled by Stripes API. The user is required to enter there
credit/debit card information to make the payment of 10 euro.

1.1.1.4. Use Case
Scope

The scope of this use case is to purchase a credit card using the Stripe API. This
will all be done within the ‘payment’ page which is navigated to by using the
cardview.

Description

Users can upgrade to a better credit card. The card is being sold for 10 euro and
offers incentives such as Free travel insurance and unlimited withdrawals
without any fees being applied.

17

Use Case Diagram

[FIG 1] [Upgrade card with Stripe API]

Flow Description

Precondition

The user must have access to the internet.

The user must be signed in.

Activation

This use case starts when an <Actor> is on the payments page and clicks the card
view for upgrading to a new credit card.

Main flow

1. The <Actor> opens wave
2. The <Actor> logs into their wave account
3. The <Actor> is presented with the home page.
4. The <Actor> selects the ‘payment’ activity.
5. The <Actor> selects the card view assigned to upgrading their credit card.
6. The <Stripe API> prompts the <Actor> to enter their credit card details.
7. The <Actor> enters their credit card details.
8. The <Actor> confirms their payment.
9. The <Stripe API> handles the transaction.

Alternate flow

A1: Accidental selection
1. The <Actor> opens wave
2. The <Actor> logs into their wave account
3. The <Actor> is presented with the home page.
4. The <Actor> selects the ‘payment’ activity.
5. The <Actor> selects the card view assigned to upgrading their credit card.
6. The <Stripe API> prompts the <Actor> to enter their credit card details.
7. The <Actor> cancels their payment.

18

A2: Insufficient funds

1. The <Actor> opens wave
2. The <Actor> logs into their wave account
3. The <Actor> is presented with the home page.
4. The <Actor> selects the ‘payment’ activity.
5. The <Actor> selects the card view assigned to upgrading their credit card.
6. The <Stripe API> prompts the <Actor> to enter their credit card details.
7. The <Actor> enters their credit card details.
8. The <Actor> confirms their payment.
9. The <Stripe API> fails to handle the transaction due to insufficient funds.
10. The application notifies the user that the transaction has been cancelled.

Termination

The system presents the message “insufficient funds”

Post condition

The system goes into a wait state

19

1.1.1.5. Requirement 2: Send money to a acquaintance via PayPal API

02
sendMoneyPayPal

Allows the user to
send money as

they wish

Send money to a
contact using

PayPal API

1

Identifier: 02.sendMoneyPayPal

1.1.1.6. Description & Priority
Priority 1 (highest)

This requirement (“Send money to a new person”) is considered one of the most
important requirements within my application. This is due to it being one of the
core functions, which is why the priority is so high.

The function ‘sendMoneyPayPal’ allows the user to send money to another
PayPal account as they wish. The user now has the option to send money to
anyone considering they have their PayPal details.

1.1.1.7. Use Case
Scope

The scope of this use case is to send money a new person. This will all be done
within the ‘payment’ page which is navigated to by using the cardview.

Description

The user may can send money to another PayPal account using the PayPal API.

Use Case Diagram

[FIG 2] [PayPal payment use case]

Flow Description

Precondition

The user must have access to the internet.

20

The user must be signed into their wave account.

The user must be signed into their PayPal account.

Activation

This use case starts when an <Actor> is on the payments page and decides to
press the send money to a new person via PayPal card view.

Main flow

1. The <Actor> opens wave
2. The <Actor> logs into their wave account.
3. <Actor> selects payments activity on home screen.
4. The <Actor> selects the ‘PayPal’ activity.
5. The <Actor> fills out payment details.
6. The <Actor> confirms presses pay button to send money.
7. <PayPal API> presents user with login page.
8. The <Actor> logs into their PayPal account.
9. <PayPal API> presents user with review of payment.
10. The <Actor> confirms the payment

Alternate flow

A1: Accidental selection
1. The <Actor> opens wave
2. The <Actor> logs into their wave account.
3. <Actor> selects payments activity on home screen.
4. The <Actor> selects the ‘PayPal’ activity.
5. The <Actor> fills out payment details.
6. The <Actor> confirms presses pay button to send money.
7. <PayPal API> presents user with login page.
8. The <Actor> logs into their PayPal account.
9. <PayPal API> presents user with review of payment.
10. The <Actor> cancels the payment.
11. <PayPal API> closes and presents user with the previous

activity.

21

A2: Insufficient funds

1. The <Actor> opens wave
2. The <Actor> logs into their wave account.
3. <Actor> selects payments activity on home screen.
4. The <Actor> selects the ‘PayPal’ activity.
5. The <Actor> fills out payment details.
6. The <Actor> confirms presses pay button to send money.
7. <PayPal API> presents user with login page.
8. The <Actor> logs into their PayPal account.
9. <PayPal API> presents user with review of payment.
10. The <Actor> confirms the payment
11. <PayPal API> notifies user that they have insufficient funds.
12. <PayPal API> closes and presents user with the previous

Termination

The system presents the message “insufficient funds”

Post condition

The system goes into a wait state

22

1.1.1.8. Requirement 3: Search for cryptocurrencies

Identifier: 03.searchCrypto

1.1.1.9. Description & Priority
Priority 1 (highest)

This requirement (“Search for cryptocurrencies”) is considered one of the most
important requirements within my application. This is due to it being one of the
core functions, which is why the priority is so high.

The function “searchCrypto” provides the user with the functionality of search
for the cryptocurrency they are curious about. The list consists of 100
cryptocurrencies which are retrieved using coinmarketcaps API. It would be
inefficient for the user to scroll through all 100 cryptocurrencies just to look for
one in particular, that is why I implemented this search requirement.

1.1.1.10. Use Case
Scope

The scope of this use case is to search through a list of 100 cryptocurrencies are
retrieve results which match the user’s input. This will all be done within the
“cryptocurrencies” page which is navigated to by using the card view.

Description

The user can monitor the top 100 cryptocurrencies in today’s market using
coinmarketcap’s API. The user has the option to search for the cryptocurrency by
its name.

Use Case Diagram

[FIG 3] [Search use case]

23

Flow Description

Precondition

The user must have access to the internet.

The user must be logged in.

Activation

This use case starts when an <Actor> is on the investment management page and
decides to search for cryptocurrencies filtered by their text input.

Main flow

1. The <Actor> navigates to investment management page
2. The <coinmarketcap API> retrieves the top 100

cryptocurrencies in today’s market.
3. The <Actor> presses search and types in text input.
4. The <System> filters cryptocurrencies by name and returns

results which contain the same text as users’ input.

Termination

The system presents the message “unable to load data”

Post condition

The system goes into a wait state

24

1.1.1.11. Requirement 4: Add money to vault

04 CRUDMoney

Add money to

vault

The user can apply
CRUD functionality
within their savings

vault

1

Identifier: 04.CRUDMoney

1.1.1.12. Description & Priority
Priority 1 (highest)

This requirement (“Add money to vault”) is considered one of the most
important requirements within my application. This is due to it being one of the
core functions, which is why the priority is so high.

The functions involved in ‘CRUDMoney’ simply allows the user to add money to
their already existing savings vault as well as allowing the users to update and
delete the stored information. When adding money to the savings vault the user
can enter information such as the amount, what the money is being saved for,
and a personal note. At the top of the screen the user is presented with the total
balance within the savings vault.

1.1.1.13. Use Case
Scope

The scope of this use case is to perform CRUD functionality within their savings
vault. This will all be done within the savings monitoring page which is navigated
to by using the card view located on the home screen.

Description

The user can add money to their already existing savings vault as well as updating
or deleting any existing funds.

Use Case Diagram

[FIG 4] [CRUD vault use case]

25

Flow Description

Precondition

The user must have access to the internet.

The user must be logged in.

Activation

This use case starts when an <Actor> is on the savings monitoring page and
decides to press the add money button.

Main flow

1. The <Actor> opens wave.
2. The <Actor> logs into their wave account
3. The <Actor> clicks the savings activity on the home screen.
4. The <Actor> clicks on the ‘Vault’ card view.
5. The <Actor> adds money
6. The <Firebase database> stores the information inputted by

the <Actor>
7. The <System> presents the total amount stored in the savings

vault.

Alternate flow

A1 : Accidental selection
1. The <Actor> presses add money to vault button.
2. The system prompts the <Actor> asking to enter amount and confirm.
3. The <Actor> presses the cancel option
1. The use case continues at position 3 of the main flow.

A2: update item

1. The <Actor> opens wave.
2. The <Actor> logs into their wave account
3. The <Actor> clicks the savings activity on the home screen.
4. The <Actor> clicks on the ‘Vault’ card view.
5. The <Actor> adds money
6. The <Firebase database> stores the information inputted by

the <Actor>
7. The <System> presents the total amount stored in the savings

vault.
8. The <Actor> selects an item in the vault.
9. The <Actor> updates the details presented
10. The <Firebase database> updates the information selected by

the <Actor>
11. The <System> presents the total amount stored in the savings

vault.

26

A2: Delete an item
1. The <Actor> opens wave.
2. The <Actor> logs into their wave account
3. The <Actor> clicks the savings activity on the home screen.
4. The <Actor> clicks on the ‘Vault’ card view.
5. The <Actor> adds money
6. The <Firebase database> stores the information inputted by

the <Actor>
7. The <System> presents the total amount stored in the savings

vault.
8. The <Actor> selects an item in the vault.
9. The <Actor> deletes the selected item.
10. The <Firebase database> removes the information selected by

the <Actor>
11. The <System> presents the total amount stored in the savings

vault.

Termination

The user cancels the transaction.

Post condition

The system goes into a wait state

27

1.1.1.14. Requirement 5: send money to a friend via GooglePay

05 sendMoneyPayPal
Allows the user to

send money as
they wish

Send money to a
contact using

GooglePay API

1

Identifier: 02.sendMoneyGooglePay

1.1.1.15. Description & Priority
Priority 1 (highest)

This requirement (“Withdraw money from vault”) is considered one of the most
important requirements within my application. This is due to it being one of the
core functions, which is why the priority is so high.

The function ‘sendMoneyGooglePay’ allows the user to send money to another
Google Pay account as they wish. The user now has the option to send money to
anyone considering they have their Google Pay details.

1.1.1.16. Use Case
Scope

The scope of this use case is to send money a new person. This will all be done
within the ‘payment’ page which is navigated to by using the card view.

Description

The user can make a payment to a friend, but it is required that they are from
India.

Use Case Diagram

[FIG 5] [Google Pay use case]

28

Flow Description

Precondition

The user must have access to the internet.

The user must be logged in.

The user must own an Indian Google Pay account.

Activation

This use case starts when an <Actor> is on the payments page and decides to
press the send money to a new person via PayPal card view.

