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Executive Summary 
This project examines the performance of Convolutional Neural Networks and Capsule 
Networks in the problem domain of classifying exoplanet candidates using light fluctuation 
readings from NASA telescope data. NASA telescopes record light intensity readings from 
observed stars, if a planet is orbiting one of these stars on the same visual plane as the 
telescope, an identifiable dip in light intensity is created. This type of reading is known as a 
transit event and can take different forms depending on the number and size of planets 
orbiting a particular star. This method of detection makes up 76.82% of the 5,030 
exoplanets discovered. 

Convolutional Neural Networks were identified as the state of the art machine learning 
model used for this type of classification problem, and although Capsule Networks have 
primarily been designed for computer vision tasks and are a relatively new concept, the 
project aimed to test their ability in this problem domain. 

Data retrieved on confirmed exoplanets as well as false positive candidates from the 
Mikulski Archive for Space Telescopes was used in the analysis and the results showed the 
Capsule Network performed better in terms of accuracy with 0.96 compared to the 
Convolutional Neural Network at 0.95. The Capsule Network also performed better in 
precision with a 1.0 score while the Convolutional Neural Network returned 0.91. The 
Convolutional Neural Network scored better in recall though with 0.90 versus the Capsule 
Network at 0.85. 

Comparing AUC scores, the Convolutional Neural Network scored best with an AUC of 0.937 
while the Capsule Network scored 0.928. Conversely, comparing F1 scores of the models 
showed that Capsule Network scored best with 0.92 versus the Convolutional Neural 
Networks score of 0.90. A McNemar’s statistical test returned a p-value of 0.185 concluding 
that there was no statistical difference between the proportion of errors between both 
models. 
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1.0 Introduction 
 

1.1. Background 
Space exploration has always been at the forefront in displaying the capabilities of the 
human race and has proven to be invaluable to our lives here on Earth. Some inventions 
used in our everyday lives started as projects to accommodate space travel. NASA Jet 
propulsion labs (JPL) worked on making cameras small enough to fit on space craft in the 
1990’s and as a result 1/3 of all cameras now contain the technology invented, enabling 
things like the camera phone. The JPL also worked on digital imaging technologies which 
in turn facilitated the invention of the CAT scan (NASA, 2016). These inventions are only 
to name a few. 

When big data is mentioned, generally the first thing to come to mind is the internet and 
the massive amounts of data created every day that can be analysed to gather 
knowledge about human behaviour, such as risk assessment, social media post 
interactions and general consumer behaviour. On starting this project, I wanted to be 
able to explore data that didn’t stem from a business perspective and was founded in 
personal interests. I have a wide variety of hobbies with amateur astrophotography 
being one of them and the mention of the upcoming James Webb telescope at the time 
of this project’s inception excited me.  

On researching more about the James Webb telescope I found that data was publicly 
available for other NASA missions such as Kepler and TESS , this along with NASAs 
recently discovered 301 new exoplanets using its ExoMiner Deep Learning model 
(Valizadegan, et al., 2021) gave me the idea that I wanted to put what I had learned over 
the past four years to the test and explore these data sets using machine learning.  

These new discoveries by NASA and the launch of the James Webb telescope paired with 
the rise in research possibilities for machine learning applications is what eventually 
brought me to my project idea.  

The idea set out to answer the question: When it comes to machine learning techniques 
used for searching for exoplanets, can newer implementations such as Capsule 
Networks outperform more mature established implementations such as Convolutional 
Neural Networks.   

Although Capsule Networks have so far been used mainly for computer vision tasks 
could this type of neural network be adjusted to find exoplanets as effectively as 
Convolutional Neural Networks have been to date. 
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1.2. Aims 
 

The project sets out to analyse the performance of Capsule Networks compared to 
Convolutional Neural Networks in the classification of exoplanet candidates. Given that 
Capsule Networks have displayed performance improvements over Convolutional 
Networks in computer vision tasks such as object classification, the aim of this project is 
to apply a Capsule Network to a task in a domain outside of computer vision where 
Convolutional Neural Networks have been used with success, testing their relative 
performance. The null hypothesis in this case is that Capsule Networks display a 
statistically significant improvement.  

To accomplish this, several smaller aims need to be met, first data on confirmed 
exoplanets and confirmed false positives need to be sourced. This data is publicly 
available through the Mikulski Archive for Space Telescopes (MAST). 

Using the star designations from the MAST datasets, the mission database can be 
queried to retrieve the light curve information for each star where it can be processed 
and paired with its official classification of either a confirmed planet or a false positive. 
Once the data is paired it can be processed and labelled to be used as train and test data 
for the machine learning models. 

Two machine learning models will then need to be created and calibrated on the same 
training data, then tested on test data measuring their performance in accuracy, 
precision, recall, F1 score, and AUC. The same train and test data is used on each model 
in line with the assumptions of McNemar’s test which will be used to assess the level of 
disagreement between the two models. 

The Convolutional Neural Network is to be built with the same architecture as presented 
in the paper “Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain 
around Kepler-80 and an Eighth Planet around Kepler-90” (Vanderburg & Shallue, 2018) 
as from other papers studied this particular architecture has shown the most success 
with 95.4% Accuracy and a 98.5 AUC.  

For the Capsule Network, it was originally discussed and presented in terms of computer 
vision using three dimensional input (Hinton, et al., 2017). Following the principles and 
the mathematics behind its original implementation the Capsule Network will need to 
be created and adjusted to be able to deal with one dimensional data.   

With the performance information of the two models as well as the results of a 
McNemar’s’ test a conclusion will be reached on whether the null hypothesis is failed to 
be rejected or not. A critical review and recommendations on each model is also to be 
presented along with any further work and considerations. 
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1.3. Technology 
 

1.3.1 Programming Language Considerations 
The primary language used in this project is Python, with a mix of IDEs under the 
anaconda framework used throughout the project; including Juptyer notebook at the 
exploratory stage and Spyder for building the scripts necessary to retrieve the data and 
build the models for analysis.  

The R programming language was considered as part of the project proposal but not 
used. During the beginning research stage of the project to determine the best suited 
technologies, the two programming languages that stood out were Python and R. After 
researching the available packages that would possibly be suitable to the project and 
attempting smaller projects from “Comparative Approaches to Using R and Python for 
Statistical Data Analysis” (Sarmento & Costa, 2017) , Python was subjectively the easier 
language to use along with easier to understand IDE’s (Spyder IDE and Jupyter 
notebook). While the documentation for R is extensive the documentation for Python 
packages such as Pandas, Numpy, TensorFlow, Keras and Scikit Learn are more 
accessible and easier to follow. Books like “Hands-On Convolutional Neural Networks 
with TensorFlow” (Zafar, et al., 2018) are also readily available and a useful resource.  

Other deciding factors for the choice of Python over R was the availability in each 
language of the Lightkurve library for data retrieval and initial processing. The LightKurve 
package is built on top of a Python library called AstroPy and specifically created for the 
initial processing of the type of data to be used. For the building of the custom Capsule 
Network, TensorFlow in Python also suited the project objectives better than R. 

1.3.2 Data Storage Solution Considerations 
A possible database solution was investigated for storing data after the retrieval process, 
but as all the data would be contained to one table after pre-processing it was decided 
that a database added un-necessary complexity to the project without adding any value 
to the analysis and goals of the project, CSV file format was chosen instead.  

1.3.3 Data Mining Considerations 
In the proposal stages of the project, it was considered that for the Data mining 
implementations of the project the model training and testing would be carried out both 
locally and using cloud processing, Saturn Cloud was chosen at this stage as the prime 
candidate due to the available processing power on its free student tier.  

In setting up the technologies needed to conduct the testing locally, additional drivers 
from the cudNN library as well as software from NVIDIA’s CUDA toolkit were installed on 
the local machine to enable the use of GPU processing when training and testing the 
models. After initial testing the cloud solution was deemed unnecessary due to the 
performance afforded by the cudNN drivers and CUDA toolkit software using the local 
GPU.  
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Model Selection 
Convolutional Neural Networks 
The first choice during model selection was a Convolutional Neural Network (CNN) as its 
implementation has demonstrated ground-breaking results in numerous fields where 
pattern recognition is applied and can be considered the state of the art measure. 
(Albawi, et al., 2017). In context of the problem domain, research in exoplanet 
classification, they have shown high accuracy and precision is achievable, for example 
“97% average precision and 92% accuracy on planets in two-class model” (Osborn, et al., 
2019) was achievable in one research paper found. 95.4% Accuracy and a 98.5 AUC in 
another (Vanderburg & Shallue, 2018). NASA itself implements a Deep Learning Network 
called ExoMiner which recently discovered 301 additional exoplanets (Valizadegan, et 
al., 2021) although the details of its architecture are not publicly known. CNNs are a type 
of Deep Learning where the name is derived from the mathematical term of the linear 
operation between matrixes known as convolutional. CNNs have multiple layers. The 
input, convolutional, non-linearity, pooling, and fully connected layers. These, along with 
the output layer make up the basic architecture of a CNN. 

 

Figure 1: Diagram of CNN (https://cdn-images-1.medium.com/max/1600/1*uAeANQIOQPqWZnnuH-VEyw.jpeg) 

CNN implementations have many configurations that differ from the diagram above. 
With the above visualisation as a guide, a basic description of how the CNN returns an 
output is, non-linearity occurs between the convolution and pooling layers which is used 
to adjust, through training the model over a certain number of epochs, the generated 
output at a given a threshold. Example output activation functions that are applied are 
sigmoid and ReLu. 

 

Figure 2: Examples of non-linearity functions (https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8308186) 

https://cdn-images-1.medium.com/max/1600/1*uAeANQIOQPqWZnnuH-VEyw.jpeg
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8308186
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As this project involves binary classification and the probability of such a classification, 
the activation method to be used for the output is sigmoid where outputs over a given 
threshold are classified as true.  

Capsule Networks 
It is the aim of this project to test the hypothesis that an implementation of a Capsule 
Network can display improvements on CNNs in classifying exoplanet candidates, as they 
have displayed improvements in other computer vision tasks involving feature 
recognition and classification (Hinton, et al., 2017) . Therefore, Capsule Networks were 
the second selection for models used.  

The improvements Capsule Networks display over CNN’s is in part due to the difference 
in how the non-linearity of the network is applied. One key difference between CNNs’ 
and Capsule Networks is that in a CNN a single activation function is used as output, but 
in Capsule Networks the activation function is based on comparisons between multiple 
incoming predictions by where a Capsule Network, using convolutional capsules can 
share knowledge by tying the weights of feature detectors together. This is known as 
routing by agreement and enables a Capsule Network to subdivide the features of an 
image into independent structures, regardless of their orientation, and make 
probabilistic determinations of the whole based on the sum of the features.  

 

  

Figure 3 Representation of CapsNet (https://openreview.net/pdf?id=HJWLfGWRb) 

 

1.3.4 Graphical Output Considerations 
In the initial stages of the proposal, considerations for graphical output was between 
Tableau and Power-Bi but as the project moved from proposal to implementation these 
technologies provided no extra benefit in the analysis to be carried out between two 
Machine Learning models, and it was decided that any graphical output could be done 
inline using the Python libraries Matplotlib and Seaborn. 

 

1.3.5 Other Considerations 
For other ancillary tasks such as reporting, and documentation Microsoft Word and 
Excel are used. CSV files for testing are stored locally and can be viewed with excel, and 
reports are written with Microsoft Word. For version control GitHub is used. 

https://openreview.net/pdf?id=HJWLfGWRb
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1.3.6 Technology Details 
 

Below is a table of technologies, software packages, Python libraries and system 
requirements used in the project. 

 

Software Technologies Used 
IDE Usage 
Jupyter notebook Data Exploration 
Spyder Data Retrieval, Data Processing, Model Building 
  
Non IDE Usage 
cudNN Drivers for GPU usage of TensorFlow 
CUDA toolkit GPU usage of TensorFlow 

 

Python Libraries & Packages 
Package Usage 
Pandas Data Manipulation, API connection 
Numpy Data manipulation, feature creation. 
TQDM Progress outputs to console 
Time Sleep timer on http requests 
Glob Directory and file navigation. 
OS Memory Management 
Shutil Memory Management 
LightKurve Data collection from MAST, light curve processing 
Matplotlib Data visualisation and file export 
Seaborn Data visualisation and file export 
SciPy Gaussian filtering 
TensorFlow Model creation and custom layer creation in 

Capsule Network 
Keras Framework for TensorFlow model building 
Scikit-Learn Data stratification, processing, and model metrics 

 

System Details 
Type Details 
CPU AMD Ryzen 5 3600x 
RAM 128GB @ 3200 MHz 
GPU RTX 2060 Super 16GB (modified)  
Operating System Windows 10 64bit 
Connectivity Up: 123.20 Mbps – Down: 48.58 Mbps 
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1.4. Structure 
Providing a brief overview of the structure of the project document and a description of 
what is discussed in each section of the report. 

 

 

Data Details of the data set used. How it was sourced and 
retrieved. Exploratory analysis on the initial dataset as well 
as the basic pre-processing steps involved and how the 
labelled dataset for classification was created.  

Methodology What methodology was used for the project. How each step 
of the methodology chosen applied to the project, including 
a summary of each step such as data transformation and 
feature selection processes. Describing how the project went 
from the raw imported data to the labelled classification 
data to model creation, implementation, output, and 
evaluation.   

