

National College of Ireland
Bachelor of Science (Honours) in Computing

Cyber Security - BSHCYB4

2021/2022

Gavin Corr

x18382836

x18382836@student.ncirl.ie

Dragon Pass – Password Manager

Final Report

1

Contents
Executive Summary ... 2

1.0 Introduction .. 3

1.1. Background ... 3

1.2. Aims ... 3

1.3. Technology .. 4

1.4. Report Structure ... 4

2.0 System ... 5

2.1. Requirements .. 5

2.1.1. Functional Requirements .. 5

2.1.1.1. Requirement 1: Login and User Security .. 5

2.1.1.2. Description & Priority .. 5

2.1.1.3. Use Case .. 6

2.1.1.4. Requirement 2: Secure Registration ... 7

2.1.1.5. Description & Priority .. 7

2.1.1.6. Use Case .. 7

2.1.1.7. Requirement 3: Secure Password Manager .. 8

2.1.1.8. Description & Priority .. 8

2.1.1.9. Use Case .. 9

2.1.1.10. Requirement 4: Auto-Change feature .. 10

2.1.1.11. Description & Priority .. 10

2.1.1.12. Use Case .. 10

2.1.2. Data Requirements ... 12

2.1.3. User Requirements ... 12

2.1.4. Environmental Requirements ... 13

2.1.5. Usability Requirements ... 13

2.2. Design & Architecture ... 13

2.3. Implementation .. 16

2.4. Graphical User Interface (GUI) .. 23

2.5. Testing ... 27

2.6. Evaluation ... 36

3.0 Conclusions ... 37

4.0 Further Development or Research ... 37

5.0 References .. 38

6.0 Appendices .. 38

6.1. Project Proposal .. 38

2

6.2. Reflective Journals .. 42

6.3. Invention Disclosure Form .. 43

Executive Summary

The purpose of this report is to breakdown and demonstrate how I developed a password
manager for my project and why I decided to do so. The purpose of the Dragon Pass
password manager is to dynamically change user passwords on a selected time interval to
protect the user’s passwords from company leaks, company breaches, phishing attacks, and
password cracking methods. The reason I decided to create this application was due to my
work experience in Beaumont as part of my 3rd year in my Computer Science degree. During
the HSE cyber attack in 2021, to protect user accounts and stop the virus from spreading,
our team changed all user passwords within the hospital manually on a 24-hour basis. This
was very time consuming but ensured that the hospital IT systems would remain protected
and secure. This gave me an idea to securely automate this process and create a password
manager that would dynamically change any chosen passwords by the user. DragonPass
functions like any other password manager in its convenience, however, it adds an extra
layer of security by dynamically and securely changing the user’s chosen passwords. This
dynamic extra layer of security is called ‘Auto-Change’. Auto-Change is what sets this
password manager apart from any other. In this report I describe in depth how I developed,
tested, and designed this project and show the relevant results of the development. The
main goal and purpose of this project was to offer users a more secure and convenient
means of protecting their passwords for various applications.

3

1.0 Introduction

1.1. Background

In 2021, during my work experience in Beaumont Hospital IT for my 3rd year in Computer
Science, the hospital became a victim of the HSE cyber-attack. The hospital was able to
successfully protect and secure its systems and data due to our team implementing relevant
and important secure practices within the hospital and IT environment. One of the keyways
we protected the hospital, staff and patients was by changing all account passwords every
24 hours. This meant that any accounts that were infected or at risk would be isolated and
secured and as a result, stopping the virus from spreading. This implementation was
extremely successful; however, it was also very time consuming and required a lot of IT staff
to coordinate. As part of the team that coordinated this effort, I came up with an idea that
would automate this process. If users within a company or even a household environment
only needed to remember one password, pin and use two-factor authentication to access
their password manager and then the password manager dynamically changed all other
account passwords, it would lower the risk of company password leaks, phishing attacks,
database breaches and other various malicious activities from affecting the user. If any
passwords are accessed by a malicious user, they would have a very short time frame to
take advantage of it as the password would be constantly changing.

1.2. Aims

The goal of this project is to create a secure and dynamic password manager that has all
the same convenient features as any other password manager but also has the added
and unique ability of dynamically changing user passwords based on a set time interval.
For example, if a user sets the time interval on a selected account to 30 seconds, the
password manager should then change that password to a new secure password every
30 seconds. The purpose of this feature is to add an extra layer of security to password
management. Current password managers on the market do not fully protect users from
data breaches, password leaks and phishing attacks. A user is sometimes notified of
potential security threats on other password managers, but my project aims to act in
these scenarios by constantly changing the user’s password for them. A user can’t leak
or reveal their password as they do not know the password themselves until they check
the password manager. Companies that fall victim to data breaches and password leaks
will also be countered as any leaked user passwords would be change before a malicious
user could take advantage of it. The project also aims to implement and provide reliable
cyber security practices and technology to offer the best security possible for the user.
Security and confidentiality are key aspects of the development and implementation of
this project.