Main flow

i. The <Actor> opens wave
ii. The <Actor> logs into their wave account.

iii. <Actor> selects payments activity on home screen.
iv. The <Actor> selects the ‘GooglePay’ activity.
v. The <Actor> fills out payment details.

vi. The <Actor> confirms presses pay button to send money.
vii. <Google Pay API> presents user with login page.

viii. The <Actor> logs into their Google Pay account.
ix. <GooglePay API> presents user with review of payment.
x. The <Actor> confirms the payment

Alternate flow

A1 : Accidental selection
1. The <Actor> opens wave

2. The <Actor> logs into their wave account.
3. <Actor> selects payments activity on home screen.
4. The <Actor> selects the ‘Google Pay activity.
5. The <Actor> fills out payment details.
6. The <Actor> confirms presses pay button to send money.
7. <GooglePay API> presents user with login page.
8. The <Actor> logs into their Google Pay account.
9. <GooglePay API> presents user with review of payment.
10. The <Actor> cancels the payment.
11. <GooglePay API> closes and presents user with the previous activity.

29

A2: Insufficient funds

1. The <Actor> opens wave
2. The <Actor> logs into their wave account.
3. <Actor> selects payments activity on home screen.
4. The <Actor> selects the ‘GooglePay activity.
5. The <Actor> fills out payment details.
6. The <Actor> confirms presses pay button to send money.
7. <GooglePay API> presents user with login page.
8. The <Actor> logs into their PayPal account.
9. <GoogelPay API> presents user with review of payment.
10. The <Actor> confirms the payment
11. <GooglePay API> notifies user that they have insufficient

funds.
12. <GooglePay API> closes and presents user with the previous

Termination

The system presents the message “insufficient funds”

Post condition

The system goes into a wait state

30

1.1.1.17. Requirement 5: Register new account

06 registerAccount

Register new

account

A new user will be
able to register a
new account so
they can attain
access to the app

1

Identifier: 06.registerAccount

1.1.1.18. Description & Priority
Priority 1 (highest)

This requirement (“Register new account”) is considered one of the most important
requirements within my application. This is due to it being one of the core functions,
which is why the priority is so high.

The function 'registerAccount’ simply allows new users to register an account to they
can gain access to the applications features. The registration details are stored in
Firebase.

1.1.1.19. Use Case
Scope

The scope of this use case is to allow a new user to register an account. This will
all be done within the registration page which is navigated to clicking register on
the welcome page.

Description

The user will be able to register a new account so they can gain access to the
applications features.

Use Case Diagram

[FIG 6] [register use case]

Flow Description

Precondition

The user must have access to the internet.

31

The user must have a valid email address.

Activation

This use case starts when an <Actor> is on the registration page and decides to
press the register button.

Main flow

1. The <Actor> navigates to savings registration page
2. The <Actor> inputs information and selects register button.
3. The system checks if users’ information entered reaches certain expectations

and if so the <Actor> account will be created.
4. The <firebase database> stored the users login credentials.
5. The system allows access to <Actor> and presents them with home features

page within application.

Alternate flow

A1: Accidental selection
1. The <Actor> presses register button
2. The system prompts the <Actor> letting them know passwords don’t match.
3. The <Actor> presses the register button
4. The system prompts the <Actor> letting them know email does not meet

criteria.
5. The <Actor> presses the register button
6. The system prompts the <Actor> saying password must be minimum of 6

characters

Termination

The system presents the message “account with email already exists”

Post condition

The system goes into a wait state

32

1.1.1.20. Requirement 8: Keep track of money spent

Identifier: 08.resetPassword

1.1.1.21. Description & Priority
Priority 2 (medium)

This requirement (“Reset current password”) isn’t consider a necessary
requirement but it will definitely benefit users who forget their passwords. The
function “resetPassword” simply allows existing users to reset their current
password if forgotten.

1.1.1.22. Use Case
Scope

The scope of this use case is to allow an existing user to reset their password.
This will all be done within the settings page which is navigated to clicking
register on the card view found on the features page.

Description

An existing user can reset their current password if they wish to change it.

Use Case Diagram

[FIG 7] [Reset password]

Flow Description

Precondition

The user must have access to the internet.

Activation

This use case starts when an <Actor> is on the settings page and decides to press
the reset password button.

Main flow

1. The <Actor> navigates to settings page
2. The <Actor> presses reset password.
3. The system prompts the <Actor> and awaits confirmation.

33

4. The <Actor> enters new password and confirms.
5. The system updates new password in database.

Alternate flow

A1 : Accidental selection
7. The <Actor> presses reset password button
8. The system prompts the <Actor> and awaits confirmation.
9. The <Actor> presses the cancel button

Termination

The system presents the message “Cannot retrieve account”

Post condition

The system goes into a wait state

34

1.1.1.23. Requirement 9: Log out

Identifier: 09.logOut

1.1.1.24. Description & Priority
Priority 2 (medium)

This requirement (“Logout”) isn’t considered a necessary requirement, but it will
allow users to logout of their account if they don’t wish to stay signed in.

1.1.1.25. Use Case
Scope

The scope of this use case is to allow an existing user to logout of their account.
This will all be done within the settings page which is navigated to clicking
register on the card view found on the features page.

Description

An existing user can logout of their account.

Use Case Diagram

[FIG 8] [Logout use case]

Flow Description

Precondition

The user must have access to the internet.

Activation

This use case starts when an <Actor> is on the settings page and decides to press
the logout button.

Main flow

1. The <Actor> navigates to settings page
2. The <Actor> presses logout button.
3. The system prompts the <Actor> and awaits confirmation.
4. The <Actor> confirms.
5. The <Actor> is logged out and set back to welcome page.

35

Alternate flow

A1 : Accidental selection
1. The <Actor> navigates to settings page
2. The <Actor> presses logout button.
3. The system prompts the <Actor> and awaits confirmation.
4. The <Actor> cancels.
5. Back to step 1

Termination

The system presents the message “Cannot retrieve account”

Post condition

The system goes into a wait state

36

3.0 Data Requirements
Data will be stored in a firebase database. SQL can be used for programming and is also
designed for managing data help in a relational database management system. In my case, I
will be using Microsoft SQL Server management studio. Data will reside on a server but also
has the option to failover to backup server which ensures high availability.

3.1 User Requirements
1. User must have internet access.
2. User must be using an android device
3. Users should create an account.
4. Users should be notified if account with email already exists.
5. User should be notified if they failed to meet the password requirements.
6. User should be able to login to their account.
7. Users should remain logged in.
8. User should be notified if they enter the wrong password
9. Users should be able to make in app purchases using their credit card.
10. Users should be able to send money to an acquaintance using their PayPal account.
11. Users should be able to send money to an acquaintance using their Google Pay

account.
12. Users who would like info regarding current state of cryptocurrency market.
13. Users who would like to be able to process transactions.
14. Users demand a navigable application interface and a mobile application which is

responsive with good standard graphical UI design.

3.2 Environmental Requirements
An Android emulator and device are required to execute and test the application while it
is being developed.

1. App should include a splash activity.

2. App should include a welcome page.

3. App should include a login page.

4. App should include a registration page.

5. App should be free to download.

6. App should include a Payment option page.

7. App should include a PayPal payment option.

8. App should include a Google Pay payment option.

9. App should include a Stripe payment activity.

10. App should present a navigable user interface.

11. App should include a health activity.

37

12. App should include a map activity to assist the user with locating the nearest ATM.

13. App should include a savings vault.

14. App should include a cryptocurrency page with the latest prices.

15. App should assist users with daily, weekly, and monthly budgeting.

16. App should provide analytics on the users spendings.

3.3 Usability Requirements
“The usability of a user interface refers to the fluency or ease with which a user is able to
interact with a system without ‘thinking’ about it.”

Usability is essentially how much something allows users to do what is necessary for the
user to do, as simple and pleasantly as possible. It is considered important for many
reasons, let us say a user is trying to send money to a friend but the functionality within my
application keeps failure. The user will become frustrated as they cannot achieve their goals.
The user is not going to be patient with this issue they will more than likely look for an
alternative application to cater their needs. A designs usability varies on how well its
characteristics accommodate user’s needs.

“While the ISO definition has three aspects, Nielsen divides usability into five elements, so-
called attributes, which can be measured and used to specify usability objectives.” [Tuomo
Sippola, 2017]. They are Effectiveness, Efficiency, Engaging, Error Tolerance and Easy to
Learn.

- Effectiveness
o This refers to how users remember a system; when users return to the

system after a time of inactivity, it is deemed effective if they regain
proficiency.

- Efficiency
o This is all about how quickly a user can complete tasks once they have

mastered a system.
- Engaging

o This encompasses aesthetics, the use of suitable layouts, usability, and
understandable language. All these parameters are presented in order to
offer the suitable user interface.

- Error Tolerance
o There is a significant likelihood that you will never completely eliminate

system errors. To aid in reducing errors, we examine the frequency, severity,
and ease of recovery of user mistakes.

- Easy to Learn
o Systems must be simple to understand, as this impacts the user's initial

opinion of the system.

38

4.0 Design & Architecture
The application will be stored locally on Android-based mobile devices, according with
System Architecture Diagram. All user information will be stored in a centralized NoSQL
Firebase database. The application has access to multiple API’s. The application has
activities that utilize the following:

- PayPal API
- Google Pay API
- Stripe API
- Cryptocurrency API

[FIG 9] [Design and architecture diagram]

39

4.1 Class diagram

[FIG 10] [Application Class diagram 1]

Couldn’t fit all the activities in a single snapshot so I have broken it up and continued from
the snapshot above.

40

Payment Activity

[FIG 11] [Application Class diagram 2]

41

Cryptocurrency Activity

[FIG 12] [Application Class diagram 3]

42

Savings Activity

[FIG 13] [Application Class diagram 4]

43

Settings Activity

[FIG 14] [Application Class diagram 5]

44

4.2 Flowchart
A flowchart is an excellent tool that I have implemented for visualizing a complex process. I
have used a flowchart as shown below to help depict the processes, sequences, and
decisions involved in my system.

[FIG 15] [Flowchart diagram]

45

4.3 User Personas
“A user persona is a fictional representation of your ideal customer.” [Raven Veal, 2021].
User personas are archetypal users whose goals and characteristics reflect the needs of a
larger population. Personas aided me in developing a system that consumers require, as
opposed to one that they desire.

Investors and tech-savvy individuals are my two primary user groups, and both of my
personas fall under these categories. I hosted a brainstorming session and conducted
extensive research to build my personas. In conclusion, I feel that an effective persona
should:

• Personas are not fictitious depictions of a target user's beliefs. Every aspect
of a persona's description must be based on actual data.
• Not various user roles, but real user patterns are reflected in personas.

46

4.3.1 Persona 1

[FIG 16] [User persona one]

4.3.1.1 Scenario 1 – Jordan Crowley
Monitoring Cryptocurrencies: Jordan Crowley is a Software Developer who is from Dublin, Ireland.
Jordan is fed up with searching for cryptocurrencies individually on Google. Jordan would love an
application that assists him with checking the current price of cryptocurrencies in today’s market.
For Jordans needs to be full catered, it is necessary that he can filter the list with a search filter.

Action: Jordan opens ‘Wave’ and signs into the account he previously made. Jordan then clicks on
the cryptocurrency option in the home screens menu. Jordan takes a quick look at the top 100
cryptocurrencies but can find the cryptocurrency he is looking for. Jordan uses the search
functionality at the top of the page to search for his desire cryptocurrency.