Implementation Describing the models, their implementation and algorithms 
used in the data mining process along with how they were 
applied in each model, including any additional processing 
involved of the data before running each model.  

Results Presenting the results of the model analysis and 
performance metrics including statistical tests performed, 
prediction accuracy, recall and precision scores. F1 score, 
AUC for each model and the results of McNemar’s tests. 

Conclusion A summary of the main hypothesis laid out in the project and 
the results of the analysis along with insights gathered 
throughout the process and a critical evaluation of the 
project, its outcomes, and the processes to achieve those 
outcomes. 

Further development 
or research 

Future research that could be carried out that would add 
substance to the research already carried out in the project 
if time and resources where available. 
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2.0 Data 
The following section provides an overview of the datasets, the sources, the process of data 
collection, a description of each dataset, their features, and initial exploratory analysis of 
the data.  

 

2.1.1 Initial Data Sources and Collection 
The initial data sources for this project are from the Kepler telescope mission and are 
accessed as part of several data products the Mikulski Archive for Space Telescopes (MAST) 
maintains. Confirmed exoplanets and Kepler objects of interest are provided by MAST and is 
collected through API requests. The API requests used are predesigned queries supplied in 
their documentation (Mikilski Archove for Space Telescopes, 2021).  

Current exoplanets are retrieved through the table access protocol. 
(https://exoplanetarchive.ipac.caltech.edu/docs/TAP/usingTAP.html ).  

While the Kepler Objects of interest are retrieved through the standard API                                 
(https://exoplanetarchive.ipac.caltech.edu/docs/program_interfaces.html#koi) 

 

2.1 Initial Data 
Details of the initial MAST data download needed for querying the mission information for 
each star. This data was explored and analysed for possible features that could provide any 
additional value to the exoplanet classification as well as extracting features for use in 
downloading mission data through the LightKurve API and labelling of training and test data. 

 

Dataset Source Format Details Information 
Confirmed Exoplanet 
Listings 

MAST API 
Query 

CSV 4884 Rows 
373 Columns 

Details  
on the exoplanet such 
as the star name it 
orbits, the star mass, 
brightness, and the 
orbital period of the 
confirmed exoplanet 

Kepler Objects of 
Interest 

MAST API 
Query 

CSV 9564 Rows 
50 Columns 

Details on the objects of 
interest such as the 
star, the orbital period 
of the object, 
disposition, and Kepler 
ID 

https://exoplanetarchive.ipac.caltech.edu/docs/TAP/usingTAP.html
https://exoplanetarchive.ipac.caltech.edu/docs/program_interfaces.html#koi
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2.1.2 Initial Data Details 
Confirmed Exoplanet Listings 

This dataset contains 373 columns of information, a descriptor from MAST on the contents 
of each column can be viewed in XML format here. From the 373 initial columns 22 columns 
are used as part of this project to gather some insights, domain knowledge and possibly use 
features as part of the dataset for the machine learning models. 

 Full description of the used columns: 

Name Type Description 
pl_name Char The planet name 

pl_letter Char The planet lettering system (single alphabetical character) 

hostname Char The host (Star) name for the planet discovered 

tic_id Char The target identification number, for use downloading the specific 
Pixel Image data 

disc_pubdate Char When the discovered planet was published 

disc_year int The year the planet was discovered 

discoverymethod Char The method used to discover the planet, Transit Microlensing etc 

disc_locale Char From where the discovery was made, from the ground or from 
space 

disc_facility Char The facility that was in charge of the instrument that made the 
discovery 

disc_instrument Char The type of instrument used, For Kepler it is the Kepler CCD Array 

disc_telescope Char The name of the telescope, or camera that made the discovery 

pl_orbper double Is the orbital period of the planet discovered 

pl_eqt double The equilibrium temperature (Kelvin) of the planet discovered 

pl_dens double The density (g/cm3) of the planet discovered 

pl_trandur double The transit duration in days 

pl_radj double The discovered planets Jupiter Radius 

pl_rade double The discovered planets Earth Radius 

pl_bmasse double The discovered planets Earth mass (Planet Mass*sin(i)/sin(i)) 

st_age double The stellar age in Gigayear (Gyr) 

st_mass double The Stellar Mass (Solar Mass) 

tran_flag int Detected by Transits Flag 

sy_dist double The system distance in (pc) Parsec approx. 3.26 light-years 
 

 

https://exoplanetarchive.ipac.caltech.edu/TAP/tables
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Kepler Objects of Interest 

This dataset contains 9654 rows and 50 columns, after reading the full documentation it was 
determined that five columns provided information possibly relevant to the project and 
were selected for further exploration.  

These columns of interest are used to check for data in-balance for the machine learning 
model as well as basic statistics in regard to what will be outputted for the model 
classifications. These columns are paired with the confirmed planet data by the Kepler name 
and Kepler ID to identify targets from the particular Kepler mission and transit detection 
method used in this project. 

 

Full description of the used columns: 

Name Type Description 

kepid Int Target identification number, as listed in the Kepler 
Input Catalogue (KIC).  
The KIC was derived from a ground-based imaging 
survey of the Kepler field  
conducted prior to launch. 

kepler_name Char Kepler number name in the form "Kepler-N," plus a 
lower-case letter, 

koi_score Double A value between 0 and 1 that indicates the confidence in 
the KOI disposition. 
For CANDIDATEs, a higher value indicates more 
confidence in its disposition,  
while for FALSE POSITIVEs, a higher value indicates less 
confidence in that disposition. 

koi_disposition Char The category of this KOI from the Exoplanet Archive. 
Current values are CANDIDATE,  
FALSE POSITIVE, NOT DISPOSITIONED or CONFIRMED. All 
KOIs marked as CONFIRMED are also  
listed in the Exoplanet Archive Confirmed Planet table 

koi_period double The interval between consecutive planetary transits 
(days) 

 

 

An initial exploration was then carried out on the two data sets to both gain domain 
knowledge and determine if any additional features could be used as part of the 
classification implementation.  
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2.1.3 Initial Exploratory Analysis 

Kepler Confirmed Exoplanets 

The Kepler confirmed exoplanets file was downloaded through the MAST API, it provides 
details on the exoplanet such as the star name it orbits, the star mass, brightness, and the 
orbital period of the confirmed exoplanet. 

The analysis looks briefly at: 

• The Confirmed Planets dataset being used. 
• The main features of the dataset 
• If any of the features could be included in the data for classification. 

From descriptions in the data documentation 22 columns were chosen from the 373 
available columns to determine if they may be useful in the classification models. 

 

 

Figure 4: datatypes for the 22 chosen columns 
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Discovery Methods & Discovery Telescopes 

These two attributes are checked to see the percentages of each discovery type and what 
type of telescope (instrument) was used to make the detection. 

 

Figure 5: Telescope and detection method % 

 

The Kepler telescope discovered 64.5% of the confirmed planets in the dataset with a 
discovery method of Transit. Missions involving this telescope will be the focus of the 
machine learning aspect of the project. 

Transit discovery method itself makes up 76.82% of all discovered exoplanets and is shown 
to be the most successful method of detection so far. The transit method paired with the 
Kepler telescope is the main data source for this projects machine learning implementation. 

 

 

Figure 6 Detection Method % 
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When looking for just planets that were detected as part of the Kepler mission (not K2, the 
Kepler Mission and Telescope combination has discovered 54.73% of all exoplanets in the 
MAST archives and will be the focus of the rest of the exploratory analysis.  

 

 

Figure 7: Mission detection % 

 

Discovery Years 

Kepler launched on March 7, 2009, and ran until October 30, 2018, the years planets where 
detected are plotted below. With 2014 to 2016 containing the highest number of detections 
with 2020 and 2021 next. Discoveries were made after the mission finished through 
exploring the data that had previously been collected. 

 

Figure 8: Discoveries by year 
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Exoplanet Orbital Period 

The orbital periods of confirmed exoplanets were examined to see if the distribution might 
be useful for further analysis. The orbital period can give insight into the distance from a 
host star a planet is based on their mass, as well as give a possible insight into what 
generalised orbital period could be used when folding light curves to detect an exoplanet. 

 

 

 

 

 

   

 

The distribution visualisation didn’t show any useful information in classification or a 
generalised orbital period, with a large cluster in the 0 to 100 day period, the mean orbital 
period was 30.75 days with a standard deviation of 75 days. A minimum of 0.35 days and a 
maximum of 1322.3 days. With the 75% close to the mean at 27.08 days. 

 

Figure 9: Orbital Period distribution 

Figure 10:  Orbital Period descriptive statistics 
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Exoplanet Equilibrium temperature 

Measured in Kelvin degrees, the equilibrium temperature was examined to see if it could be 
paired with other data that could compliment the flux readings later in the project and 
possibly create a dependant variable. The distribution is centred between the 500 and 1000 
degrees mark. Plotted against the orbital period gave no discernible pattern.  

 

 

Figure 11: Planet EQ Temp in Kelvin 

 

 

 

 

 

 

Figure 12: Temp [K] and Orbital Period 
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Exoplanet Density 

The density of exoplanets is measured in g/cm**3 and again when plotting the distribution 
of the densities, all the readings were stacked around one central point. In the dataset the 
max density is 1290.0 the min is 0.03, the mode is 5.71 and the median is 3.065.  No 
relationship appears between orbital period and density or equilibrium temperature. 

 

 

 
                      Figure 14: Density and Orbital Period 

 

 

 

Figure 13: Density distribution 

Figure 15 Density and Temperature 

Figure 16: Density descriptive statistics 
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Exoplanet Density 

Transit durations are timed in days and are the duration for the planet to transit across the 
orbital plane of the star facing towards earth. The hope in examining these measurements 
would be to find a pattern helpful in applying classification later whereby a generalised dip 
in flux could be noted as a feature. Although the distribution is centred around the 2 to 3 
day period the variance is too great to generalise a folding period for light curve analysis 
later in the analysis. 

 

 

 

Stellar Mass and System Distance 

These attributes were explored next to determine if a possible pattern emerged in distances 
or stellar masses to concentrate on if a candidate’s likely hood could be affected by either of 
these. Interestingly the furthest planet detected by the Kepler mission is 3460.51 Parsecs or 
roughly 11,281.2626 light years away. But a useful feature for filtering possible stars when 
applying to later models was not found. 

 

          

 

Figure 17: Transit durations [days] 

Figure 18: Solar Mass Distribution Figure 19: Distance in Parsecs 
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Figure 22: Distance and Solar Mass 

 

Candidate Dataset 

Features from the candidate dataset are used to retrieve the light curves from the mission 
data API. This information is used for pairing the light curve information with the correct 
Kepler object and labelling the light curve data with its official designation to be used in the 
machine learning models. 

The analysis will look briefly at: 

• The Candidates dataset being used. 
• The main features of the dataset 
• If any of the features will be needed for the Classification Machine Learning 

From the 50 columns present in the dataset, there are only 5 columns of interest, these 
columns will help retrieve the light curves and label each light curve as confirmed exoplanet 
or a false positive. The columns to be used are the kepid, the kepler_name, koi_score, 
koi_disposition and the koi_period. The Kepler name will be used as part of the exploratory 
analysis on the dataset when counting entries.  

Figure 20: Solar Mass Statistics Figure 21: Distance Statistics 
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First the count and percentage of candidate dispositions are calculated. 

 
Figure 23: % of Confirmed versus Negative 

 

The calculation shows that 64.49% of the dataset are False positives and 35.50% of the 
dataset are confirmed exoplanets, with an imbalance towards the false positive this will 
need to be addressed and tested when applying the models. Random sampling as well as 
data generation are available approaches. 

Next the koi score, or probability of a correct classification is explored. Where a candidate is 
a confirmed planet a score closer to one is the preferred value and if a candidate is a false 
positive, a koi score closer to zero is the preferred value. The mean from the confirmed is 
0.96 where the mean from the false positives is 0.038. 

 

 

Figure 24: Koi score stats - confirmed 

 

 

Figure 25:  Koi score stats - false positive 
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2.2 Investigating Sample Light Curve Data 
This part of the exploratory analysis looks at a sample of a known exoplanet, how the data is 
retrieved through the LightKurve API, and the generalised steps needed to take place during 
the retrieval process to transform the data that will make up the dataset. It also displays the 
characteristics of what the output of a known exoplanet looks like when graphed.  

The main steps involved are: 

• Downloading Target Pixel Images 
• Apply Aperture Masks 
• Converting to Light curves 
• Removing instrument noise 
• Folding Light curves  
• Visualising Exoplanet Light curves 

Using a combination of the kepid and the koi_disposition from the candidates the API is 
used to search and select the target pixel files of a confirmed exoplanet. Visualizations of 
the known exoplanet are produced along with the process of folding (using the koi_period) 
and cleaning the light curve to display how the data will be represented in the final labelled 
dataset. kepid_6922244, Kepler name Kepler-8b is a known exoplanet in the candidate 
dataset, it has a KOI score of 0.998 and a transit period of 3.522498 days. Search results 
through the API return 49 results.  

 
Figure 26: Example of search results for Target Pixel Files 
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Using the last result which is quarter 17 the target pixel files collection for that mission are 
downloaded and a 6x6 pixels image of one of the files contained can be constructed to 
visualise the star. 

 

 

Figure 27: Target Pixel File 

 

Pixel images in each collection contain the flux data (colour scale of the pixel) needed to 
create the flux readings used to build the dataset for the machine learning models. 