4

1.3. Technology

The main technologies used in the development and implementation of this project are
Java, JavaFX, IntelliJ IDEA, MySQL, SQLite, and Google Authenticator. JavaFX allows for
smooth and effective GUI design, which improves overall use and user experience.
MySQL is used for database structure and development. SQLite has been used for error
handling and monitoring the application. Google Authenticator has been used to add an
extra layer of security to the login system. As the application is a password manager, it is
of utmost importance that the login process is extremely secure. Two factor
authentication with Google Authenticator ensures that the users use their mobile device
to complete the login process, meaning a malicious user would also need access to their
mobile device additionally with the password and pin. Also included in the registration
and login process is the SHA-256 hashing algorithm. This cryptographic hashing method
creates an irreversible unique hashed string which allows for user verification but also
protects the integrity of the user’s actual password. For password changing and retrieval
within the password manager, AES-GCM encryption has been implemented. AES-GCM is
a block cipher operation that allows for authenticated users to encrypt and decrypt their
data at high speed while maintain password integrity. The type of encryption used for
this project is password-based encryption, which uses the users account password as the
encryption key. All these technologies ensure that Dragon Pass accounts are protected
at a high level and ensures the integrity and confidentiality of user password data.

1.4. Report Structure
This report will be discussing and demonstrating how Dragon Pass works and functions.
System requirements and use cases will be showcased to explain how the application
should be used and how’s its intended functionality works. An in depth look at the
architecture of various algorithm used within the project will also be reported and
accompanied by relevant diagrams and snippets. Each important feature that makes up
Dragon Pass will be explained in depth with coded examples and text descriptions. The
GUI and all viewable features of the application will also be presented in this report and
accompanied by a description of how they function. This report will also detail how
testing was performed, how the results were evaluated and the results themselves
presented. Finally, a conclusion that describes the overall advantages and disadvantages
of the project, what future potential the project holds and a short summary of the
report. An appendix can also be found at the end of the report that includes further
information and resources regarding the Dragon Pass project. All report sections can be
easily navigated via the Contents list on page one.

5

2.0 System

2.1. Requirements
Requirements involve the following:

• a secure login and registration.
• A secure password management system
• A secure dynamic password changer
• Confidentiality
• Integrity
• Usability
• Adaptability
• Accessibility
• Overall security

2.1.1. Functional Requirements

The functional requirements for this project are ranked starting from the highest to
lowest requirement. The ranking of these requirements is based on the prioritization
of user security, integrity, and confidentiality.

1. Login and user verification security (Highest priority)
2. Secure registration
3. Secure password manager for storing passwords
4. Auto-Change feature for dynamic password changing

2.1.1.1. Requirement 1: Login and User Security

2.1.1.2. Description & Priority
Due to the sensitive nature of a password manager and the data that it stores,
the login and user verification must be of the highest priority. If any malicious
user gains unwarranted access to a user account, it would defeat the main goal
and purpose of the application. For the rest of the application to function at a
high level, this requirement must be fulfilled. SQL injection and brute forcing
must be countered by the login system to protect its users and the overall
integrity of the system.

6

2.1.1.3. Use Case

Scope

The scope of this use case is to provide a user with the knowledge of how to use
the login system and show how the login system verifies and validates the
necessary information required.

Description

This use case describes the relationship between the login system, the user, and
the database. It shows the various security methods implemented to safely
secure user account information and prevent malicious users from gaining
unwanted access to the password manager.

Use Case Diagram

Flow Description

The user inputs details and the application verify the input. The user receives a
TFA code from Google Authenticator and inputs along with the verified
credentials. They select the login button, and the database verifies if the user
exists based on the provided details. If a user is not found, the login attempt
counter increases by one. If the user is found in the database, the use case
terminates, and the next process begins.

7

Precondition

The system is in initialisation mode when the user enters the Login Controller.

Activation

This use case starts when a user inputs a string into a text field.

Termination

The system terminates when the user verification has been accepted or denied.

Post condition

The system goes into a wait state for further user input.

2.1.1.4. Requirement 2: Secure Registration

2.1.1.5. Description & Priority

Like with the secure login requirement, the registration requirement is just as
important regarding securing user account information for the password
manager. To stop users from obtaining user account information, it is vital that
user sensitive data such as their account password and pin is hashed. Storing
user sensitive data and preventing security vulnerabilities such as buffer
overflow, SQL injection and bot account creation, this requirement is necessary.

2.1.1.6. Use Case
Scope

The scope of this use case is to provide a user with the knowledge of how to use
the registration system and safely create an account using the provided
resources such as two factor authentication.