47

4.3.2 Persona

[FIG 17] [User persona two]

4.3.2.1 Scenario 2 – Ian Mac
Adding money to savings vault:

It is a Friday afternoon and Ian has received his monthly pay. Ian is saving for a car and wants to save
as much money as efficiently as possible. Straight away Ian opens the ‘Wave’ app. He logs into the
account has had for a week now. Ian navigates to the savings vault activity using the navigable user
interface provided. Ian decides that he wants to save 500 euro for his car.

48

5.0 Implementation
5.1 Failover Clustering
A Windows Server Failover Cluster (WSFC) is a collection of individual servers that
collaborate to improve application as well as service availability. WSFC services and
capabilities are used by SQL Server to support Always On availability groups and SQL Server
Failover Cluster Instances. In summary, if a cluster node or service fails, the services hosted
on that node can be moved to another available node automatically or manually. “Failover
clusters also provide Cluster Shared Volume (CSV) functionality that provides a consistent,
distributed namespace that clustered roles can use to access shared storage from all nodes.”
[doc.microsoft.com] [2022]. Throughout my two years as working as a database
administrator I have dealt with configuring multiple windows server failover clusters, below
I walk through the key steps that need to be followed to successfully implement the disaster
recovery solution.

Key terms that will be mentioned in this implementation:

- Node - A server that is going to be involved in the WSFC.
- Domain Controller- Used for creating the cluster object and joining the member

servers to the domain.

This 4-node setup is what I would use to ensure that my application is highly available. The
first node will serve as the domain controller, followed by two nodes that will participate in
the failover cluster, and finally by my storage node, which will be configured to store our
storage disks.

[FIG 18] [Failover cluster setup]

49

The following events are taking place on the storage machine.

Step 1: First and foremost, I would start by installing the iSCSI target server role. This is
accomplished by going to server manager -> manage -> Add roles and features -> server
roles -> enable iSCSI Target Server. -> install.

Step two: Go to File and Storage Services -> iSCSI -> *Here we have the option to create an
iSCSI virtual disc* -> select C: drive -> name it -> allocate the disk 5GB -> I need to create the
iSCSI target -> go to access servers, this is where we will add my future failover cluster
nodes. -> Add nodes using their IP addresses. -> Create. The first two steps are then
repeated to create two more discs with the same parameters.

Step three: connect the virtual disks I previously created to my nodes which are going to
become failover cluster, these are the disks that are going to be used as the shared storage.

The following events are taking place on NODE1

Step four: Navigate to the server's server manager on NODE1. -> open tools -> iSCSI initiator
-> iSCSI initiator properties window will appear, where I will need to locate and connect the
iSCSI target server that I have configured on my storage server. -> Navigate to the discover
portal and enter the IP address of the storage server. -> Navigate to the targets tab and
connect the initiator to the target.

Step five: Step 4 must be repeated on my NODE2 server.

Step six: Still on NODE1, open disc management -> here we can see that I have three offline
discs stored on my storage server. I'll bring the disks online and initialise them. -> Next, I'll
create a simple volume on each disk. -> The three volumes will no longer be accessible on
my NODE1 server.

The following events are taking place on NODE2

Step seven: Rather than repeating the previous steps, I will simply open disc management ->
bring the discs online -> without creating a volume on them. -> The disks are now available
on NODE2, and share storage is configured.

The following events are taking place on NODE1 and NODE2

Step eight: At this point, I will install the failover clustering feature on both nodes. -> first, I'll
return to server manager -> Add Roles and Features -> features tab -> select failover
clustering -> install. -> repeat on NODE2.

The following events are taking place on NODE1

Step 10: Open the failover clustering manager -> tools -> failover cluster manager -> validate
configuration, which will highlight any errors that need to be corrected before we start the
failover cluster. -> Add two validation nodes to the wizard -> Run all tests -> These tests
would be done offline in a production environment because they take the disks offline.

Step ten: Using the create cluster wizard, create a cluster. -> Add two nodes to the cluster ->
Do not add eligible storage. -> Add three disks to the failover cluster. -> Add a role to the

50

cluster; this role will be the file server role, which creates a highly available share so that if a
user connects to the share and something happens to one of the nodes in my failover
cluster, the other node will pick the share disks in the shares to ensure that there is no
downtime for the users who are using these shares.

The following events are taking place on NODE1

Step twelve: Witness disk configuration -> Choose disc 1 as the witness disk in failover
cluster manager -> configure cluster Quorum settings -> select a quorum witness and
configure a disk witness.

The following events are taking place on NODE2

Step thirteen: Performing the failover. Power off the server, NODE2 will failover to NODE1.

Step fourteen: There will be some slowness on the client's machine at first, but there will be
no downtime.

51

5.2 PayPal Activity
“The Native Checkout SDK provides an in-context mobile experience that keeps your existing
server-side integration intact.” [developer.paypal, 2022] Following the preparation of the UI
for the PayPal activity, I created an app on the PayPal developer website using my account.
To work with Android Studio, I needed a client ID, which I found on the 'My apps and
Credentials' page. I went into my sandbox account to see my test accounts because I was
running this in a test environment rather than production. The client ID is saved in my
application's PayPalClientID activity.

[FIG 19] [PayPal Sandbox application]

In order to work with the PayPal API, I had to add the following dependency to my build
Gradle:

implementation 'com.paypal.sdk:paypal-android-sdk:2.15.3'

On the PayPal card view, I've added a onClick listener that, when triggered, redirects the
user to the PayPal checkout page. I've added the following code to make sure the
application knows the following transaction is being performed in a test environment:

.environment(PayPalConfiguration.ENVIRONMENT_SANDBOX)

In the code in the Payment activity, I mentioned a class ‘PaymentActivity’ which doesn’t
actually exist. This activity is created in the PayPal dependency I have added.

Intent intent = new Intent(this, PaymentActivity.class);

52

5.3 Google Pay Activity
When a user triggers the payment option in the merchant app, the following code shows
how to display Google Pay as a way of payment.

[FIG 20] [getUpiPaymentUri code screenshot]

I have also added an additional method to simply determine whether the Google pay app is
installed on the user’s device. This method is later called in the ‘payWithGPay’ method, if
the user has Google Pay installed it will open up the payment activity, if the app is not found
on the user’s device it will prompt the user with a message notifying them that the
transaction cannot be complete as they do not have Google Pay installed.

[FIG 21] [isAppInstalled code screenshot]

53

5.4 Stripe Activity
Building this activity was aided by the official Stripe documentation [Stripe docs, 2022].The
first step when working towards adding stripe payments was to add the following
dependencies to my build Gradle file:

implementation 'com.stripe:stripe-java:20.77.0'
implementation 'com.stripe:stripe-android:17.2.0'
Additionally, I have added the dependency below to post requests to the server:

implementation 'com.android.volley:volley:1.1.0'
The next step is to add an endpoint, I have used postman to test API calls. Stripe mentions
that for security reasons, my app will not be able to create the necessary objects and that I
will need to add an endpoint on my server. I followed the following steps in my postman
environment. The steps were provided as part of the Stripe official documentation.

[FIG 22] [Code for postman environment]

The snapshot below relates to step one in the snapshot above. When the call is made, I
received customerID which is being called by the key ‘id’. When I successfully received the
customerID I then procide to get the epherical key.

54

[FIG 23] [onRepsonse code screenshot]

55

5.5 Daily analytics
The following methods are important in this activity because they are used to calculate total
spending in each category. In my code, I've made it so that if a user hasn't spent money in a
specific category, the activity won't be displayed. For example, if the
'getTotalWeelTransportExpenses' function returns a value of 0, the transport category will
not be displayed to the user.

getTotalWeekTransportExpenses();
getTotalWeekFoodExpenses();
getTotalWeekPersonal();
getTotalWeekEntertainmentExpenses();
getTotalWeekOtherExpenses();
getTotalDaySpending();
All the methods have similar code so I will walk through the
‘getTotalWeelTransportExpenses’ method. At the start of the code, I am concatenating the
current date with the ‘transport’ item. I am doing this because in the VaultActivity I have the
following code:

String itemNday = budgetItem+date;
This will return the total amount spent on a certain item on the present day.

The database reference is retrieving the total expenses for the user that is currently logged
in.

[FIG 24] [getTotalWeekTransportExpenses code screenshot]

56

Daily analytics continued

The next step in my code is key for loading the pie chart. The following code returns the
amount that has been spent in that day. For example, with transport I am checking the
value stored in the node “dayTrans”, I am then converting the value into an integer. If the
variable does not exist, the variable “traTotal” is set to 0.

[FIG 25] [loadGraph code screenshot]

57

Daily Analytics continued

Before implementing the pie chart, it is necessary to install the following dependency which
I have added to my build Gradle:

implementation 'com.github.AnyChart:AnyChart-Android:1.1.2'

To then set the pie chart I simply add an entry for each of the items. For each item I have
assigned them to the value of each of their totals.

[FIG 25] [pie chart code screenshot]

58

Registration page

In the code in the snippet below, it is related to the registration page. Basically, what I am
doing is passing some rules. The user can’t register an account if the input boxes are empty,
the passwords do not match, the user provides an invalid email, or the password is less than
6 characters.

[FIG 26] [password validations code screenshot]

59

Cryptocurrency Activity

In the code in the snippet below, we can see the code I used to fetch the data from
coinmarketcap using their API. In the code the first thing I did was create the method called
‘getCurrencyData’. Looking at this method on a high level, I created a string for URL in which
I pasted the URL for coinmarketcap’s API, I used volley as it is an HTTP library that makes
networking for android apps easier. I made a GET request which was followed by a try catch
statement for error handling. Essentially in the try I created a for loop that calls data from
JSON file which gets all objects inside of the data array, this is how I got the name, price, and
symbol of each cryptocurrency.

[FIG 27] [getCurrencyData code screenshot]

60

5.6 Step Activity
Detector

The sensor's constant is 'TYPE STEP DETECTOR,' and it triggers an event every time the user
takes a step. The latency is expected to be less than 2 seconds. One of the main checks I
perform in the snapshot is to see if the step sensor is available. To use both sensors, the
screen must be kept awake using the code 'getWindow' (). This is ensured by
addFlags(WindowManager.LayoutParams.FLAG KEEP SCREEN ON);

Counter

The sensor's constant is 'TYPE STEP COUNTER,' and the unit of measurement is number of
steps. The step counter keeps track of how many steps you've taken since the last reboot
while the sensor was turned on. The latency of the step counter is greater than that of the
step detector. The step counter is expected to have a latency of up to 10 seconds. Despite
having a longer latency, the counter is more accurate than the step detector.

[FIG 28] [step detector code screenshot]

The method called onSensorChanged() is used for each time the event is triggered, when it
is, the value will be added to the previous value of the step detector and it will continue
from there. The results are represented by setting the number of detected steps to a text
view.

61

[FIG 29] [sensor code screenshot]

62

Vault Activity

This is the method for adding items to the users saving vault. The idea is to be able to allow
a user to add a certain amount of money to their vault and associate it with a specific item
they are saving for. The onclick listener allows the user to save the change they have made.
In the code I have done checks for ensuring that the user has entered an amount of money
they wish to add to their vault as well as ensuring they have selected a valid item. If the user
fails to meet these requirements, they will be presented with an error message as shown in
the code.