An aperture mask is applied to the image to visualise the Flux sources of the image. 

 

Figure 28: Aperture Mask Application 
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Each pixel file in the collection can be examined using the Lightkurve python library and 
used to create a light curve data frame for analysis, where each row contains one 
observation of the star. The column of concern in the data is the Flux.  

 

Figure 29: converted light curve file 

Flux (flux) values from the data frame above are then be used to produce a graph over time 
of the flux readings.  

 

Figure 30: Light curve plotted overtime 

 

A noticeable dip occurs in the graph approx. every 3 days. Checking the koi_period 
information from the candidates file confirms an orbital period of every 3.522498 days.  

Before folding the graph on this section, it is necessary to flatten the graph to make sure 
when folding occurs it is done on the same plane. 
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Figure 31: Flattened light curve 

Once the graph is flattened it can be folded on itself using the koi_period measurement to 
produce a cleaner reading of a single transit event.  

 

Figure 32: Folded light curve 

There is still a lot of noise/distortion in the light curve graph, a gaussian filter is applied to 
produce cleaner results. 

 

Figure 33: normalised light curve 

The exoplanets presence can be seen clearly now as the curved dip in the graph. This 
process is scripted to automate the retrieval and initial processing of all candidates. 
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2.3 Initial Flux Data Retrieval  
Two methods of creating the flux dataset were created for this project, the first method was 
to download the raw target pixel files (TPF) programmatically using the Kepler IDs (kepid) in 
the objects of interest file and then using the orbital period (koi_period) from the 
candidates file to fold the flux reading. Accessing the target pixel file is done with the 
Lightkurve python library which uses the Astroquery API, also connecting to MAST.  

The Kepler data is released in quarterly batches and there are 17 quarter releases. The 
target pixel files where searched and using the most recent quarter for any particular star 
the pixel files where downloaded.  

 

Figure 34: Basic TPF conversion architecture 

Files and data generated from the TPF download: 

Dataset Source Format Details Information 
Target Pixel 
Data 

Astroquery 
API through 
Lightkurve 
interface 

TPF/FITS 9564 Collections, 
each collection has 
approx. 1286 pixel 
files. 12,299,304 pixel 
files in total 

Pixel files converted to light 
curve objects and 
deconstructed to csv format 

Light curves Extracted 
from Target 
Pixel Data 

CSV 9564 Rows,  
1294 Columns 

1286 flux measurements per 
row, Kepler ID, name, 
disposition, P disposition, 
transit period, period err1, 
period err2 and Kepler name 

Labelled 
Dataset 

Compiled CSV 7504 Rows 
1287 Columns 

1286 flux measurements per 
row including its classification 
label, 1 = CONFIRMED, 0 = 
FALSE POSITIVE 
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2.4 Final Flux Data Retrieval 
The issue arose that for each star listed in the objects of interest file, it may have been 
imaged during different quarters of the Kepler mission and a planet may have been 
detected in any one of them. The initial assumption when beginning the TPF retrieval was 
these detections would be present at the correct orbital period listed in the candidates file. 

The TPF method only allowed the downloading of one collection of pixel files relating to a 
specific quarter of release. To run this method over all 17 quarters would have taken too 
long and the memory capacity needed to large, to correct this error a second method for 
retrieving the flux readings was created. This method involved directly downloading the 
complete collection of flux readings instead of the TPF files from every quarter for each star. 
7504 stars where present in the candidates file, removing duplicate stars resulted in 6610 
stars to have flux readings, which were directly downloaded using a different query in the 
LightKurve API to the TPF download. In this case, every instance can be downloaded in the 
form of its flux readings in FITS file format. Each instance had an average collection size of 
50,000 over the mission period resulting in approximately 300 million collections of flux 
readings downloaded locally to the FITS folder created in the project directory (31.3GB).  

Each instance was then stitched together using a second script to create one continuous flux 
file for each star. The results were centred and binned into 2000 flux readings for each star. 
Where data was missing due to the binning process a linear interpolation was applied 
(Vanderburg & Shallue, 2018). The results where then transposed to row instead of column 
where each row contained one observation of a star, its ID, name, disposition, p disposition 
and 2000 flux readings. These rows where then concatenated together, normalised, and 
exported to a single csv file (candidates_with_flux.csv). The disposition and p disposition 
where then used to create the labelled dataset containing either 1 for confirmed planet or 0 
for false positive and 2000 flux readings (labeled_data.csv).   

 

Figure 35: Basic Light curve download (FITS) architecture 
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Dataset Source Format Details Information 
Flux 
Collection 

Astroquery 
API through 
Lightkurve 
interface 

FITS 6,610 Collections, 
each collection has 
approx. 50k 
instances. 300million 
flux readings in total 

Pixel files converted to light 
curve objects and 
deconstructed to csv format 

Candidates 
with flux 

Extracted 
from Flux 
collection 

CSV 6167 Rows,  
2004 Columns 

2000 flux measurements per 
row, Kepler ID, Kepler name, 
disposition, P disposition. 

Labelled Data Compiled CSV 6167 Rows 
2001 Columns 

2000 flux measurements per 
row including its classification 
label, 1 = CONFIRMED, 0 = 
FALSE POSITIVE 

 

 

3.0 Methodology 
The methodology chosen to be used throughout this project was KDD. KDD (Knowledge, 
Discovery of Databases) has five distinct steps (Selection, Pre-processing, Transformation, 
Data Mining, and Interpretation/Evaluation) that are often applied iteratively and is used to 
extract useful structured patterns from data. It is a core data mining methodology, and it 
was determined that this project would benefit from the application of this methodology by 
breaking the process into smaller problem sets and providing structure to each step. 

 

 

Figure 36: KDD Steps (Fayyad, et al., 1996) 
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3.1 Selection 
The data selection process involved identifying the necessary provider where the flux data 
could be accessed programmatically in its raw state without any pre-processing haven been 
applied already. As the data is freely available for public use and is highly publicised in 
relevant work relating to this project, the data source contributor was easy to identify as the 
Mikulski Archive for Space Telescopes (M.A.S.T).  

The input shape and data format used in the machine learning models was known from 
previous literary reviews and needed to be numeric with the relevant classification labels 
applied. The challenge for the initial data selection was how to programmatically collect the 
data, apply labelling and transform it to the structure needed. 

To correctly identify which Kepler IDs to search and download through the LightKurve API 
other data was needed. Determining which datasets from the provider contained the 
additional information needed was also a challenge as there are hundreds of different 
variations of datasets and different access points for downloading them; bulk downloading, 
API, and direct weblink download. 

On reading the documentation available and using the MAST in built viewer to view tables 
two data sets where identified that provided the correct information to be able to search 
the LightKurve API and apply labelling, the Kepler Objects of Interest table, and the 
confirmed exoplanets table. Considering the scale of the project, the API endpoints through 
python scripts was the most suitable way to download this data and keep in line with the 
programmability requirements needed for the project. 

After downloading and initial exploration of the identified datasets it was determined that 
from the Kepler Objects of Interest table the data needed was the kepid for identifying 
stars, the kepler_name for identifying the exoplanets if any, the koi_score for identifying 
the probability of an exoplanet, the koi_period for folding purposes and the koi_disposition 
for labelling. The Kepler list of confirmed exoplanets contained other data needed, 
disc_instrument, disc_telescope, disc_facility and discoverymethod for identifying Kepler 
Mission objects, and pl_name for confirming items in the objects of interest table. 

Once downloaded and the correct exoplanet information was selected and organised using 
the columns mentioned, the new data contained a list of known exoplanets and known false 
positives. The kepid from this data was then used to retrieve the relevant target pixel files / 
flux readings through the LightKurve API for each star.  

 

3.2 Pre-processing 
The pre-processing stage of the methodology in relation to this project involves using the 
data obtained from the Kepler Objects of Interest table paired with the Kepler list of 
confirmed exoplanets and retrieving the flux readings for each star in raw format, applying 
pre-processing techniques during the download phase before exporting to a csv file ready 
for transformation. 
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During the pre-processing stage it was important to apply the principals of tidy data 
(Wickham, 2014), making sure the output file to be analysed met the following 
requirements: 

1. “Each feature measured should be in one column”. In terms of this project meaning 
each Label and Flux reading 

2. “Each observation should be in a different row”. Meaning each star in this project 
3. “There should be one table for topic of interest”, for this project there would be only 

one table at the end of pre-processing and transformation. 
4. “If there are multiple table, they should include a column that allows them to be 

linked”. In the case of this project this only applied in the initial stages of downloading 
and pre-processing.  

As mentioned previously an initial data download using Target pixels was used in 
conjunction with data pre-processing to create a data set ready for labelling. After initial 
errors in this data a second download and pre-processing method was implemented, both 
methods are discussed at this stage.  

 

3.2.1 Method 1: Target Pixel Files 
Using the target pixel file method, the Kepler ID was used to search mission data using the 
Lightkurve API for all the TPF collections and the most recent collection downloaded. Once 
downloaded the TPF collection was converted to light curve information with aperture mask 
applied, flattened, and then the orbital period (koi_period) was used to apply an automatic 
fold to the light curve reducing the data size. A gaussian filter was then applied to the folded 
light curve which was then converted into a panda’s data frame. The data was then 
transposed from column to row and the information relating to the ID, disposition and 
transit period where added. 

Steps included in the Target Pixel File method: 

1. API searched using Kepler ID 
2. Mission information retrieved 
3. Most recent quarter of imaging identified 
4. TPF collection for identified quarter download 
5. Aperture mask applied and data flattened 
6. Fold applied on given orbital period and centred 
7. Gaussian filter applied to reduce noise 
8. NANs searched for and removed 
9. Data converted to pandas’ data frame 
10. Column transposed to row 
11. Kepler name, ID, and disposition added to data frame 
12. Data frame added to list and process repeated for each Kepler ID 
13. List of data frames concatenated for export to csv. 
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This pre-processing part of the project processed over 12 million TPF’s and took approx. 
nine hours of continuous runtime to complete. The data was then exported to a csv file and 
saved locally. When inspected though not all stars contained the same number of flux 
readings, ranging from 1,286 to over 3,000.  

The process was applied again but a window size of 401 and a bin size of 0.01 were set as 
parameters while folding the TPF’s, this produced a flux reading size of 1,604 for each star. 
When null values where removed the smallest number of flux readings for a star was again 
1,286 with the max number of readings at 1,604. As the centre point of the data was column 
643 and was where any exoplanet should be located, the null values at the end of each row 
were removed for a completed shape of 1,286 Flux readings and 6,167 instances. 

Checking the data integrity after this process through manual inspection and graphing flux 
readings of known exoplanets showed that not all exoplanets where present in the data set 
due to the nature of their orbital time around their host star and the quarter in which it was 
imaged, a new solution was needed. 

 

 

3.2.2 Method 2: FITs collections & stitching 
To overcome the data integrity issues in the Target Pixel File method, this second method 
using the LightKurve API, accessed the complete mission catalogue for each star spanning 
the entire mission period. Each collection for each star was downloaded, stitched together 
using a feature available in the LightKurve API to create one single observation and saved 
into its own folder inside a newly created FITS folder in the data directory of the project.  

Memory management was put in place as this method of downloading complete collections 
created a cached version in the LightKurve system directory. After every download the 
cached version was deleted leaving just the stitched version.  

After duplicate stars were removed from the kepid list (some stars had multiple exoplanets) 
the original 7504 stars was reduced to 6610. With each star having approx. 50 thousand flux 
readings registered the total number of readings download was approx. 300 million. To be 
able to complete this process a function in the Python script was created to allow the 
process to be pause and then resumed from the previous spot. In total these files took 
approx. 40 hours to download. Although time consuming, this method of download ensured 
that each exoplanet observation would be present, and the data integrity maintained.  

To reduce the data to 2,000 flux readings per observation and maintain any presence of 
exoplanets different methods of folding needed to be applied than in the target pixel file 
method.  
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First a temporary folding based on the official orbital duration was set using the API fold 
method. Then a fractional duration calculation was made based on the transit duration and 
the orbital period. 

 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  
(𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓 ℎ𝑓𝑓𝑑𝑑𝑓𝑓𝑜𝑜 / 24) 

𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑
 

 

Once the fractional duration was calculated and the temporary folding created, the phase 
period of the temporary folding was used to create a phase mask. 

 

𝑝𝑝ℎ𝑓𝑓𝑜𝑜𝑝𝑝 𝑚𝑚𝑓𝑓𝑜𝑜𝑚𝑚 =  |𝑝𝑝ℎ𝑓𝑓𝑜𝑜𝑝𝑝 < (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ×  1.5)| 

 

The phase mask was then used to create a transit mask which could be applied to the entire 
flux reading during the flattening process. The transit mask uses the time interval of the 
original light curve and the phase mask time interval value to return a transit masking. 

After the transit mask had been created it was applied during the flattening and folding 
process where the folding could now take place on the orbital period. 

The newly flattened and folded light curve was binned into sizes of 2,000 to fit inline with 
the planned architecture of the CNN model. (Vanderburg & Shallue, 2018) . the data was 
then normalized. After normalization nan values where masked and the global light curve 
was created using the calculation provided through the LightKurve API. 