Description

This use case describes the relationship between the registration system, the
database, and the application. It describes how sensitive data is hashed and
secured.

8

Use Case Diagram

Flow Description

The user inputs details, the user
selects the register button, the system
verifies the inputs, the system also
checks the database to see if the user
account already exists, the user
password and pin is hashed, the
details are stored to the database.

Precondition

The system is in initialisation mode
when the user enters the Registration
Controller.

Activation

This use case starts when a user inputs a string into a text field.

Termination

The system terminates once user registration is verified, and user details are
added to the database.

Post condition

The system goes into a wait state until another user accesses the register
controller.

2.1.1.7. Requirement 3: Secure Password Manager

2.1.1.8. Description & Priority
The password manager is the backbone of the application as it stores and manages all
user account passwords. The encryption and storing of this sensitive data are essential
for the user security and the main Auto-Change feature to work effectively. Ensuring
that only the verified user can access their own passwords is essential.

9

2.1.1.9. Use Case
Scope

The scope of this use case is to provide a user with the knowledge of how to use
the Password manager and understand the functionality behind it. It also
describes how the manager effectively secures their account passwords.

Description

This use case describes the relationship between the password manager, the
database, and the user. The use case also shows how the password manager
secures the information put into it.

Use Case Diagram

Flow Description

The system calls the database to fill in the table view for the user, the table is
then displayed in the GUI, the table then updates the data in the table
automatically, the user can add and delete entries from the table, the user can
also select the reveal button to decrypt the selected account password. Any
passwords added to the table are encrypted automatically.

10

Precondition

The system is in initialisation mode when the user enters the Manager
Controller.

Activation

This use case starts when a user selects an item or button within the password
manager.

Termination

The system terminates when the user exits the controller.

Post condition

The system goes into a wait state until the user re-enters the controller

2.1.1.10. Requirement 4: Auto-Change feature

2.1.1.11. Description & Priority

The Auto-Change feature dynamically changes user passwords securely and
conveniently for any chosen user account. This feature is offering a high level of
password security for the user. It is essential for the main goal of the application,
however, is ranked lower than the other requirements as it offers the user a high level of
protection when using 3rd party applications but offers less to the Dragon Pass system
itself. Regardless, it is still an essential requirement for the user’s overall security when
using other applications. Overall, this is the most important feature of the application,
however, it requires all the other requirements to be fully implemented and functional
before it can work as intended.

2.1.1.12. Use Case
Scope

The scope of this use case is to provide a user with the knowledge of how to use
the Auto-Change feature. In doing so, they will be equipped with a unique and
secure password management solution by dynamically changing their passwords
on selected time intervals.

Description

This use case describes how the Auto-Change feature works and how a user
would interact with the feature. Furtherly, it shows the relationship between the
user, the database, and the application itself.

11

Use Case Diagram

Flow Description

The user accesses the time menu and selects a time, the database loads up the
table view and its related data, the user selects an account loaded from the table
view, the user selects the auto-change button, the database updates the auto-
change feature based on the selected time interval for the selected account. This
means that the selected password will now change every time the selected time
interval loops.

Precondition

The system is in initialisation mode when the user enters the Auto-Change
controller.

Activation

This use case starts when a user selects an account or time interval from the time
menu for Auto-Change.

Termination

The system terminates when the user leaves the controller.

12

Post condition

The system goes into a wait state until the user re-enters the controller.

2.1.2. Data Requirements

For the password manager to work, a user will need to provide a password, pin,
username, email and generate a secret key upon registration. The login system
requires hashed data of the user’s password from registration to verify the user. The
login system will additionally require the users two factor authentication secret key.
When encrypting and decrypting data, the password manager will also require the
user’s password to use as a secret key. This password will be required again upon
using the auto-change feature to encrypt and decrypt the information again using
AES-GCM encryption.

2.1.3. User Requirements

The user requirements for this project include providing the following for the end
user:

• Reliability
• Security
• Confidentiality
• Integrity
• Functionality
• Usability
• Convenience
• Adaptability
• Availability
• Consistency

13

2.1.4. Environmental Requirements

This application has been designed with no audible requirements or features; therefore, no
external sounds or interruptions will affect user experience. Alerts are clear, precise and the
application design is colourful, making visuals much easier to process regardless of visual
environmental effects such as low brightness.

The main environmental requirements for this project are the following:

• Visually appealing and colourful design
• Designed without the use of audible cues
• Clear direction of application use
• Designed to work securely in any type of environment with secure validation and

authentication methods implemented

2.1.5. Usability Requirements

The user interface has been designed in a way that offers ease of use and similar patterns
that makes usability familiar and easier for users such as repeated use of text fields and
buttons. Notes and labels have been provided for user convenience. Only necessary
features are implemented as too many features or information can overcomplicate design
and confuse or intimidate the user.