[FIG 30] [vault code screenshot]

After this method was created, I made sure that the values were inputted to the firebase
database by referencing the database and initializing the variables. I ensured that the items
added were user specific and whenever an item was added I used “budgetRef.push()” to
push the data to the firebase database.

String strURL = "https://wave-ccbfd-default-rtdb.europe-
west1.firebasedatabase.app/";
budgetRef =
FirebaseDatabase.getInstance(strURL).getReference("budget").child(mAuth.get
CurrentUser().getUid());

63

64

6.0 Graphical User Interface (GUI)
6.1 GUI – Wireframes
Login page:

[FIG 31] [Login page wireframe]

65

Registration page:

[FIG 32] [registration page wireframe]

66

Navigation

[FIG 33] [navigation page wireframe]

67

Cryptocurrency

[FIG 34] [cryptocurrency page wireframe]

68

Send money

[FIG 35] [send money page wireframe]

69

Savings vault

[FIG 36] [savings vault page wireframe]

70

Home page

1. Opening the application
a. The first screen the user is presented with when opening the mobile

application, I am currently developing, is a simplistic splash screen which
shows the logo I created which is displayed for 1 second. The splash screen
fades away, and the user is then presented with a welcome page, here the
use has the option to either ‘Login’ or ‘Register’. The user’s decision will
decide whether they are presented with a login or registration page.

[FIG 37] [splash and welcome screen UI]

71

2. Login and Registration
a. If the user already has an account created, it is safe to say they most likely

decided to press the login button shown in the UI above. Considering this was
the case, the user will be presented with the login page shown below on the
left. All they have to do is simply enter their email and password to login as
their details have already been stored in the database.

b. However, if the user is new and they do not have an account, I assume they
would have clicked ‘Register’ in the UI above. Considering they did, the user
will be presented with a registration page as shown on the bottom right.
Here a user must enter an email followed by a 6-digit password in which they
must confirm.

[FIG 38] [login and registration UI]

72

3. Navigable grid view
a. Whether a user logged in or a new user registered an account, post login and

registration the user will be presented with a grid view displaying four
options. These four options are the core functionalities of the application.
Top left option should be selected when a user wants to deal with
transactions, top right option is for gaining access to the user’s savings
monitoring vault, bottom left option should be selected whenever the user
would like to check the current state of the cryptocurrency market and the
fourth and final option should be selected when the user would like to
logout, change their email address or reset their password.

[FIG 39] [feature page UI]

73

4. Transactions
a. In this section, considering the user selected the top right option in the card

view above, the user will be able to deal with payments. Whether its sending
money to a friend or paying for an item, this section will cover all payments
with the aid of Stripes API.

[FIG 40] [transaction page UI]

74

5. Savings Monitoring
a. Considering the user selected the top right option, they would then be

presented with the savings monitoring screen. Here the user will see how
much money they have saved up in comparison to what their goal is, this has
been represented by a progress bar. The current amount in the users account
is $14,027 whilst the goal is just over $20,000 which explains why the
progress bar is positioned around 70% complete in regard to coming full
circle. Here the user will have the option to add and withdraw money.

[FIG 41] [savings vaultUI]

75

6. Cryptocurrency Market
a. In this screen we can see that there are currently three different listings

being shown. The recycler view contains 100 cryptocurrencies in total which
are pulled from coinmarketcaps API, in this screenshot there are three being
shown. The three being shown are bitcoin, ethereum and Polkadot. The view
will show us the cryptocurrency name and current price

[FIG 42] [crypto page UI]

76

7. Settings
a. Currently my plans for this page are to allow the user to change their email

address and reset their password. I have also provided the user with the
option to logout of the mobile application.

[FIG 43] [settings page UI]

77

7.0 Testing

7.1 JUnit testing
Seeing as my application necessitates a great deal of interaction between the user and the
user interface, I wanted to write UI unit tests to examine the various application
components with which the user will interact. I used Espresso to help me test my user
interface and ran tests for multiple test cases.

My first example is the login activity. The code I have provided as the Espresso flow is
exactly the same as the user would intend on using this page. I have set two variables for my
email and password. I then perform a typetext action the login and password text views
whilst passing my login variables. Then before we click the login button, it is necessary to
close the keyboard which is shown in the snapshot below. As the last step, a click is
performed on the login button. Espresso makes these actions easy to understand the flow
of the code. “Espresso tests state expectations, interactions, and assertions clearly without
the distraction of boilerplate content, custom infrastructure, or messy implementation
details getting in the way.” [Espresso, testing framework] The screenshots for the other
tests will also be provide below.

[FIG 44] [espresso login test code]

78

[FIG 45] [espresso search crypto test code]

[FIG 46] [espresso add money spent todayvault test code]

79

[FIG 47] [espresso register user test code]

[FIG 48] [espresso add to vaulttest code]

80

7.2 Test plan – Manual testing
I created a testing template that I expanded on as new innovations were introduced during
the development phase. This testing template provided a foundation for me to develop test
strategies for each new feature added to the project. Whenever a merge request for a new
feature was submitted, I would run through the testing template to ensure that the new
changes did not cause any system bugs. These test events were recorded and are shown
below. Espresso was created with the goal of allowing developers to design UI tests that are
simple, dependable, and use a fluent API. [Espresso docs, 2022]. I didn't have to worry
about view state transitions or implementation details because Espresso handles UI event
synchronisation.

Test title Home screen
Test description Testing if the card view layout takes the

user to the correct page
Type of test Manual
Expected Outcome The home screen card view presents the

user with four options.
- Payments
- Cryptocurrencies
- Savings vault
- Settings

It is expected that when the user selects
one of these options in the card view, the
system will take the user to the associated
page.

Actual Outcome N/A

Test title Register button
Test description Testing if the registration page stores the

users’ credentials in the firebase
database.

Type of test Manual
Expected Outcome On the registration page the system

accepts 2 different forms of input from
the user.

- Email address
- Password

It is expected that these records should
be stored safely in the firebase database.

Actual Outcome N/A

81

Test title Login button
Test description Testing if the login page only accepts

users’ credentials who exist in the
firebase database.

Type of test Manual
Expected Outcome On the login page the system accepts 2

different forms of input from the user.
- Email address
- Password

It is expected that when these two results
match records in the firebase database,
the system will give the user access to the
application.
The user should not be able to gain access
with credentials that don’t exist.

Actual Outcome N/A

Test title Search function for cryptocurrencies
Test description Testing if a cryptocurrency can be

retrieved by searching for its name.
Type of test Manual
Expected Outcome As default, the user will be presented with

the top 100 cryptocurrencies. I need to
test if a user can apply a search filter
based off the cryptocurrencies name.
Search functionality will not be applied to
the prefix of the cryptocurrency.
E.g., to find Bitcoin, the user must search
for matching letters in the String, the user
will not be able to search for Bitcoins
prefix which is BTC.

Actual Outcome N/A

82

Test title Send money via PayPal
Test description Testing to see if a user can transfer funds

to another user using PayPal API.
Type of test Manual
Expected Outcome After the user has finished filling out the

payment details within my application
and they are ready to pay. Once the user
clicks pay, the PayPal activity should load
where it prompts the user to login to
their PayPal account. The user can review
the payment before sending it. Once the
user confirms the payment the system
should prompt the user saying, ‘Payment
was Successful’.

Actual Outcome N/A

Test title Send money via Google Pay
Test description Testing to see if a user can transfer funds

to another user using Google Pay API.
Type of test Manual
Expected Outcome After the user has finished filling out the

payment details within my application
and they are ready to pay. Once the user
clicks pay, the Google Pay activity should
load where it prompts the user to login to
their Google Pay account. The user can
review the payment before sending it.
Once the user confirms the payment the
system should prompt the user saying,
‘Payment was Successful’.

Actual Outcome N/A

83

Test title Make a purchase using Stripe API
Test description Testing to see if a user can make an in-

app purchase using the Stripe API
Type of test Manual
Expected Outcome The user has the option to upgrade to a

new card. When the user clicks on this
feature they should be presented with
the Stripe API where they are asked to
enter their credit card details.
Considering the user enters the correct
card details, the system should prompt
them saying that the payment was
successful.

Actual Outcome N/A

Test title View daily spendings
Test description Testing to see if a user can view the

spendings they made today
Type of test Manual
Expected Outcome When the user goes to the daily

spendings activity. They should be
presented with any spendings they have
made in the last 24 hours. The user
should be able to apply CRUD
functionalities to these items.

Actual Outcome N/A

Test title View weekly spendings
Test description Testing to see if a user can view the

spendings they made this week.
Type of test Manual
Expected Outcome When the user goes to the weekly

spendings activity. They should be
presented with any spendings they have
made in the last 7 days.

Actual Outcome N/A

84

Test title View monthly spendings
Test description Testing to see if a user can view the

spendings they made this month.
Type of test Manual
Expected Outcome When the user goes to the monthly

spendings activity. They should be
presented with any spendings they have
made in the last 31 days.

Actual Outcome N/A

Test title Use map activity
Test description Testing to see if the user can use the map

functionality to find the nearest ATM.
Type of test Manual
Expected Outcome Testing to see if a user can input a to and

from destination in the application. When
the user submits the application should
redirect the user to the google maps
application with both inputs filled in. If
the user does not have google maps
downloaded the application should
redirect the user to the play store.

Actual Outcome N/A

Test title Logout button
Test description Testing to see if the user can successfully

log out.
Type of test Manual
Expected Outcome When the user is on the settings activity

and presses the logout button, the
application should redirect the user to the
applications login page. When the user
logs out, the next time they press login
they should not be granted instant access
to the application. The expected outcome
is that the user should have to enter their
correct credentials to regain access to the
application.

Actual Outcome N/A

85

Test title View daily analytics
Test description Testing to see if the user can see their

daily spending analytics.
Type of test Manual
Expected Outcome When the user clicks on the daily

analytics activity, it is expected that they
will be presented with the daily spendings
on a pie chart.

Actual Outcome N/A

Test title View weekly analytics
Test description Testing to see if the user can see their

weekly spending analytics.
Type of test Manual
Expected Outcome When the user clicks on the weekly

analytics activity, it is expected that they
will be presented with the weekly
spendings on a pie chart.

Actual Outcome N/A

Test title View monthly analytics
Test description Testing to see if the user can see their

monthly spending analytics.
Type of test Manual
Expected Outcome When the user clicks on the monthly

analytics activity, it is expected that they
will be presented with the monthly
spendings on a pie chart.

Actual Outcome N/A

86

7.3 Test plan implementations
Merge Request (Login button, November 28th, 2021). Manual testing plan idea came from
how to write test cases: sample template testing with examples [Thomas Hamilton] [2022].

Test title Type of test Outcome
Home card view Manual Pass

Test title Type of test Outcome
Register button Manual Pass

Test title Type of test Outcome
Login button Manual Pass

Merge Request (Search for cryptocurrencies, December 14th, 2021)

Test title Type of test Outcome
Home card view Manual Pass
Register button Manual Pass
Login button Manual Pass
Search function for
cryptocurrencies

Manual Pass

Merge Request (Send money via PayPal, February 14th, 2022)

Test title Type of test Outcome
Home card view Manual Pass
Register button Manual Pass
Login button Manual Pass
Search function for
cryptocurrencies

Manual Pass

Send money via PayPal Manual Partial Pass – fixed amount,
user cannot enter customer
amount of money.