 

𝑔𝑔𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑔𝑔ℎ𝑓𝑓 𝑓𝑓𝑑𝑑𝑓𝑓𝑐𝑐𝑝𝑝 = � 
𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑑𝑑 𝑓𝑓𝑓𝑓𝑔𝑔ℎ𝑓𝑓 𝑓𝑓𝑑𝑑𝑓𝑓𝑐𝑐𝑝𝑝

|𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑓𝑓𝑜𝑜𝑚𝑚 𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓 𝑚𝑚𝑓𝑓𝑓𝑓| �  × 2.0 + 1      

 

The global light curve was then converted into a panda’s data frame. On examination of the 
data at different stages of the process it was noticed that due to the action of binning the 
light curves small portions of missing flux readings were created, to impute these missing 
values a linear interpolation was applied to the flux reading and did not affect the overall 
integrity of the data (Vanderburg & Shallue, 2018).  

The newly created global light curve was then transposed from one column of flux reading 
to one row of flux readings. Each row now containing 2000 normalized flux readings. For 
each star this method was applied to, the koi_disposition was added based on the kepid as 
a labelling column for a confirmed or false positive exoplanet. 

The single row data frame was then added to candidates_with_flux.csv file ready for 
further transformation and labelling before the data mining process could begin. 
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3.3 Transformation 
Transforming the flux and candidate data as part of the methodology used in the project 
involved correctly labelling the data in the context of the machine learning models to be 
applied. The data mining implementation involves binary classification therefore the 
koi_disposition column which was used to label the flux readings was converted from 
“confirmed” to 1 and “false positive” to 0. 

For the flux readings themselves there are 2,000 readings per star. Resulting in untidy 
fluctuations that could impact any models used. 

 

Figure 37: Flux for known exoplanet plotted 

 

Figure 38: Flux for known false positive plotted 
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To smooth the data out and remove any noise present in the flux readings a gaussian filter 
with a sigma of 50 is applied at this stage similar to the initial target pixel method. 

 

 

Figure 39: Flux for known exoplanet with gaussian filter 

 

 

Figure 40: Flux for known false positive with gaussian filter 
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Further making the data suitable for the machine learning models scaling is applied to the 
flux readings between 0 and 1.  

 

Figure 41: Flux for known exoplanet with gaussian filter and scaling 

 

 

Figure 42: Flux for known false positive with gaussian filter and scaling 
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To prepare the labelled flux readings for the data mining models, training, test and 
validation sets are created from the labelled data set. The initial shape of the labelled data is 
6167 rows with 2001 columns. Of the 6167 rows 1,654 are confirmed exoplanets leading to 
a 73% imbalance in favour of false positives. A desired split of the data for this project was 
75% training, 12.5% testing and 12.5% validation. To achieve this split while keeping the 
same proportion of confirmed versus false positives in each batch of data, a stratified k-fold 
approach was used. The resulting data sets where: 

 

Dataset Confirmed False Positive Total Percent Split 
Test 207 564 771 27% - 73% 
Train 1240 3382 4622 27% - 73% 

Validation 207 564 771 27% - 73% 
Totals 1654 4510 6164 27% - 73% 

 

Due to the imbalanced nature of the data sets two additional approaches were considered, 
data generation and sampling. The LightKurve API provided documentation on generating 
artificial light curves, but it was decided that at this point in the project it would be more 
conductive to continue the research with the data as it was and if issues arose from this 
level of imbalance, to come back to this point iteratively and make any needed adjustments. 
The same consideration was taken for the sampling method.  

To be prepared for testing of the models and knowing that initial weights could be applied 
to the classes as part of the CNN modelling, weights for each class were calculated. Using 
the training set the weights for each class were calculated using the formula: 

 

𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑤𝑤𝑝𝑝𝑓𝑓𝑔𝑔ℎ𝑓𝑓 =  
� 1
𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜� ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑜𝑜𝑜𝑜𝑝𝑝𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜

2
 

The results of the class weightings were: 

 Confirmed False Positive 
Weighting 1.863 0.683 

 

The next step in the transformation process was the shuffling of each data set. A random 
seed was set for reproducibility and each data set shuffled. A McNemar’s test is applied to 
the prediction results of each model at a later stage, so the assumption of the test that each 
model makes predictions on the same data set was to be upheld here with the order of the 
shuffle upheld through multiple tests. Once the data sets were shuffled the target variables 
(labels) where separated from the independent variables (Flux readings) creating an X and Y 
for each data set. The resulting transformation concluded in X-Train (Labels), Y-Train (Flux 
readings), X-test (Labels), Y-test (flux readings), X-val (Labels) and Y-val (Flux readings) to be 
used in the data mining methods. 
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3.4 Data Mining 
In the data mining portion of the project the data sets created in the transformation process 
were used with the main objective of classification, two approaches were used, 
Convolutional Neural Networks (CNN) and Capsule Networks. 

3.4.1 CNN 
The basic architecture of the CNN was taken from the paper “Identifying Exoplanets with 
Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around 
Kepler-90”, from literary reviews of CNN usage this architecture proved to be the state of 
the art version for comparison with 95.4% Accuracy and a 98.5 AUC on classification using 
the global light curves (Vanderburg & Shallue, 2018). In the paper a combination of two 
CNN’s were created using the global light curves and a local (cropped version) of the same 
light curve. When these CNNs are combined the accuracy scores where Global 95.4%, Local 
92.4% and combined 96.0%. The AUC results for these were Global 98.5, Local 97.3 and 
combined 98.8. 

 

Figure 43: CNN Architecture (Vanderburg & Shallue, 2018) 
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For this project the global view architecture was followed in attempt to reproduce the 
results of the paper, the global view architecture was followed as it showed the best single 
performance out of the joined model.  

The architecture of the CNN has 15 layers total, 5 one dimensional convolutional layers, 5 
pooling layers, 4 fully connected dense layers and an output layer. 

The convolutional layers take certain parameters for number of filters, kernel size, 
activation function, and padding. A filter number is set for the number of filters per layer, 
each filter identifies features in the data set at that layer, the filters at that layer are used to 
give an indication of how strongly a feature appears. The location of where that feature 
occurs in the data does not matter, therefore with CNNs this method reduces the number of 
weights the network needs to learn. The weights for these filters are then updated 
throughout the training process. The kernel size relates to the size of each of the filters in 
relation to shape of the data.  

 

Figure 44: Example of convolutions and kernels in a CNN for image processing (Stuart, 2019) 

The padding argument for the convolutional layer is used primarily for the edges of the data 
structure, using padding can remove the need for any down sampling needed in the data 
when passing through layers, for example in image classification it would deal with edges of 
the image. When the kernel specified is applied to the image it makes sure the output from 
the convolutional layer is the desired shape. (Stuart, 2019) 

 

Figure 45: Illustration of padding being applied in a CNN (Stuart, 2019) 
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The activation function of the convolutional layer is where the non-linearity occurs, as this 
layer is not the final output layer a rectified non-linear unit (ReLU) function is applied. 

The pooling layer is a form of dimension reduction. It uses, for example, the average, or in 
the case of the architecture presented, the max value of a filter. Then using a sliding window 
approach the max pooling is calculated across the data set. Parameters set for this layer are 
the size of the window and the stride (size of the movement steps across the data set).  

The dense or fully connected layers in the network are used to flatten the output from the 
convolutional layers and generally appear in the model architecture just before the final 
output. These layers aggregate the information from the feature map created in the 
previous layers and are used to produce the final output. The parameters this layer takes 
are the number of nodes in the layer and the type of activation function required depending 
on the task of the network. In the context of this project the fully connected layers use a 
ReLU function again until the final output layer which is a single sigmoid output. 

 

Summary of the architecture to be used in the CNN: 

Layer Type: Parameters Parameter Values 
First Convolutional Layer Filters, Kernel Size, Activation 16, 5, ReLU 

Max Pooling Layer Window size, Stride 5, 2 

Second Convolutional Layer Filters, Kernel Size, Activation 32, 5, ReLU 

Max Pooling Layer Window size, Stride 5, 2 

Third Convolutional Layer Filters, Kernel Size, Activation 64, 5, ReLU 

Max Pooling Window size, Stride 5, 2 

Fourth Convolutional Layer Filters, Kernel Size, Activation 128, 5, ReLU 

Max Pooling Window size, Stride 5, 2 

Fifth Convolutional Layer Filters, Kernel Size, Activation 256, 5, ReLU 

Max Pooling Window size, Stride 5, 2 

Flatten None  

Fully Connected Layer 1 Nodes, Activation 512, ReLU 

Fully Connected Layer 2 Nodes, Activation 512, ReLU 

Fully Connected Layer 3 Nodes, Activation 512, ReLU 

Fully Connected Layer 4 Nodes, Activation 512, ReLU 

Output Layer Nodes, Activation 1, Sigmoid 
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Before compiling the CNN model, an optimizer and a loss function are added. The optimizer 
in the architecture presented is the Adaptive Moment Estimation (ADAM optimizer). This 
type of optimizer uses a combination of two gradient descent calculations, the momentum 
and the root mean square propagation, to efficiently control the rate of gradient decent and 
reach the global minimum with minimum oscillation in the gradient. The Adam optimizer 
can be termed as industry standard in classification networks.  

For the loss function of the model different functions where investigated. Categorical cross 
entropy was looked at but as this type of loss function is more useful in multi class 
classification it was decided that binary cross entropy would best suit the project.  

3.4.2 Hypermodel CNN 
To further test the hypothesis that the CNN architecture discussed in the previous section 
was the one most suited for the problem domain, a second version of the CNN was created. 
This version was built using the Keras Hypermodel library and involved inputting basic 
architecture details with options to cycle through for building and testing different models. 
Then using Hypermodel tuning, each combination of options was used, testing each model, 
and returning the best combination of layers / parameters the Hypermodel could find.  

The options structure for the Hypermodel parameters was: 

• Up to 5 one dimension convolutional layers with ReLU activation.  
• Each convolutional layer cycled through: 

o A range of filters from 16 to 256 in increments of 16.  
o Kernel sizes 3, 5, and 11. 

• A max pooling layer added after each convolutional layer with: 
o Window size of 5 or 10 
o Stride of 2 or 4 

• A flatten layer 
• Up to 4 fully connected layers with ReLU activation 
• Each fully connected layer cycled through: 

o Node numbers of min 32 and max 512 in increments of 32 
• A single node output layer with sigmoid activation 
• Adam optimizer 
• Binary cross entropy loss function 
• A learning rate options of 0.01, 0.001, 0.0001 

As this created a large number of models to be tested, some constraints were set on the 
tuning. The original model from the previous architecture was set as default. Hyperband 
tuning from the Keras API was used. Each model was tested at 50 epochs. Tuning factor was 
set to 3, which is the reduction factor for the number of epochs and number of models for 
each bracket (Li & Jamieson, 2018), and the hyperband iterations was set to 2 which is the 
number of iterations over the full algorithm. It was kept at 2 due to time constraints but a 
higher value is usually recommended depending on resources and time available. 
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3.4.3 Capsule Network 
Capsule Networks were introduced in 2017 by Geoffrey E. Hinton in the paper “Dynamic 
Routing Between Capsules” (Hinton, et al., 2017), in attempt to overcome some of the 
problems associated with CNNs. The problems being CNNs don’t store the relative spatial 
relationship between features in a data set, they require relatively large amounts of training 
data to be able to achieve high accuracy, and the use of pooling layers for reduction 
increases the possibility of losing some useful features through the network. 

Capsule Networks as described in the paper were designed to deal with computer vision 
problems and as such take 3 dimensional input, the height, width, and colour channels of 
the image being classified. The basic architecture behind a capsule network is similar to a 
parse tree, where each layer is divided into small groups of neurons called capsules and 
each node corresponds to an active capsule. The routing process between layers involves 
each capsule iteratively choosing a capsule from the previous layer as the parent. This 
iterative process addresses one of the CNNs issues by storing the spatial relationship of 
features and assigning these features as part of the whole. 

A unique property of the capsule network is a separate SoftMax activation function that 
gives a probabilistic output on whether a particular entity exists. The output of each capsule 
is a vector and using dynamic routing the output is sent to the appropriate parent node. This 
type of routing, known as “routing-by-agreement” proves to more effective than the pooling 
strategy applied in CNNs. The agreement part of the routing is the scalar product of the 
agreement between the output (𝑉𝑉𝑗𝑗) from each capsule (𝑗𝑗) and the prediction from the 
current capsule (𝑈𝑈�𝑗𝑗|𝑖𝑖). The agreement formula (𝑓𝑓𝑖𝑖𝑗𝑗 = 𝑉𝑉𝑗𝑗  .𝑈𝑈�𝑗𝑗|𝑖𝑖) is then treated as log 
likelihood (Hinton, et al., 2017). 

