

National College of Ireland
BSHC-4

Cyber-Security

2021/2022

Shaurya Kumar

X18138284

X18138284@student.ncirl.ie

Cyber-Vault

Final Report

Contents
Executive Summary ... 4

Introduction .. 4

Background ... 4

Technologies ... 5

Structure ... 5

Requirement Procurement and Analysis .. 6

Functional Requirements analysis .. 6

1. Requirement: Secure Login registration ... 7

2. Requirement: Password management ... 11

3. Requirement: Password Generator .. 19

4. Requirement: Password distinctor ... 20

5. Requirement: Password strength analyser ... 22

6. Requirement: Facial registration (updated) .. 23

Non-Functional Requirements analysis .. 25

Project Plan and Analysis .. 27

Design and Architecture ... 30

ERD .. 32

Implementation .. 32

Graphical User Interface ... 34

Final Technology, requirements and Implementation ... 37

Final Technology stack .. 37

Final Functional requirement completion .. 41

More Interesting Code snippets ... 54

Final Screenshots of application and GUI ... 58

Security Focused Implementation in the application ... 65

Security Principles and Pernicious kingdoms incorporation ... 77

Causes of changes in technology stack and implementation ... 79

Testing & Evaluation ... 80

Future Development or research .. 87

Conclusion ... 89

References .. 89

Appendices .. 91

Project Proposal .. 91

Objectives.. 91

Background ... 91

State of the Art .. 92

Technical Approach ... 93

Technical Details ... 95

Project Plan ... 96

Testing ... 98

Journal Entries ... 100

December .. 100

November ... 101

January .. 102

February .. 103

March .. 104

April ... 106

Executive Summary
This Mid-point report is a requirement for the final year Software project which is to mainly display
our progress and the future plan according to it. One of its goals is also to help us analyse the
difficult points of our application; what difficult points have been achieved and how to tackle any
other challenging matter ahead. The main purpose of this report is to emphasize on my progress till
date, current designs and implementation, deviation from original plans and changes included as
well as alternate implementations/solutions utilised, results of current progress etc.

The key points of the report include the current progress which include the implementation of the
basic React application implementing Facial recognition login/registration using openCV’s
face_recognition as a part and in combination with the dlib library which contains the
implementation of deep metric learning used to convert face image sin 128 bit vectors used for
comparison and authentication, this is all done in the backend flask server details of which are
explained in the project analysis sections. Another major implementation as a part of the current
progress includes the implementation of the Have I Been Pawned troy hunt cross-referencing library
extension as a part being accessible after a successful login. Which implements a react component
implementing the Have I been Pawned API thus helping recognize the if a password has been
breached or used before and how many times, thus declaring it safe or unsafe regarding its use.
Further important parts of the report include how the implementation of previously planned
features has been altered while being developed and why they were changed. The report also
importantly includes the use cases for all potential functional requirements with their descriptions
and wireframes for the final potential designs of the application also including the non-functional
requirements which indicate what the prototype is achieving, satisfying and what its capable of as
well as it’s though of architectural structure which is all explained below.

Introduction

Background
My plan for my final year Software project is to build CyberVault which shall act as an ultimate
secure password managerial all in one application with additional features for customer
appeasement and satisfaction by majorly focusing on the population with a strong concern for
security through easy management. CyberVault is different from most managerial applications out
there since it will implement all the ways to secure an account there are, to cover for the potential
obstacles of using master password which could be stolen, hacked or exploited. This is done through
implementing multiple alternate login ways which do also include a master password but depend on
all secure authentication factors through the implementation of facial recognition authentication
collaboratively being implemented with multi-factor authentication.

It is critical such an application exists so as to help the customer, since now customers have a variety
of critical passwords and documents pertaining to their everyday life in today's world, and there is
no way to secure and manage them all in one location thus to make their life easier kind of like a
critical business process solution being provided to a developing company to make its life easier
than to have do everything themselves and worry about the security surrounding all their processes.
CyberVault is designed to serve as a customer's ultimate third-party security contractor for all of
their critical credentials and to satisfy their concern for security surrounding them. The main
features the application would include are; Facial recognition authentication using deep learning
libraries, Multi-facto/2FA authentication, password strength analyser, customer tailored password
generator, Password distinctor (uniqueness analyser), Secure password storage with high level

symmetric encryption (AES) and ease of password managerial structure and an optional secure file
storage.

Technologies
1. Current technologies in use: For now the foundational development as the main framework

for the application I am using React JS in the front-end (Class component structure) with a
python flask server in the back-end holding the face_recognition library of OpenCV build
using the state of the art deep learning face recognition of dlib which is being used for the
facial authentication and registration with SQL as the main database for now holding the
face encodings (also utilising numPy for handling high level mathematical operations) and
the user credentials for verification and the webcam extension in python used to utilize the
webcam for functionality, all these differ from the original plan of using tensor flow and face
net model according to the previous project proposal. On the front-end I am currently using
the class component structure to utilize the python back-end and complete the facial login
and registration function. The front end also utilizes the implementation of the react have I
been pawned API connection to check the authenticity of passwords for my demonstration
prototype.

2. Future technologies planned on implementation: further for the application’s feature suite
and management development I plan on using express and node in the back-end as well,
crypto JS for high level AES encryption of all passwords being saved using the application,
toastify for system notifications, SQL, Fauna or Mongo as the database components
according to implementation, zxcvbn library for password cracking inspired password
guessing strength analysis, JWT (JSON Web Tokens), Auth0, Twiliio SMS API for multifactor
authentication etc.

Structure
The structure of the whole report includes the executive summary as a gist of the key points for the
whole report and the necessary details mentioned as updated from the initial project proposal,
further the report includes a brief introduction and background concerning the reason to build this
application and its benefits and differences from pre-existing similar software. After this the report
divulges into the requirements engineering for this project detailing the functional requirements
using basic use case diagrams and their respective descriptions with a brief description and priority
of function and its requirement regarding the project. After the functional requirements are defined
the report moves on to the non-functional requirements concerning the application which includes
screenshots of the prototype handling some of these requirements. Then the report moves on to the
project plan and analysis section which includes the screen shots of the plan that has been defined
on trello with a partially updated gantt chart of the first quarter which then moves on to the tasks in
the original gantt chart. Finally the last sections of the report will include the Architecture and
definition using a sample system architecture diagram with definition and wireframes used for
description in the GUI section with screenshots from the current prototype and potential future
wireframes of application UI. At the end the report would include the original project proposal as
well.

Requirement Procurement and Analysis
Requirement gathering is a very important process as a part of the software development lifecycle
since it is important to have documented evidence of all the functions the software application will
be performing for the customers with an in-depth analysis of all functional requirements through
use case diagrams and their respective use case descriptions, as well as non-functional requirement
analysis.

Functional Requirements analysis
Below is an overall Use case diagram of the whole system including most of its functional
requirement use cases, which are further separated into individual use case diagrams and their
respective descriptions with the requirement description and function as their respective headings.

1. Requirement: Secure Login registration
The secure Login and registration is one of the most important high priority functional requirements
necessary to be satisfied for this application. This functional requirement is responsible for defining
the access control to this web-application. The Login registration feature is to be implemented using
facial recognition authentication coupled with multifactor/2-Factor authentication to give priority to
a secure and properly authenticated login to manage access control of users to the application
profiles and feature suite. Currently the login/registration has been implemented with flask server
utilising face-recognition library using the dlib library having deep learning components and neural
nets to capture faces specifically and compute 128 bit encoding of the faces which are used for
comparison and authentication. Following is the use case diagram and the respective use case
descriptions for them.

Updated use-case diagram -

Login Use-case description:

Description:

This use case allows the user to Login into the web application through
proper User authentication going through Facial authentication and
multifactor verification.

Updated – No facial scan in the beginning (Only multifactor
authentication)

Actors:

Primary

Secondary

User

System

Triggers:

User clicks on the Login button after entering their valid credentials (and
face scan done through webcam)

Updated – (face scan is now in password manager)

Pre-conditions:

The user should be registered with the system with pre-existing credentials
and facial neural net in their respective databases

Updated - this is a precondition for viewing the manager

Post-Conditions:

User is logged in and has accessibility to the system feature suite

Normal Flow:

1. The user enters personal credentials
2. The user clicks Login button
3. The user face snap is taken through webcam and converted into

128bit vector by neural net then compared with stored vector
through the database (updated – happens during viewing the
manager dashboard)

4. The user enters either OTP or SMS or whichever second factor is
registered

5. User is logged in after primary and secondary factor are verified
Alternate Flows:

 1a Invalid login credentials

 1 system notifies to enter valid details

 2 system resumes to normal flow 2

 3 system notifies to register first and redirects to registration

 Use-Case

(updated alternate flow belongs to manager use-case)

 3a Facial snap not registered

 1 system notifies to register first

 2 system redirects to register Use-case

 3b Unavailable webcam

 1 User chooses alternate login

 2 system resumes to normal flow 4

Exceptions:

5a Server down/ http request failed system notifies “Server communication
failure”

 1 The System returns to normal flow 1

Includes:

Login includes two factors to authenticate either facial scan and secondary
factors or alternate login. Also includes redirection to registration if user not
in the system. (updated – only includes multifactor in the beginning)

Extends:

None

Priority:

High

Special Conditions:

1. Secondary factor should be registered too as well

Assumptions:

User is registered in the system with valid existing details

Registration Use-Case description:

Description:

This use case allows the user to register themselves into the web
application servers for proper User authentication through Facial
authentication (updated - facial registration in inside the application) and
multifactor verification.

Actors:

Primary

Secondary

User

System

Triggers:

User clicks on the registration button after entering their valid credentials
(and face scanned through webcam and vector saved)

(Updated – face registration now inside the feature suite)

Pre-conditions:

The user should either have a webcam or choose alternate method for
registration

(updated – precondition for feature suite face registration and manager
viewing through face authentication)

Post-Conditions:

User is registered in the system and can login successfully to gain
accessibility to the system feature suite

Normal Flow:

1. The user enters personal credentials

2. The user clicks register button
3. The user face snap is taken through webcam and converted into

128bit vector by neural net then saved into the database with
necessary credentials (updated - done on the face-registration
page)

4. The user registers for the secondary factor
5. User is registered in the system respective databases and back-end

Alternate Flows:

 3a Unavailable webcam

 1 User chooses alternate registration

 2 system resumes to normal flow 4

(updated – alternate flow for facial registration feature)

Exceptions:

5a Server down/ http request failed or ill-configured database connection
system notifies “Backend communication failure”

 1 The System returns to normal flow 1

Includes:

Extends:

None

Priority:

High

Special Conditions:

Assumptions:

User is providing valid details to be cross-referenced later

2. Requirement: Password management
Another one of the most important functional requirement of the application is its password
management and security feature which serves as the main marketing purpose. The password
management functionality includes multiple use cases such as adding a password, removing a
password, updating and viewing password list. This is a high priority functional requirement for the
application which gives the customer the ability to save a plethora of passwords under secure
encryption. For this managerial functional requirement I plan on using Crypto JS library which helps
encrypting passwords cryptographically and securely and provides multiple options (AES, DES, Triple
DES, Rabbit, RC4) for it. All passwords will be saved using symmetric high level AES (Advanced
encryption standard) encryption (which include AES-128, AES-192 and AES-256 (passphrase) bit
encryption which is chosen depending on the size of the password or security key that is passed in).
Each time the user tries to add a password it will be encrypted using crypto JS and then saved into
the database and whenever the user tries to receive the password list to either alter or remove a
password saved It will first be decrypted using a private key and shown to the user. Following is the
Use case diagram regarding this functional requirement and its respective use case descriptions.

Updated Password Manager Use-case diagram -

Adding a password:

Description:

This use case allows the user to utilize the password management functions
of the application. Specifically Adding.

Actors:

Primary

Secondary

User

System

Triggers:

User clicks on the add password button after entering their password for
their concerned website or personal use

Pre-conditions:

The user should be successfully logged into their respective profile

Post-Conditions:

Password entered is securely encrypted (AES) and saved into the system
passwords database

Normal Flow:

1. The user enters password to be added
2. The user enters the respective application-name for which the

password is being saved for.
3. The user clicks add password button
4. The database uses React libraries such as crypto-Js to encrypt the

password with AES chosen encryption and further stores it into the
database

5. The password is added with its respective application of concern to
the system database after being securely encrypted

Alternate Flows:

 1a. User decides to generate a password and copies that to clipboard

 then decides to add that instead of manually entering a password

1. System resumes to normal flow 3
Exceptions:

5a Server down/ http request failed or ill-configured database connection
system notifies “Backend communication failure, unable to add password”

1. The System returns to normal flow 1

Includes:

Password symmetric encryption done using crypto JS and AES encryption by
system before adding the password to the respective database with
respective details.

Extends:

The user can decide to make use of the secure password generation feature
of the application to generate a strong password according to their
requirements to be added and used by them for personal use.

Priority:

High

Special Conditions:

Password before adding should be checked with the strength
analyser

Assumptions:

User is properly authenticated and logged in

Removing/Altering a password and related credentials:

Description:

This use case allows the user to utilize the password management functions
of the application. Specifically removing or editing passwords.

Actors:

Primary

Secondary

User

System

Triggers:

User clicks on the remove/edit password button after selecting their added
password for their concerned website or personal use

Pre-conditions:

The user should be successfully logged into their respective profile and
should have a pre-existing saved password in the system

Updated – and should have registered face – face authentication required
to edit, view and delete password.

Post-Conditions:

Password entered is removed from the system passwords database or
existing password details are altered

Normal Flow:

1. Updated – user validates face scan
2. The user selects password to be removed
3. The user clicks remove password button
4. The database retrieves the selected previously saved password, the

system then decrypts it (private decryption key (symmetric
encryption used)) and displays it

5. The password is removed/altered with its respective application of
concern from/in the system database after being selected

Alternate Flows:

Updated - 1a – Facial ID might not exist (not registered)

2a user selects password for editing either the password or related

 credentials (such as respective application etc.)

1 User chooses to edit added password or related credentials
 2 system resumes to normal flow 3

Exceptions:

Updated - 1a – Webcam not working, face-auth server offline

4a Server down/ http request failed or ill-configured database connection
system notifies “Backend communication failure, unable to remove/edit
password or password credentials”

 1 The System returns to normal flow 1

Includes:

Password decryption done by using private decryption key by system before
removing or editing the password from/in the respective database with

respective details.

Extends:

None

Priority:

Medium

Special Conditions:

Updated – mandatory facial scan required

Assumptions:

User is properly authenticated and logged in and has added a password into
the system already

Viewing all passwords previously saved by the customer:

Description:

This use case allows the user to utilize the password management functions
of the application. Specifically viewing the passwords and deciding CRUD
operation further

Actors:

Primary

Secondary

User

System

Triggers:

User clicks on the view passwords button/tab after logging in

Pre-conditions:

The user should be successfully logged into their respective profile and
should have a pre-existing saved password in the system

Updated – and should have registered face – face authentication required
to edit, view and delete password.