87

Merge Request (Send money via Google Pay, March 1st, 2022)

Test title Type of test Outcome
Home card view Manual Pass
Register button Manual Pass
Login button Manual Pass
Search function for
cryptocurrencies

Manual Pass

Send money via PayPal Manual Pass
Send money via Google Pay Manual N/A – cannot test this

feature as I do not have
access to an Indian Google
pay account

Merge Request (Make a payment using Stripe, March 12th, 2022)

Test title Type of test Outcome
Home card view Manual Pass
Register button Manual Pass
Login button Manual Pass
Search function for
cryptocurrencies

Manual Pass

Send money via PayPal Manual Pass
Send money via Google Pay Manual N/A
Make a payment using
Stripe

Manual pass

88

Merge Request (View daily spendings, March 18th, 2022)

Merge Request (View weekly spendings, March 21st, 2022)

Test title Type of test Outcome
Home card view Manual Pass
Register button Manual Pass
Login button Manual Pass
Search function for
cryptocurrencies

Manual Pass

Send money via PayPal Manual Pass
Send money via Google Pay Manual N/A
Make a payment using
Stripe

Manual Pass

View daily spendings Manual Pass

Test title Type of test Outcome
Home card view Manual Pass
Register button Manual Pass
Login button Manual Pass
Search function for
cryptocurrencies

Manual Pass

Send money via PayPal Manual Pass
Send money via Google Pay Manual N/A
Make a payment using
Stripe

Manual Pass

View daily spendings Manual Pass
View weekly spendings Manual Pass

89

Merge Request (View daily spendings, March 22nd, 2022)

Merge Request (View daily spendings, March 25th, 2022)

Test title Type of test Outcome
Home card view Manual Pass
Register button Manual Pass
Login button Manual Pass
Search function for
cryptocurrencies

Manual Pass

Send money via PayPal Manual Pass
Send money via Google Pay Manual N/A
Make a payment using
Stripe

Manual Pass

View daily spendings Manual Pass
View weekly spendings Manual Pass
View monthly spendings Manual Partial pass – having some

errors, weekly activity
shows instead of monthly
activity at times

Test title Type of test Outcome
Home card view Manual Pass
Register button Manual Pass
Login button Manual Pass
Search function for
cryptocurrencies

Manual Pass

Send money via PayPal Manual Pass
Send money via Google Pay Manual N/A
Make a payment using
Stripe

Manual Pass

View daily spendings Manual Pass
View weekly spendings Manual Pass
View monthly spendings Manual Pass
View savings vault Manual Pass

90

Merge Request (View daily spendings, March 26th, 2022)

Merge Request (View daily spendings, March 28th, 2022)

Test title Type of test Outcome
Home card view Manual Pass
Register button Manual Pass
Login button Manual Pass
Search function for
cryptocurrencies

Manual Pass

Send money via PayPal Manual Pass
Send money via Google Pay Manual N/A
Make a payment using
Stripe

Manual Pass

View daily spendings Manual Pass
View weekly spendings Manual Pass
View monthly spendings Manual Pass
View savings vault Manual Pass
Logout Manual Pass

Test title Type of test Outcome
Home card view Manual Pass
Register button Manual Pass
Login button Manual Pass
Search function for
cryptocurrencies

Manual Pass

Send money via PayPal Manual Pass
Send money via Google Pay Manual N/A
Make a payment using
Stripe

Manual Pass

View daily spendings Manual Pass
View weekly spendings Manual Pass
View monthly spendings Manual Pass
View savings vault Manual

Pass

Logout Manual Pass
Use map activity Manual Pass

91

Merge Request (View daily spendings, April 5th, 2022)

Test title Type of test Outcome
Home card view Manual Pass
Register button Manual Pass
Login button Manual Pass
Search function for
cryptocurrencies

Manual Pass

Send money via PayPal Manual Pass
Send money via Google Pay Manual N/A
Make a payment using
Stripe

Manual Pass

View daily spendings Manual Pass
View weekly spendings Manual Pass
View monthly spendings Manual Pass
View savings vault Manual Pass
Logout Manual Pass
Use map activity Manual Pass
Step activity Manual Pass

92

Merge Request (View daily spendings, April 5th, 2022)

Test title Type of test Outcome
Home card view Manual Pass
Register button Manual Pass
Login button Manual Pass
Search function for
cryptocurrencies

Manual Pass

Send money via PayPal Manual Pass
Send money via Google Pay Manual N/A
Make a payment using
Stripe

Manual Pass

View daily spendings Manual Pass
View weekly spendings Manual Pass
View monthly spendings Manual Pass
View savings vault Manual Pass
Logout Manual Pass
Use map activity Manual Pass
Step activity Manual Pass
Daily analytics Manual Fail

93

Merge Request (View daily spendings, May 8th, 2022)

Test title Type of test Outcome
Home card view Manual Pass
Register button Manual Pass
Login button Manual Pass
Search function for
cryptocurrencies

Manual Pass

Send money via PayPal Manual Pass
Send money via Google Pay Manual N/A
Make a payment using
Stripe

Manual Pass

View daily spendings Manual Pass
View weekly spendings Manual Pass
View monthly spendings Manual Pass
View savings vault Manual Pass
Logout Manual Pass
Use map activity Manual Pass
Step activity Manual Pass
Daily analytics Manual Pass

94

8.0 Evaluation
- As I stated at the outset of this report, I believe my application has market potential

in today's market. My application successfully provides users with essential features
such as:

- Making payments
- Sending money to other contacts
- Monitoring todays cryptocurrency market
- Managing their savings

The four core features that I mentioned were successfully implemented. Along the way I
made time for implementing some additional activities. I implemented a map activity that
directs users to the nearest ATM, the health of my users is at my greatest interest, to help
keep them motivated I have provided a feature that helps monitor the total number of steps
they have made today as well as the total number of steps they have made since they first
opened my application.

Overall, I am impressed with the level of testing I was able to conduct. The Espresso
framework was excellent for assisting me with automating tests in a simple yet effective
manner. One method of testing was not deemed enough, I made sure to manually test the
different components within my application to ensure that they are fit for the end user.

AdobeXD was a great tool for assisting me with designing my user interface. I stuck with a
white/blue colour scheme and ensured consistency all throughout my application.

95

9.0 Conclusions
My application can allow users to successfully send money to other contacts, monitor
cryptocurrencies, monitor their savings accounts whilst assisting with other consumer
needs. My application offers a navigable user interface, appropriate usability design, smooth
execution of functionality, and the steps for implementing windows server failover
clustering if an investment was provided.

I would say that the main disadvantage of my application is that it is not compatible with IOS
devices. If I had the chance to spend more time working with it, I would definitely work on
ensuring that it is compatible in a future release.

Payment-driven programming challenges and numerous asynchronous requests to APIs such
as Stripe, PayPal, and Google Pay have been shown to consume a significant amount of
time. Displaying the users' daily spendings was an activity that took up a lot of time near the
end of my project.

My strengths range between the different APIs I have utilized; the PayPal, Stripe, and
Google Pay APIs ensure that users transactions will be handled securely. The firebase
database may also be considered a strength as it handles the encryption of the users’
passwords.

96

10.0 Further Development or Research
If I could do additional work with my project, I would not continue coding without
conducting interviews and surveys to gather some user feedback. I feel as if this would be a
wise move, I will gather useful information regarding the user interface and the overall
functionality of my application.

An important feature which would be implemented in future releases would be the ability
to receive money that has been send from another user. I would like to move away from
using PayPal and Googles API and develop my own stream where I can manage transactions
in a similar manner to Revolut. There are some more features around user logins that I
would like to add. Firstly, I would like to ensure that every user that is registered must verify
their email address and in the case that a user forgets their password, I would like to
present the ability of being able to reset their password via the email address they have
verified when they first created their account.

Some more analytic features could present some useful information that could be
requested by the user. As it stands, the user can analyse their daily spendings, but it would
be great to implement weekly and monthly analytics.

With funding, I would be presented with the ability to implement windows server failover
clustering. I would like to move away from storing data in the firebase database and instead,
store in in a MySQL database. With the MySQL database I would like to utilize high
availability by implementing windows server failover clustering.

It would have been great to demonstrate internationalisation so that users who have their
devices set to a different language can still use the application.

97

11.0 References
prenewswire, 2019, Global Fintech Market Value is Expected to Reach $309.98 Billion at a
CAGR of 24.8% Through 2022
Available at: https://www.prnewswire.com/news-releases/global-fintech-market-value-is-
expected-to-reach-309-98-billion-at-a-cagr-of-24-8-through-2022--300926069.html

Tuomo Sippola, 2017. Usability is a key element of user experience.
Available at: https://eu.landisgyr.com/better-tech/usability-is-a-key-element-of-user-
experience

Raven Veal, 2021, How to define user persona
Available at: https://careerfoundry.com/en/blog/ux-design/how-to-define-a-user-persona/

doc.microsoft.com, 2022, Failover Clustering in Windows Server and Azure Stack HCI
Available at: https://docs.microsoft.com/en-us/azure-stack/hci/manage/maintain-servers

developer.android, 2021, Espresso documentation
Available at: https://developer.android.com/training/testing/espresso

developer.paypal, 2022, Native Checkout SDK
Available at: https://developer.paypal.com/limited-release/native-checkout/

stripe docs, 2020, Accept a payment
Available at: https://stripe.com/docs/payments/accept-a-payment

Google Pay, 2021, Support Google Pay for in-app payments
Available at: https://developers.google.com/pay/india/api/android/in-app-payments

CoinMarketCap, 2021, CoinMarketCap API Documentation
Available at: https://coinmarketcap.com/api/documentation/v1/

Vishwas Ng, 2019, Non-functional Requirement of the Mobile Development System
Available at: https://medium.com/@vishwasng/non-functional-requirement-of-the-mobile-
development-system-e0ed98f2a872

Central bank, 2022, What is “fintech” and how is it changing financial products?
Available at: https://www.centralbank.ie/consumer-hub/explainers/what-is-fintech-and-
how-is-it-changing-financial-
products#:~:text=The%20word%20%E2%80%9Cfintech%E2%80%9D%20is%20simply,anythin
g%20that%20relates%20to%20finance.