Pseudo code for the routing algorithm taken from Hinton’s 2017 paper (Hinton, et al., 2017): 

Define Routing (𝑈𝑈�𝑗𝑗|𝑖𝑖 ,  𝑓𝑓, 𝑓𝑓) 

• For all capsules 𝑓𝑓 in layer 𝑓𝑓 and capsule 𝑗𝑗 in layer (𝑓𝑓 +  1): 𝑜𝑜𝑓𝑓𝑗𝑗 ←  0 
o For 𝑓𝑓 iterations 

 For all capsule 𝑓𝑓 in layer 𝑓𝑓: 𝑓𝑓𝑓𝑓 ←  𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓𝑓𝑓(𝑜𝑜𝑓𝑓) 
 For all capsule 𝑗𝑗 in layer (𝑓𝑓 +  1): 𝑜𝑜𝑗𝑗 ←  ∑𝑓𝑓 𝑓𝑓𝑓𝑓𝑗𝑗 𝑑𝑑�𝑗𝑗|𝑓𝑓 
 For all capsule 𝑗𝑗 in layer (𝑓𝑓 + 1): 𝑐𝑐𝑗𝑗 ←  𝑜𝑜𝑠𝑠𝑑𝑑𝑓𝑓𝑜𝑜ℎ(𝑜𝑜𝑗𝑗 ) 
 For all capsule 𝑓𝑓 in layer 𝑓𝑓 and capsule 𝑗𝑗 in layer (𝑓𝑓 +  1): 𝑜𝑜𝑓𝑓𝑗𝑗 ←  𝑜𝑜𝑓𝑓𝑗𝑗 +

 𝑑𝑑�𝑗𝑗|𝑓𝑓.𝑐𝑐𝑗𝑗 
o Return 𝑉𝑉𝑗𝑗 

A custom margin loss function is used in the paper presented to handle multiple 
classifications in an image. As the mathematics was not entirely understood and able to be 
transposed to a one dimensional architecture with only two classifications, a custom margin 
loss was not used, in place of the custom margin loss a binary cross entropy loss function 
was used. This loss function is the same as used in the CNN and provides a standard loss 
function available in the Keras library for binary classification problems. 
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A general Capsule Network is split into different layers, initially convolutional layers are used 
to create feature maps, these feature maps passed to the primary capsule layer. As the 
output from the convolutional layer is one dimensional and no agreement is to be 
calculated here, the routing does not occur at this layer.  

The output from the primary capsules are multi-dimensional (8D in the paper presented) 
and each 8D capsule shares its weights with the other primary capsules. For the secondary 
capsule layer, each class to be identified has one 16D capsule associated with it and each 
one receives input from the previous primary capsules. This is where the routing process 
occurs.  

 

Figure 46: Example of Capsule Network Architecture (Hinton, et al., 2017) 

After the secondary capsule layer, a decoder network is utilized. In the case of this project 
the decoder network is a fully connected dense layer using ReLU activation functions. After 
the decoder network a single dense layer for output is used with a sigmoid output for 
classification. 

 

Figure 47: Example of decoder network in Capsule Network (Hinton, et al., 2017) 

 

A major difficulty in the project was changing the application of a Capsule Network from a 
computer vision type problem to in essence a wave form problem. To do this the network 
had to be converted from taking 3 dimensional input to 1 dimensional input while keeping 
the integrity of the routing algorithm. To achieve this, convolutional layers were reduced to 
1D layers, the secondary capsules were reduced to 4D instead of 16D and the number of 
secondary capsules corresponded with the two classes to be identified.  
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The primary capsule layer consisted of a 1D convolutional layer with an output reshaped by 
the custom squash function giving 2 outputs, one for each class.  

Custom TensorFlow layers were created for the primary capsule, secondary capsule, and 
squash functions. The squash function was used to correct the output of the primary 
capsule so it can be passed to the secondary capsule layer, using the squared norm 
multiplied by scale of the vectors produced by the primary layer. This process drives the 
length of large vectors to under 1 and the length of small vectors to 0.  

For the secondary capsule layer, inbuilt TensorFlow tiling along with matrix multiplication 
and SoftMax functions were used. The resulting output is then passed through a TensorFlow 
squeeze function to drop any unneeded axis.  

The number of routings applied (layers of secondary capsules), was iterated over to find the 
best number from 1 to 5 routings. The decoder layer consisted of a dense layer with 512 
nodes (similar to the CNN) using a ReLU activation and the final output layer was a single 
fully connected layer with 1 sigmoid output node. 

A masking layer was also created for use during the training process of the network as per 
Hinton’s’ paper. This masked layer applies a mask to all the outputs except for the correct 
output and is used while training for the reconstruction of the input. This reconstruction is 
then used to minimize the sum of squared differences between the predicted outputs and 
correct output. 

 

Summary of the architecture to be used in the Capsule Network: 

Layer Type: Parameters Parameter 
Values 

First Convolutional Layer Filters, Kernel Size, Activation 112, 5, ReLU 

Second Convolutional Layer Filters, Kernel Size, Activation 256, 5, ReLU 

Primary Capsule Capsules, Channels, Kernel Size, Stride 2, 20, 5, 2 

Squash Vectors, axis N, -1 

Secondary Capsule Layer Capsules, routings 2, [1-5] 

Masking Used to Mask Y during training N/A 

Decoder Layer Nodes, Activation 512, ReLU 

Output Layer Nodes, Activation 1, Sigmoid 
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3.5 Interpretation / Evaluation 
Evaluation of the machine learning models is done across multiple metrics; prediction 
accuracy, recall, precision, F1 score and AUC. A confusion matrix, True Positive Rates (TPR) 
and False Positive Rates (FPR) are also calculated and produced for each model. These 
methods of comparison are standard practice for measuring performance metrics of a 
machine learning model.  

  True Class 

Pr
ed

ic
te

d 
Cl

as
s  Positive Negative 

Positive True Positive Count (TP) False Positive Count (FP) 

Negative False Negative Count (FN) True Negative Count (TN) 

 

The confusion matrix is a visualization used to display the results of the model based on the 
correct labels and what the model predicted. Using the values in the confusion matrix 
produced the discussed metrics are calculated. 

Accuracy is the proportional measure of how well the model predicted the true positives 
and the true negatives combined. The formula for which is: 

𝐴𝐴𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝐴𝐴 =  
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇) 

Recall (also known as true positive rate) is used to measure the proportion of the actual true 
positives correctly classified. The formula for recall is: 

𝑅𝑅𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) 

Precision is the proportion of correct true positive classifications. The formula for precision: 

𝑇𝑇𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓 =  
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) 

The F1 score is derived from the precision and recall values and is defined as the harmonic 
mean of precision and recall. A pitfall with the F1 score is it assumes equal importance 
between precision and recall, therefore a high F1 score is informative to the extent both 
high precision and recall are likely on a large portion of the classifications, whereas a low F1 
score does not give any indication whether precision is low, or recall is low. The formula for 
the F1 score is: 

𝐹𝐹1 𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝 = 2 ×  
𝑇𝑇𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓 × 𝑅𝑅𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑅𝑅𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 

The false positive rate (FPR) is the proportion of false positive calculations. The formula for 
FPR is: 
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𝐹𝐹𝑇𝑇𝑅𝑅 =  
𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇
 

Along with these metrics the area under curve (AUC) is calculated for each model, the AUC 
makes use of the TPR and the FPR. For the AUC a ROC curve is created where both metrics 
are computed with multiple thresholds of a logistic regression and plotted as a single graph. 
The area under the curve in this graph is considered the AUC. A simple AUC score using two 
points can be calculated using the below formula: 

𝐴𝐴𝑈𝑈𝐴𝐴 =  �
1
2�

−  �
𝐹𝐹𝑇𝑇𝑅𝑅

2 � + �
𝑇𝑇𝑇𝑇𝑅𝑅

2 � 

Locally because of a restriction on computing power, McNemar’s statistical test is used to 
measure if there is any significant disagreement differences between the models. Other 
statistical tests would be possible but with the restriction in the number of times tests can 
be performed, McNemar’s test shows to be the best option (Dietterich, 1998).  

McNemar’s test is a paired nonparametric statistical hypothesis test and uses a 2x2 
contingency table based on the correct and incorrect predictions by each model. 

 

 Model 2 Correct Model 2 Incorrect 
Model 1 Correct Yes / Yes (a) Yes / No (b) 

Model 1 Incorrect No / Yes (c) No / No (d) 
 

Each cell is the sum of each combination of the Yes/No values in the table above. The 
McNemar’s test specifically tests the marginal homogeneity between the models and is 
referred to as checking if the disagreements between the two cases match. 

Two assumptions of the test are that the two models make predictions on the same data set 
and there is a count of at least 25 in each cell of the contingency table used for the 
calculation. The test itself has a chi-squared distribution and 1 degree of freedom. 

The null hypotheses (H0) of the test is that the level of disagreement between is the same. 
The alternative hypotheses (H1) is that the level of disagreement between the models is 
skewed, and they disagree in different ways. A standard alpha of 0.05 is used for the test as 
there is no medical or safety issues in connection with the results. 

If the test statistic (p) is greater than the alpha, we fail to reject the null hypothesis and if 
the test statistic is less than or equal to the alpha there is a significant difference in the 
disagreement. To calculate the test statistic the following formula is used: (using the cell 
designations above)  

𝑝𝑝 =  
(𝑜𝑜 − 𝑓𝑓)^2

(𝑜𝑜 + 𝑓𝑓)
 

 



47 
 

4.0 Implementation 
After the initial exploratory analysis and the resulting transformed data sets created, the 
remainder of the analysis performed in this project is centred around implementation of the 
classification networks and their relative performance on the created data set. 

Training input to the models consisted of an X variable (Flux readings) and a Y variable (data 
labels). The data has already been shuffled and separated in the transformation stage of the 
project. Input shape of training data is X: 4622 x 2000 and Y: 4622. The validation data is 
also used during the training process and has an input shape of X: 771 x 2000 and Y: 771. 

An early stopping call back is used to avoid overfitting of the models. Parameters of the call 
back are set with the goal of monitoring the loss of each model, recording the minimum and 
allowing a progression of up to 4 epochs if the loss value begins to increase. In the event this 
occurs, the contingency is to fall back to the best epoch and restore the weights. 

The required input shape into the models was 2000 x 1. Therefore, before the training and 
validation data is passed it was reshaped as a Numpy array with its dimensions expanded by 
1. The new shape of the training data is X: 4622 x 2000 x 1. This gives a single observation 
the shape of 2,000 x 1 and 4622 observations, accommodating input.  

4.1 CNN  
A batch size of 64 is used per epoch (Vanderburg & Shallue, 2018). Other batch sizes were 
attempted but 64 showed to be the best both in computational time and in results of the 
CNN. A summary of the created CNN can be seen in [figure 48]. 

 

Figure 48: CNN Summary 
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The CNN was trained over a default of 50 epochs as well as using the call back metric to 
monitor loss in an attempt to avoid any over fitting. 50 epochs were chose as again it was 
part of the design from the state of the art version identified previously and all attempts 
were made to reproduce the work as accurately as possible to allow comparison with the 
Capsule Network. 

 

Figure 49: Training loss recorded per epoch 

Loss (error) was recorded throughout each epoch and plotted. From [figure 49] above it can 
be seen that loss had minor increases at the 5th and 15th epoch. A series of increasing loss 
can be seen at the 30th epoch but doesn’t reach the 4 epoch threshold set in the call back. 
The loss continued to decline to the 50th epoch. Model accuracy was also recorded 
throughout the training process and plotted in [figure 50]. 

 

Figure 50: Training accuracy recorded per training epoch 
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From the accuracy graph produced, the model accuracy does increase over each epoch with 
exceptions at the same epoch range where loss also increased. Some instability in the model 
accuracy can be seen over the last 6 epochs of the training with a training accuracy of 0.98 
reached. Validation accuracy was also used as part of training the model with a maximum 
validation accuracy reached at the 50th epoch of 0.95. Loss was used as the metric of 
emphasis in training the model as accuracy relies on the binary True/False labelling whereas 
the loss metric assigns lower loss to predictions that are closer to the class label and can be 
argued as the better metric when training a model as it implies how well a model is working 
after each optimization. 

Class weights were created earlier in the transformation stage but as the model performed 
well in the training these weights were not applied at this stage. If the model did not behave 
as expected in the prediction stage, then these training steps would be revisited using the 
weights during the training process. The trained model was saved in H5 format used to 
make predictions on the test set. 

4.2 Hypermodel CNN   
Using the Hypermodel tuning options and parameters set in the model creation criteria the 
Hypermodel cycled through 180 possible model combinations over a 2 hour period twice. In 
total 360 models were tested taking approx. 4 hours.  

 

Figure 51: Hypermodel iteration 1 tuning results 

 

Figure 52: Hypermodel tunning progress 
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The best training accuracy achieved throughout the tunning process was recorded at 0.97 
with the resulting model summary outputted. 

 

 

Figure 53: Hypermodel CNN summary 

 

The architecture for the created CNN through Hypermodel tunning was significantly 
different from the CNN used in the previous section.  

The number of layers to be used was the same but the parameters at each layer were 
different in terms of number of filters and kernel sizes to be used in convolutional layers and 
number of nodes to be used in fully connected dense layers.  