Post-Conditions:

Passwords are decrypted and displayed on the page

Normal Flow:

1. Updated – user validates face scan
2. The user selects or navigates the view passwords endpoint or clicks

on the view passwords tab
3. The database identifies the previously saved password, the system

then decrypts them (private decryption key (symmetric encryption
used)) and displays all of them on the page

Alternate Flows:

Updated - 1a – Facial ID might not exist (not registered)

3a deciding CRUD operations for password related credentials (such as
respective application etc.)

1. User chooses to edit/remove added passwords or related
credentials

2. system resumes to normal flow 2
Exceptions:

Updated - 1a – Webcam not working, face-auth server offline

3b Server down/ http request failed or ill-configured database

 connection system notifies “Backend communication failure,

 unable to retrieve passwords”

1. The System returns to normal flow 1

Includes:

Password decryption done using private decryption key by system before
displaying the password from the respective database with respective
details.

Extends:

None

Priority:

High

Special Conditions:

Strong password should be added
Updated – mandatory facial scan required

Assumptions:

User is properly authenticated and logged in and has added passwords into
the system already

Updated feature suite use-case diagram.

3. Requirement: Password Generator
Another major functional requirement adhering to this application is the password generator
feature of the application with medium priority as it is for the user’s added comfort. The feature is
an added bonus to make the customer’s life easier since it contains multiple password complication
options for the customer to choose from to generate a strong complex and random password for
their use, tailored to their specific requirements. The uniqueness and complexity of these passwords
can be tested with the have I been pawned password distinctor feature and the strength analyser to
verify that the password is strong and complex in terms of global requirements and that it has not
been breached before. The feature also gives the option to the customer to copy their generated
passwords to the clipboard to be used anywhere ahead and includes general notification using
toastify which is a vanilla JS toast notification library.

Description:

This use case allows the user to access and utilize the CyberVault feature
suite of the application. Specifically password generation

Actors:

Primary

Secondary

User

System

Triggers:

User selects password generation options; length, uppercase, lowercase
character, numbers, special characters etc. and then clicks on the password
generate button

Pre-conditions:

The user should be successfully logged into their respective profile and
should choose conditions regarding the password they want to generate.

Post-Conditions:

A randomly strong password is generated tailored user requirements and is
copied to the clipboard

Normal Flow:

1. The user navigates to the password generator
2. The user individually selects components to make the password

stronger or to suit their needs; component options include length,
uppercase, lowercase character, numbers, and special characters.

3. Then the user clicks the password generate button
4. A randomly strong password is generated for the user; it can be

copied to clipboard and used further.
Alternate Flows:

2a User decides to either choose or not to choose either of the
complication options for the password generation

1. system resumes to normal flow 3
Exceptions: 1a Router failure, system prompts “invalid endpoint” or “Http

 Request failed”

1. The System returns to normal flow 1

Includes:

None

Extends:

None

Priority:

Medium

Special Conditions:

Assumptions:

User is properly authenticated and logged in to their respective profile

4. Requirement: Password distinctor
Another major functional requirement adhering to this application is the password distinctor or
password uniqueness analyser which makes use of the troy Hunt’s Have I been Pawned API which
makes use of the react component for it to validate passwords through cross-referencing them with
the troy hunt database of passwords through the API and determine how many times they have
been breached and if they are or are not safe to use. This leads to an increase in security by notifying
the user about the uniqueness and usability of their passwords before they are actually
implemented. The security is further added on by also testing the password with the strength
analyser as explained ahead. In the application the react front end takes in a password typed in by
the customer and cross-references it with the Have I Been Pawned password checker react
component script connected with the API.

Description:

This use case allows the user to access and utilize the CyberVault feature
suite of the application. Specifically Distinctor or uniqueness analyser

Actors:

Primary

Secondary

User

System

Triggers:

User clicks submit after entering their chosen password into the analyser
label

Pre-conditions:

The user should be successfully logged into their respective profile and
should navigate to the distinctor endpoint.

Post-Conditions:

System returns with if the password has been breached or not and notifies
the user if the password is safe to use.

Normal Flow:

1. The user navigates to the password distinctor endpoint
2. The user enters the password to be checked into the label space of

the endpoint
3. The user clicks the submit button
4. System cross-references the password with have I been pawned

database and returns with how many times the password has been
breached if it has and whether it is safe to use or not.

Alternate Flows:

Exceptions:

 1a Router failure, system prompts “invalid endpoint” or “Http

 Request failed”

1. The System returns to Home page
4a Failed to import “invalid import requested” or “fetch api failed”

1. System returns to normal flow 1

Includes:

This use Case includes cross-referencing the password entered by the user
in the label by the Have I been pawned (Troy hunt database)

Extends:

None

Priority:

Medium

Special Conditions:

Assumptions:

User is properly authenticated and logged in to their respective profile

5. Requirement: Password strength analyser
Another major functional requirement adhering to this application is the password strength and
complexity analyser which is a very important functional requirement since it determines the
strength and complexity of a password to clearly indicate how strong the password would be against
brute force cracking. It is done by utilizing zxcvbn library, which includes a strength estimation
algorithm developed with inspiration from password cracking algorithms. Its utilises pattern
matching to recognize and compare the password with a wide variety of common passwords and
common password patterns sequences to determine the complexity of a password is strong or not
through a color coded bar representation when a password is entered. It is highly secure and allows
greater flexibility in terms of password acceptance depending on their complexity by measuring all
its complex components which are also included in the password generator.

Another functional optional requirement for the application includes the file locker capability which
would allow users to upload documents for safe keep in this application thus being saved under a
lock for security and ease of accessibility purposes. This is an optional functional requirement for
now and depending on the completion of all other requirements and purposes of the application will
be further developed depending on complexity and benefit and is also demonstrated through its
own use case description ahead.

Description:

This use case allows the user to access and utilize the CyberVault feature
suite of the application. Specifically Strength analyser

Actors:

Primary

Secondary

User

System

Triggers:

User enters the password in the analyser label or while adding a new
password in the system

Pre-conditions:

The user should be successfully logged into their respective profile and
should navigate to the analyser endpoint or it is also shown while adding
new passwords.

Post-Conditions:

System displays a bar of colors referring to the strength of the password the
user is currently entering.

Normal Flow:

1. The user navigates to the password strength analyser endpoint
2. The user starts typing a password in the label section
3. System displays a bar of colors referring to the strength of the

password the user is currently entering from red being week to
green being strong and acceptable thus notifying the user.

Alternate Flows:

 1a The user tries to add in a new password to the managerial database
of passwords of the application and the strength analyser is used

during the process

1. System returns to normal flow 2
Exceptions:

 1a Router failure, system prompts “invalid endpoint” or “Http

 Request failed”

2. The System returns to Home page
Includes:

None

Extends:

None

Priority:

High

Special Conditions:

Assumptions:

User is properly authenticated and logged in to their respective profile

6. Requirement: Facial registration (updated)
The user has to necessarily register theri facial ID in the back-end flask server to view the password
in the password manager.

Description:

This use case allows the user to access and utilize the CyberVault feature
suite of the application. Specifically Face registration

Actors:

Primary

Secondary

User

System (flask back-end)

Triggers:

User enters name and clicks register face

Pre-conditions:

The user must be authenticated and logged in

Post-Conditions:

Application notifies user their face has been registered.

Normal Flow:

1. The user navigates to the face registration endpoint
2. The user types in their name (user-account name)
3. User clicks on the register face button

Alternate Flows:

Exceptions:

 3a. The facial scanner server might be offline

1. The application shows notification server offline

Includes:

None

Extends:

The user can redirect to the manager since a link is shown in the dynamic
message after successful face registration

Priority:

High

Special Conditions:

Assumptions:

User is properly authenticated and logged in to their respective profile

File locker requirement (Optional):

Description:

This optional use case (optional implementation in the application) allows
the user to store files under lock when the file vault is accessed by the user
by uploading documents

Actors:

Primary

Secondary

User

System

Triggers:

User uploads a file

Pre-conditions:

The user should be successfully logged into their respective profile and
should navigate to the file vault and enter their pin to access it.

Post-Conditions:

System gives access to a file vault holding important documents and lets
user upload a file (limited size: images etc.) to it.

Normal Flow:

1. The user navigates to the file locker
2. The user starts clicks the upload button and chooses a file
3. System saves file to database and redirect to home page thus

locking the vault again
Alternate Flows:

Exceptions:

 1a Router failure, system prompts “invalid endpoint” or “Http

 Request failed”

1. The System returns to Home page
Includes:

None

Extends:

None

Priority:

Medium

Special Conditions:

Assumptions:

User is properly authenticated and logged in to their respective profile

Non-Functional Requirements analysis
This section of the report measure the important non-functional requirements mentioned in the
report against the current prototype and plans regarding the future development.

1. Security – One of the most important non-functional requirements which this application
should be in accordance with is security which includes the security regarding customer
login and registration credentials, security regarding passwords the application saves for all
customers and security around all the additional features the application provides to avoid
leaks and exploitation. For the future development security requirements are to be satisfied
to avoid any exploitation through input fields such has SQL injections or XSS cross side
scripting etc., through input sanitation, secure design principle development and design

pattern implementation. The current application prototype also includes security measures
to satisfy the security requirements at a basic stage these are indicated by the additional
feature of password distinctor not being accessible until successful login and login is
disallowed until the user is properly registered into the system with their face-Ids and
credentials.

2. Performance efficiency – The performance efficiency of the current prototype is measured
to observe and conclude that the prototype is performing its functions with minimum
possible response times and required resources and without putting too much load on the
processing thus giving the desired output to the customer within a good time frame and
performing all its required functions. Optimum performance directly relates to the future
capabilities of an application which includes network load times, API request complete
times, overall execution duration concluding as overall performance analysis of the
application. For the future of this application the performance efficiency is considered as

one of the major requirements to follow through for maintaining application performance.
For the current prototype the application performance has been measured and analysed
using chrome web developer tools which can be observed by the screenshots provided
below:

The above images represent the current performance requirements that are above average
including network through put, CPU throttling, request and response duration, CPU usage etc.

3. Data integrity: Data integrity is also a major non-functional requirement that ties in with the
applications features and processes since it is utilising a lot of customer oriented data
including their credential, facial encodings for recognition and authentication, passwords
saved, passwords used with application feature suite functionalities etc. regarding future
development I plan to encrypt these the credentials for security and data integrity
maintenance purposes. Even the additional features the application provides would include
security implementations to avoid any data breaches or exploitation. The password
distinctor utilises the Have I Been pawned API which utilises the React component script for
Troy Hunt database which actually checks passwords when they are encoded so they don’t
even reveal the actual passwords being entered to avoid exploitation.

4. Reliability: For the current prototype the reliability as a non-functional requirement can also
be measured since it is visible through the images above of how the request and
communication between the front-end and the respective servers is actually completed and
all the functions mentioned are successfully performed with respective incoming response
etc. thus receiving the desired outputs and performing the required function at the same
time.

5. Scalability: Scalability is a very important non-functional requirement according to which
the application is being built, it directly ties to how the application would perform under
changing or heavier loads of information with less available resources for data processing
and that it would be able to perform its necessary function with changing environments and
resource conditions. This also ties with the current prototype since the application is usable
in other browsers and the prototype also performs its functions with as many users as
required while recognising each user every time they login thus working under increased
load.

6. Usability: Usability as a functional requirement Is important for an application to be built
according to since it concludes that an application is usable by any and every kind of
customer with no added complexity. The customer does not have to figure out how the
application performs the functions that it’s meant to perform; they can simply do it without
prior training. The current prototype also demonstrates it since it includes simple
procedures for performing the mentioned function with all complexities being taken care of
in the back-end and thus being readily usable by and for any customer.

Project Plan and Analysis
This section of the report contains an updated plan of tasks from the proposal with a partially
updated Gantt chart and screenshots from planned tasks, milestones and updates from Trello:

A list of the partial altered task list from the original task list mentioned in project proposal, the tasks
in the trello task plan includes:

1. Research Wireframes and Design Ideas For UI design and structure
2. Setup front-end basic react app
3. Python back-end setup
4. Flask server creation
5. Importing necessary flask dependencies in the back-end
6. Integrating flask server to work with react app
7. Setting up front-end for flask server back representation
8. Dlib setup in flask server for face_recognition import
9. Face_recognition library integration with flask server
10. back-end logic setup for image-capture, conversion to encoding and comparison
11. SQL DB setup to store facial encodings and name
12. back-end login including login and registration endpoint setup
13. creating front-end to display and make use of back-end logic
14. React Router setup for login and registration endpoint while connecting to back-end
15. Registration-login setup only for facial recognition
16. Proper secure alternate login registration setup

17. Multifactor research and integration into login-registration
18. Unit testing facial registration and login
19. After this continued on the same task list as the original

These tasks represent the difference of tasks detail and the order in which certain tasks were
performed from the original task plan in the beginning stages and are hence indicated in the
updated Gantt chart as well as the task list on trello. The tasks after these tasks are in the same
order as the original task list for now until further development. All changes and
implementations are briefly explained in the implementation section of the report as well.

Design and Architecture

The above image represents the current planned system architecture of the application. The
architecture diagram refers to the procedure of a customer interacting with the system
depending on what the customer would like to achieve and access regarding what the
application provides. Everything follows after the customer is successfully able to login to the
application this includes passing through the facial recognition authenticator and providing the
right access details for the multifactor authentication which are referenced with the user
database and the face recognition python flask backend server then further being able to access
the password management UI where the user would be able to manage their passwords which
would include adding, removing, altering and viewing all the passwords all these operations
include cross referencing with the passwords DB that will be used to save all passwords and
their related credentials. After this the user also has access to the feature suite of the
application which includes the password generator, the password distinctor and the password
strength analyser functional features. These entire features suite refers to their respective back-
end logics for successful operation and to provide the customer with the desired results
regarding the operation they choose to perform. The diagram also represents all the relations
between the components of the system architecture; these also include how passwords can be
saved from the generator to the database etc. The diagram clearly represents all operational
requests and concerning responses from where the requests are being sent which could be a
back-end server or back-end system logic algorithms.

Updated Final Architecture Diagram –

The Final architecture diagram describes the flow of the application and includes a display of all
requests that are made to and from databases, libraries and API’s and the authentication levels
that need to be passed to access certain functionality. It also demonstrates the feature suite of
the application and access control that has been implemented between them. All the changes
including Database updates security framework implementation, integration of facial
authentication for the password manager have all been shown in the diagram with the correct
flow which an everyday end-user would follow.

ERD

Implementation
This section of the report marks my progress to date and slight changes I made from the original
plan of implementation.