The main usability requirements for this project are the following:

• Efficiency and Ease of use
• Low Error encounters
• Simple UI design with not intimidating or complex factors. In this case, the less the

better
• Intuitiveness of the UI by using similar patterns and designs such as buttons, text

fields and simple table

2.2. Design & Architecture
Dragon Pass follows a secure design pattern by using various encryption, hashing and
security features to ensure no malicious users can access non-authorized user data. Due
to the project being a password manager, the encryption and hashing of passwords is a
vital and key aspect of the design and architecture of the application to ensure user
integrity and confidentiality while still offering a convenient and useful product. The
three key algorithms used in this project are SHA-256 hashing for user authentication,
AES-GCM encryption for the password manager and the TOTP algorithm for two-factor
authentication during the login process. Both the hashing and encryption algorithms are
used for the Auto-Change feature, which is a key aspect of this project.

14

SHA-256 Architecture:

To verify the user while maintaining password confidentiality and integrity, the SHA-256
algorithm is used to hash the user password. The hashed password stored in the
database upon registration can be matched with the hashed user input upon login to
verify the user without breaking user confidentiality by protecting and hiding the user’s
actual password. SHA-256 hashing pre-processes the users input by taking the plain text,
padding it (appending bits based on rules until the total length of the integer reaches
512-bit) and expanding the text (expanding each 512 bits to 64x32) for the round
computation [1]. The round computation process can be seen left of the dotted line in
the diagram below [1]:

The parallel hardware design used in SHA-256 hashing architecture is ideal for reaching
high processing speeds while also maintaining a low power consumption in the
computer hardware [1]. In this project implementation, the user’s password and pin are
hashed for user authentication. The algorithm is also used for third-party applications
(test applications) to access newly changed passwords from the Auto-Change feature in
this project.

AES-GCM Architecture:

AES-GCM is the primary component used for the encryption and decryption of user
passwords within the database of this project. The key length used in this project is 128-
bits. AES encrypts a 128-bit of a string or decrypts 128-bit of a ciphertext by applying the
same round of transformation on repeat depending on the key size specified [2].

The standard number of rounds for 128-bit key length is 10. The larger the key length,
the longer deciphering and encryption takes.

[1]

15

The efficiency and overall performance of this algorithm can be accurately calculated
from the time it takes for a block cipher to enter decryption or encryption to the time it
leaves this process [2].

The performance of this algorithm can be reviewed by its latency. To calculate the
latency of the algorithm, the following mathematic notation can be used [2]:

Latency = Cycles per Encrypted Block (C) x Time period (T)

‘C’ can be described as the clock per byte for the encryption of a cipher block while ‘T’
can be described as the reciprocal of the frequency of the clock. The latency of the AES-
GCM algorithm is 7.6ns [2].

The throughput shows the speed of the algorithm’s decryption and encryption
processes. The throughput is obtained by calculating in bit per second(bps). The
calculation is shown below [2]:

 Throughput = 128 bits/latency

 = 128 / (7.6x10-9)

 = 16.84 Gbps

The AES-GCM algorithm is designed to output high speed encryption and decryption while
still maintaining plaintext integrity and confidentiality. The below diagram shows the
architectural structure of the AES-GCM algorithm [2]:

The implementation
of AES-GCM uses a password based key solution, requiring the users account password
to encrypt and decrypt data. This is used for the creation (encryption) and retrieval
(decryption) of the user’s stored passwords in the password manager.

TOTP Architecture:

For two-factor authentication, the TOTP (Time-based one-time password) algorithm was
used in conjunction with Google Authenticator, which helps implement the TOTP
algorithm for mobile devices. The TOTP algorithm is variant of the HOTP algorithm that

[2]

16

specifies the calculation of a one-time password value which is based on a
representation of a counter as a time factor [3]. X represents a time step in seconds with
the default value of X being 30 seconds, meaning the code for two factor authentication
will change every 30 seconds by default. X is defined as a system parameter in the TOTP
algorithm [3]. T0 can be described as the Unix time to start counting the time steps with
the default value being 0, the Unix epoch, and is also defined as a system parameter for
the TOTP algorithm [3]. By implementing the TOTP algorithm within this project, it
requires the user to store a secret key on their Google Authenticator app on their mobile
phone. The Dragon Pass application stores their key and can then match the two codes
generated every 30 seconds to verify the identity of the user. This adds an extra layer of
security to the login process as a malicious entity would require the user’s physical
phone additionally with the user’s password and pin.

2.3. Implementation
Login and Registration:

For the login and registration implementation, user integrity and confidentiality are top priority.
To achieve a high level of security for this area various methods have been used. These methods
include prepared SQL statements, secure input parameters, SHA-256 password and pin
hashing, limited user interaction, a login attempt counter and two-factor authentication. When
a user logs in their name will be stored by RAM memory in the ‘UserSession’ class to store any
relevant information required such as database password retreival from the user specific
account.