Geeksforgeeks, 2020, How to add a pie chart into an android application
 Available at: https://www.geeksforgeeks.org/how-to-add-a-pie-chart-into-an-android-
application/

Developers.google.com, 2021, Google Maps Intents for Android

https://www.prnewswire.com/news-releases/global-fintech-market-value-is-expected-to-reach-309-98-billion-at-a-cagr-of-24-8-through-2022--300926069.html
https://www.prnewswire.com/news-releases/global-fintech-market-value-is-expected-to-reach-309-98-billion-at-a-cagr-of-24-8-through-2022--300926069.html
https://eu.landisgyr.com/better-tech/usability-is-a-key-element-of-user-experience
https://eu.landisgyr.com/better-tech/usability-is-a-key-element-of-user-experience
https://careerfoundry.com/en/blog/ux-design/how-to-define-a-user-persona/
https://docs.microsoft.com/en-us/azure-stack/hci/manage/maintain-servers
https://developer.android.com/training/testing/espresso
https://developer.paypal.com/limited-release/native-checkout/
https://stripe.com/docs/payments/accept-a-payment
https://developers.google.com/pay/india/api/android/in-app-payments
https://coinmarketcap.com/api/documentation/v1/
https://medium.com/@vishwasng/non-functional-requirement-of-the-mobile-development-system-e0ed98f2a872
https://medium.com/@vishwasng/non-functional-requirement-of-the-mobile-development-system-e0ed98f2a872
https://www.centralbank.ie/consumer-hub/explainers/what-is-fintech-and-how-is-it-changing-financial-products#:%7E:text=The%20word%20%E2%80%9Cfintech%E2%80%9D%20is%20simply,anything%20that%20relates%20to%20finance
https://www.centralbank.ie/consumer-hub/explainers/what-is-fintech-and-how-is-it-changing-financial-products#:%7E:text=The%20word%20%E2%80%9Cfintech%E2%80%9D%20is%20simply,anything%20that%20relates%20to%20finance
https://www.centralbank.ie/consumer-hub/explainers/what-is-fintech-and-how-is-it-changing-financial-products#:%7E:text=The%20word%20%E2%80%9Cfintech%E2%80%9D%20is%20simply,anything%20that%20relates%20to%20finance
https://www.centralbank.ie/consumer-hub/explainers/what-is-fintech-and-how-is-it-changing-financial-products#:%7E:text=The%20word%20%E2%80%9Cfintech%E2%80%9D%20is%20simply,anything%20that%20relates%20to%20finance
https://www.geeksforgeeks.org/how-to-add-a-pie-chart-into-an-android-application/
https://www.geeksforgeeks.org/how-to-add-a-pie-chart-into-an-android-application/

98

Available at: https://developers.google.com/maps/documentation/urls/android-intents

developer.android.com, 2022, Motion sensors
Available at: https://developer.android.com/guide/topics/sensors/sensors_motion

firebase.google.com, 2022, Get Started with Firebase Authentication on Android
Available at: https://firebase.google.com/docs/auth/android/start

Lucidchart, 2022, design tool
Available at: https://www.lucidchart.com/pages/

Xtensio, 2022, design user personas
Available at: https://xtensio.com/

Thomas Hamilton, 2022, How to write test cases: Sample Template with Examples
Available at: https://www.guru99.com/test-case.html

https://developers.google.com/maps/documentation/urls/android-intents
https://developer.android.com/guide/topics/sensors/sensors_motion
https://firebase.google.com/docs/auth/android/start
https://www.lucidchart.com/pages/
https://xtensio.com/
https://www.guru99.com/test-case.html

99

12.0 Appendices
3.4 Project Proposal

Project Proposal

Contents

1.0 Objectives .. 2

2.0 Background ... 2

3.0 State of the Art .. 3

4.0 Technical Approach ... 3

5.0 Technical Details ... 4

6.0 Special Resources Required .. 5

7.0 Project Plan ... 6

8.0 Testing ... 8

9.0 References .. 8

https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fstudentncirl-my.sharepoint.com%2Fpersonal%2Fx18467362_student_ncirl_ie%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F4f757901d9af47b9ba85b4115459f835&wdenableroaming=1&mscc=1&wdodb=1&hid=655B0FA0-60DA-C000-C1DA-B1CD6B4B5EBB&wdorigin=ItemsView&wdhostclicktime=1640199980277&jsapi=1&jsapiver=v1&newsession=1&corrid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&usid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&preseededsessionkey=911a19d6-34d6-c8c8-aab4-290063a83571&preseededwacsessionid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&rct=Medium&ctp=LeastProtected#_Toc89593483
https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fstudentncirl-my.sharepoint.com%2Fpersonal%2Fx18467362_student_ncirl_ie%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F4f757901d9af47b9ba85b4115459f835&wdenableroaming=1&mscc=1&wdodb=1&hid=655B0FA0-60DA-C000-C1DA-B1CD6B4B5EBB&wdorigin=ItemsView&wdhostclicktime=1640199980277&jsapi=1&jsapiver=v1&newsession=1&corrid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&usid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&preseededsessionkey=911a19d6-34d6-c8c8-aab4-290063a83571&preseededwacsessionid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&rct=Medium&ctp=LeastProtected#_Toc89593484
https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fstudentncirl-my.sharepoint.com%2Fpersonal%2Fx18467362_student_ncirl_ie%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F4f757901d9af47b9ba85b4115459f835&wdenableroaming=1&mscc=1&wdodb=1&hid=655B0FA0-60DA-C000-C1DA-B1CD6B4B5EBB&wdorigin=ItemsView&wdhostclicktime=1640199980277&jsapi=1&jsapiver=v1&newsession=1&corrid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&usid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&preseededsessionkey=911a19d6-34d6-c8c8-aab4-290063a83571&preseededwacsessionid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&rct=Medium&ctp=LeastProtected#_Toc89593485
https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fstudentncirl-my.sharepoint.com%2Fpersonal%2Fx18467362_student_ncirl_ie%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F4f757901d9af47b9ba85b4115459f835&wdenableroaming=1&mscc=1&wdodb=1&hid=655B0FA0-60DA-C000-C1DA-B1CD6B4B5EBB&wdorigin=ItemsView&wdhostclicktime=1640199980277&jsapi=1&jsapiver=v1&newsession=1&corrid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&usid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&preseededsessionkey=911a19d6-34d6-c8c8-aab4-290063a83571&preseededwacsessionid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&rct=Medium&ctp=LeastProtected#_Toc89593486
https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fstudentncirl-my.sharepoint.com%2Fpersonal%2Fx18467362_student_ncirl_ie%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F4f757901d9af47b9ba85b4115459f835&wdenableroaming=1&mscc=1&wdodb=1&hid=655B0FA0-60DA-C000-C1DA-B1CD6B4B5EBB&wdorigin=ItemsView&wdhostclicktime=1640199980277&jsapi=1&jsapiver=v1&newsession=1&corrid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&usid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&preseededsessionkey=911a19d6-34d6-c8c8-aab4-290063a83571&preseededwacsessionid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&rct=Medium&ctp=LeastProtected#_Toc89593487
https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fstudentncirl-my.sharepoint.com%2Fpersonal%2Fx18467362_student_ncirl_ie%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F4f757901d9af47b9ba85b4115459f835&wdenableroaming=1&mscc=1&wdodb=1&hid=655B0FA0-60DA-C000-C1DA-B1CD6B4B5EBB&wdorigin=ItemsView&wdhostclicktime=1640199980277&jsapi=1&jsapiver=v1&newsession=1&corrid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&usid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&preseededsessionkey=911a19d6-34d6-c8c8-aab4-290063a83571&preseededwacsessionid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&rct=Medium&ctp=LeastProtected#_Toc89593488
https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fstudentncirl-my.sharepoint.com%2Fpersonal%2Fx18467362_student_ncirl_ie%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F4f757901d9af47b9ba85b4115459f835&wdenableroaming=1&mscc=1&wdodb=1&hid=655B0FA0-60DA-C000-C1DA-B1CD6B4B5EBB&wdorigin=ItemsView&wdhostclicktime=1640199980277&jsapi=1&jsapiver=v1&newsession=1&corrid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&usid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&preseededsessionkey=911a19d6-34d6-c8c8-aab4-290063a83571&preseededwacsessionid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&rct=Medium&ctp=LeastProtected#_Toc89593489
https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fstudentncirl-my.sharepoint.com%2Fpersonal%2Fx18467362_student_ncirl_ie%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F4f757901d9af47b9ba85b4115459f835&wdenableroaming=1&mscc=1&wdodb=1&hid=655B0FA0-60DA-C000-C1DA-B1CD6B4B5EBB&wdorigin=ItemsView&wdhostclicktime=1640199980277&jsapi=1&jsapiver=v1&newsession=1&corrid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&usid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&preseededsessionkey=911a19d6-34d6-c8c8-aab4-290063a83571&preseededwacsessionid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&rct=Medium&ctp=LeastProtected#_Toc89593490
https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fstudentncirl-my.sharepoint.com%2Fpersonal%2Fx18467362_student_ncirl_ie%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F4f757901d9af47b9ba85b4115459f835&wdenableroaming=1&mscc=1&wdodb=1&hid=655B0FA0-60DA-C000-C1DA-B1CD6B4B5EBB&wdorigin=ItemsView&wdhostclicktime=1640199980277&jsapi=1&jsapiver=v1&newsession=1&corrid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&usid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&preseededsessionkey=911a19d6-34d6-c8c8-aab4-290063a83571&preseededwacsessionid=1c08097a-9841-bc7e-941d-bf8645c1e5fd&rct=Medium&ctp=LeastProtected#_Toc89593491

100

1.0 Objectives
The overall goal of this project is to provide a high availability fintech mobile application
with a high-level standard of database security. High availability is self-explanatory, it is the
ability of a system to continue functioning even when some of its components fail. Ensuring
high availability, you help your organisation achieve maximum productivity and reliability.
Service disruption may lead to negative impacts of downtime, with a high availability
strategy in place it can help mitigate any financial losses.

Financial information stored in databases would be considered valuable assets, the
database I plan on designing will hold confidential and sensitive information. Holding such
valuable information would attract cyberattacks which in turn, would require a secure
database to prevent these database breaches from happening. Implementing database
security best practices will ensure a customer never feels vulnerable when storing their
personal data when using my mobile application.

The end user will be able to navigate through my mobile applications UI and use it as a
financial management application. The mobile application will prioritise transactions,
investment management, savings monitoring as well as other financial details. The user will
be able to keep track of their trading portfolio whilst also keeping track of their progress
when saving capital.

2.0 Background
The fintech sector is an ever-progressive platform, fintech statistics show from case studies
performed in Australia, the UK, and the US, have shown us that the fintech statistics have
risen from 16% in 2015, rising to 31% in 2017 and reaching up to 60% in 2019. In a popular
technology article, it was mentioned that “The global fintech market was worth $127.66
billion in 2018, and it is expected to reach $309.98 billion at a CAGR Of 24.8% through 2022.”
[prenewswire] [2019]. It is also estimated that 75% of millennials in the US switched to
digital banking, I expect that this will lead to massive growth opportunities for digital finance
services.

To this day, companies still seem to be experiencing issues with providing high availability
and highly secure systems. High availability, database security and developing have always
been areas of interest to me. I believe providing these three topics to a good standard is
necessary when creating a mobile application for an end user. When a system or database
fails, organisations require high availability protection. They require high availability to keep
their systems up and running and to mitigate loss of revenue, brand damage and unhappy
customers. The high availability method I plan on implementing is known as ‘Failover
clustering’. Failover clustering is a group of independent servers that work together to
increase the availability of systems and applications. If a service fails, the services that were
hosted on that node can be automatically transferred to another available node.

There are many reasons as to why database security is important seen as sensitive and
personal data is on the line. I will meet my objectives by following some of Microsoft’s best
practices as well as some practices I have learnt from working as a database administrator.