My current implementation involves a Login registration panel which uses the customer’s face
encodings for authentication. For this I first created a back-end flask server in python to store the
logic for the face_recognition. The back-end server implements face_recognition library as an import
which is a part of the dlib library. Dlib library is originally an open source suite of applications written
in C++ which offer A massive range of functionality regarding machine learning including image and
live stream processing tools, dlib contains state of the art face recognition libraries built with deep
learning which is why I decided to use it. But to import and install the face recognition library I first
had to install the dlib library which was not a simple process since it required the right version and
had to be individually compiled using visual studio’s CMake tools instead of an easy pip installation,
then further face recognition imports were installed. After I had all the necessary imports which
included os import (used for making python script interact with the operating system in use, used by
me to store recognized and unrecognized images in the folders on my local system), sql connector
import which was used to connect to the SQL database to store the user credentials and facial
encodings, then the Open CV import which was used for performing image processing tasks
(capturing images, resizing frames etc.), numPy for mathematical computations required in the
script and finally the flask and flask CORS import required for setting up the flask server. After this I
wrote the functions for retrieving all the data from the database and functions for the registration
and login endpoints. The registration endpoint function when called in the front-end takes an image

of the customer through the webcam as well as the customer’s credentials entered, then the face-
recognition library is used to recognize and separate the face from the image taken through the
webcam and then retrieve the facial encodings (converted to 128 bit vectors) from the image by
passing the face through the deep neural net embedded in this library which computes the vectors
thus quantifying the facial landmarks that were recognized which are then saved with the credential
into the respective SQL database, the image capture is also saved into a folder on the local machine
into the identified folder with the name of the customer as the name of the respective image folder
and finally a string registered as the final output to denote that the customer has been registered is
returned. Similarly the login endpoint function the database is checked first if it is empty, it means
there are no registered customers and shows a message saying not register in the system please
register first, then this function is mainly responsible for clicking a picture of the user through the
webcam get its encodings. The function then receives all encoding from the database and loops
through all these encodings and tries to compare the encodings with the encoding of the current
image taken, if a match is found then the function denotes that specific encoding with the name for
the encoding that was saved in the database thus recognising the user and returns this name as the
output of the function. Then I created a react front-end app to be connected to this back-end flask
server and through routing made the login and registration class components which then connect to
the flask server with their own respective registration and login functions which call upon these
endpoint functions in the back-end thus setting up a prototype registration and login page.

Further I created a class for implementing the Have been pawned API to create the distinctor feature
of the app which tells how many times a password has been breached and whether it is safe to use
or not. For this I import the react-HIBP Password checker from the React Have I been Pawned
component and use it on the front-end to check passwords that the customers enter regarding how
many times they are breached since they are cross referenced with the Troy Hunt database and
return the output thus declaring whether the password entered by the customer is safe or breached
and if breached how many times thus creating a prototype of the distinctor feature. I have done this
by creating a react class component in the frontend to display the output that is returned from the
API once the typed in password is cross referenced with the troy hunt database. The front end has
an input space where the user can enter a password to be checked and the output according to the
API returns the amount of times the given password is breached by the cross-referencing of results.
This feature can only be accessed after a successful login which can only be done when a user is
successfully registered in the system database.

Initially I had planned on using tensor flow and a default deep learning keras model from keras face-
models to implement the face recognition login and registration. However, as my research and
implementation progressed regarding this functional requirement, I decided to take a different
approach to implementing this feature because the previous approach's constraints were unclear. I
decided to use the face recognition extension of the OpenCV extension for python in my back-end,
which is also stored in a flask server and performed the respective functional requirement, but
through a slightly different process and with better defined constraints and clearly defined
attributes.

Graphical User Interface
Sample wireframes for the project to be developed further include:

Some screen shots of the current prototype include:

Final Technology, requirements and Implementation

Final Technology stack
Further explained is the final stack of all technologies including modules and libraries that were used
to develop the CyberVault web-application. These technologies include:

Back-End: The backend of the application was built to handle and process facial authentication and
validation and used the technologies as follows.

• Python: Python was used as the main language for back-end flask server development
where the deep metric learning is implemented for facial registration and recognition +
Authentication; it is further used in the application to validate users to view their passwords.
Python was used since it is much more beneficial to be used for Machine-Learning, AI and
deep learning driven projects such as CyberVault. This is due to its consistency, simplicity,
platform independence and its large variety of access to strong and efficient machine

learning and AI modules, libraries and frameworks (Such as OpenCV, dlib &
face_recognition).

• Flask: Flask was used as the main back-end micro-framework web application server that is
provided in python. It is an efficient and useful back-end framework which comes in use
when a JavaScript based front-end is developed such as Next.js and React.js in this
application. Since the connection between a flask back-end and JavaScript based Front-end
is very smooth and fast. In This application it was connected with the React.js and Next.js
based front-end using CORS for developing the API to share Facial Images which were then
processed in the python back-end to register a face and to validate the face when accessing
the passwords.

• Flask_cors: Flask CORS was used to configure the python flask back-end server to work with
the Next.js & React.js front-end through Cross Origin Resource sharing i.e., allowing the
sharing and use of resources from and between different domains for example in this
project resources are being shared between localhost:3000 server and the flask
127.0.0.1:5000 server (facial images and naming data).

• OpenCV: OpenCV or cv2 is a very popular python library/module which is used for live video
and image (Webcam) processing and analysis which include face detection in a video or
image and image capture and editing through the webcam. OpenCV library/module uses
machine learning and AI algorithms to detect faces in video/images. In this project OpenCV is
used for capturing the video image through the webcam after detecting a face, then resizing
the frames according to the face and finally naming the captures (both on the canvas as well
as the name of the image file) during facial registration and validation.

• Dlib: dlib is a very important python library/module which is required for installing the main
face_recognition (based on dlib) library/module. The dlib library/module contains the deep
metric learning algorithms that are utilised through the facial_recognition module to
construct and process the facial embedding/encodings which are used for the recognition
process for the faces. Its installation for windows systems was complicated since it required
individual compilation using visual studio and Cmake tool as it was originally a C++
library/module.

• Sqlite3 + DB-Browser(SQLite): The database technology used in the back-end to store user
specific facial data required for facial registration and validation is Sqlite3. The sqlite3
library/module in python searches for a database file and creates one in case it is not already
present. This database file is then used as the primary database to store all facial encodings
along with the user names which are then fetched and processed for validation. To
manipulate the database files created by sqlite3 (.db files) the DB-Browser application for
SQLite is used.

• Face_recognition: The main library/module used in the python flask back-end server is the
face_recognition library/module which is a dlib and deep learning based face recognition
library/module. It can be used for detection and recognition of faces and facial
features/landmarks through a webcam. In this project it is used to first detect the face
locations from the image captured through the webcam, then compute the facial encodings
of the face that is detected. Finally the face-compare and face-distance methods from the
library/module are used to compare and validate a face (through its encoding values; 128 bit
vectors) and the neural net keeps getting trained accordingly to validate the face faster
every time it is scanned.

• NumPy: NumPy is a universal numerical open source library/module in python popularly
used for working with numerical data. In this project NumPy was used to generate numerical
names for the image captures during facial registration and validation. It is also used in the
comparison of encodings when returning minimum indices from the face distance array.

• os library/module: the os library/module in python is mainly used to interact with the
folders present on the OS of the machine/system. In this project it is used to store the facial
images when registered (with registration names for folder names) and during validation
(with identified names on image) in folders present inside the project folder.

Front-End: The front-end was used to develop the client side of the application i.e., the main Web-
application GUI to be used by the user (also including the Next.js server rendering)

• Next.js: Initially as mentioned in the proposal and mid-point documentation I mentioned
using React.js for the front end along with Express server on the back-end connected to the
flask server. I decided to replace the implementation of another back-end server (express)
and a separate front-end using React with simply using the Next.js i.e., React based
framework which does the job of express.js since it lets me code API endpoints (acting like
middleware communication) in the API folder and then use the pages folder to create React
components (with Next.js tweaks) which can fetch and send data to these API’s using
technologies like axios, thus combining both their individual advantageous aspects. All
functional components and their function code was also written and stored in a components
folder within the project folder.

• React.js (Purely frontend functional components and design): Since Next.js is a React.js
based framework for the front-end with its own tweaks. All the front end pages were
created using React functional components which also integrated the components (code
files) holding Modal popup and logic code and code for all functional requirements etc. (In
the components folder).

• React Hooks (useState(), useUser(Auth0), useEffect(), useRef()): One of the most important
aspects of React.js that were used in the Next.js application were the React hooks including
useState(), useRef()(for coding logic using components that referred to user action),
useEffect()(for rendering logic as the page renders) and useUser(). These hooks are one of
the most efficient capabilities of React.js that were used in this application to manage states
of variables as they were dynamically updated i.e., managing the stateful logic of all
functional components. Special hooks that work in tandem with third party application like
useUser() were used to manage and track user sessions. Hooks were only usable with
React.js functional components.

• Auth0 + auth0-Guardian App – Auth0 was used to setup the secure login and registration
(including social logins (Google and Facebook)) for CyberVault including multifactor
authentication either through the auth0 Guardian mobile application (using push
notification or one-time codes) or through one-time codes sent through email to valid email
addresses used. Why and how Auth0 was used is explained further in the final functional
requirement section.

• Tippy.js: Tippy is a popular tool tip, pop over, drop down solution Java script library/module
that was used in this application to show useful information to the end-user using tool tips
i.e., information icons which show information when hovered over with the mouse cursor.

This is additional information that helps the user either understand functionality or directs
them on what is to be done to access it or make the most of it.

• Axios: Axios is a popular library/module that has been used in this application to send HTTP
requests to the API endpoint middleware of Next.js. Axios would also have been used to
make these endpoint requests in case another back-end JavaScript based framework such as
express would have been used. Its main function is communication with different API
endpoints. In this application axios sends requests (either POST payloads or GET data for
user) from the react front-end components to the API endpoints defined in the API folder of
the application which further connect to the database (Fauna DB) and send and receive data
from it (including User session specific data).

• Crypto module: As initially mentioned in the proposal the Crypto.js library/module was
going to be used for password encryption and decryption instead the Node.js inbuilt Crypto
module has been utilised to encrypt (before they are sent to the DB) and decrypt user
passwords being stored. The crypto module has been used with the strongest encryption
algorithm i.e., AES-256 bit encryption using specially generated random 40 bit keys (salt)
stored as environment variables which are used to encrypt and decrypt the data.

• Bootstrap + React-bootstrap: Bootstrap and React-Bootstrap library components were used
to beautify the React/Next front-end pages; bootstrap components like – navbar, nav,
Modals, forms and form-controls, buttons, rows, columns containers etc.

• Font-awesome-icons: The font-awesome library was used to integrate different kinds of
icons in the application like the copy-to-clipboard, view or mask icons etc.

• CSS: Next.js built in CSS paged (Global Module and Home Module) were altered to suit and
include different CSS styling to different components of all the different functionality pages
and some styling for all pages in common like background and containers etc.

• React-have-I-been pawned: The React-Have-I-Been-Pawned library which connects and
pulls data from the Have-I-Been-Pawned API from the Troy-Hunt has been utilised. More
specifically the HIBPPasswordChecker component has been integrated with a react
functional component to develop a page to detect and analyse the uniqueness of different
passwords and whether they have been breached before with the number of times they
have been. The functional component utilising the API also shows dynamic messages of
whether the password is safe to use or not.

• React-idle-timer: The React Idle timer component has been utilised in a React functional
page component to implement an Idle-timer which automatically logs a user out after 3
minutes of inactivity on the page. The Idle-Timer component scans for mouse movement on
the page, including scroll, cursor movement or any clicking etc. to determine whether the
user has been idle.

• React-toastify: The React Toastify library/module has been used to implement notifications
in the application which show up to display different messages depending on the situation
for a very short period of time, such as “password copied to clipboard”, “password added”
etc.

• React-webcam: The react-webcam component is used to display the live webcam footage
on the screen so the user can look at the camera during facial registration or validation. It
has also been extended to show facial landmarks as a part of future development explained
ahead.

• Yup: Yup is a very important library which has been utilised in the application for assisting in
server side data validation in the API folder, the application already involves strict input
validation, but using the Yup validation schemas server side (Next.js API); data validation has
also been conducted in accordance with defence in depth principle.

• ZXCVBN: The ZXCVBN library has been utilised for strict and accurate password strength
estimation with dynamic and colour coded progress bar and a colour coded dynamic
message that depends on the strength estimation result. The ZXCVBN is a strength and
entropy estimator for passwords which was developed on the basis of password cracking
algorithms, It involves searching for all different kinds of patterns in a password to estimate
its strength including common English words or names, movie names, common dates, very
commonly used passwords, common character sequence patterns including keyboard
patterns or repeats etc. to give an accurate strength estimation.

• Fauna-DB: The main database technology used for the whole application including storing
passwords and all other password related credentials is the Fauna Database which is a
document relational and distributed database API. It provides amazing scalability and
flexibility to all applications while also assisting as a server-less database. It comes built in
with a modern security infrastructure and can be used as an OLTP database with ACID
transactions that are distributed. It acts as a stateless API (native to cloud) with built in
security.

• Cypress (cypress real events, cypress next.js auth0 and cypress testing library/module):
Cypress has been used as the main testing framework for testing this application. The
Cypress JavaScript testing framework has been used to perform automated end to end tests,
integration tests and unit tests for all individual functionality and whole pages along the way
which it does in an artificial environment as can be seen in the testing section ahead.

• ESlint: ESlint has been used as the main static analysis tool for the application which shows
potential coding mistakes, bad practises or bugs in the code when run in the command line.
Fixing these bugs and potential changes leads to best practises being used.

• GitHub: Github has been used as the main version control system for this application to
track the code upload and changes. It is also used to submit the source code for the
application.

Final Functional requirement completion
With reference to all the functional requirements that were mentioned during the midpoint and the
project proposal; further is a comprehensive list of all functional requirements completed with the
optional requirements being explained in the future development section along with other future
prospect ideas and implementation. Current final functional requirements are as follows -

1. Secure Login/Registration with multifactor authentication: A secure login and
signup/registration has been developed in the application with the help of Auth0. Initially to
login or register the link on the main screen should be clicked as can be seen below. The
login also offers an option to sign-in through social accounts which include the options for a
Google or Facebook account login. The social login works when the end-user selects a social
account; a request is sent to the social network provider (redirected to social login) and once
that is completed and the user identification is confirmed, they are logged in after they
allow/deny access to their profile information.

a. There is signup option that allows the user to register for the first time using an
email and a password which must abide by the rules that are created for a strong
secure password to be used. Rules including; No more than 2 identical characters, at
least 8 characters long, should include special character, a lowercase, upper-case
and a number and lastly cannot be submitted empty with no password. After the
user signs up, their password is hashed and salted using the bcrypt algorithm before
the user information is stored in the database and each user also gets an additional
UID or User-ID which is unique to them. Auth0 additionally ensures the data is being
encrypted using AES 128 bit encryption during transit (using TLS) as well. The sign-up
form can be observed below.

b. Further Multifactor authentication has also been implemented with this

login/registration. When The user tries to login again for the first time after they
signed up or during the signup process, the user is prompted to download the Auth0
Guardian mobile application (on their mobile device) and are then shown a QR code
which needs to be scanned to attach that account to the guardian app. Then
multifactor authentication is activated, to log in the user, who either needs to click
‘allow’ on the push notification on their guardian app or manually enter the code
generated by the app, in case the user does not have access to their device at the

time they can also request for the code to be sent to their email and can use the
code from there to successfully log in to the application. Additionally suspicious IP
throttling has also been implemented which identifies when multiple failed login
attempts for an account are detected from a single IP address, in such a case the
login is blocked and an email is sent to the rightful user regarding attempt of forced
login.
During the sign up process -

Then During Login -

Multifactor can also be done through a code sent through the email, for that the
email needs to be verified first.

c. Finally the login registration process also includes the function to reset a password
for an account which when clicked after entering the email sends an email to the
user with the link which they can follow to reset their password.