Prepared SQL statement for user login verification:

In this snippet, the user inputs are being stored to String variables and being inserted into a
prepared SQL statement. This stops malicious users from injecting their own code by treating
their input as a string and strictly checking to see if the string matches the inputs made by the
user. If the inputted string text doesn’t match a user within the database, the request is simply
denied, and the user must try again. This is one of many prepared statements within the project.

17

Security input parameter for user registration:

In this snippet, it shows an example of a security parameter set up for pin inputs in the
registration controller. The ‘IF’ statement grabs the text inputted into the pin password field and
the confirm pin text field to see if both pins match. It also checks to see if the password field is
blank. Both must be satisfied before the statement can continue. When these arguments have
been satisfied, the application then runs a loop to look for digits in the input and checks if the
pin is a length of 4 digits. If there are any inputs other than a digit or the length does not have 4
digits in total, the input will be flagged as false and will not be accepted. If the arguments are
arguments are satisfied, the pin will be seen as valid and will wait for all other registration fields
to also be valid before the account can be registered.

Two-Factor Authentication (TOTP):

This above snippet shows the TOTP algorithm being implemented to run the algorithm based on
the user’s secret key. A 6-digit code can then be created to match with the user input for

18

verification as they should have the same code generated on their Google Authenticator mobile
app as they were required to input the secret key upon registration.

This ‘generateSecretKey’ method
is called to generate the secret
key for the user. The key is then
stored within the database to
verify the user’s identity. This
allows for further security in the
login process, where a malicious
user would require the users
secret key additionally with their
password and pin.

SHA-256 Hashing:

This snippet shows the
implementation of the SHA-
256 hashing algorithm where
a hashed string based on the
algorithm is returned.

The above snippet shows the Hash class being called and hashing the users input for the password
and pin fields. These are then inserted into the database via prepared statement once all parameter
arguments are satisfied.

19

Login and Lock attempt counter:

The above snippet shows the counter that gives the user a total of 3 attempts to login. If they input
invalid details 3 times, the application will close. This is helpful against bots and other scripts used by
malicious users to brute force attack the app to access a user account. This same counter method is
applied to the application lock function, that allows the user to lock the app but keep it running in
the background. Similarly, to the login controller, the lock requires the users pin and 2FA key to
unlock the application. If the details are invalid in the lock a total of 3 times in a row, the lock will
close the application.

Password Manager/Auto-Change:

For the password manager implementation, similar coding methods such as secure parameters
and SQL prepared statements were used, however due to the confidential nature of password
storing, it was important to use a reliable and secure encryption methods where the user could
encrypt and decrypt their chosen passwords within the manager on demand. This requires
AES-GCM encryption. For the Auto-Change feature, SHA-256 hashing was also used to update
any account passwords within the manager and the encryption methods was used again to
encrypt changed passwords that were store within the manager itself so that the user can
securely decrypt their passwords in the list on demand.

20

AES-GCM Encryption:

This snippet shows the
implementation of the
encryption method using the
AES-GCM algorithm. This
method takes the specified
password as the secret key
and will encrypt the
password string.

This snippet shows the
decryption method.
Decryption requires the
same password, salt and iv
to decrypt the string. This
method is used when the
user wants to view a
selected password in their
password manager.

21

The above snippet shows the password manager add password function. The users account
password is being retrieved via RAM memory and being used as the encryption key by calling the
Cypher class. The now encrypted password is then stored to database under the user’s account.

The above snippet here shows the Cypher class being called again when the password reveal button
is clicked in the password manager. The user’s password is once again used to decrypt the password
and it is then revealed in the manager for the user to view.

Encryption, decryption and hashing methods are also applied to any passwords changed with the
Auto-Change feature as seen in the snippet above. The encryption algorithm is used for the user to
access newly changed passwords within the password manager. Hashing is used for any linked
applications that the user has accounts for where the hash can be used to validate the user with
their newly generated password.

22

Logging and Monitoring:

A logger class has been implemented in this project for security, error handling and testing purposes.
The class monitors any activity specified within the application and reports back errors, user specific
interactions and logs this information within a log file. This log file can be used to track malicious and
suspicious activity or to track and report any errors found or specified. SQLite is used to in
conjunction with the logger to provide relevant results.

The above snippet shows the ‘FileObserver’ class updating the log information and shows an
example of the monitor setting the log by obtaining the error cause. The monitor can be used in all
try-catch implementations to display relevant error information.

The snippet above here shows the SQLite class inserting a prepared statement of the monitor
message into the database. This can then be stored to the log file and displayed during testing.