101

3.0 State of the Art
The banking as a fintech category is mainly kept back for conventional banks, who are scaling and
progressing into all domains of fintech. Banking is the prime category by several applications, whilst
payments are the biggest sub-vertical in the fintech apps category. The snapshot below is an excel
spreadsheet I created to show the top 10 fintech applications of 2021.

Revolut is a top fintech app I would use on a daily basis. Revolut offers a blend of banking services
and finance management services to its consumers. Revoluts top features consist of notifications for
each payment, zero fees for account opening and modern fintech functionalities such as crypto
trading. These features will also be found within my application however, I will also offer features
such as offering savings, payments, and investments all in the one place whilst also seeking to
improve quick notifications of transactions. I was looking through some reviews that were left on
the IOS apple store, it seems to be a common trend that people weren’t impressed with the
overloading of ads and information being presented in front of them. One user mentioned that “it’s
hard to find useful features and constantly having ads coming up on the home page”. My goal is that
my application will only present necessary information, as well as easy access to the most important
pages within the application whilst providing a user-friendly user interface.

4.0 Technical Approach
Before I progress to fully developing my mobile application, there are some areas that I will need to
do further research on to broaden my knowledge and ensure that this solution will be the best of my
ability. Before I started coding in android studio or designing a mySQL database, I started designing
the user interface for my mobile application and planning out my applications use cases. I waited
until I was satisfied with the UI I designed; I then began creating an Entity Relationship Diagram. An
ERD is a dragram that displays the relationship of entity sets stored in a database. From designing
the ERD, I will have an idea of what database tables I will need to create when designing the SQL
database. Post ERD design, I plan on moving onto designing the SQL database for my mobile
application.

Developing the mobile application

I plan on developing my application in android studio. I researched a variety of different IDE’s and
concluded that Android Studio is most fitting for my requirements. Android studio is the official
integrated development environment for Google’s Android operating system, it is specifically
designed for Android Development. Some tasks identified consist of: Linking the UI, adding
functionality to core features such as login and registration pages, savings monitoring, transactions,
investments, and a navigation drawer.

Designing the UI

Designing a navigable User Interface is key to my project, I need to ensure that the end user can
seamlessly navigate through my application. From looking at other applications on the IOS apple

102

store I browsed through some of the app’s reviews. It is a common occurrence that users prefer to
keep the UI nice and simple, rather than being bombarded with tonnes of information at once. The
UI should consist of access to its core features and the users’ main attractions. Things can get messy,
and the application can start to look unappealing when there isn’t time spent designing the UI and
gathering feedback, I will be looking at designing techniques such as strategically using colour
schemes, keeping the UI purposeful and keeping the UI simple. I set up a monthly bill pay with
Adobe XD. I purchased this application as it offers more features when designing UI’s. Adobe XD is a
vector-based user experience design tool, which in my case, is being used to for a mobile app. It is an
excellent tool for user experience and interaction designers.

Creating the database

My plan is to create and design the database using ‘SQL Server Management Studio (SSMS)’. SSMS is
a software application that is renowned for allowing its users to be able to configure, manage and
administer all components within Microsoft SQL Server. Here I will need to figure out what tables
are needed and how I plan on dividing the information into these tables, this stage involves
classifying data and identifying relationships, this will all be done with the aid of the ERD I created.
When dealing with a financial application, storing user information will require a secure SQL
database. I will look at obfuscating SQL data as well as potentially encrypting key information, whilst
also ensuring all of Microsoft SQL Servers best practices are being followed.

Providing High Availability

Ideally the high availability method I would like to implement is failover clustering. Doing so, I will
need 3 nodes. I plan on using Oracle VM VirtualBox to set up 2 nodes and the domain controller. The
tasks will consist of configuring these nodes, installing SQL server and windows server, setting up the
nodes for failover and configuring SQL server manager.

5.0 Technical Details
Developing the mobile application

Android Studio, being the official IDE for android development, its source code is in Java or Kotlin.
For developing my application, I intend on using Java. Java is very suitable for my project; it is a
highly regarded language for banking applications where security is amongst one of the main
concerns. It is recommended that when developing a mobile application, security is a key aspect you
should consider in order to say you have in fact built a good application. Hackers should never be
underestimated that is why an approach I plan on taking when developing this application is that I
will focus on improving my knowledge of providing better security services. Java is compatible with
Stripe; I intend on using Stripe to assist me with processing transactions. Stripe is a company that
primarily offers payment processing software and application programming interfaces for mobile
applications. Stripe will consist of code for both, client and server side in order to process
transactions.

Creating the database

There are a couple of key steps I must tick off when it comes to creating the SQL database. Going
through these steps is the approach I plan on taking. When it comes to database design, I need to
outline my business requirements, identify what tables are needed as well as identifying
relationships. As mentioned before, I intend on creating an ERD to answer any database design and
relationship issues I have. The main business requirements of my fintech application are that it
needs to process transactions whilst providing users with the core features mentioned earlier on in

103

this report, for my business requirements to be fulfilled my application will also seek to provide high
availability whilst ensuring customers feel comfortable and confident that their information is in safe
hands. In terms of data inside my database I need to have an idea of how much data I intend on
storing in certain tables as well as what populates the tables. A key business requirement I have
mentioned is that I need my customers to feel like their data is in safe hands, this can be done by
securing the database in the hopes of preventing any data leaks. Only I will have full access to the
SQL database, I will also be the only person who is able to see user data however, user sensitive data
such as passwords will be obfuscated. When addressing database security, we will need to find a
perfect balance. Too much or too little security can result in problems. To perfectly keep track of any
tables or datatypes created, I plan on creating an entity relationship diagram. This will help describe
interrelated things of interest, essentially it will help specify relationships that can exist between
entities.

Providing High Availability

A failover cluster is a group of independent computers that work together to increase the availability
and scalability of clustered roles. If one or more cluster nodes, which is a clustered server, were to
fail, the services that were hosted on that node will be automatically transferred to another
available node in a process known as failover. Windows Server Failover Clustering provides high
availability and disaster recovery scenarios of hosted server application such as Microsoft SQL
Server. My environment will consist of 3 nodes, 1 which is the domain controller. This environment
will be hosted in Oracle Virtual box which will assist me in creating the 3 virtual machines as well as
installing windows server and SQL server.

6.0 Special Resources Required
UI Design – Adobe XD

I set up a monthly bill pay with Adobe XD. I purchased this application as it offers more features
when designing UI’s. Adobe XD is a vector-based user experience design tool, which in my case, is
being used to for a mobile app. It is an excellent tool for user experience and interaction designers.

High Availability – Oracle VirtualBox

I will be using a Virtual Machine technology; in this instance I plan on using Oracle
VirtualBox. The reason being it can be used to provide great flexibility in deploying servers
and I will be able to practice a demonstration of high availability. Briefly, when a virtual
machine is running in this highly available machine cluster, any failure of the physical
hardware will not affect the running virtual machine as it will be automatically transferred
to the other node I have configured in the cluster. Installation of windows server, this will be
installed on each server that would be joined to the cluster.

7.0 Project Plan
To help me keep on track with the progress I plan on making over the next few months I
designed a detailed Gantt chart in Microsoft excel. As it is a detailed Gantt chart, I couldn’t
manage to fit the entire thing in the one snapshot so attached below are multiple snapshots
consisting of the objectives I plan on completing and in the relative timeframe.

104

As shown above, the first task I need to tackle is designing my mobile applications user
interface. This task will be done using adobe XD. Not only will I need time to design the UI,
but I will also need time to plan the page layout and design, I feel as if 8 days is fitting for
this task. Next is designing the Entity relationship diagram. Thanks to the user interface for
the mobile application this task shouldn’t take long as I will have a good idea of what tables
and values are necessary. As I mentioned above, I plan on designing the UI in adobe XD. This
means I will need to export it from adobe XD and import it into android studio. Adobe XD
will show an overall mock-up of what I want my application to look like however I will need
to create buttons, text views etc in android studio. Following the ERD diagram, I will start to
design the database, whilst researching methods suitable for my applications needs. I will
assign relationships, possibly create indexes where needed to improve performance etc.
App functionality is a broad task in which I plan on breaking down into microtasks over the
next couple of days. There’s a lot of work that needs to be done and things are bound to get
intricate, I feel as if 28 days is a fitting estimate.

Hosting the mobile application and having the SQL database connected to a server will take
some time to get set up. Providing high availability will consist of configuring the virtual
machines, connecting the two nodes to the domain controller, and implementing the
failover feature. Database security is a business requirement of mobile application and
needs to be revised to ensure it is configured correctly. I have revising code down just to
give myself some free time in case I didn’t manage to get any of the features fully working.
Report work will be done throughout and towards the end of my project.

Trello

Trello is a web-based list making application that I am using to organize my project into
boards. Trello is useful as at first glance it tells me what is being worked on, what has been
completed and what is due. I am using Trello as a digital whiteboard covered in sticky notes,
each note is a task that I am working on, have previously worked on or have yet to work on.
Trello will complement the Gantt chart I created in the sense that on Trello I can click into
each note and get a full description of each task, while the Gantt chart gives me a rough
estimate of how much time I have to complete each task.

8.0 Testing
Thorough testing is crucial to success of a mobile application. If it turns out that my mobile
application is not working properly, it is very likely that most people will refrain from buying
or using it.

105

Before moving my application into a production environment, I would like to perform user
acceptance testing. This method of testing is performed by the end user to somewhat verify
the mobile application I intend on developing before moving it into a production
environment. User acceptance testing is done in the final phase of testing. It will be carried
out after function, integration and system testing is done. I plan on steering away from
saturated testing, I don’t want to have to every value for an input. I would like to test from
the user’s perspective.

Testing to find defects or bugs can be time consuming, repetitive, and subject to human
error. From doing some researching online, I have found that Quality Assurance teams use
automated testing to run these detailed and repetitive tests automatically. There are test
tools out there that teams test faster whilst improving test accuracy and testing a
substantial amount of code.

To ensure that I get as much as possible from testing my mobile application I have put
together a checklist:

- Underline the test cases I wish to Automate.
o It would be extremely inefficient to automate all testing, therefore we should

determine what test cases we plan on automating.
- Find the most fitting testing tool.

o This step is essential for test automation. It’s required that I find a testing
tool that best suits the overall requirements I underline.

- Manage the different tests based on your skill level.
o It is important to identify my level of experience and skills when it comes to

testing, not to overshoot it by setting absurd expectations.
- Create solid, high standard test data.

o Using external data makes your automated tests reusable and easier to
maintain.

- Changes to UI may affect test results.
o Providing unique names for my configurations will makes my automated

tests resistant to UI changes and ensure that my automated tests will work
without having to make changes to the test itself.