2. Notifications & Info-tips/Tool-tips: Some additional functional components included in the

application were to improve UX/UI i.e., improve the user experience of the web application
and beautify the User Interface, this was done using Notification which were developed
using Toastify and were made to be shown on the screen for a very short period of time
when a function was accessed and completed such as; copying a password to the clipboard,
adding a password to the account, editing a password, deleting a password from the
account, generating a password etc. Another additional functional requirement was the use
of tool tips or info-tips that were implemented using Tippy.js, these show additional useful
information to the user as the hover their mouse over the tool tip. This information could be
about the function (how it works what it does) the user is utilising or could be about what
the user is supposed to do to access/utilise a piece of functionality.

3. Idle Timer: Idle timer was also built as a functional component for the application due to a

focus on security as explained in the security feature section. This function basically
monitors the whole application after the user logs in and scans the application for user
activity such as mouse movement, scrolling, clicking etc. In the event it discovers no
movement from the user for 3 minutes straight i.e., the user being Idle it shows a modal
popup warning asking the user whether they want to stay or logout. Another 3 minute timer
starts when the modal popup is displayed and waits for the user’s action. Even after that if
the user does not click on the stay button the application automatically logs the user out of
the application to prevent misuse.

4. Facial registration with flask and python backend (with front-end and server side data

validation): Another functional requirement from the initial documentation that has been
implemented in the application is the facial registration and validation. Once the user passes
the multifactor authentication and is able to log-in to the application they can access all
other features except the password manager itself until they validate their facial encodings.
The user is able to utilise all other features i.e., they can generate random passwords
according to personal preference, they can check the strength of a password or its
uniqueness (hacked/breached before or not), they can even add a password. But the user
cannot view or preview their passwords i.e., the manager itself. This includes the inability to
edit or delete the passwords until the user has validated their facial ID. Immediately after
the login the user can register their facial ID or face encodings to their accounts by viewing
the face registration page and registering their facial ID, once this has been completed, the
user can then visit the manager page and validate their existing facial ID to preview the
passwords and further move on to view, edit or delete them. In case the face does not
match or does not exist in the back-end facial database the page would dynamically show a
message regarding this with an info tool tip suggesting to register their face first with a
redirection link to the page.

5. Face authenticated password manager: The password manager is the main functional
component described for the project. Contrary to the proposal it has been built with
different technologies from what was mentioned before. Initially it was declared that the
manager would be built using react, SQL and express, instead the password manager has
now been built with Next.js + React.js for the front-end and with Fauna as the main database
system also including the facial validation which is required to access the manager itself.

a. To view the manager; a user is successfully supposed to log in to the application
after passing the multifactor authentication; doing so will create a session for the
user using an Http only session-cookie containing the information which is also used
to track the session and record changes to it. This cookie is also used to recognize
and fetch all the passwords for a specific user from the fauna Database. Once the
user is logged in they can navigate to the manager dashboard page where they are

welcomed with a message and are prompted to verify their email in case the
application detects they have not done so yet (which is required to receive
multifactor code through email). They are freely allowed to add a new account-
password to their account for safe keeping, but are not allowed to view the list of all
their passwords until they validate their facial ID. A webcam component is present
on the screen with a validate face button which needs to be clicked while looking
into the camera for facial validation. In case the face is not found or is not validated;
a dynamic message will be shown on the screen stating the user should first visit the
register face page and register their facial biometrics (with a link to the page in the
message). Only when the face is validated the user can see a table containing the list
of all the passwords they have saved here for safe keeping and ease of
management.

b. In the table only the account and email for which the password has been saved are
visible with a dynamically updating icon for the account (for example YouTube icon
for YouTube account-password). These rows can then be clicked which pops up a
password preview modal where the password along with the email is saved. The
password there is character-masked by default but can be unmasked by clicking the
eye icon and viewed. The password from this preview component can also be copied
to the clipboard and the website or account for which the password has been saved
can be navigated to by clicking the account name which also acts as a link for the
website whose account has been added (this link is made from the account URL
entered in the add password component earlier).

c. For adding an account-password a user needs to click the add password button and
enter all relevant details such as; account name, its URL (Like URL of YouTube or
GitHub etc.), an email associated with the account that is being added and finally the
password. There are a few strict input validation conditions that are required to be
passed to successfully add a password (same conditions exist for editing the
password as well). Input validation has been conducted for each relevant detail that
has been asked in the popup add password modal form for example; the account
name should be a normal string (no special characters or SQL keywords) the email
should be valid (checked against email regex), the URL should valid (checked against
URL regex) and finally the password conditions necessary for a strong password
including; 8 character length, necessary upper and lower case, a number and a
special character. A strength meter has also been provided below the password
input box which demonstrates the strength of the password being typed in
dynamically through colour coding and a dynamic message. Until all validation
conditions are passed the create button to add the password remains disabled. This
data for the password-account is also validated server side (Next.js API’s) so needs
to account for all validation conditions. In case the user is not sure what password
they would want to use, the add password modal also contains a redirection link to
the password generator which opens in a new tab as to not disturb the current
session or flow the user was in while adding a new password-account.

d. After the face validation when the user opens the password preview modal popup
they can also choose to either edit the relevant account-password details by clicking
the edit button or delete the account-password entirely. On clicking the edit button
the edit password modal pops up which has the same input validation conditions
from the add password modal along with the disabled edit button (which only
enables after all input validation conditions are passed).

e. Finally notifications are a part all functionalities i.e., a notification will be shown on

the screen as a password is added, edited or deleted. Notifications are used in some
cases to handle errors, which in this case is done if the font-end is unable to connect
to the facial authentication server (flask back-end) when the either the register face
button (register face page) or the validate/verify face button is clicked (manager
dashboard page).

6. Customer tailored complex Password generator: Another one of the main functional
components completed in this application is the strong and complex user tailored password
generator. The generator function offers multiple options to the user at the front-end to
choose what kind of a password would the user want generated, these options include
whether the password should include an upper case letter, a lower case letter, a number
and a special character. These can all be either checked or unchecked by the user as per
their desire. The length of the password can also be set by the user, by default it is set to 16
which is a very good length for strong and complex passwords, but using the number scroll
the length can be set according to the user’s choice. All check boxed are checked by default
in accordance with secure by default principle. Each and every password that is generated is
character-masked by default which can be viewed by clicking on the eye icon to unmask
them. Further the generator also offers the options for copying the generated password to

clip board with a button click. Notification are integrated into this functionality as well, in
case no check box is checked and the generate button is clicked a notification pops up
notifying the user to check at least one box to generate a password. Notifications also popup
notifying the user regarding a password being copied to the clipboard. The password
generator can also be reached from add password modal.

7. Strength Analyser: Another main functional component completed is the Password strength
analyser functionality. This functionality utilises the ZXCVBN library to accurately test the
strength and entropy of the password. The ZXCVBN library and evaluation algorithm were
developed according to popular password cracking algorithms worldwide which conduct
pattern matching to estimate the strength according to common passwords, common
patterns like keyboard patterns, common English words and common names, repeating
sequences etc. This functionality is completely dynamic and shows responses according to
user state and password input. The strength of the password that the user types in is
indicated by colour coded progression and colour coded dynamic updated text responses.
The score from the ZXCVBN is extracted to dynamically and colour wise update the response
and the progression bar to display the strength. This progression bar has also been
integrated in the Add/Edit popup modals to display strength while adding the password-
account. An Info-tool-tip is also integrated to give information about the library used for the

strength analysis on the front-end for the users. The input typed in the form field for
password strength estimation is also character-masked using the type as password.

8. Distinctor – The final functional component implemented in the application is the password

distinctor or uniqueness analyser which is a very useful functionality to have, it lets the user
check whether their password has been hacked or breached. This functionality also includes
a tool-tip which gives information about the API used. The functionality utilises the Have-I-
Been-Pawned API from Troy Hunt to cross-reference the input password (also character
masked) with the troy hunt database of passwords that have been recorded in any past data
breaches. The database also contains how many times a password (account) may have been
breached. The functionality dynamically responds with a message indicating whether the
password entered by the user has been hacked or breached before, whether it is safe to use
or not and how many times it has been breached or hacked. The dynamic message response
is also colour coded according to the response type. All passwords that are typed in are
SHA-1 hashed before they are cross-referenced with the database and no password is stored
by the Troy-Hunt website in any way and no user action conducted is logged, hence there is
no risk of any password leaking from this trusted and security certified website that provides
the API.

More Interesting Code snippets
1. Facial scan and validation – The most interesting part of CyberVault is how the Facial ID

authentication works. The Facial authentication logic has been setup in the flask server python
back-end of the project. The main algorithm method that is utilised to implement and integrate
the dlib based face recognition library is deep metric learning. The face-registration function as
can be seen below is responsible for accepting a single input image that is captured from the
webcam and resized using OpenCV. In theory then the face recognition module is used to return
a real-valued 128-d vector which is a comprehensive list of 128 numbers that are real valued
used to quantify a face called the facial encodings. The neural net of the Deep learning metric
modal (from dlib) is trained to develop and return a 128-d vector when provided an image
capture.
In the face registration function; when the call is made to register a face from the client side
consequently OpenCV is used to initially grab a single frame from the webcam video feed. The
frame is then resized to ¼ of its original size for faster processing of the face recognition. Then
since OpenCV uses the BGR colour frame by default it needs to be changed to RGB which is the
acceptable format for face-recognition library. Then the face recognition library is used to
detect the face in the frame that was captured and converted to RGB using face_locations()
method then the facial encoding are calculated using the face_encoding() which factors in the
facial location. Then some exception handling is done to make sure the face is scanned and
encoded. Finally then the image with the registration name that was also sent with it are stored
in the local directory of the project. Finally the facial encoding with the name is then saved into
the SQLite DB with a prepared INSERT query.
In the facial validation function then; first all the values from the database are retrieved suing
the retrieveAllData() function defined earlier. The registered face encoding and name is set into
variables. The process of capturing a frame resizing it and converting it into RGB and calculating
its facial location and encoding is repeated. Then this time instead of saving it into the database
the encoding is looped through and compared (using compare_faces() i.e., saved into array
variable - ‘matches’) with the registered facial encodings that were retrieved earlier. The facial
distance between these encodings is also calculated and the smallest distance to the new face is
extracted using py.argmin() (from NumPy) and saved into the best-match variable. Then it is
checked if the best match variable value exists in the matches array then the name for the
frame is set to the name that was retrieved. Finally OpenCV is used yet again to manipulate this
new frame that was retrieved to create a rectangular boundary around the detected face and
then set text (label) for it with the registration name that has been confirmed for this new face
frame as well, thus identifying the person. This frame with the rectangular boundary and the
name label is then saved in the local directory present in the project folder.
Both functions saved a response in a message variable after the processing is completed
successfully which is then returned to the client side, and according to which then the client side
is manipulated.

2. Distinctor - Another interesting integration was the use of the HIBP API component provided by
react-have-I-been-pawned module/library. Unlike how its implementation was experimented
with before it could not be directly imported into a Next.js application and hence required the
use of next/dynamic extension which is a part of the next.js framework. Using dynamic the HIBP
react component was imported and was then utilised in the application. A react client side
functional component with client render was developed first to accommodate the HIBP
component and then according to its documentation the HIBP component was utilised.
UseState() was used to set the state of the input password to a dynamic state depending on
user input. Then the password variable which was set using useState() was used as a parameter
for the HIBP password checked component. According to the HIBP documentation the error
pawned and count of breaches was imported and set according to the password parameter and
finally the parameter was passed to this API component to get the results as follows.

3. Another interesting code bit is the actual dynamic implementation of the facial validation that
was included in the password manager dashboard. The dashboard import the password
component which was coded to combine the preview and edit password component so they
would not have to be imported and rendered separately instead could in accordance with
modals popup when the their corresponding buttons were clicked. The dashboard was made
dynamic with the ability of react conditional rendering. UseState() was used to set a state of the
face ID being validated or not this variable was used to conditionally render the password
(preview + edit) component. The face-Validated state was set true only according to the
resultant message string that was returned when the API call was made to the flask back-end
triggered by an onClick() function and accordingly only if the facial ID was verified the password
component would appear dynamically. (Even though he useEffect hook was used to retrieve the
passwords from fauna on every page render request they will not be shown until the user’s face
is validated).

Final Screenshots of application and GUI

Security Focused Implementation in the application
The application is developed with a ton of security focused code-bits or features that help protect
the application from any kind of attempted breach, hack or data leak of anykind

• Route Security, API security (Client Side and Server side authentication required): A very
important security feature of the application that has been implemented is route security i.e.,
no functionality or page route can be accessed by any user that does not exist in the user
database and is not authenticated. The main condition that denies a user from accessing a page
or functionality is whether they are authenticated/logged in or not i.e., checking if there is a
user session with session cookie created for them (created when a user successfully signs up
and logs in). If an unauthenticated user tries to access any page or functionality they are
automatically redirected to the log-in page. The routes are protected using
GetPageAuthRequired() hooks in conjunction with GetServerSideProps(). The server side props
hook is used in next JS for live/dynamic data retrieval and for rendering HTML pages from
JavaScript files. First the pages are rendered server side and are then displayed to the user (i.e.,
for Dynamic data rendering and authentication). Server side props involve data being requested
every time the page is requested or rendered. This hook combined with the authentication
required hook stops the pages from rendering if a user (session and session cookie) is not
detected on the application (meaning user is not authenticated); it invokes a call back to the
login page straight away and does not let the user access anything until they login. Even the
server side created API that are used for communication with Fauna-DB are protected with the
getAPIAuthRequired() hook which necessitates the requirement of user authentication for the
API requests to be made. For each page request and API request to be successful and according
to the logged in user; the session cookie is validated to retrieve user specific data and to target
all post requests only for the specific authenticated user’s account.

• Secure Authentication and User session management: The Server side (Next.js API side) has
been setup with the Auth0 configurations and the client side (since authentication takes place
server side) is setup with the wrapping of the UserProvider component around the app by
including it in the _app.js file which lets the client side know when the user is authenticated
and when the user is not authenticated thus providing access to the application accordingly and

also helps accessing user details on the client side once authenticated. To setup a user session
and keep it secure; once the user logs in and is redirected to the application after passing
through authentication (including multifactor), the user is redirected with an authorization code
which is exchanged for an id_token by the server-less call-back function (responsible for the
redirection) by Auth0. Only after the id_token is validated that a user session is created and is
stored in an encrypted Http only cookie (appSession). The session cookie is then sent each time
a ‘page render’ is requested to recognize the authenticated user and their session. Then
external API calls are made to the Fauna-DB through the Next.js API section (proxying) which
also contains the userSession (through getAPIAuthRequired() hook). This is done to tie each
add/edit/delete/fetch request made for the passwords to the user’s session (retrieving User
specific password-accounts, and posting password accounts with User id to make the password-
accounts specific to the user who created them).

