

Compiled by National College of Ireland, Mathematics Support Working Group

Mr Jonathan Lambert, Mr Michael Bradford, Mr John McKeever

Contents

Important Symbols	3
Set Theory Operations	4
Number Systems	5
Boolean Algebra Identities	6
Propositional and Predicate Logic	7
Logic Gates	8
Ouadratic Roots	8

IMPORTANT SYMBOLS

Terms	Meaning	
8	A collection of objects	
ΑΔΒ	Objects that belong to A or B but not their intersection Symmetric difference	
$A \cap B^c$	Set Difference	
$\wp(A)$	Power Set of A All subsets of A	
(a, b)	Ordered Pair or Couple Collection of two elements	
A×B	Cartesian Product Set of all ordered pairs from A to B	
ø	Empty Set	
U	Universal Set Set of all possible values	
aRb	Equivalence relation a and b of a set are equivalent with respect to a relation R	
f o g	f after g or f composed with g	

SET THEORY OPERATIONS

Terms	Meaning
$x \in A$	$oldsymbol{x}$ is an element of the set $oldsymbol{A}$
<i>x</i> ∉ <i>A</i>	\boldsymbol{x} is not an element of the set \boldsymbol{A}
A = B	Sets <i>A</i> and <i>B</i> are equal
<i>A</i> ⊆ B	<i>A</i> is a subset of <i>B</i>
<i>A</i> ⊈ B	A is not a subset of B
$A - B$ alternatively $A \setminus B$	Elements of A not in B Difference of B in A
℘(A)	Power set of <i>A</i>

Terms	Meaning	
<i>A</i> ⊂ B	A is a proper subset of B	
<i>A</i> ⊄ B	A is not a proper subset of B	
<i>A</i> ∪ B	A union B	
<i>A</i> ∩ B	A intersection B	
$m{A} \oplus m{B}$ alternatively $m{A} \Delta m{B}$	Symmetric difference of A and B	
A^{\prime} alternatively A^{c}	Compliment of A	
#A alternatively	Cardinality of A	

NUMBER SYSTEMS

Number System	Definition
Natural Numbers	$\mathbb{N} = \{1, 2, 3, \dots\}$
Integer Numbers	$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots\}$
Rational Numbers	$\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z} \ and \ b \neq 0 \right\}$
Real Numbers	$\mathbb{R} = \{ \boldsymbol{x} : -\infty < \boldsymbol{x} < +\infty \}$
Complex Numbers	$\mathbb{C} = \left\{ a + bi : a, b \in \mathbb{R}, i = \sqrt{-1} \right\}$

BOOLEAN ALGEBRA IDENTITIES

Terms	Boolean OR	Boolean AND
Commutative	A+B=B+A	A.B = B.A
Associative	(A+B)+C=A+(B+C)	(A.B).C = A.(B.C)
Distributive	A + (B.C) = (A + B).(A + C)	A.(B+C) = (A.B) + (A.C)
Identity	A + 0 = A	A.1 = A
Idempotent	A + A = A	A.A = A
Universal Bound	A+1=1	A.0=0
Negation	$A + \overline{A} = 1$	$A.\overline{A}=0$
Absorption	A + (A.B) = A	$A.\left(A+B\right)=A$
DeMorgan's Law	$\overline{(A+B)}=\overline{A}.\overline{B}$	$\overline{(A.B)} = \overline{A} + \overline{B}$
Complements of 1 and 0	$\overline{1} = 0$	$\overline{0} = 1$
Double Negation	$\overline{\overline{A}} = A$	

PROPOSITIONAL AND PREDICATE LOGIC

Terms & Operators	Meaning
p,q,r	Propositions
$ar{p}$	Negation
۸	Logical AND
V	Logical OR
⇒	Implication
⇔ ≡ ↔	Equivalence
A	Universal Quantification: "for all"
3	Existential Quantification: "there exists"
P(x)	Predicate or Propositional Function

LOGIC GATES

Meaning	Symbolic Representation
The not gate	
The or gate	a+b
The and gate	a.b

QUADRATIC ROOTS

Roots of a Quadratic equation $ax^2+bx+c=0$ its roots are given by Roots of a Quadratic Equation $x=\frac{-b\,\pm\sqrt{b^2-4ac}}{2a}$

NATIONAL COLLEGE OF IRELAND MAYOR STREET, IFSC, DUBLIN 1 TELEPHONE: 01 449 8624 WEB: HTTPS://MYNCISTUDENT.NCIRL.IE