The max pooling layers used the same window and stride sizes, but the learning rate was 
determined to be best at 0.0001 instead of the 0.001 used in the previous CNN model. 
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Summary of the architecture determined by the Hypermodel tunning: 

Layer Type: Parameters Parameter Values 
First Convolutional Layer Filters, Kernel Size, Activation 176, 11, ReLU 

Max Pooling Layer Window size, Stride 5, 2 

Second Convolutional Layer Filters, Kernel Size, Activation 160, 5, ReLU 

Max Pooling Layer Window size, Stride 5, 2 

Third Convolutional Layer Filters, Kernel Size, Activation 32, 3, ReLU 

Max Pooling Window size, Stride 5, 2 

Fourth Convolutional Layer Filters, Kernel Size, Activation 208, 5, ReLU 

Max Pooling Window size, Stride 5, 2 

Fifth Convolutional Layer Filters, Kernel Size, Activation 208, 5, ReLU 

Max Pooling Window size, Stride 5, 2 

Flatten None  

Fully Connected Layer 1 Nodes, Activation 64, ReLU 

Fully Connected Layer 2 Nodes, Activation 352, ReLU 

Fully Connected Layer 3 Nodes, Activation 192, ReLU 

Fully Connected Layer 4 Nodes, Activation 256, ReLU 

Output Layer Nodes, Activation 1, Sigmoid 
 

The new hyper tuned model was then trained using the same methodology as the previous 
CNN over the same number of epochs and using the same training and validation data. The 
same call back metric monitoring loss was used and training accuracy along with training 
loss was recorded throughout each epoch with validation loss and accuracy being tested. 

 
                      Figure 54: Training loss recorded per epoch 
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During training of the Hypermodel CNN the loss starts to show instability around the 15th 
epoch but never reaches the threshold set in the call back function of 4 continuous declines 
in loss. The maximum training accuracy reached at this point by the Hypermodel version 
was 0.98, greater than the 0.97 reached during the tuning process. Validation accuracy was 
also recorded with the highest validation accuracy of 0.89 reached at the 50th epoch. 
Validation loss though was significantly higher than training loss with a minimum validation 
loss of 0.29 reached. 

 

Figure 55: Training accuracy recorded per training epoch 

From [figure 55] it can be seen that the training accuracy fluctuates greatly after the 15th 
epoch and shows instability in the model throughout the training process. The trained 
model was saved in H5 format and to make predictions on the test data.  

4.3 Capsule Network 
Implementation of the Capsule Network was slightly different to the CNN. The same training 
and test data sets were used, and input shapes managed using the same methods, but 
during the training phase no validation data was provided to the model.  

Another difference was that before training data can be provided to the Capsule Network 
the Y variable (Labels) of the training set had to be changed from an integer to a categorical 
variable to allow for predictions to be made and checked in the secondary capsule layer in 
accordance with the number of classes selected.  

As the number of routings (secondary capsule layers) that performed best with the provided 
data was not known, 5 Capsule Networks were generated each with a different number of 
secondary capsule layers ranging from 1 to 5. Each Capsule Network was trained over the 
same number of epochs as the previous models with the same call back metric monitoring 
loss. The Capsule network produces three loss metrics, the Capsule Network loss, the 
decoder loss, and the overall loss. Overall loss was chosen as the metric to monitor. 
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A batch size of 64 was again chosen per epoch with a learning rate of 0.001 to keep all 
measures taken during training as equal as possible across models, with training accuracy 
and loss recorded over each epoch. A summary of the Capsule Network can be seen in 
[figure 56].  

 

Figure 56: Capsule Network Summary 

A Capsule Network with 1 routing was the first model to make use of the call back function 
and stopped training at epoch 20 rolling back to epoch 17.  

 

         Figure 57: Training loss recorded per epoch with 1 routing 
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The training loss declined sharply after the first epoch and shows a steady rate of decline to 
epoch 15. Training accuracy over the 17 epochs didn’t show as much promise as with the 
CNN with a peak accuracy reached at epoch 15 of 0.88. Although a continuous increase can 
be seen in [figure 58] the model began to suffer in accuracy after the 15th epoch. 

 

                    Figure 58: Training accuracy recorded per training epoch with 1 routing 

The Capsule network with 2 routings ran best over 20 epochs until an increase in loss 
started causing the training process to stop and roll back to epoch 20. 

 

              Figure 59: Training loss recorded per epoch with 2 routings 

Again, a continuous steady decline in loss can be seen in [figure 59] with a sharp decline 
after the first epoch. 
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With 2 routings the Capsule Network displayed better performance in training accuracy 
reaching a peak of 0.91  

 

                Figure 60: Training accuracy recorded per training epoch with 2 routings 

 

3 routings was used next and displayed the most consistency in decline of loss over 20 
epochs. At this point in the testing anything above 20 epochs displayed an increase in loss 
and triggered the call back function in training.  

 

                  Figure 61: Training loss recorded per epoch with 3 routings 
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The use of 3 routings displayed similar accuracy to 2 routings with its peak at the same point 
over 20 epochs but did display a low accuracy over the first two epochs. 

 

                    Figure 62: Training accuracy recorded per training epoch with 3 routings 

 

A Capsule Network with 4 routings returned the worst training metrics with loss starting to 
increase after the 11th epoch with a substantial jump in loss on the 10th epoch. 

 

               Figure 63: Training loss recorded per epoch with 4 routings 
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Training accuracy for a Capsule Network with 4 routings was also the worst performing, 
reaching a peak of 0.86 over the 11 epochs. 

 

                  Figure 64: Training accuracy recorded per training epoch with 4 routings 

 

For the Capsule Network with 5 routings, again the call back function was triggered at the 
20th epoch. With a similar decline in loss to the 2 and 3 routings versions. 

 

Figure 65: Training loss recorded per epoch with 5 routings 
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Training accuracy of the Capsule Network with 5 routings was again similar to the same as 
versions with 2 and 3 routings with the same peak accuracy achieved at the 20 epochs. 

 

            Figure 66: Training accuracy recorded per training epoch with 5 routings 

 

Over the course of training the Capsule Networks with the various routings the results 
showed that any more than 20 epochs would result in the loss beginning to increase which 
was in contrast to the CNN which ran the entire 50 epochs.  

The Capsule Networks did show more stability in the loss decline and accuracy increase over 
each epoch, but the training accuracy results were far below the results of the first CNN and 
the Hypermodel CNN. Although Capsule Networks with 2, 3 and 5 routings provided the 
best training results, all five instances were used for predictions on the test data. 

 

Training Results 

Model Best Accuracy Best Loss 
CNN 0.98 < 0.1 

Hypermodel 0.98 <0.05 

Capsule Network (2 routings) 0.91 0.15 

Capsule Network (3 routings) 0.91 0.18 

Capsule Network (5 routings) 0.91 0.15 
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5.0 Results 
Each of the models created were used to make predictions on the same test set with there 
accuracy, precision and recall recorded as well as the prediction made versus the true label 
in the test data. The predictions made against the true label were used to create 
contingency tables which were then used in the McNemar’s calculation for testing the level 
of disagreement between the models.  

Accuracy, precision and recall metrics were recorded using the Python package Scikit-Learn 
and the F1 score was calculated manually from these metrics. Confusion Matrix and ROC 
curve were plotted for each model with the AUC calculated. The false positive rates and true 
positive rates were calculated manually using the output from each confusion matrix.  

5.1 CNN 
The metrics recorded on the CNN predictions using the test set of data, along with the 
calculated F1 score and confusion matrix were as follows. 

 

 CNN Results 

 Metric Test Data 

 Accuracy 0.95 

 Precision 0.91 

 Recall 0.90 

 F1 score 0.90 
     

 

The ROC curve was also plotted and an AUC of 0.937 was calculated.  The True Positive Rate 
(TPR), as known as recall was calculated at 0.90, the same as above from the SK-Learn 
metrics and the False Positive Rate (FPR) was calculated at 0.03. It should be noted that the 
CNN created from the architecture presented in (Vanderburg & Shallue, 2018) performed as 
expected with 0.95 accuracy but did not perform to the same 0.985 AUC score presented in 
the paper. 

 

Figure 68: ROC graph for CNN 

Figure 67: Confusion Matrix for CNN 
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5.2 Hypermodel CNN 
The Hypermodel predictions on the test data were recorded and metrics calculated along 
with the confusion matrix created are as follows. 

 

 

 Hypermodel CNN Results 

 Metric Test Data 

 Accuracy 0.90 

 Precision 0.82 

 Recall 0.84 

 F1 score 0.83 
 

 

 

 

 

 

The ROC curve for the Hypermodel was plotted and an AUC of 0.887 was calculated.  The 
True Positive Rate (TPR) was calculated at 0.84, and the False Positive Rate (FPR) was 
calculated at 0.06 

 

 

Figure 69: ROC graph for Hypermodel CNN 

 

 

Figure 68: Confusion Matrix for Hypermodel CNN 
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5.3 Capsule Network 
All five Capsule Networks were used to make predictions on the test data. The Capsule 
Network with 3 routings performed the best in terms across all metrics and its results are 
shown below. The results from the other four Capsule Networks are presented in the 
appendix. All models scored a perfect precision score showing that the Capsule Network 
done a better job at identifying false positive exoplanets correctly. 

 

 Capsule Network (3 routings) Results 

 Metric Test Data 

 Accuracy 0.96 

 Precision 1 

 Recall 0.85 

 F1 score 0.92 

 

 

 

 

 

The ROC curve for the best Capsule Network (3 routings) was plotted and an AUC of 0.93 
was calculated.  The True Positive Rate (TPR) was calculated at 0.85, and the False Positive 
Rate (FPR) was calculated at 0 due to the perfect precision displayed by the model. 

 

 

          Figure 4: ROC graph for Capsule Network - 3 routings 
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Figure 70: Confusion Matrix for Capsule Network-3 routings 
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5.4 McNemar’s Test 
As the Hypermodel version of the CNN scored significantly less than the other two models in 
the analysis and that the Hypermodel was a secondary to the original CNN it was left out of 
calculations for McNemar’s test. This test is a statistical test used to determine the level of 
disagreement between the two models. For the test the alpha value was set at 0.05.  

If p > alpha we fail to reject H0, determining there is no difference in the level of 
disagreement. Alternatively, if p <= alpha we reject H0, and determine there is a significant 
difference in the disagreement between the two models. 

Using the results of the predictions a contingency table was created: 

 Capsule Net Correct Capsule Net Incorrect 
CNN Correct 723 10 

CNN Incorrect 18 20 
 

The resulting test statistic calculated was 10 with 1 degree of freedom resulting in a p-value 
of 0.185. Meaning, because p (0.185) > alpha (0.05) the test concludes that there is the 
same proportion of errors between both models and the null hypothesis is failed to be 
rejected.  

5.5 Overall 
Comparing the two best models (CNN and Capsule Network), the overall results show that 
the Capsule Network performed better across all metrics with exception of recall and AUC.  

The Capsule Network scored perfect precision meaning that it correctly identified all the 
false positive exoplanets in the data set. The CNN had better recall of 0.90 to the Capsule 
Networks 0.85 meaning that the CNN correctly classified 90% of known exoplanets while the 
Capsule Network correctly identified 85% of known exoplanets.  

The Capsule Network returned a better F1 score of 0.92 to the CNNs 0.90 while the CNN 
returned a better AUC of 0.937 to the Capsule Networks 0.928. There was no significant 
difference in the proportion of disagreement between the two models in McNemar’s test 
with a p-value of 0.185. The overall results of the analysis show that on making predictions 
on the test data: 

• The Capsule Network performed better in Accuracy, Precision and F1 Score 
• The CNN performed better in Recall and AUC. 

 Both Models Performance 

 Metric CNN on Test Data Capsule Network on Test Data 
 Accuracy 0.95 0.96 
 Precision 0.91 1 
 Recall 0.90 0.85 
 F1 score 0.90 0.92 
 AUC 0.937 0.928 
 TPR / FPR 0.90 / 0.03 0.85 / 0.0 
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6.0 Conclusions 
Capsule Networks were designed in an effort to address the issues present in CNNs where 
possible feature loss can occur during the pooling stages of the network, through the use of 
dynamic routing. While the Capsule Network created in this project does display numerical 
superiority in some respects on the given data set over the state of the art CNN, it does not 
represent a statistical improvement and cannot be assumed it will be equally successful 
when applied to all future instances of this type of data. Although Capsule Networks were 
originally designed for computer vision tasks, they demonstrate the potential to be equally 
as successful as CNNs when applied in different problem domains.   

A limitation to be noted in the creation of a Capsule Network is the need for custom built 
layers and calculations in the model. Although this can be considered a strength as it gives 
more flexibility in its design, the limitation appears with the advent of machine learning 
packages such as TensorFlow and Keras, where a convolutional neural network can be 
instantiated with relatively less effort and deployed quicker in a time sensitive environment 
with matching results. Another limitation of the Capsule Network implementation was the 
lack of a custom margin loss function as created in Hinton’s paper (Hinton, et al., 2017). The 
loss function used instead was standard binary cross entropy and it isn’t seen in this analysis 
if a custom loss would be more beneficial. A strength of the Capsule Network over the CNN 
is the number of epochs needed to train the models to reach similar test accuracy. Where 
the CNN trained for 50 epochs the Capsule Network trained to 20 epochs, although showing 
lower training scores, the Capsule Network produced better scores in accuracy, precision 
and F1 score on the test data. 

In regard to the Hypermodel created in the project, a disadvantage was the time and 
computing constraints that meant only a number of possible configurations could be tested. 
The main strength of the Hypermodel though, was the ability to achieve significant scores 
within the constraints of these tunning parameters applied.  

From the results presented in the analysis, it is the conclusion of the project that if a model 
is to be applied to a particular problem domain where CNNs have shown to be useful, and 
development time allows, Capsule Networks demonstrate the ability to address potential 
problems in CNNs and therefore should be considered a valid research path. 