• DDOS protection: An advantage of using auth0 was also to be able to track if authentication
through a particular user’s credentials is tried multiple times and failed again and again, if this
crosses the threshold of failed login attempts (in a very short span of time) then the IP address
is noted (IP-throttling) and a warning email is sent to the actual user regarding unauthorized
authentication attempts

• Secure password management encrypted Passwords (strongest AES-256): Password protection
and security is the primary purpose of the application itself and hence there is a major focus on
the password protection. The user account password cannot be seen by the admin, in case the
user forgets their password; all they can do is reset their passwords to get back into their
accounts. The User account’s password is always hashed and salted using bcrypt before storage.
Auth0 even helps in encrypting data during transit using AES 128 bit encryption (TLS) to avoid
any possible leak of data. The user account password standards are also high, so during signup
the user has to abide by the validation conditions for setting their user account password. As for
the password manager all passwords are strictly input validated i.e., users are forced to save
strong and complex passwords (by default) (Multitude of features are provided in the
application as mentioned above to assist the user in choosing the best possible password for
their accounts and to help them choose new passwords in case their original one’s are not up to
date with the modern strong password standards). All passwords are not only input validated at
client side but also on the server side (Next.js API). The passwords are encrypted using the
Node.js’s inbuilt Crypto module using the strongest and most efficient encryption algorithm out
there i.e., AES-256 bit encryption using randomly generated 40 bit complex hex keys (which are
stored as environment variables). The passwords are encrypted immediately as they are
received from the user before they are added to the payload to be sent through API requests to
the Fauna-DB. The viewing of the password manager itself containing all the user’s saved
password-accounts is also protected by facial validation so they are only viewable by the right
Facial ID holders. All password and passwords assistance functionality involve character masking
so there is no leak of data.

• Character Masking: Another security focus that has been implemented in the application is
strict character masking i.e., each and every password related functionality and component
involves character masking of the password field. Whether it is the password generator,
distinctor, analyser or the manager itself; each password related field is character masked and
where there is no input required from the user such as the generator the fields have also been
disabled from receiving any user input. The passwords in these components can be viewed by
clicking the eye icon to unmask even then without the copy to clipboard functions it is
impossible to copy these password strings (like using Ctrl+C and Ctrl+V). In the manager just to
the preview the passwords facial ID validation is required.

• Multifactor-authentication + Facial validation: A very important security focused
implementation that has been integrated in this application is the use of multifactor
authentication. As explained above multifactor authentication has been implemented with
auth0 guardian application which includes either push notification to confirm identity, code
from the guardian application or a code sent to the verified email (‘Something you have’ multi-
factor), during signup a user is prompted to download the guardian application on their mobile
devices after which they can scan the QR code displayed on the screen to link their user account
with the guardian application, in case the user does not wish to do so they can opt for the email
code verification method. Then there is the facial ID authentication (Something you are) which
has been included once the user is authenticated and inside the application, it acts as the third
factor (‘something you are’ factor). This is included to protect the password manager
individually, so the user has to validate their registered face ID to view their manager and all
their saved passwords that are fetched from the database. This is done using python
face_recognition dlib based library which helps compare and validate facial encodings that are
computed using deep learning metrics (128-d vectors). A snap is taken each time; it’s computed
encodings are saved in the SQLite database along with the user’s name (also input validated)
and the facial image is locally stored in the application directory.// CAN SEEN SCCREENSHOTS
FROM ABOVE//

• Strict Input validation including data validation on both client and server side: A very
important security focused implementation is the integration of strict input validation on both
the client as well as the server side. The front-end client side in the Next.js + React.js includes
the functionality that takes the user input to save in the database is the password manager
which has heavy and strict input data validation that is done using regular expressions or regex
for all of the relevant details including account name (normal string without special characters
or SQL keywords), account URL (abides by regex URL expression), account email (abides by
regex email expression) and password (has conditions such as requirement of lower and upper
case, number and special character). These input validations are integrated in both add/edit

password modal components and have to be strictly abided by for the create button to be
enabled and the input to be accepted. Similarly for the server side where the API requests have
been declared data validation is conducted using Yup data validation library which uses the
formation of developer/programmer defined validation schemas that validate the request body
(confirming formats (using regex) and strings being required) (includes password-account
details) before the request is sent to validate any type of data or input that might somehow slip
through the front-end. Further data validation has also been conducted in the front-end and
back-end for the name that is being sent with the Facial ID encodings to the database. In the
front-end (Next.js+React.js) the name is checked against regex to make sure it does not have
special characters and does not include any type of SQL keywords, similarly the name attribute
has also been validated in the python flask back-end to check the name as a normal string thus
including both front and back data validation. All the data validation is conducted to avoid any
type of potential injection attacks targeting the two databases used in the application so that all
sensitive data is air tight and cannot be breached.

• Idle timer logout: Idle timer log out was also developed and integrated in the application with
security in mind. Considering this application can be used by all kinds of user’s people may like

to access it in a public location and in case they leave their computer for a short period of time,
there is a major risk regarding leaking of their sensitive data i.e., a passing third party might
notice their passwords being open on the screen and try to exploit the user’s accounts. To avoid
such a scenario and many similar scenarios the idle timer function was created using the react-
idle-timer library/module. This helps the front-end detect and scan for user movements on the
application pages only when the user is authenticated; movements includes cursor moving,
clicking scrolling etc. If none of the user movements are detected in less than 3 minutes, the
user is considered Idle even though they are authenticated and logged-in. In such a case a
prompt is popped up on the screen letting the user know they have been idle for a while and
would be logged out automatically unless they decide to click the stay button which resets the
timer. They could also choose to logout by clicking the logout button in the popup. If no user
movement is detected when the popup appears the user is automatically logged out in the next
3 minutes and would have to log in again to access the application and their account-
passwords.

• Proper and thorough testing in artificial environment: Another security concern of an

application is to look for bugs and problems that might lead to a breach or reveal something
about the application that was not apparent at the time of development. Such things can be
found out during thorough testing and with this in mind thorough testing has been conducted
with the application in an artificial isolated environment. The testing is all round including
integration, end to end and unit testing (also trial user testing) all functionality of the
application, rendering capabilities and outcomes of the application. The testing has been
explained in more detail under the testing heading.

• Error & Exception handling: Error handling has been given major importance during the
development of this application since front-end errors are actually shown on screen with stack
traces in application developed with JavaScript frameworks which is bad practise. Error handling
has been done at the server level with specific error messages in try-catch and if-else error
prone functions (code for communicating with servers, code for connecting to the database
etc.) and has been done in the front-end with either window alerts or notifications depending
on the situation to avoid any stack trace data being leaked. Further proper error handling has
also been conducted at the server level since proper error messages with http codes have been
formed as error responses for failed API requests etc. Finally even at the back-end i.e., the
python flask facial authentication server which also connects and makes request to the SQLite
database is properly error handled and possible calls or connection statements are all forcefully
put into try-except statements which manually created error responses to handle any SQLite3
related errors specific to the function they are being used in. Then If-Else statements all over

the program are used to handle any type of general errors that can be noticed in case a function
does not perform in a particular required way and to handle checks and conditions (done both
in the front-end, server side as well as the back-end).

• Environment variables setup for sensitive data: Another important major security focused
development strategy that has been implemented is not hardcoding any sensitive data like
sensitive keys, URL’s, connection domains, Issuer URL’s etc. All this sensitive data has been
saved in a separate ENV file (as environment variables) which is referenced inside the source

code. This helps in keeping sensitive data isolated in a different environment so that there is no
chance of exploiting this data in the extremely rare case of a breach, since it contains
decryptions keys, keys to connect to the database and much more important sensitive data that
could help a third party in disrupting services the application provides etc. These environment
variables are referenced using the process.env property which is inbuilt as an API of the process
module; it is used to retrieve the user environment and its variables (In this project is used to
reference all environment variables/keys from the env.local file).

• Secure Databases and querying and connection requests: All database connection and queries

that have been coded in the application are programmed keeping in mind the vulnerability of
using a database i.e., they might be prone to injection attacks or data breaches which could
lead to exploitation of sensitive user data. To protect from this; First the input being sent from
the client side to the flask back-end is input validated at the client side and the python back-end
(back-end server side as mentioned above) then parameterized and prepared SQL queries are
used in the python code when they are called by the functions from the client side (triggered by
an end-user) in the flask back-end server. The SQL queries are prepared and parameterized in
python using placeholders (‘?’) instead of using direct data values in the queries itself i.e., a
query with a place holder is setup first and then the actual data (validated input) is saved into a
separate variable and is added to the query as a replacement for its placeholder at a later stage
when the query is being executed. A major advantage of doing so is the parameter binding and
character escaping is handled itself instead of having to manually escape characters (like
backslashes, quotes etc.), character escaping helps to avoid any kind of injection attacks that
might be targeted at this SQLite database. Further at the front-end, server less Next.js
application is connecting to the Fauna Database and queries are written using FQL (Fauna Query
Language). Since Fauna is a cloud native database and is used to create server less applications
(No back-end framework required connecting to a database and making queries like done with
Next.js), it has its own security models in place. A secret Fauna encrypted access key is required
to connect to the database which strictly controls and defines access to the database. Fauna
itself was designed while keeping in mind the secure by default principle, the database API does
not assume trusting any kind of access, any application that connects to the database will
connect over secure HTTP connection and with an encrypted access key (that defines access
control). Fauna Database API (using FQL) is also type-safe by default thus making it impossible
to be breached by Injection attacks. Finally Fauna also offers strict serializability which leads to
ultimate isolation of transactions (queries).

• Access Control implementation: Maintaining and regulating access control is a must for a

secure application and hence access to the application and all of its security assisted features is
strictly regulated by authentication, even the connection to the Fauna Database API is strictly
access controlled using a secret Fauna key used to connect to the database. The whole
application cannot be accessed by any unauthenticated personnel that are not permitted to
access the application. The trust boundaries are clearly and strictly defined as well i.e., Users
can not view any other user’s data ever all data is strictly separated to avoid any kind of data
leaks. This is done both on the client side (facial validation) as well as the server and back-end
(strict authentication and access regulated database queries) so the data cannot leak from any
layer of the application.

• Static analysis Conducted: Finally to have the best possible coding practises in accordance with
Next.js standards and to avoid syntactical bugs that might lead to opening up security
vulnerabilities in the application; these are fixed after conducting static analysis on the
application using static analysis tools such as ESlint which show potentially helpful changes that
are supposed to be made in the application (with warning, syntactical and error descriptions).

Security Principles and Pernicious kingdoms incorporation
The code base of the application was programmed keeping in mind secure coding principles and
pernicious kingdom vulnerabilities explained as follows:

• CIA integration: The application focuses on maintaining the security triad i.e.,
Confidentiality, integrity and availability of all resources and data. All data stored by the
user is always kept confidential within strict trust boundaries and cannot be leaked,
sensitive data like passwords are all encrypted and character masked. All user account
data is confidential as well cannot be accessed by other user’s (also involving IP
throttling). Even accessing data saved by the user in the fauna DB (password-accounts)
from the data requires an encrypted access key. The integrity of all data is maintained
even during communication transit by the Database API (Secure HTTP connection
requests) and the integrity of the authentication process and user account data (Using
AES 128 bit TLS encryption). Finally all resources and data is rightly available to the
authenticated and authorized user only.(owner of the password-accounts) DDoS
protection is enabled by Auth0 as well to stop from overdoing unauthorized logins to
disrupt authentication services.

• Principle of least privileges – The principle of least principles has been accounted for
during the development of this project-application since no default admin privilege is
given to any of the users, even the admin themselves cannot view user accounts and
their sensitively saved data in the databases. There is no admin functionality available to
be modified on the application itself hence no leaks of admin functionality are possible.
No Unauthenticated user has any privileges regarding the application functionality since
all routes and API requests have also been secured to detect and require a user sessions
(http only Session-Cookie). During Signup even the user is prompted to grant the
application access to their profile details (like username/email etc.).

• Defence in Depth – Defence in depth has been deeply incorporated within various parts
of the application. This includes multiple data validation checks both on the client as well
as the server and back-end side to protect against any kind of database targeted attacks
such as injection attacks. Defence in depth also refers to the API requests being secured
to only be made by authenticated users on top of authentication secured routes. Adding
facial validation after a user is authenticated to view their passwords and manage them
is also an example of defence in depth. Finally secure querying of databases and the use
of Fauna Database API which has Defence in depth incorporated by default i.e., the
requirement of the access-key to access the database (no default trust access to any
client of any kind) is also an example of defence in depth being incorporated in the
application.

• Securing weak links – Most commonly the weakest link in software is the end-user who
might expose their sensitive data or application data by human error. This has been
taken care off in the application by implementing default character masking, automatic
Idle-timer logout (protects user data in public places), deep password encryption, use of
environment variable and not exposing any important keys, even secured authentication
(with choices for multifactor), forced creation of complexly strong passwords (user-
account and password-accounts). No security concern has been left to the end user to

take care off and multiple features have been provided to the user to improve security if
they are still concerned.

• Secure by default – Secure by default has been implemented in various code bits; for
example – All the check boxes for the password generator are checked by default to
generate a complexly strong password from the get go unless the user decides to choose
otherwise (like some password requirement might be exactly 8 characters instead of 8
and more). The idle timer function by default automatically logs out the user after the
prompt if it detects that the user is not responding to the prompt either. String input
validation has been implemented by default for all possible scenarios where user input is
required (including no blank inputs allowed to submit and by default disabled create
buttons) to force the user to create strong and complex passwords with no incorrect
format of data being submitted. The inputs that are only for display are disabled by
default so the user cannot type in them and finally a password strength indicator is
included by default in the add/edit password modals. The users are forced to create and
store strong and complex passwords by default (even during signup).

• Keep It Simple – The application also follows the Keep It Simple principle since all the
navigation and functionality of the application is straight forward and easy to follow by
the end user. To maximize the user experience everything is straight forward and
explained to the user along the way using tool tips and notifications. Appropriate
redirect links are also provided throughout the application for ease of use.

• Privacy – Finally the application maintains privacy at every level and tries to keep all
user-account and password-account information private at all times and secures the
application to make it full proof against any kind of data leak. Thus protecting the users
that decide to utilise the application to its maximum capability.

The application has also accounted for various security vulnerabilities that have been
emphasized in the seven pernicious kingdoms, these include –

• Strict Input validation – Strict Input validation has been integrated throughout the
application as has been mentioned above in the client-side, server-side and the back-
end of the application which contribute to protecting the application from Injection
attacks. Further measures to protect against SQL injection attacks have been taken as
well including prepared and parameterized statements in the back-end (SQLite using
placeholders) and the use of Fauna Database API which is also type-safe along with FQL
to make queries. Further the use of Auth0 also pertains to the protection from common
XSS attacks due to the involvement of the session cookie being HttpOnly (when a session
for user is created, the cookie is used to recognize the session and help fetch and post
user specific data).

• Security features – A wide variety of security features have been added in the
application which has been mentioned in detail in the sections above which account for
strict access control, secure password management and input validation including no
intake of empty strings, powerful and different encryption depending where the
encryption is used. Most features of this application automatically contribute to privacy
and confidentiality as well.