23

2.4. Graphical User Interface (GUI)
Login:

The above screenshot shows the login screen. The user has filled the login form and has
received an alert via a label notifying them that they have input the wrong details, as
there is no user within the database under these details. If they continue to input
incorrect user details, the application will close after two more attempts

Register

This screenshot shows the
registration GUI. Several
alerts have been thrown and
the registration request was
denied. None of the input
fields have the correct
parameters except for the
secret key generation text
area. The username has a
space which is not allowed,
the email does not have the
makeup of an actual email,
for example:
arealemail@example.com. If
any of these features are
missing, it will not be
accepted.

mailto:arealemail@example.com

24

The password and pin also do not follow the proper parameters as seen above. These are just a
few examples of the registration parameter alerts, for example, another one would be that the
username cannot be the same as an existing account within the database. A tick like the one
seen above the secret key generation field notifies the user of correct input. Once all inputs are
correct, registration is accepted, and an account is created. The Two Factor Authentication field
to the right of the registration tab allows a user to generate a TOTP key that they can input into
Google Authenticator. The text area is not editable to prevent user interaction with the secret
key. Steps of how to set up two factor authentication with their received key is displayed below
for the user’s convenience.

Secure parameters such as the ones shown above prevent buffer overflow and help counter SQL
injection and bot account creation. Additionally, there is character limit on each text field. Every
input within the registration page and the rest of the application uses prepared statements to
prevent SQL injection and prioritize secure inputs.

Menu:

This screenshot shows the menu of
the application which allows users
to navigate the app via buttons
after successful login. The logout
button clears the user session.
Note: the user session is also
cleared upon application start-up
and all user session data is stored
via RAM.

Password Manager:

This screenshot shows the
password manager GUI. Using a
table view, user password account
information is taken from the
database and displayed to the
user. In the example above, the
user has selected the “testapp1”
account and has selected to
reveal it to the right of the GUI.
The table shows the encrypted
password but when the ‘Reveal’
button is clicked, it will show the
decrypted password.

25

The user can use the add button to add more entries and the delete button to remove entries.
The refresh button is used for any accounts that have Auto-Change enabled. Whenever a
password is changed, the user can refresh to see the new password. In the above example, the
Google and Facebook accounts have been set to change every 30 seconds and 1 hour
respectively. The testapp1 account password will not change as the Auto-Change feature on it
has been set to inactive.

Auto-Change:

This screenshot shows the Auto-Change GUI. In this example, the user has selected the Facebook
account from the password manager and chosen the 1-hour option from the time drop-down
menu. By selecting the ‘Auto-Change’ button, the Auto-Change feature will be set to 1-hour,
meaning that the password for that account will be changed to a randomly generated complex
password every 1-hour. The time options that are available include: 30 Seconds, 5 Minutes, 15
Minutes, 30 Minutes and 1 hour. These are displayed via the ‘Time’ dropdown-menu. The user
can remove the auto-change feature from a selected account within the password manager by
using the ‘Remove’ button. This will cause the chosen account password to remain the same
until the user re-applies the Auto-Change feature again.

26

Lock:

This screenshot shows the Dragon Pass Lock
GUI. The lock allows the user to lock the
application and allow it to securely run in the
background. To unlock it, the user pin and 2FA
key are required. Similarly, to the login GUI, the
lock GUI has a login attempt counter and will
close the application after 3 failed login
attempts. This feature is useful if a user is
temporarily absent from their device.

Test Applications:

This screenshot shows one of the test
applications used to work in conjunction
with the Dragon Pass application to
demonstrate how the auto-change
feature would work in a commercial
environment. Using the same account
details shown earlier in the password
manager GUI, the username has been
intentionally typed incorrectly to
demonstrate the validation system in
place. An alert notifying the user of
incorrect details appear as the user Is
missing ‘r’ at the end of the username
field.

27

When the user successfully logs in using the
correct details, they will receive an alert show
in this screenshot. This test application verifies
that the password manager is working
correctly.

2.5. Testing

Unit Testing:
During development of this project various testing techniques were used. One of these
is unit testing. By creating standalone applications to test small cells of feature within
the application, I could design, and fix errors appropriately based on received results.
The main methods used throughout the application is the Auto-Change feature, the AES-
GCM encryption algorithm and the SHA-256 hashing. Due to the repeated use of these
methods, it is vital that they work reliably and consistently. The following shows the unit
testing carried out to ensure that each method worked as intended before integration
and implementation.

Auto-Change Method Test:

 This snippet shows
the unit responsible
for generating a
random String with a
length of 20
characters. The
generator creates a
random string every
30 seconds.

28

This screenshot shows the
result of this unit test. The test
was successful, and a random
20-character string was
generated every 30 seconds.
The purpose of this piece of
code is to apply the generated
string to create a new
password with the Auto-
Change feature.