9.0 References
[prenewswire][2019][Global Fintech Market Value is Expected to Reach $309.98 Billion at a
CAGR of 24.8% Through 2022]

2.2. Ethics Approval Application (only if required)
3.5 Reflective Journals

Supervision & Reflection Template

106

Student Name Alan Mellowes
Student Number 18467362
Course Bachelor of Science in Computing

Month: October-21

What?
Primarily this month my focus has been finding my strengths and trying to generate a project idea
that demonstrates them well. For guidance, I reached out to Keith Maycock who gave me some
great advice and helped me be more specific with what I would like my project to achieve. The main
things I have been researching have been: How compatible the various technologies I plan on using
are, what programming languages I could possibly use and coming up with a plan to stay on track,
setting checkpoints on what I wish to achieve by a particular timeframe. I also uploaded my project
pitch where I talked about what my project entails and why it would be used in today’s world. A lot
of research went into what high availability method would be most suitable for my application.
So What?
I must decide whether I am taking the approach of developing an app in android studio or a web
application. Both would work but I need to overcome some challenges related to compatibility and
how much time I can afford to spend learning how to use new technologies. I have experiences with
SQL databases, developing web application and android applications however, it’s all about finding
a solution that demonstrates them to a good standard as well as compatibly working well. I feel like
I’m on the right track and have succeeded in underlining a project idea as well as learning about
application development, database design and high availability methods. I have read up on these 3
main focuses however it seems that the main challenge at the moment is clearly outlining what the
best method is to combine the 3.

Now What?
Instead of researching my strong points separately I need to research a way to outline a feasible
method to demonstrate them in an all-in-one compatible application. Finding a suitable way of
dealing with transactions will be another challenge I hope to overcome and learn a lot from in the
coming weeks. It has been tough finding a balance between work and college, as well as getting
some time to myself but I feel like October has been successful so far. Keeping up the good habits
that I researched prior to starting my final year should ensure I achieve my full potential and make
some great progress this year.
Student Signature

Supervision & Reflection Template

Student Name Alan Mellowes
Student Number 18467362
Course Bachelor of Science in Computing

107

Month: November-21

What?
In November I received feedback regarding my soft copy submission for my project proposal. The
main feedback I got was that I should consider narrowing the scope of my project which I completely
agree with. I spent some time planning out the scope of my project and came up with a solution.
My project primarily focuses on developing a fintech application, whilst features such as high
availability and database security will simply compliment the fintech application instead of being
included in the main scope. My project supervisor, Keith Maycock, organised a meeting which was
very helpful. I found the call with Keith reassuring as he answered any questions I had as well as
letting me know that I was on the right track. My main concern that I brought up in the meeting
was that I am struggling with time management.

So What?
I had to come up with a solution or something to assist my time management concerns. I filled out
a Gantt chart in details as well as creating a diagram using Trello. The Gantt chart will act as a
reference as to where I should be, in terms of what I’m working on, to still be on track for finishing
my application on time whilst also sparing myself some time for any unplanned issues. Since the
last reflective journal, I have decided that I am going to build a mobile application instead of a web
application. I confirmed that the features I intend on using are fully compatible with each other. My
next task is to research the possibility of dealing with transactions within my mobile application.

Now What?
I am planning on not only designing the UI for my mobile application, but I would also like to start
coding. Before I begin coding, I will find out if it is possible to process transactions. I have project
proposal submission coming up in the first week of December which I plan on having ready. I will
work alongside the Gantt chart I created, hoping to stay working at the right pace. I will aim to have
some features ready for the mid-point presentation that is taking place at the end of December.
After I design my UI I will decide on what pages of my mobile application I will have ready for the
presentation.

Student Signature

108

Supervision & Reflection Template

Student Name Alan Mellowes
Student Number 18467362
Course Bachelor of Science in Computing

Month: December-21

What?
For this month I generally spent time preparing for my mid-point presentation and upload which
consisted of a project proposal, technical document and partial functionality within my application
working. My aim for this checkpoint was to complete navigability within my application by this I
made it so the user was able to access all of my applications different pages. In my presentation I
demonstrated that the user was in fact able to login or register if they didn’t have an account yet,
the registration process stored the newly created account in a firebase database. On top of this I
added some functionality to the investment management page, I used coinmarketcap’s crypto API
to pull all current prices of the top 100 cryptocurrencies.
So What?
Creating a login and registration page was a success however for my demonstration the accounts
were stored within a firebase database, for the final upload in May I would like for all the user
account and any other information in my mobile application to be stored in my own SQL database.
Getting an idea of the current state of the crypto market was a success by using an API provided by
coinmarketcap. Some challenges with making the investment management page more appealing
will still have to be dealt with. This month really put a lot into perspective for me, I realised that I
may need to rethink my current time management plan as there is still a lot of work to be done.
Now What?
 In the next month I hope to configure my SQL database and set it up with my application as well as
starting to tackle payments. Some more research will have to go into this feature however I have
already done a fair amount as it stands. I hope to make a lot of progress in January as it is the start
of semester two and I am hoping I will be able to allocate more time to my project. I would also like
to spend some more time going over the technical document in which I submitted for the mid-point
upload, I feel as if I can do some cleaning up and potentially add some new information.
Student Signature

109

Supervision & Reflection Template

Student Name Alan Mellowes
Student Number 18467362
Course Bachelor of Science in Computing

Month: January-22

What?
This month I continued from where I left off after the mid-point presentation. I was happy with the
amount of content I provided for the presentation. I mentioned in the previous report that I would
like to move my information stored in my firebase database into a SQL database. I decided to not
do this step as it is unnecessary. I have not been able to acquire an environment where I can
configure failover clustering. Windows server standard edition is too expensive to buy so I have
come up with the idea of walking through the implementation in my report.

So What?
This was the ideal scenario to be in as I am confident in my ability to configure a failover cluster, it
would have been a nice addition to my application.
Now What?
I still think failover clustering should be a core factor revolving my application, so I have decided to
start running through a details process on how to implement it.
Student Signature

110

ASupervision & Reflection Template

Student Name Alan Mellowes
Student Number X18467362
Course Bachelor of Science in Computing

Month: February-22

What?
I met up with my project supervisor this month to discuss my midpoint presentation results and
how I feel I am progressing. I have also started coding a feature to process transactions. To aid me
with the transactions I have found documentation on 3 useful APIs. The APIs I intend on using are

- Google Pay API
- Stripe API
- PayPal API

Google Pay and PayPal’s APIs will aid my core functionality of being able to process payments.
Whilst the Stripe API will be used to deal with an in-app purchase.
So What?
I am happy with how much work I got done on my report. I have successfully implemented Google
Pay and PayPals API however, I am still working on implementing Stripe’s API. The only issue with
the Google API is that I cannot test it as I require an Indian Google Pay account.
Now What?
This month I will have all transactions working. I also hope to fully run through the implementation
of windows server failover clustering. It would be a huge plus to continue working on my report as
well as consistently meeting up with my project supervisor on a weekly basis.

Student Signature

111

Month: March-2022

What? I have successfully implemented all payment APIs. I have also finished running through the
implementation for how to configure a windows server failover cluster. This month has consisted
of setting up some functionality for adding money to a user’s vault.

So What?
This meant that huge progress was made for my application. One of more core functionalities have
been fully implemented. Stripe transactions proved to be difficult and time consuming however I
feel as they have made a nice addition to my app.
Now What?
I need to work on the savings vault activity. This means coding CRUD functionality to allow the user
to add and remove items from their vault. As an addition to the savings vault I would like to allow
users to view their daily, weekly, and monthly spendings whilst also being able to gather daily
analytics on what they have spent their money on.
Student Signature

112

Supervision & Reflection Template

Student Name Alan Mellowes
Student Number X18467362
Course Bachelor of Science in Computing

Month: April-22

What?
I finished the core functionality of my application. Successfully implemented transactions, savings
monitoring and investment monitoring. The daily analytics for what users have spent their money
on proved to be time consuming. I ended up successfully displaying the user’s spendings on a pie
chart.

So What?
There is still some work I need to do with cleaning up my application and report. I will spend my last
2 weeks proofreading my report, fixing any errors. Some more testing needs to be done with my
application. The daily analytic activity proved to be a challenge however it still ended up being a
success later in the month along with allowing the user to perform CRUD functionality in their
savings vault.
Now What?
At this stage, it is all about time management and being as efficient as possible. Over the next two
weeks I am allocating as much time as possible to doing some final checks. I need to read over the
android documentation for using the Espresso testing framework. I would like to add 2 additional
activities, one is for showing users where the nearest ATM is whilst the other will be used for
motivating my users. The second activity will help motivate users is a step detector that will display
the user’s total steps since they opened the application and since they first downloaded it. The
results for the feature will be displayed on a progress bar.

Student Signature

113

Supervision & Reflection Template

Student Name Alan Mellowes
Student Number X18467362
Course Bachelor of Science in Computing

Month: May-22

What?
I successfully ran traces using espressos testing framework. I executed multiple tests for activities
such as:

- Login
- Register
- Search for cryptocurrency
- Add money to vault
- Add money to daily spendings

So What?
Learning how to use Espressos testing framework proved to be very interesting and quite
successful.
Now What?
For the next two weeks I will proofread my report, and prepare my files that I will be uploading. I
will work towards recording a demonstration of my application as well as creating PowerPoint
slides.

Student Signature

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.2 Non-Functional Requirements
	1.1.1.1. Use Case Diagram
	1.1.1.2. Requirement 1: Send money to a saved contact
	1.1.1.3. Description & Priority
	1.1.1.4. Use Case
	1.1.1.5. Requirement 2: Send money to a acquaintance via PayPal API
	1.1.1.6. Description & Priority
	1.1.1.7. Use Case
	1.1.1.8. Requirement 3: Search for cryptocurrencies
	1.1.1.9. Description & Priority
	1.1.1.10. Use Case
	1.1.1.11. Requirement 4: Add money to vault
	1.1.1.12. Description & Priority
	1.1.1.13. Use Case
	1.1.1.14. Requirement 5: send money to a friend via GooglePay
	1.1.1.15. Description & Priority
	1.1.1.16. Use Case
	1.1.1.17. Requirement 5: Register new account
	1.1.1.18. Description & Priority
	1.1.1.19. Use Case
	1.1.1.20. Requirement 8: Keep track of money spent
	1.1.1.21. Description & Priority
	1.1.1.22. Use Case
	1.1.1.23. Requirement 9: Log out
	1.1.1.24. Description & Priority
	1.1.1.25. Use Case

	3.0 Data Requirements
	3.1 User Requirements
	3.2 Environmental Requirements
	3.3 Usability Requirements

	4.0 Design & Architecture
	4.1 Class diagram
	4.2 Flowchart
	4.3 User Personas
	4.3.1 Persona 1
	4.3.1.1 Scenario 1 – Jordan Crowley
	4.3.2 Persona
	4.3.2.1 Scenario 2 – Ian Mac

	5.0 Implementation
	5.1 Failover Clustering
	5.2 PayPal Activity
	5.3 Google Pay Activity
	5.4 Stripe Activity
	5.5 Daily analytics
	5.6 Step Activity

	6.0 Graphical User Interface (GUI)
	6.1 GUI – Wireframes

	7.0 Testing
	7.1 JUnit testing
	7.2 Test plan – Manual testing
	7.3 Test plan implementations

	8.0 Evaluation
	9.0 Conclusions
	10.0 Further Development or Research
	11.0 References
	12.0 Appendices
	3.4 Project Proposal

	1.0 Objectives
	2.0 Background
	3.0 State of the Art
	4.0 Technical Approach
	5.0 Technical Details
	6.0 Special Resources Required
	7.0 Project Plan
	8.0 Testing
	9.0 References
	2.2. Ethics Approval Application (only if required)
	3.5 Reflective Journals