• Error handling – The implementation of proper Error and exception handling has been
mentioned in detail above along with how the error handling has been implemented and

in which sections catching errors/exceptions was very important such as database query
execution code or connecting to a server to either receive or send data etc. The
error/exception handling has been done in a proper way i.e., no catch or except blocks
have been left empty and proper, appropriate and limited error messages have been
manually declared within these exception/catch blocks.

• Encapsulation – Finally encapsulation has been maintained i.e., strict trust boundaries
have been declared, with no intermixing of authenticated with unauthenticated data.
Processing and access to and of only authenticated users and their authenticated data.
Exception handling and trust boundaries and been securely and properly setup to avoid
any kind of potential data leaks or breaches that might either open up security
vulnerabilities or harm any user by sensitive data exploitation.

Causes of changes in technology stack and implementation
From the initial technology stack there were a few core technologies I decided to replace with a
better more scalable and flexible technology which gave me a more variety and expansion on the
way features could be implemented and this influenced the changes regarding the method and
process of implementation. Some of these major changes include –

i. Use of Express.js back-end replaced with use of Next.js – Initially it was planned and
explained that for the back-end of the application; Express.js framework with React.js in the
front-end would be utilised. This plan was altered to use the Next.js framework instead of
Express and eliminate the need of two back-end engines. Further since the implementation
of Fauna as the main database was decided the opportunity of making the application (at
least the manager part) could be made server-less with the utilisation and better match-up
of Next.js and Fauna DB. Since Next.js framework can act as a front-end middleware
combination by setting up the Axios and API connection in the Next.js provided API folder
which could then with the use of the Fauna Database key be able to query the fauna DB
directly. This would also make the use of a python flask back-end more efficient and increase
the speed of processing and improve the communication (between front-end, acting server
and back-end) throughout the application.

ii. Use of the Crypto.js Module – Initially it was decided a separate JavaScript module known as
Crypto.js would be used for handling password encryption etc. But through thorough testing
of the password encryptor; bugs were found in the module’s latest version and a few recent
versions before it. The use of inbuilt crypto module was decided due to its better efficiency
and clearly described and easy to understand code and implementation which resulted with
the same required outcomes.

iii. Fauna Database instead of simple SQL – For the password manager and session
management Fauna DB API was used instead of simple SQL due to Fauna’s ability to help
render server-less applications and it’s amazing suite of in built security infrastructure. It was
also due to its amazing pairing with Auth0 to improve the security surrounding user and
their data even further. The security elevation along with non-functional requirements such
as robustness, Speed of query request execution, pairing with Auth0 (API request
authentication security). Further factors such as better control over database, Database
individual security such as transit encryption, fauna key requirement to make DB requests
etc.

iv. Use of SQLite 3 in the back-end instead of simple SQL – Lastly another difference was the
change in database from SQL to SQLite 3 in python back-end was done due to the ease of
use that comes along with SQLite 3 including its self-management of Database files and easy
of creating parameterized and prepq[ared statements to protect against potential injection
attacks.

v. Using React functional components instead of class components – Initially during the
midpoint demonstration the facial registration and validation code were coded as class
components, But when the facial code and flask back-end were integrated into the main
project they were converted into functional components following the same logic, due to
the wider flexibility provided by react functional components like the use of hooks which
helped improve these functions and how they look on the main GUI.

Testing & Evaluation
Very thorough testing has been conducted in the application with various methods of testing that
are utilised. The main software used for testing this application was Cypress which is a testing
framework for JavaScript based applications like applications built with Next.js or React.js (or any
other JavaScript based framework), even applications containing a back-end developed with the
Express.js framework etc. Cypress helps in testing an application in an artificially created and
isolated environment which is a chrome tab that is controlled and regulated by the cypress
framework and is a copy of chrome but with faked and mocked settings etc. They help in performing
automated tests with sample data to conduct all kinds of testing. In this case a test user is used and
is logged in before each test (Is logged in the home page test during testing). Different methods of
testing that has been utilised in this application involve Unit testing, Integration testing, End to End
testing and finally manual user testing cases. In total there are 32 tests -> 27 Unit + Integration test
& 5 End to End tests.

The main sequence and process that was followed during testing was as follows; starting off with
testing the rendering of each component in isolation for a single page or component at a time. This
involved multiple assertions as the page was rendered to confirm the display of components is as
intended and contains all respective JavaScript components. An example would be; testing the
rendering of the password manager dashboard page. When the page is rendered for the first time it
should include 3 sections i.e., an introduction section; which should contain HTML headings (h2)
containing some text then a button for add password-account should exist beneath the introduction
section with the text ‘add account password’. Finally a webcam component should exist in the next
section with a button beneath it and so on.

After the rendering test of the page was passed, each of the main functions present on the page
were unit tested one by one. It is to be noted that each test that is conducted in cypress is isolated
unless the test code is grouped together under one test (Tests start with “it (‘should description of
test), () => {test code}” after the context). Unit testing was done after the render tests. Unit tests
involved testing a functionality component individually for example in continuation to the previous
example; testing the add password functionality (after its render test is done) would include
redirecting to the URL, clicking the add button then confirming the opening of a popup modal for
adding password. Then individual tests would be conducted to show the create button would be
disabled when the input validation conditions are not passed after entering the details (each input
condition was tested). Then a unit test is written to show what happens when all conditions pass,
this would include the colour of the conditions (statements) changing to green (success text) and the

enabling of the create button and clicking that should close the modal and show a notification on the
screen for a small time notifying the user that their password-account was added. Later during the
testing of the manager (which is displayed after face validation) the added password would be
displayed in the table and its display render would be asserted to confirm it was added. (All user
input is sample data that is entered automatically during the test run, this is after it is included in the
test code using .type(input)).

After multiple of such unit tests are conducted for all functionalities one by one on the page files
individually and in isolation, integration testing is conducted. Integration testing involves a
combination of functionalities being performed and tested together under one test. An example of
continuing from the last example would be to test the Edit and delete password account
functionality in one test with their rendering also being tested at the same time. The sequence of
this test would include the rendering test of the preview modal popup (all its components and the
account and password name exist and are visible in it as well) and the edit modal popup so it is
confirmed all parts of their modal are rendered (such as input validation conditions are rendered on
the screen along with the disabled edit button, all input fields are rendered and are empty with
placeholder texts, button only enabled when the validation conditions are passed). Immediately
after the render tests; the test code is written to automatically enter data that passes validation and
the edit button is clicked after it and an assertion for a notification popping up is also conducted.
Continuing in the same test the preview modal is opened again and this time the delete button is
clicked after which the notification display for that is tested and immediately after the display of the
page is tested to confirm no more passwords exist since one password was created, edited and
deleted. Thus completing the integration test and confirming the functional components work
together.

Finally End to End tests are conducted. These are tests designed in such a way that they mimic user
movement and flow on a page while trying out all functionalities after the page renders. This test
demonstrates how a user would go through a page and utilise all of its functionality inside one test
by mimicking user movement for the whole page. It’s a combination of all integration tests for a
page under one test to maintain a continuous mimicked user flow and testing the application in this
way. It will include the assertion of the render then all the functionalities within one end to end test.

The overall structure of the folder is two testing folders inside the integration folder of cypress. One
folder contains all end to end tests for each main functionality page and the second folder contains
test files that include the unit and integration tests in the files for each page.

Further some manual user testing was also conducted in the application. This was done by letting
my fellow classmates try and interact with the application to make use of the feature suite in a way
a normal end user or in some case a pen tested would. This revealed some bugs initially that were
fixed along the way, this way of testing came to be very useful. Some bugs that were found with
how they were fixed are as follows –

i. Missing Exception handling in regards to the facial authentication server. This bug was
revealed as a result of forgetting to run the flask server before actually conducting facial
authentication which resulted in a 404 default error that is given by the java script
framework which incidentally also reveals stack trace information. This was fixed by
implementing proper error handling (using notifications) in the fetch requests that were
included in the dashboard code.

ii. Input validation not conducted for the account name variable – During manual User testing
when one of my classmates tried to put bogus information in the account name it got saved
in the database. The account name was validated on the server side to ensure it was a string
but was not input validated on the client side. This was then implemented as soon as the
bug was discovered. The client side validation parameters were made very specific as to not
allow any account name with special characters or any type of SQL DDL or DML commands
in it. This secured the account name input as well.

iii. One more security loop hole found was the missing character masking in the password
generator. It generated the proper passwords but they were not character masked and
were displayed in the input column in plain text. This went against the principle of secure by
default and was hence rectified.

Future Development or research
The future opportunities for this application are limitless; the security around the application could
be increased a few times like offline implementation and execution etc. Further the facial ID could
be utilised with even more technologies and sensors that detect eye movement and are adapted to
masks, different options for multifactor using voice recognition, retina scans etc. Another thing could
be to improve User experience even more, throughout the flow of the application as well. Some
Future planned improvements include -

• FaceAPI.js related development - During the time of this application’s development, future
development aspects were also tried and tested but not finalised and hence have been
added in the issue section of GitHub such as utilising facial landmarks to render them while
the user is trying to validate and register their face so even the end-user can see how facial
scans are displayed and scan the face. These could be done using Artificial intelligence
integrated libraries like FaceAPI.js to show these landmarks and facial recognition borders
on live webcam as can also be seen
below.

• File uploading and security – Another potentially useful feature for the future of the
application would be to develop a universal documentation format vault including storage
for important financial cards and their details that are protected using top grade transit
encryption and officially security certification from respective banking institutions. This
could also lead to a payment service that could be utilised directly from this manager
application (which would also be protected by higher grade facial identification).

• Introduction into the Mobile market – Finally another future development option for the
application would be to introduce it into mobile markets i.e., android and eventually IOS.
These would expand the authentication and verification options to include fingerprint
scanning and would include technologies like flutter and React Native for mobile
development. This would help give the application an even wider audience base. Since end
users might prefer to save and retrieve all this important data from the palm of their hands
instead of having to log on to a computer every time. This application would then be
available in the android play-store and the IOS app-store.

Conclusion
One of the biggest challenges faced during the development was integrating the facial
authentication validation functions that I had developed before the midpoint submission with the
final implementation of the password manager built using Next.js, since these were purely
developed with a react – front-end in mind (which was the decision at the time) they used older
components like React class components (which were not compatible with hooks) and were tailored
to fit only react style classes. Even the flask python server back-end was configured to connect with
the react front-end. This issue was solved gradually by converting the pure react class component to
a functional component and instead of proxying the requests through the package.json file they
were directly sent using the flask host link. The react functional component was then included in the
Next.js developed manager dashboard and the facial registration page. The Back-end was then
slowly improved as well to include input validation, efficiently integrate with the Next.js front-end,
include proper exception handling etc. Another issue was the implementation of secure
authentication while also tracking user sessions. This was initially done by developing a input
validated login registration page which also accounted for the flask back-end and was using the API
folder in Next.js to send requests to the fauna DB. Then Auth0 with its superior security
infrastructure was discovered and researched, and due its impeccable pairing with fauna-DB it was
integrated into the application and a better security was incorporated in surrounding the
application. One last challenge that persisted throughout the development was the challenge of
using a newer technology like Next.js which had a new way of implementation even slightly
different than its predecessor (React). But due to its seamless flexibility and the ability to serve
server-less applications when paired with a database like fauna and its compatibility with newer and
older libraries it was concluded to be right choice for developing this application.

References

[1]. Anderson, C., 2018. Data Security in the Age of Serverless Apps. [online] Fauna. Available at:
<https://fauna.com/blog/data-security-in-the-age-of-cloud-native-apps>.

[2]. Bachina, B., 2019. How to Implement Idle Timeout in React. [online] Available at:
<https://blog.bitsrc.io/how-to-implement-idle-timeout-in-react-830d21c32942>.

[3]. Casagrande, A., 2020. Two-factor authentication flow with Node and React. [online] Medium. Available
at: <https://medium.com/onfrontiers-engineering/two-factor-authentication-flow-with-node-and-react-
7cbdf249f13>.

[4]. De Rooms, B., 2020. What Is Fauna, and How Does It Work With Auth0?. [online] Auth0 - Blog.
Available at: <https://auth0.com/blog/what-is-fauna-and-how-does-it-work-with-auth0/#How-Does-
Fauna-Fit-in-My-Application->.

[5]. Emadamerho Atori, N., 2020. Authenticating React Apps With Auth0 — Smashing Magazine. [online]
Smashing Magazine. Available at: <https://www.smashingmagazine.com/2020/11/authenticating-react-
apps-auth0/#:~:text=You%20can%20connect%20any%20app,data%20back%20to%20your%20app.>.

[6]. Geitgey, A., 2017. Face Recognition — Face Recognition 1.4.0 documentation. [online] Face-
recognition.readthedocs.io. Available at: <https://face-
recognition.readthedocs.io/en/latest/readme.html>.

[7]. Guevara, H., 2021. Username and Password Authentication. [online] Auth0 - Blog. Available at:
<https://auth0.com/blog/username-password-authentication/>.

[8]. Patel, H., 2020. Create your Own Face Recognition Authentication System using Python, Computer
Vision, and Machine…. [online] Medium. Available at: <https://becominghuman.ai/create-your-own-face-
recognition-authentication-system-using-python-computer-vision-and-machine-7bcf3aea6c70>.

[9]. Raboy, N., 2020. Test Password Strength with RegEx in a React Application. [online] The Polyglot
Developer. Available at: <https://www.thepolyglotdeveloper.com/2020/02/test-password-strength-regex-
react-application/>.

[10]. Rosebrock, A., 2018. Face recognition with OpenCV, Python, and deep learning - PyImageSearch.
[online] PyImageSearch. Available at: <https://pyimagesearch.com/2018/06/18/face-recognition-with-
opencv-python-and-deep-learning/>.

[11]. Simplilearn, 2021. What is SQLite And When to Use SQLite. [online] Simplilearn. Available at:
<https://www.simplilearn.com/tutorials/sql-tutorial/what-is-sqlite>.

[12]. Stillson, B., 2018. Let’s Encrypt Files With Node. [online] Medium. Available at:
<https://medium.com/@brandonstilson/lets-encrypt-files-with-node-85037bea8c0e>.

[13]. Weaver, E., 2021. Postgres vs Fauna: Terminology and features. [online] Fauna. Available at:
<https://fauna.com/blog/compare-fauna-vs-postgres>.

[14]. Cypress Documentation. 2022. Writing and Organizing Tests | Cypress Documentation. [online]
Available at: <https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests#What-you-ll-
learn>.

[15]. Chinda, G., 2019. How To Build a Password Strength Meter in React | DigitalOcean. [online]
Digitalocean.com. Available at: <https://www.digitalocean.com/community/tutorials/how-to-build-a-
password-strength-meter-in-react>.

[16]. Goudar, S., 2021. Build A Password Generator with React JS - react-toastify - Beginners Tutorial.
[online] DEV Community. Available at: <https://dev.to/somanathgoudar/build-a-password-generator-
with-react-js-react-toastify-beginners-tutorial-4a9n>.