7.0 Further Development or Research 
With additional time and resources, this project would benefit from testing of each model 
across multiple data sets in different configurations to conclude the model’s effectiveness in 
general application.  As discussed in the limitations of the project where a custom margin 
loss function was not created, with further work and a deeper understanding of the 
mathematics behind the custom margin loss function, it could be applied with benefit to the 
Capsule Network and improve its performance. Even though the CNN architecture used did 
provide comparative results to the state of the art CNN it was based upon, with more 
testing and development time available in tuning the Hypermodel version, it would be 
worth exploring if a different configuration was produced that would match or improve on 
the results of the CNN. 
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9.0 Appendices 
Results of the other Capsule Networks created not used in final model comparison: 

 Capsule Network (1 routings) Results 

 Metric Test Data 

 Accuracy 0.95 

 Precision 1 

 Recall 0.82 

 F1 score 0.90 

   

 Capsule Network (2 routings) Results 

 Metric Test Data 

 Accuracy 0.95 

 Precision 1 

 Recall 0.81 

 F1 score 0.89 

   

 Capsule Network (4 routings) Results 

 Metric Test Data 

 Accuracy 0.95 

 Precision 1 

 Recall 0.82 

 F1 score 0.90 

   

 Capsule Network (5 routings) Results 

 Metric Test Data 

 Accuracy 0.94 

 Precision 1 

 Recall 0.81 

 F1 score 0.89 
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Objectives 
The main objective of my project is to investigate the most effective machine learning 
method used to classify exoplanet candidates from Astronomical Photometric Data between 
Convolutional Neural Networks and Capsule Neural Networks. To do this I will be testing 
their comparative effectiveness in terms of prediction accuracy, recall, precision and F1 
score as well as using McNemar’s or a 5×2 cv test for statistical difference, depending on the 
computing power available.  

The project is driven by the hypothesis that there is a significant statistical difference in the 
performance of Capsule networks over Convolutional Neural Networks in classifying 
exoplanet candidates. The main objective can be broken down into several other objectives:  

Data Collection 

Data will be gathered from public datasets provided by the Mikulski Archive for Space 
Telescopes (MAST). All datasets are part of the Kepler space telescope mission. And will 
be collected through an API and webservices provided by MAST. 

1. Data Preparation 

There will be several steps to the overall preparation of the data, Kepler mission ID’s will 
need to be extracted from the main list of objects of interest, pixel images will need to 
be downloaded using these Kepler ID’s and light curve information will need to be 
extracted from images. The extracted light curves will need to be cleaned of possible 
instrumentation noise and other artifacts, normalised, and folded on their respective 
orbital period times and labelled for classification, so data can be split and used for 
training and testing with the machine learning models.  

2. Model Creation 

Two machine learning models will be developed (Capsule Neural Network and 
Convolutional Neural Network). I’ve chosen these two as Capsule Networks are a newer 
development and have shown in other cases to be better performing in accuracy to 
CNN’s (Jaiswal, 2018). CNN’s have been used in the past on these datasets with good 
results (97% average precision and 92% accuracy on planets in the two-class model)  (H. 
P. Osborn, 2019)  

3. Model Assessment 

Assessment of the created models will be based on their level of accuracy in predicting 
candidates as well as their respective level of accuracy, recall, precision, and F1-Score. 
For local testing, a contingency table will then be created and used to calculated 
McNemar’s statistic to evaluate if there is any significant statistical difference in the two 
models. For cloud deployment it may be possible to apply a 5×2 cv test. 

4. Findings Report 

The findings report will be the culmination of the project and provide insights on the 
analysis conducted throughout.   
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Background 
Machine Learning has increased in popularity in recent years, with many developers coming 
up with real world applications for Machine Learning that can help gain insights from the 
ever increasing amounts of data being produced.  

For my project, I plan to analyse the use of ML on one of those such use cases, the 
classification of exoplanet candidates. I chose this direction for my project as I have an 
interest in the capabilities of machine learning and its use cases as well as astronomy. When 
it comes to ever increasing amounts of data and ways to extract valuable information I find 
the combination of Space, Data and Machine Learning to be one of the most appealing.  

Currently the most popular means to identify exoplanet candidates are by; Transit (75.5%) 
When a planet passes between the observer and its star, it dims the stars light by a 
measurable amount. Radial Velocity (19.4%) Orbiting planets cause stars to wobble, causing 
an observable shift in the colour of the stars light, Microlensing (2.6%) as a planet passes 
between the star and an observer the stars light is focused by the gravity of the planet and 
is measurable and Direct Imaging (1.2%) using special techniques that remove glare from 
orbiting stars exoplanets can be photographed. (NASA, 2021) 

For my project I will be focussing on the Transit method of detection from the Kepler 
mission. 

State of the Art 
Searching for exoplanet candidates using machine learning is not a new concept. Some 
examples are in 2018 Christopher J. Shallue, and Andrew Vanderburg analysed exoplanet 
candidates using CNN’s, Fully Connected Networks and Linear methods, measuring their 
models against current vetting processes. On test sets, the model ranked true planet 
candidates above false positives 98.8% of the time (Vanderburg, 2018) this analysis was 
focussed more on vetting candidates rather than discovering candidates from light curve 
samples.  

A similar analysis was carried out in 2019 looking at Convolutional Neural Networks and 
what combination when applied gave the best results. The results of this analysis indicated 
that a two-dimension convolutional neural network would be an excellent choice for transit 
analysis, with all models with folding having an accuracy above 98% on test/training sets. 
(Jiang, 2019)  

Another relevant analysis to my project was performed to measure the performance of 
CNNs versus Capsule Networks in terms of semi-supervised classification on the MNIST 
dataset where the Error rate on n = 10,000 for CNN GAN’s was 0.0702 whereas 
CapsuleGANs was 0.0531 (Jaiswal, 2018) , a significant difference.  

My project hopes to build on top of these analyses and apply Capsule Networks on the 
Kepler datasets and measure their performance. From my research I have not been able to 
find where this analysis has been completed, even though I will be using the Kepler datasets 
another similar mission, TESS, is still on going and providing new data, therefore this type of 
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analysis can provide an insight into the usage of newer models such as Capsule Networks 
and evaluate its usefulness on exoplanet candidate identification.  

 

Data 
The data from this project will be four sources within publicly available datasets from NASA 
missions. The data although from NASA is provided by the Mikulski Archive for Space 
Telescopes (MAST) https://archive.stsci.edu/  The data sources I will be using are from the 
Kepler telescope mission and can be accessed as part of several data products MAST 
maintains such as API (Astro query) or downloaded in bulk with curl commands.  

The retrieved data will be in the form of Target Pixel Files and will need to be converted into 
Light Curve files. (Figure 1 below) 

 

Figure 5 https://heasarc.gsfc.nasa.gov/docs/tess/images/tess_ffi_phot.png 

The data will be split into two general sections. Training and Testing. Three main data 
sources will be used to create the labelled light curves, 1) List of 4,884 confirmed exoplanets 
with mission ID’s, discovery method, and orbital (period) times. 3) List 9,564 objects of 
interest with Mission ID’s, classification between confirmed and false positive, orbital times. 
4) Electron flux data for each of the stars in the objects of interest table and converted to 
light curve data.  The extracted light curves will need to be cleaned of possible 
instrumentation noise and other artifacts, normalised, and folded on their respective orbital 
period times then labelled for classification, so data can be split and used for training and 
testing with the machine learning models.  Classification tests will be done multiple times 
per model chosen at different percentage distributions for training and testing. At this stage 
of the project these percentages have not been decided. The model testing will be the 
accuracy, recall, precision and F1 score of classifying light curves based on candidate or not.  

From the light curve information extracted, I will be relying on the time and flux 
measurement attributes (The total flow of light measured over time, electrons per second) 
to identify possible candidates. The time and flux attributes will be my independent 
variables and my dependant variable will be the classification. 

https://archive.stsci.edu/
https://astroquery.readthedocs.io/en/latest/mast/mast.html
https://heasarc.gsfc.nasa.gov/docs/tess/images/tess_ffi_phot.png
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Cloud computing will then be used to process the full dataset and tested again. The 
technical specifications of the local machine as well as any cloud computing used to run the 
testing will be noted and compared but not used as a comparative measure for the Machine 
Learning process but for a runtime analysis.  

Methodology & Analysis  
The methodology I plan to use is KDD as I believe it suits the characteristics of my project 
the best. Breaking down the KDD methodology for my project (figure 2). The data selection 
is based on the problem domain and is the MAST Kepler Mission photometric data. Pre-
processing will be the use of the mixture of the tables downloaded from MAST to create a 
secondary list to perform API calls with, retrieving the data. Transformation will be 
transforming the pre-processed flux data into a labelled dataset for classification. The data 
mining aspect will be the two Machine Learning models training and testing classification on 
the labelled datasets. The interpretation and evaluation step will be defined as investigating 
the appropriate machine learning method to analyse astronomical data for exoplanet 
candidates, with the hypotheses that Capsule Networks outperform CNNs in terms of 
metrics set out in the previous sections.  

The data understanding for my project has its own challenges as I need to familiarise myself 
with the technical aspects of the data such as the flux and flux error attributes. As the data 
is semi structured this poses its own challenge of compiling the datasets into a labelled flux 
dataset. Another challenge is reading and understanding the technical documentation and 
gaining understanding from it to be able to apply, interpret and implement the machine 
learning methods effectively. The data preparation has been discussed in the previous 
section and will encompass the gathering of the data through the API and converting the 
pixel data to usable data.  

The main analysis objective of my project will be on the modelling and model evaluation 
stages. These stages are where my project will gain the relevant insights and 
recommendations that will make up the final report.  

During the stages of the project, different types of analysis will be performed, classification 
analysis will be performed on the dataset by each model chosen, while descriptive analysis 
will be used on the generated data from each model’s performance metrics, testing for any 
statistical differences between them using both a 5×2 cv test (If possible, on cloud platform) 
and McNemar’s test (for local testing). 

5x2 Cross validation will be used using subsets of the main data to train and evaluate each 
model’s performance on the chosen cloud platform as computational power will be more, 
this step will depend on the chosen cloud platform and the cost involved in running the 
models.  

McNemar’s test will be used for local testing as it has been demonstrated to be a useful test 
when computing power is limited and tests cannot be run multiple times due to time or 
computational cost restraints. 
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“For algorithms that can be executed only once, McNemar's test is the only test with 
acceptable type I error. For algorithms that can be executed 10 times, the 5 × 2 cv test is 
recommended, because it is slightly more powerful and because it directly measures 
variation due to the choice of training set.” (Dietterich, 1998) 

 

Figure 2:  Preliminary Project Breakdown 

Technical Details 
For processing the data needed for my project, Python will be the language used. The IDE’s 
that will be used are Spyder for Python script building as well as Jupyter notebook for 
exploratory analysis on the datasets.  

The machine learning methods will be implemented in Python and some visualization will be 
done in Tableau when exploring the data collected, both from the API as well as the data 
created by the performance metrics of each ML method. 

Training data will be stored locally as csv files and the performance metrics will be exported 
to csv to be analysed. 

Libraries for the project below are the base libraries to be used in python. 

• Pandas – data manipulation  
• Numpy - data manipulation & feature creation 
• Matplotlib – visualization 
• Lightkurve – Astroquery API and light curve analysis 
• Keras & TensorFlow 
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Project Plan 
Some screen shots of a Gantt Chart created for the project plan.  File embedded here:  

Project_Gantt.xlsx
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9.2 Reflective Journals 
Supervision & Reflection Journal  

Student Name Jonathan Flanagan 
Student Number 18143890 
Course BSHCEDA4 – Computing (Evening) Data Analytics Stream 

Month:  October 2021 

What?  
First month back to college has been difficult to get back into the schedule of things and 
the fourth year workload being greater than any previous years (to be expected though). 
In terms of the project, we have our Project lecture Saturday mornings for one hour. So far 
it has been more of an introduction to what is expected and some guest lecturers on 
different aspects of the project cycle. Although parts have been relevant to the Data 
Analytics stream the main focus so far from guest lecturers has been more towards the 
software development side of things. I had been struggling with coming up with a project 
all summer, lacking focus in what direction to take. I’ve had a basic idea in what field I would 
like to try some analytics in but no real clear purpose when it comes to how to measure the 
project. After spending a few hours every few days brainstorming new ideas I concluded 
that I would just go with my first baseline idea and try build a project from that. After 
speaking with Enda after our first Project lecture it did give me hope that my project could 
have clear direction, I just needed to find it. I submitted my project idea knowing it was 
probably a bit too general of a scope, but still working hard on how to refine the idea into 
something more tangible if the general pitch got accepted. My project got accepted by my 
project supervisor Noel, but the second marker had questions and needed some more 
validation. Which I expected as I had the same concerns myself. Noel arranged a call with 
me, and we spoke for approx. 30mins, with his guidance he helped me narrow my scope to 
a more feasible and Analytics driven project by addressing the second markers queries one 
by one. I feel I needed that conversation with someone who understood the field and had 
gotten the gist of what I wanted to achieve, even though I couldn’t verbalise it properly in 
my video pitch. 