AES-GCM Algorithm Test:

This screenshot shows the main class of the encryption test application. This is a standalone
test application used for encryption and decrypting plain text using the AES-GCM algorithm.
The plain text gets encrypted using the ‘PASSWORD’ variable.

29

This is the result of the test. The string is successfully encrypted and decrypted using the
algorithm:

The screenshot above shows what happens when the password does not match the
original secret key. The text was successfully encrypted; however, the decryption
returned an error due to the password not matching. This unit test verifies that the AES-
GCM encryption and decryption is working as intended.

30

SHA-256 Hashing Test:

In this unit test, a normal string is printed, and the hashed version of that same string is
also printed using the SHA-256 hashing. This screenshot shows the main method
running and calling the ‘toHexString’ method and the ‘getSha’ method to hex the string.
The result can be seen at the bottom of the image.

31

Integration Testing:
After unit testing on the vital elements of the application, it was time to integrate these
methods into the basic application framework of the login page, registration page and
password manager/Auto-Change.

This snippet shows both the integration of the 30 second string generator and the AES-GCM
encryption algorithm. It also uses the SHA-256 hashing algorithm for external application
password changing. A string is generated like before and is then encrypted using the AES-
GCM algorithm. A newly encrypted password is then updated into the database every 30
seconds. This is the best example of the integration testing that was carried out as it shows
all three vital elements of the project working in one thread.

This database query shows all the accounts stored inside a test users account. The password
inputted into the password manager encrypts and hashes the password. This result shows
the integration of AES-GCM encryption, and SHA-256 hashing are working as intended. The
Auto-Change feature can also be seen working as the ‘Google.com’ account is set to 30
seconds for auto-change.

32

End User Testing:
For end user testing I performed every possible task within the application to ensure all
elements were working as intended.

In the above snipped I created an account successfully as indicated by the tick symbols. For
the purpose of demonstration, the screenshot shows an account that was already created,
this is the account that would be used for the end user test.

After successful login using these details, I accessed the password manager.

This snippet shows the
encryption and decryption
working successfully.

33

I added another password to the list for the auto-
change test.

This was added successfully as
seen in this screenshot.

This screenshot shows me
applying the 30 seconds auto
change to the new password
entry.

34

This snippet shows the
account immediately
after applying auto-
change to 30 seconds.

This snippet shows 30
seconds later. The
password has changed
to a complex string.

In the above screenshot, the test app and the password manager are side by side. When the
password changed again after another 30 seconds I input the new password into the test
app login.

35

This was the result of inputting the new
password. The verifies that all the main
elements of the application are working
correctly.

The application lock also functioned as
intended.

This end user test was repeated a total of 10 times with 3 different test apps and was
successful every time.

36

This snippet shows a working example of
the logger being used, tracking user activity,
and reporting any possible errors.

2.6. Evaluation

Upon observing the task manager, the CPU, memory usage and power usage for Dragon
Pass is very low.

After analysing the results of the unit, integration and user tests the overall
completeness and correctness of the application was as expected and worked as
intended. Any errors found through the development process were fixed upon
discovery. This meant that there were very little errors upon user testing and for the
final user test rounds as reported, there were no errors found.

Based on the test results and performance recorded, Dragon Pass works as initially
intended and provides a secure platform to secure and change passwords.

37

3.0 Conclusions

The main advantages of Dragon Pass include an increased level of password security, high
level data integrity and confidentiality, user convenience and overall cyber protection from
various malicious attacks. A disadvantage of the application is the lack of increased user
convenience such as an autofill feature that other password managers use such as Google’s
web password manager. However, a further developed Dragon Pass application in a
commercial environment could potentially use this feature. The main strength of this
project is to offer a solution to data breaches, password leaks, phishing scams, brute force
attacks, SQL injections and buffer overflow by providing a high level of security method
implementations. The application uses the auto-change feature which gives a whole new
level of security to the user which no other password manager or security tool currently
does on a commercial level. While providing a strong security solution, however, the project
is limited to the fact that it is not developed at a commercial level and currently does not
provide a practical usage in real world examples. In its current state, it acts more as a model
or prototype for what it could become. The application has good future potential, however,
would require further development to make it commercially and practically viable.
Regardless of this, however, Dragon Pass lays the foundation for a new possible security
implementation for password managers to utilize and to further protect their user’s
sensitive data.

4.0 Further Development or Research

I believe with further development and additional time and resources; this application could
become a commercially used application to help home users and companies securely store
user password data. To become a fully developed and commercial application there are two
possible routes the project could take. The first possible route would be the cooperation of
various companies to implement the idea within their own systems and to create a
password manager that works for all and any application/web app in the commercial
sphere, such as google and Facebook. The reason for this is that many companies and
applications have different password changing requirements and rules, therefore,
cooperation and implementation into already exiting applications would allow the Auto-
Change feature of Dragon Pass to work as intended. The second possible route would be to
develop the application in a way that it could navigate through all application password
requirements and rules. This may include artificial intelligence technology or various API
usage. If this were to be implemented, the application could be sold as a standalone product
and compete with other various password manager applications. Unfortunately, this would
require much more time, research, and development to implement, however, the
foundation for this possible future has already been set by this project.