[17]. Herrera ltie, R., 2021. Build a Face Recognition Web App with React and Flask. [online] Medium.
Available at: <https://python.plainenglish.io/how-to-deploy-a-face-recognition-web-app-with-flask-react-
from-zero-c4c624654646>.

[18]. Tuduo, V., 2021. Build a Code Snippet Web App with Next.js and FaunaDB. [online] SitePoint. Available
at: <https://www.sitepoint.com/nextjs-faunadb-build-code-snippet-app/>.

[19]. Arias, D., 2021. Adding Salt to Hashing: A Better Way to Store Passwords. [online] Auth0 - Blog.
Available at: <https://auth0.com/blog/adding-salt-to-hashing-a-better-way-to-store-
passwords/#Simplifying-Password-Management-with-Auth0>.

[20]. Di Mattia, S., 2021. How to Authenticate with Next.js and Auth0: A Guide for Every Deployment Model.
[online] Auth0 - Blog. Available at: <https://auth0.com/blog/ultimate-guide-nextjs-authentication-
auth0/#Next-js-Serverless-Deployment-Model>.

Appendices

Project Proposal

Objectives

I plan on developing the ultimate one stop security vault web application for my project; CyberVault
which will help customers/ users safely secure all their important assets (files and documents) and
credentials (plethora of online passwords) in one place under optimum security without having to
worry about being exploited or the credentials getting stolen.

The existence of such an application is paramount for customer security, appeasement and
satisfaction, since in the modern day and age, users have a plethora of important passwords and
documents pertaining to their daily lives with no way of securing and managing them all in one
place. They are never really comfortable with the amount of security and protection surrounding
these assets and credentials. The application will be focused on the non-technical populace with a
serious concern for security and ease of management of all their important documents and
passwords.

This project sets out to achieve and provide:

1. Maximum customer satisfaction: By protecting all important customer assets in one location
under high level security parameters like multiple encryption techniques and facial
recognition authentication with multi factor authentication for login and registration etc.
Including helpful features for customers like automatic password generation and strength
analysis for their ease.

2. Customer Appeasement and reassurance: Since the application would act as a third party
personal security contractor for customers by keeping their entire collection of important
stuff safe and helping them by providing extra information about all the things they decide
to store

3. Sense of security: Providing the customer’s with a sense of security regarding their personal
credentials and important documents since all their assets will be under heavy security
features and they won’t have to worry securing and managing all their passwords by
themselves.

4. Ease of management: Since the application will have full managerial functionality regarding
all the important assets and credentials stored in them to help the user manage them with
ease.

5. Avoiding unnecessary stress: The application would help get rid of the unnecessary extra
stress of remembering and managing all password and worrying about the security of all
credentials and documents by doing it all for the customer.

Background

Nowadays each and every website present on the internet requires a user to properly create a
profile and register themselves before they can read or make use of the content of said website/web
application. This in turn creates an excess of pressure on the user to come up with yet another
complex password to remember for every new website they visit whether to use its data or too

access its functionality. This situation adds another burden on the user to remember the whole
plethora of passwords they use for multiple website/web-applications, which is why user’s then turn
to excel sheets or write them down on paper to remember this vast majority.

These methods of remembering password are not secure at all, since anybody could access an excel
sheet full of important passwords, or a piece of paper containing the same and completely exploit
the user, whether it be for ransom or stealing information etc. This is a major threat to a customer’s
personal security which arises due to such a situation. I plan on solving this problem that the user’s
face by building this application i.e., the ultimate solution to satisfy their concern for security and
protect them against exploitation and cybercrime with the best possible security features for storage
and management. To meet all the objectives described in the first section the application will include
and provide:

• A high level (Vault) security storage solution for all their password and important documents
i.e., a fully functioning security password and document managerial application

• Improved and high level security features that none other similar application provides like:
o Facial recognition authentication for login and registration administration added on

multifactor authentication using deep learning.
o High level encryption techniques like crypto graphical encryptions; AES-128, AES-

192, and AES-256 etc., blowfish encryption, Hashing done using external encryption
modules for credential security on the back-end and front-end.

o Options for document storage under encrypted locks for asset security with
individual text file encryption option.

• Other general features to ease the customer’s security and satisfactory concerns such as:
o Password distinctor to check the uniqueness and vulnerability of passwords by cross

referencing them through the have I been pawned website database using their API
o A password strength analyser to determine the strength and complexity of each

password that is being stored in the vault. This would notify a user if a weak
password is being saved.

o Automatic password generator tailored according to user specifications to generate
strong complex passwords.

State of the Art

There are multiple password managing applications that already exist like LastPass, Keeper,
BitWarden etc. This web-application stands out completely since none other web applications go the
extra mile to ensure and guarantee the security and customer satisfaction that this application will
provide with its added security and safety attributes. This application completely focuses on trying to
provide every possible high security features aiming for maximum customer satisfaction and
reassurance regarding their sense of security.

Most password managers in existence have the same basic idea to store all passwords under a
master password login, this application takes a different approach to ensure its purpose since it is
combined with deep-learning to include a facial recognition authenticaton added on its multifactor
authentication to secure the login process completely with no risk of exploitation due to the master
login password being stolen which is the major disadvantage of any password manager that already
exists.

It takes the extra mile by providing all the features that could help ease the management process for
the User, even these extra features that the application provides have their own security criteria
regarding the functionality they provide which is different from all other password managers for
example the automatic password generator will contain each and every condition required to
generate a highly complex password that would satisfy the conditions of any web application that
requires complex passwords for their security and features like the password distinctor to warn or
notify the user if a password has been compromised and is unsafe to use etc. General password
managers also differ from secure file/document managers but this application combines and
provides that functionality in one place with a lock over the document vault with multifactor
authentication to even help users secure all their important documents.

Technical Approach

The scope of the project is to implement high level security features to ensure the safe storage of all
important user passwords and documents in one place with the addition of multiple features to help
user manage their assets and credentials with ease.

Regarding the development approach for this project I plan on taking the Waterfall approach or
following the waterfall model. The waterfall model of project development includes:

1. Requirement procurement and analysis: The requirement procurement and analysis
requires identifying all types of requirements before developing the project so the project
can be developed in accordance to these requirements. The requirements include functional
and non-functional requirements such as:

a. Main functional requirements pertaining to this project:
i. Secure Login and registration: A fully secure login and registration feature

for each user including facial recognition authentication using deep learning
to cover for the disadvantage of losing master key or the master key getting
stolen etc. The login would also include multifactor authentication for
covering up any faults that might lead to insecure logins.

ii. Fully secure password storage: So a vault to store all passwords that the
user has under different and high level encryptions (AES-128, AES-192, and
AES-256, blowfish encryption etc.) utilising external modules provided by
node js, to encrypt passwords using cryptographic encryption techniques
with hashing techniques utilised in the back-end for login to keep
login/registration passwords secure in the database as well.

iii. Password management functionality: Interactive UI made using ReactJs to
ease password management for the user including functions like password
generator containing all password requirement complications to generate
complex passwords that can be used by the user for multiple other
applications that require complex and secure passwords.

iv. Password distinctor and strength analyser: For ensuring and reassuring the
user about their passwords, These feature would help analyse existing
stored password, The distinctor would analyse a password and cross-
reference it with multiple other passwords that have already been
compromised by utilising the have I been pawned website API to check all
the passwords vulnerability. The strength analyser would determine if a pre-
existing password is complex enough to not be broken by brute force
cracking attempts or any kind of authentication bypassing attempts.

v. Secure File storage and management: Finally an option for a secure file
storage, where the user can upload files and store them under a lock and
key, if enough time I would also like to implement individual text file
encryption to safely secure all text documents.

b. Non-functional requirements or attributes pertaining to this project:
i. Security: The main idea of this application is to provide a sense of security by

protecting all important credentials and assets. Hence, this is one of the
most important non-functional requirement that my project is meant to
satisfy by keeping all inputs sanitised, by ensuring all the features mentioned
for login and registration administration, by development through secure
design principles and according to certain design patterns to fit the
application during development.

ii. Scalability: The application is being built using React and node JS in the
express environment i.e., SERN stack (for wide and accessible range of
versatility and scalability), since these Libraries and runtime environments
ensure ease of scalability in regards to future distribution and development
of the application.

iii. Reliability: Since the application’s main focus is security is meant to be highly
reliable to give maximum customer satisfaction and ease of management.
To make the users want to use it more as an integral part of their lives.

iv. Data integrity: The main purpose of the application is password
management and security so the data integrity is a must, all user
information as well all their important credentials will be encrypted and
non-accessible by any exterior source, not until the person trying to access
them is properly verified and authenticated.

2. System design and architecture: The application will be designed in accordance to meeting
all the requirements mentioned above, the front-end which will be visible to users will be
developed using React (Highly scalable JavaScript library), and will be focused on ease of
management and interaction with the user thus making it easily accessible.

3. Implementation & development: The application will be coded using the SERN stack i.e.,
React in the front-end and Node-JS/Express server in the back-end using visual studio code
and implementing external modules and libraries like BCrypt, CryptoJS and the flask server
(utilising python scripts) for deep learning implementation.

4. Integration and testing: Unit testing will be implemented during and after the development
to ensure each functional requirement mentioned, works according to its purpose and that
the application meets the non-functional requirements as well. Integration testing will also
be implemented after successful unit testing is done to check the application’s scalability,
working after deployment and functional as a whole with all working individual components.

5. Deployment and Maintenance: For the deployment purposes the application will be
deployed using either Heroku, digital-ocean or netlify which are the most compatible
deployment options for React/Node applications, and to ensure all the non-functional
requirements it will be further re-monitored and maintained.

All functional requirements are basically the functions that the application is supposed to perform as
to fulfil its purpose of satisfying the customer and acting as their third party security contractors,
these functional requirements will be broken down into individual tasks and milestones will be set
with fixed timelines to complete the project in time such as;

• Facial authenticator setup

• Login/registration setup with hashing the passwords being saved in the back-end DB
• Wireframes leading to general UI development and configuration
• Testing of full login setup up to reaching the UI after a successful login
• Proper UI setup and development based on the wireframes
• UI section development as per the features to be created
• Password vault development
• Document vault development
• Securing the password vault
• Securing the document vault
• Testing both vaults for working functionality with the DB
• Individual feature development and integration into the UI
• Testing each feature after being developed
• Final testing of the full application
• Deployment

Technical Details

Following are some of the Technologies and libraries that I plan to implement during development
to achieve the desired purposes through the functional requirements, further details and changes
will be made in this technological specification up to the midpoint documentation:

1. Development: First starting with the development process I plan on using the SERN stack for
high scalability etc. This stack includes mySQL for databases, Expressjs as server framework
for Nodejs (Runtime Environment) implementation for the back-end development and
server setup and Reactjs library to develop the front end of the application using bootstrap
themes to beautify the front-end and make it more accessible and easier to use for the user.

2. Login & registration: For Login and registration purposes I plan on building a facial
recognition authenticator coupled with multifactor authentication. For the facial
authentication I plan on utilising a facial recognition model that will implement deep
learning. I will be using a flask server to contain the model and for communication between
the react login and the deep learning model. For building said flask server I will be using
important imports such as; tensorflowjs, NumPy(library for python programming – since
flask is a web-framework for python), JSON, also p5.js for capturing face images which I will
later use with the model for verification etc. For coupling this with multifactor
authentication I plan on utilising Auth0 guardian to implement multifactor authentication
which might include OTP’s, QR scans, push notifications and secure the login completely. For
securing the registration forms I plan on using formik and Yup, yup is a js schema builder for
value parsing and validation contained inside formik (js form library for React).

3. Password Encryption: For password management and encryption inside the application I
plan on using Cryptojs which is an external js library used to implement high level
cryptographic encryptions up to AES 256 bit encryption (Highest encryption bit level
provided by cryptojs) with initialisation vectors to separate (avoid same keys being used)
and encrypt & decrypt multiple password stored in the application (also considering bcrypt
for blowfish type encryption which has limited range (17 bytes)). This is optional and if time I
would look into parameterized encryption algorithms which provide the user with an option
to choose the type of encryption.

4. Document security: For document security I would be developing a file vault to simply store
documents under locking authentication and according to time and development
requirements I am also considering whether to store files through compression and
encryption, for which I plan on utilising Node streams(read and write streams) to take in
documents and compress them using external libraries like zlib as a part of gzip software
which can be used with the streams (file compression and decompression) and encrypting
them after using Cryptojs Or simply utilising JSONFile encryption packages available in Node
for file encryptions etc. For file uploading I will be using ReactDropzone.

5. Password analyzation: For password analyzation i.e., strength testing and distinctor for
checking uniqueness and password vulnerability I plan on using the Troy Hunt's pawned
Passwords API to cross-reference whether an existing saved password has been
compromised before or not and notify the user regarding its results. Then using RegEx
testing to test password strengths and determine their complexity etc. For the automatic
password generator I will be developing a password generator capable for options to
develop passwords tailored to user requirements. I plan on using react toastify for all
notifications regarding password analysing features.

Project Plan

Project plan including the Task list with the timeline mentioned in the Gantt chart provided:

1. Research wireframes and design ideas on how to structure the application UI to make it easy
and user friendly

2. Setup the react app in visual studio code
3. Build react login & registration page (front-end) demo using bootstrap
4. Build flask server using imports and try to implement the flask server and store facial

recognition model
5. Setting up the SQL database and integrating it with the front-end for login & registration
6. Integrating and developing the facial recognition authentication for login and registration
7. Adding 2FA on the login system to couple with facial authorisation and verifying its function
8. Unit testing the login & registration system to verify its purpose and functioning
9. Building a basic UI for the main application to include different sections of the application

according to functional requirements.
10. Setting up node and express for the back-end
11. Integrating the SQL database for node and express as well
12. Building the password vault/manager UI as a section of the application UI
13. Coding password vault logic and integrating it with the SQL database
14. Coding in the encryption and decryption logic
15. Completing the credential vault logic
16. Improving on credential vault UI and finalising its function
17. Unit testing the credential vault logic to verifying its functionality and storage capabilities
18. Developing the UI for password generator in the designated UI section
19. Writing the back-end login for the password generator (user tailored)
20. Integrating the back-end logic of the password generator with the designated UI section
21. Unit testing the password generator with its UI to verify functionality by trying to generate

multiple strong passwords and later on checking with the distintor and strength analyser
22. Building the password strength analyser user friendly UI (strength meter etc.) section in the

designated section of the main UI

23. Developing the logic code behind testing the strengths of passwords with building strength
meters in the front – end

24. Checking for and building the notification ability of the strength analyser
25. Integrating the full logic with the front-end user friendly UI
26. Unit testing the password strength analyser with multiple password types and passwords

generated from the user tailored password generator
27. Building the password distinctor UI section in the designated section of the main UI
28. Coding the back-end login utilising the Troy hunt API in the back-end to check password

compromised or not. With notification alert
29. Integrating the back-end login with the front-end UI section for the distinctor
30. Unit testing the distinctor for functionality verification using compromised and password

generator generated passwords.
31. Building a document vault UI in the designated section
32. Coding the back-end logic for a file/document uploader
33. Integrating the back-end logic with the SQL database to store files
34. Implementing way to secure the vault logic and hide/encrypt all files uploaded or

implementing a locking mechanism for the vault only to be opened with proper
authentication for security of documents

35. Integrating the back-end logic for file vault with the UI
36. Unit testing the file uploader and the document vault for security and functionality
37. Unit testing all developed functionality once again to make sure each function does as

intended and gives the desired outputs or stores with security
38. Integration testing the application to check once the application is fully integrated that all

functions work together
39. Verifying all non-functional and functional requirements accounted for in the project
40. Uploading project files to github for backup and reference
41. Finally researching the deployment platforms in depth to determine the best and most

suited deployment platform (under consideration for now – heroku, digital ocean and
netlify)

42. Successfully integrating the whole project and deploying it to the most suited platform
according to the steps of deployment

43. Testing deployed application for all functionality working according to intended purposes
and checking the deployment does not hinder any non-functional requirements of the
application

44. Creating full technical documentation report
45. Testing and Creating demo videos for the application
46. Project submission. May 8th

Testing
The testing plan for this application will include Unit testing each function and integration testing the
whole project application i.e.:

1. Login testing: Once the whole login system is setup it will be tested with multiple bogus user
accounts to verify its functioning, that includes testing the face recognition that will be
implemented in the login and register, the face recognition will be tested with actual users
and images to test out all possible vulnerabilities it might contain and to verify its function
according to its purpose and same will be done for the registration process. After the face
authentication is verified, the system will also be tested for multi factor authentication to
verify that the app does not allow a successful login until all external factors required for
login are properly authenticated which might include OTP’s, push notifications or QR code
verification.