So What?  
After my conversation with Noel, I felt like I had more focus and a clear view of what my 
project was going to entail at a high level. I think this was a great success in terms of being 
able to move forward with my project. I had already identified the data set I want to use 
but now I had the focus on what my hypotheses was and what I was going to be setting as 
the measurable aspect of my project.   
A lot of challenges still remain, I will have to learn a lot of new scientific language and how 
to read the data set I will be using correctly, as well as investigating different machine 
learning techniques that we wouldn’t come across in our college course. 
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Now What?  
For the meantime my first and foremost challenge is to read as much literature as I can on 
the methods already used to explore the dataset I have chosen (as it has been analysed 
previously by a lot of people) and try to define myself apart from these methods. This will 
be a key aspect of my proposal due early next month. I also need to get myself acquainted 
with the newer machine learning methods I will be testing against such as Capsule Neural 
Networks. We are in the early stages of the project so my main focus at the minute is to 
read the current literature and set myself apart from in it in a novel way as part of my 
proposal. 

 

Supervision & Reflection Journal  

Student Name Jonathan Flanagan 
Student Number 18143890 
Course BSHCEDA4 – Computing (Evening) Data Analytics Stream 

Month:  November 2021 

What?  
This month has been a struggle time wise with the volume of ca’s and project work. As far 
as project work is concerned, I’m behind on where I expected to be at this stage. Project 
proposal was submitted last month but no feedback has been received as of yet so I’m still 
following my initial plan and proposal ideas. I had planned to be at a stage where the 
literature review, API automation, and a prelim exploration has been completed with 
labelling and training data completed. Literature review is a work in progress still, API 
automation is almost complete, and some prelim exploration has been completed but no 
work on the machine learning applications have been started. We have covered some 
statistical analysis techniques in both Data application development and Business Analysis 
that will transfer nicely into the main software project. Some python learning has been 
completed outside of college to help with the project, Jupyter notebook and Spyder IDE are 
the main tools I’m using at the moment, I’ve practiced using these with Data Applications 
CA1 to get used them for use in the project. 
  
So What?  
Some items on the Gantt chart submitted will need to be reorganized with new importance 
to what should be in the midterm presentation. Literature review, Capsule Network 
research and a prelim analysis of the MAST data sets will be the main focus. 

Now What?  
No changes have been made to my proposal as of the end of this month so I will be following 
what I set out in the current proposal. Preparations for the midpoint presentation will be 
my main priority and reaching the milestones set out in original proposal. Following the 
rubric on the Moodle page and trying to meet everything set out in the rubric as a guide.  
Once the preparations for the midterm project are completed machine learning packages 
in python will be researched and small iterations on the labelled dataset will be attempted.  
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Supervision & Reflection Template  

Student Name Jonathan Flanagan 
Student Number 18143890 
Course BSHCEDA4 – Computing (Evening) Data 

Analytics Stream 
 

Month: December 2021 

What?  
Milestones have all been met for the project, it has been a difficult month catching up on 
work missed as well as staying on top of CA deadlines. Practicing python and R samples 
from “Comparative Approaches to Using R and Python for Statistical Data Analysis” I’ve 
decided on Python as the language to use. This choice makes some aspects of the project I 
expected to be difficult much easier with libraries such as Lightkurve for processing the data 
I’m using.  
API has been tested and works although processing takes 9 hours at a time, and errors 
occurring in the middle of the process have added some delays to the project, even with 
these delays though I’ve managed to meet everything set out in my Gantt Chart. 
 
So What?  
Being on target with the project gives me confidence that I will manage to get everything 
set I’ve set out, but I am still struggling with articulating the project work in the 
documentation, this will take practice, but I don’t anticipate my report writing skills to 
increase dramatically over the course of the project.  
 
 
Now What?  
Moving onto the next stage of the project and starting to build the models I’ll be testing, 
this stage seems like it is going to have the steepest learning curve, TensorFlow will be my 
library of choice for implementing the models and a brief read of the documentation seems 
like there is a lot to learn in a short period of time if I want to stay on top of the project 
work. 
 
Before I start this though I need to concentrate on the midpoint submission and the 
presentation. 
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Supervision & Reflection Template  

Student Name Jonathan Flanagan 
Student Number 18143890 
Course BSHCEDA4 – Computing (Evening) Data 

Analytics Stream 
 

Month: January 2022 

What?  
With the midterm presentation finished and the Christmas break the first two weeks of 
January where hard to get back in the swing of the project, along with the start of the new 
semester and new modules to take on. Having had covid and at the end of December and 
the start of January it was difficult to get everything done while sick but somehow managed 
it and kept a decent enough grade but not as high as I would’ve wanted to achieve. In terms 
of the project, January has been spent installing and testing TensorFlow correctly on my 
machine and doing the tutorials on the TensorFlow website to get to grips with creating 
different neural networks. I’ve also spent time reading about capsule networks as there are 
very few working examples available online. Overall though I’m happy with the progress 
made in January with reading papers and setting up my machine correctly to implement 
my neural networks 
 
 
So What?  
My slow start to January has had an impact on the project timeline but not significant 
enough to worry or to change my Gantt chart. I feel more prepared now with developing 
the Convolutional Neural Network after completing some of the TensorFlow tutorials and 
reading the documents.  
 
 
 
 
 
Now What?  
Next steps for February will be to assess my cleaned dataset and see if any changes need 
to be made and to implement and train the Convolutional Neural Network while 
documenting the results. Further after that the CapsNet is going to be by far the hardest 
thing to and achieve as there are so few examples of working models (3 I could find at the 
time of writing this, one of which are the original paper on them) my plan is to have the 
CapsNet finished in March so I can deploy both the cloud at the beginning of April and 
spend the rest of April and May writing my final report.  
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Supervision & Reflection Template  

Student Name Jonathan Flanagan 
Student Number 18143890 
Course BSHCEDA4 – Computing (Evening) Data 

Analytics Stream 
 

Month: February 2022 

What?  
For February I managed to complete and train my Convolutional Network with accuracy at 
98% predictions. I have recorded the accuracy, recall and F1 score details and charted the 
performance of the model over different epoch cycles, so far there seems to be no increase 
in performance after the 20 epoch threshold. I have tested it up to 100 epochs of training 
with performance metrics all flat lining around the 20 epoch mark. In the beginning I was 
achieving 30% accuracy only but with tweaking some of the settings in the network the 
accuracy increased dramatically.  We have also received our CAs for Data Mining and 
Advanced BA so I can see these taking away from time I’d like to spend on my project, I’ll 
have to carve some extra time out somewhere to combat this as I mistakenly didn’t take 
these into account for my workload projections  
 
 
So What?  
The addition of the CAs to the workload will be difficult but I think manageable, for my 
project I’m on track and will concentrate the coming month on the CapsNet. I’m on track if 
not slightly ahead of schedule with documentation of the CNN complete. I was worried 
coming into Feb that I might end up behind in terms of timeline, but it has worked out well 
and I’m happy with the results so far. Time management though is still going to be a major 
focus for this month. One thing I’ve learned in the past four years, and especially this year 
is time management is a key tool not to be overlooked.  
 
 
Now What?  
CapsNets are going to be my main focus for the coming month as well as getting ready for 
cloud deployment. If I manage to get everything done at a similar pace as I have for Feb 
then I will attempt to setup a live API connection to the MAST database for the cloud to 
test also test on a live data feed, this may be a bit ambitious and is outside the scope of the 
project, but I have it as a consideration depending on what progress is made throughout 
March.  
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Supervision & Reflection Template  

Student Name Jonathan Flanagan 
Student Number 18143890 
Course BSHCEDA4 – Computing (Evening) Data 

Analytics Stream 
 

Month: March 2022 

What?  
In March, continuing on with the convolutional neural network, I wasn’t entirely happy with 
the CNN even though the test results did show 98% from further testing the model was 
showing some signs of over fitting as the results on test data or generated data did not 
perform where I would have hoped. In attempt to improve the models generalised 
performance I redone some of the code to be able to automatically build and test several 
CNN’s and output the best model. To limit the number of parameters I based the general 
architecture on the paper I have been using to compare my results to as it is one of the 
most comprehensive papers and the CNN in that paper is testing against NASA’s own neural 
network for comparisons. (Vanderburg & Shallue, 2018) It took a few days of writing new 
code and testing and training and setting the hyperparameters, but the output model was 
slightly different to the papers model with only two differences. A smaller secondary kernel 
in the first layer and instead of 4 fully connected layers before the output there is only 1. 
This model did produce almost identical performance to the model in the paper with 95% 
accuracy on test data. 
Secondary to this work at the start of the month but more importantly I began 
implementing the capsule network. This as expected is the hardest part of the project so 
far with a lot of documentation already ready and the maths studied to the best of my 
ability numerous versions of capsule networks have been attempted but do not work past 
the primary capsule network layer. The problem is trying to adjust the maths behind the 
capsule network to suit the data type that is being used in the project. Capsule networks so 
far in their implementation have been towards computer vision and show great promise. 
With that they use 4 dimensional inputs creating and 8 dimensional output which then has 
a 16 dimensional output for each pair between the 4 and 8D layers. The major issue being 
encountered is learning enough TensorFlow code to be able to reduce the dimensions to 
1D at the initial layer, then 4D then 8D while keeping the same mathematical structure in 
the initial paper used to route throughout the nodes and produce an output. (Hinton, et 
al., 2017) 
In conjunction to this, work in the CA was mounting and needed to be addressed along with 
starting the report for the final project. Notes have been taken and graphs produced with 
a draft of what I’d like to contain in the final report. 
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So What?  
CA work has limited the time spent on the project as well as the changes made to the CNN 
at the beginning of the month slowed down the progress that I could make on the capsule 
network.  After speaking with my project supervisor, he seems happy with the progress in 
the implementation but has suggested to start concentrating on the project report. He also 
suggested that a cloud deployment may not be necessary as it was initially suggested under 
the assumption that I would not have the computing power locally to be able to run and 
test the models, luckily, I do so cloud deployment isn’t of great concern at the minute but 
if time permits, I may deploy it as a useable model. 
 
 
Now What?  
For the coming month getting the capsule network completed and running is the primary 
concern. The TABA’s will be coming out also so they will eat into the time available. The 
project report needs to be moved from draft stages. I feel that I have the time to complete 
all objectives, but it will depend on how much time completing the capsule network takes 
and any tweaks or testing that need to be completed. 
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Supervision & Reflection Template  

Student Name Jonathan Flanagan 
Student Number 18143890 
Course BSHCEDA4 – Computing (Evening) Data 

Analytics Stream 
 

Month: April 2022 

What?  
April has been a busy month. TABAs were difficult and pretty much straight after CA 
submissions with tight deadlines which left little time for project work. Thankfully I was able 
to carve out enough time to keep on track with what I had planned to get done for the 
project this month. I successfully finished the capsule network, although the hypothesis 
being tested that this type of network would outperform the CNN as so far this type of 
network has shown great promise in computer vision tasks, it looks like in one or two 
dimensional data the feature recognition doesn’t translate as well and the CNN 
outperforms the Capsule Network. The best I have achieved so far with the Capsule 
Network is 95% in training and 83% accuracy on test data. The number of tuneable 
parameters is quite high so takes a while to train and adjust. Their concept is fascinating 
though, and I do believe that with more time and better knowledge of the mathematics 
behind how they work the model could improve significantly. It was a challenge to 
overcome all the errors each step of the way through the model creation, but I learned a 
great deal about how these types of models work and the routing by agreement methods 
used. The report is starting to take shape and will be finished on time. The capsule network 
took longer to implement definitely has been the biggest challenge as there is no readily 
available documentation in TensorFlow about how to build one, it has really been trial and 
error and following the maths described in the paper along with learning TensorFlow code. 
(Hinton, et al., 2017) The best approach was blending the Keras API with direct TensorFlow 
code and has resulted in a highly tuneable model that works.  
 
So What?  
Now that all the code and models are complete for the project all results noted and all 
graphs created with about three quarters of the project report completed. I will spend the 
remaining time tidying up the report, making it as concise as possible without inflating and 
finishing of the smaller tasks in the project such as showcase page and picture and the 
tidying up the GitHub page for presentation. 
 
Now What?  
The last few final steps for the project are set in place. I have been slightly behind the 
planned timetable of what I set out, but I still have time to polish up some aspects and have 
the completed project ready on time. When everything is completed, the final step will be 
the presentation and the video to create. I’ve mapped out the final two weeks before the 
deadline to include report revisions, tidying up the GitHub page, creating the presentation 
and video.  
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9.3 Other materials used 
 

MAST Website used for documentation relating to data retrieval: 

https://archive.stsci.edu/   

Kepler Objects of Interest Documentation: 

https://exoplanetarchive.ipac.caltech.edu/docs/API_kepcandidate_columns.html#kic_param 

Pandas Package Library Documentation: 

https://pandas.pydata.org/docs/ 

TensorFlow Documentation: 

https://www.tensorflow.org/overview 

Keras Documentation: 

https://keras.io/ 

Keras Hypermodel Documentation: 

https://keras.io/api/keras_tuner/ 

Scikit-Learn Documentation: 

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning 

LightKurve API documentation: 

https://docs.lightkurve.org/reference/index.html 

CUDA Nvidia Toolkit: 

https://developer.nvidia.com/cuda-toolkit 

cudNN: 

https://developer.nvidia.com/cudnn 

 

https://archive.stsci.edu/
https://exoplanetarchive.ipac.caltech.edu/docs/API_kepcandidate_columns.html#kic_param
https://pandas.pydata.org/docs/
https://www.tensorflow.org/overview
https://keras.io/
https://keras.io/api/keras_tuner/
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://docs.lightkurve.org/reference/index.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn
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