2. Password encryption testing: After the password vault is manually coded, it will be tested
properly to check all saved passwords are highly encrypted and cannot be easily viewed,
accessed or exploited with simple brute force cracking algorithms or authentication
exploitation etc. The server/database side will also be check and verified to see none of the
passwords being saved can be viewed easily i.e., they are all encrypted in the back-end as
well.

3. Password generator testing: The password generator will be used to generate highly
complex passwords that satisfy most conditions required for a strong password to be
generated, these passwords will be tested across multiple strength requirements of other
websites and applications to determine all passwords generated are strong, complex and
secure to use i.e., they haven’t been compromised. They will be checked on the passwords
analyser being built with the application to check their uniqueness against the troy hunt
database and determine their strength using the strength analyser.

4. Password analyser testing: Once the password distinctor and strength analysers are coded,
they will be tested using the password generator generated random passwords which are
supposed to be unique and complex, simple passwords will also be used for testing to verify
the system does catch passwords that are too weak or have already been compromised in
the have I been pawned database.

5. Document vault testing: After successfully building the document vault it will be tested to
verify its security and accessibility to only properly authenticated users. All possible
scenarios of accessing the documents will be implemented to ensure the document cannot
be viewed or accessed until the user is properly authenticated and possesses the right
credentials for the vault as well.

6. Integration testing: After all unit testing methods have been accounted for and it is
confirmed that all functions are secure and properly perform their duties the application as a
whole will be tested together in sequence of all functions to verify that once integrated the
application performs all its functions and that too while maintaining its security. The same
integrations tests will also be performed once the application is deployed and it is confirmed
that even after deployment the application does not get buggy or none of its functions are
affected by its deployment.

Finally after all testing, the application will be handed to friends and family for usage and review, to
discover any vulnerability or possible threat that can be used for exploitation and will be reviewed
and fixed.

Journal Entries

December

Supervision & Reflection Template

Student Name Shaurya

Student Number X18138284

Course BSHC-4 (Cyber-security)

Month:

What?

Reflect on what has happened in your project this month?

For this month of the project I started on with changing the styles and layout of the existing

application and moved on to conducting research on how the Have I been Pawned API can be

utilised, what its exact function is and evaluating its actual worth for the application. Then I

moved onto its implementation testing and integration with the current existing application. After

Which I was responsible for making the midpoint presentation and preparing the mid-point

documentation for the project.

So What?

Consider what that meant for your project progress. What were your successes? What challenges
still remain?

This was a major feat for the project progress since I had a functioning Facial login which could be

utilised to access an important feature of the application and it all worked in conjunction i.e., each

part of the application was integrated with each other to work as one application. Implementing

the Have I been Pawned API was also a challenge since I had to figure out a method of

implementation that could easily be integrated with the rest of the application. Once a method of

implementation was found it was necessary to be tested and verify all API calls working. It

required a basic front-end and finally integration with the current application so it could only be

accessed after successfully registering and logging into the application. As a result I got a working

prototype of the application which had a successful facial scanner registration and login, and one

core feature of the application which could only be accessed after the login was successful after

which I prepared the Mid-point documentation and presentation with the existing prototype.

Challenges still remain as to how I plan to integrate this prototype with the main feature suite of

the application.

Now What?

What can you do to address outstanding challenges?

There are major outstanding challenges that still remain that include a secure login registration

separate from this which also require the building of the main feature suite and further

integration of this prototype with the main feature suite. The multifactor research and

implementation and the integration of the planned parts ahead with this working prototype is

going to be a challenge that I will be addressing ahead. For this I first plan on developing the

feature suite and focusing on its integration after which I plan on securing the login and making

use of the prototype already built.

Apprentice Signature Shaurya

November

Supervision & Reflection Template

Student Name Shaurya Kumar

Student Number X18138284

Course Bsc(Hons) in Computing

Month:

What?

Reflect on what has happened in your project this month?

This month I was working on implementing the back-end for Facial recognition login and
registration feature for my application.

So What?

Consider what that meant for your project progress. What were your successes? What challenges
still remain?

Initially I had to research all technologies required to implement this feature and had to re-
examine my approach towards this feature i.e., change it. Initially I planned on utilising a Face-net

machine learning model in the back-end with python and tensorflow with keras extensions. But
through the research and implementation progress I decided to use another approach to
implement this feature since there weren’t clear defined constraints regarding databases for the
previous approach, I decided to use the face_recognition extension of the OpenCV extension for
python in my back-end which is also stored in a flask server in the back-end and through that, click
a picture of the user’s face, convert/Encode it into 128 bit measurement vector and then store
this measurement vector in a SQL database with the name entered by the user for successful
registration and then implement the same extension and implementation to compare user face
measurements and name from the database to confirm the user’s trying to login. Through
rigorous implementation and debugging practises I found it wasn’t entirely easy to implement this
feature since it required extensions and import which had to be individually compiled using visual
studio separately to be installed on the system these included the dlib library and the
face_recognition library import, all other imports required direct installations in the system to be
used like numpy, cv2 from opencv etc. But I have got the back-end system server running and plan
to build a React JS front-end to connect this back-end too and test it out on a browser as an
integrated feature. I also plan on configuring the back server to show the camera frame while
taking a picture of the user for making it visually transparent for the user while they try to register
since the camera frame for now doesn’t show while taking the user’s picture for registration etc.

Now What?

What can you do to address outstanding challenges?

The outstanding challenges regarding this feature are to implement a front-end using React
(creating react web app front-end) to be integrated with this back-end and connected to the flask
server so the feature can be tested on a web browser with complete functioning by setting up all
the connecting and navigating routes accordingly and can be further debugged accordingly. The
back-end further requires configuration to display the camera frame while taking a picture of the
user for registration and then shown during login to verify the user’s registration.

Student Signature Shaurya

January

Supervision & Reflection Template

Student Name Shaurya

Student Number X18138284

Course BSHC-4 (Cyber-security)

Month:

What?

Reflect on what has happened in your project this month?

For this month of the project I have focused on working with the password managerial part of the
application which includes research on the rest of the login registration required, methods of
implementation and back-end options including node, express or server less backends and
database options. Further implementation terchniques regarding the password manager feature

itself using crypto js for encryption and decryption.

So What?

Consider what that meant for your project progress. What were your successes? What challenges
still remain?

The project progress included successful research material and actual implementation
experimentation of various techniques to determine and finalise which technique and
implementation is to be utilised. Currently experimenting with a server-less back-end to serve all
api requests automatically and using third party application to pass on the login registration to
and implement more secure ways ahead. Then try and utilise these login sessions to utilise and
connect to the application dashboard. Progress also included basic UI development including its
structure etc., and structuring routes and pages according to other features that are to be
developed. The final progress update for the month included experimental implementations of
third party login processes.

Now What?

What can you do to address outstanding challenges?

Since the current progress is still underway, the outstanding challenges include finalising the
managing feature according to user sessions and database implementation and connection
regarding the feature itself. Then researching ways of securing the login registration process for
secure authentication. And finalising the managing feature with implementing security for the
passwords.

Apprentice Signature Shaurya

February

Supervision & Reflection Template

Student Name Shaurya Kumar

Student Number X18138284

Course Bsc(Hons) in Computing

Month:

What?

Reflect on what has happened in your project this month?

February was one of the most Important months for the development of the project. It involved
th development of the password manager itself, each functionality of the password manager
including Add password, Edit Password, Delete Password, Retrieve Password By User, retrieve All
passwords. This also included the implementation of the Fauna Database API which was chosen
over GraphQL and SQL, due to its amazing feature and security suite. Fauna DB was also chosen
due its compatibility with Auth0 and Next.js at the same time was very efficient. Fauna Database
with the password manager was finished this month. The password manager also included the
setup of the Fauna DB models file which was the database connecting file, it also included the
development of the password encryptor file which was used for password encryption utilising the
crypto module and AES 256 bit encryption.

So What?

Consider what that meant for your project progress. What were your successes? What challenges
still remain?

Since the Password manager is one of the main features of the application, this month’s
development was a milestone completed. A lot of details were required to be developed along
with the password manager as well. These included the dynamic Icon updating and integration
with Auth0 as well. This has setup a foundation for all other features to be developed around it.
Some major challenges still remain such as integrating the facial login authenticator with this
application. Testing, implementation of a multifactor login etc.

Now What?

What can you do to address outstanding challenges?

The plan for the next month is to improve this password manager first, since it still requires input
sanitation, proper authentication protection, testing of the functionality. User session
development with auth0 and its integration with the password manager, routing for all other
features from the feature suite of the application etc. To address some of these challenges;
research regarding potential integration methods, different ways and means of multifactor
implementation, libraries that could be used for data validation, secure routing through
authentication and session management etc. are under way.

Student Signature Shaurya

March

Supervision & Reflection Template

Student Name Shaurya Kumar

Student Number X18138284

Course Bsc(Hons) in Computing

Month:

What?

Reflect on what has happened in your project this month?

This month, the project involved implementation and testing of the main password manager UI

interface integrated with the Fauna DB and the third party secure login registration. The basic

layout of the application foundation was dynamically built depending on the states, built with a

proper securely routed Login registration process tracking user session with cookies with third

party application security and leading to the actual password manager UI. The password manager

UI Itself is dynamic and tracks the user, it also tracks whether the user verified the email their

using to login. The password extracts the user details from the Fauna DB and keeps a track of all

user actions. Password can securely be saved using this UI. Each password detects the website for

which the account password is being saved and dynamically updates the index icons which make

it easier to recognize which password is saved. The routes for all other features have been set but

are under development. Each modal form component used in the manager UI is properly Input

sanitised and validated to maximise security and avoid forgery and unbound errors. The manager

provides full functionality at the moment as well including CRUD and peek preview.

So What?

Consider what that meant for your project progress. What were your successes? What challenges
still remain?

Major progress regarding the project was done since the foundation of the UI with the main

password manager was setup, security surrounding the manager as well as the UI access is also

underway. And routes for consequent functionality development are ready. Successes were the

development of the main manager itself, Input sanitation and validation setup, proper secure

login registration routes etc. Challenges faced during development included integrating Fauna

with third party security coverage and access, linking fauna, the application and third party

security, dynamic routing, Securing routes, dynamic user tracking and proper input validation and

sanitation. Further challenges include multi factor implementation integration, further

functionality development, TDD style of development practise, further feature integration, UI

cleaning etc.

Now What?

What can you do to address outstanding challenges?

Addressing the outstanding challenges requires further research and testing the on-going
development with bogus information, user review and improvement, other functionality
integration and unit testing, for addressing multifactor setup; other factors and their feasibility
will be experimented with etc.

Student Signature Shaurya

April

Supervision & Reflection Template

Student Name Shaurya Kumar

Student Number X18138284

Course Bsc(Hons) in Computing

Month:

What?

Reflect on what has happened in your project this month?

The Development in the month of April has pulled through with the integration for the whole
application. Such as completed user authentication, multifactor implementation, Server side data
validation in the flask back-end as well in addition to client side input data validation, API and
route security. Some technologies were also experimented with. The back-end database
implementation for facial authentication was changed to SQLite3 from simple SQL due to efficient
flexibility. An Idle timer feature was developed in the application as well. All other features were
developed in the consequent routes. Security principles and pernicious kingdoms were
incorporated into the application to improve on security. The application is in its final stages due
to the integration of facial authentication and validation being successful. The development
during this month has been drastic as to the previous month’s progress due to the integration of
all parts of the application coming together. Also due to the improvements in security because of
the incorporation of security principles and measures against the pernicious kingdom
vulnerabilities in the application.

So What?

Consider what that meant for your project progress. What were your successes? What challenges

still remain?

All the progress during this month has contributed towards bringing the application into its final
stages. There are still tweaks required with all other features in the feature suite, there is also
plan to alter the password manager for security improvement benefit in motion. The facial
authentication validation has been integrated into the application but still needs to be adjusted
and fixed. Quite a few challenges still remain. The application has also been experimented with
newer technologies like FaceAPi.js to render live facial imprints on Webcam footage.

Now What?

What can you do to address outstanding challenges?

Outstanding challenges that remain now include proper implementation of error and exception
handling in the client server and back-end. Further thorough testing of the application remains.
Proper implementation of the facial ID authentication remains, It has been integrated but needs
to be implemented correctly. The testing framework that has been decided is Cypress which is a
fully automated and wide flexibility inclusive testing framework for java script applications which
involves a feature suite to conduct end to end, integration and unit testing in the application.
Research into a better security model which does not require code alteration is also underway.
The application should be production ready before the deadline with a strongly integrated
security framework.

Student Signature Shaurya

	Executive Summary
	Introduction
	Background
	Technologies
	Structure

	Requirement Procurement and Analysis
	Functional Requirements analysis
	1. Requirement: Secure Login registration
	2. Requirement: Password management
	3. Requirement: Password Generator
	4. Requirement: Password distinctor
	5. Requirement: Password strength analyser
	6. Requirement: Facial registration (updated)

	Non-Functional Requirements analysis

	Project Plan and Analysis
	Design and Architecture
	ERD

	Implementation
	Graphical User Interface
	Final Technology, requirements and Implementation
	Final Technology stack
	Final Functional requirement completion
	More Interesting Code snippets

	Final Screenshots of application and GUI
	Security Focused Implementation in the application
	Security Principles and Pernicious kingdoms incorporation
	Causes of changes in technology stack and implementation
	Testing & Evaluation
	Future Development or research
	Conclusion
	References
	Appendices
	Project Proposal
	Objectives
	Background
	State of the Art
	Technical Approach
	Technical Details
	Project Plan
	Testing

	Journal Entries
	December
	November
	January
	February
	March
	April