38

5.0 References

[1] R. Wu, X. Zhang, M. Wang and L. Wang, "A High-Performance Parallel Hardware
Architecture of SHA-256 Hash in ASIC," 2020 22nd International Conference on Advanced
Communication Technology (ICACT), 2020, pp. 1242-1247, doi:
10.23919/ICACT48636.2020.9061457.

[2] N. Ahmad, L. Wei and M. Hairol Jabbar, "Advanced Encryption Standard with Galois
Counter Mode using Field Programmable Gate Array.", Journal of Physics: Conference
Series, vol. 1019, p. 012008, 2018. Available:
https://iopscience.iop.org/article/10.1088/1742-6596/1019/1/012008/pdf.

[3] D. M'Raihi, S. Machani, M. Pei and J. Rydell, "RFC 6238 - TOTP: Time-Based One-Time
Password Algorithm", Datatracker.ietf.org, 2011. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc6238.

6.0 Appendices
6.1. Project Proposal

1.0 Objectives

For my 4th year cyber security software project, I have decided to create a password manager. This
password manager will automatically manage and change the users’ passwords on a 24-hour basis.
The passwords will be randomly generated 16-character passwords with all the usual parameter’s
passwords are required to have. The user will only need one password and a pin to access their
password list. The manager will also automatically input the users’ desired passwords into whatever
app or website they are trying to access.

With the pin and password, the password manager app will also have two factor authentication to
further secure the user’s account. The project aims to make password management more secure
and convenient for users. The user will be able to choose whether they would like certain passwords
to be changed on a 24-hour basis.

The essential goal of this project is to allow users to access their various apps and websites by using
the app. Meaning the user will only ever need to remember one password and one pin, rather than
hundreds of different passwords for hundreds of different websites. The other feature of the app
that automatically changes their passwords will stop malicious users from easily gaining access to
the user’s specific accounts. For example, if a user’s password is leaked on a website, the manager
will change that password within 24 hours, meaning malicious users have a limited amount of time
to access it. I may implement a feature to choose how many hours it takes for a password to change.

https://datatracker.ietf.org/doc/html/rfc6238

39

2.0 Background

The reason I decided to undertake this project is due to the work experience I did in Beaumont
Hospital during my 3rd Year of this course. I worked in Beaumont during the HSE attack in 2021. One
of the main ways Beaumont defended against the attack was by changing the passwords of every
user in the hospital every 24 hours. This stopped the attack from spreading as once it gained access
to one password, it only had 24 hours to use the account. This is one of the main reasons Beaumont,
unlike other hospitals linked to the HSE, was able to remain untouched by the virus. We changed
users’ passwords manually on a 24-hour basis and this required a lot of work and time. This is what
made me come up with the idea of a password manager that would do the work automatically. In a
digital world where passwords are being gained through various methods such as brute force attacks
or company leaks, a manager that would automatically generate and change passwords would help
defend against these. It is also convenient for users as it is very difficult to remember hundreds of
different and secure passwords.

I will use various coding languages and techniques to complete this project. I will also use the cyber
security techniques I have learned from my various modules this year to ensure the app is secure. I
will also use the different planning techniques I learned throughout my studies in this computing
course for the last 3 years.

3.0 State of the Art

There are similar applications that already exist to my project such as Dashlane, NordPass and
Chrome password manager. The difference between this project and them is that my application will
be able to automatically change and store unique randomized passwords rather than keeping one
password the same forever. The named password managers alert the user about data breaches and
how to protect their data against them i.e., changing password, however, my app will do this
automatically all the time, meaning data breaches will have no effect on users that use this app. It
will also include two factor authentication to ensure that malicious users can’t access the users
account if they somehow gain access to the users pin and password. The examples mentioned above
only require one password meaning if someone gains them, they will have access to all the users’
passwords.

Just like the mentioned examples, my projects aim is to create an app that allows users to securely
access their various accounts carefree of any security issues, as the app will take care of that for
them. Data breaches and various hacks to gain peoples passwords aren’t being protected by other
password managers as well as they could be. For example, users are only notified of data breaches
on chrome password manager if the user goes into their password list, they then must manually
follow the password managers instructions. For more security and convenience, automatic password
changing defends more effectively against this. If a malicious user also gains access to a specific
password through various methods such as brute force or malicious software, they will only have
limited time to use it, other password managers don’t defend against this like my project.

40

4.0 Technical Approach

For my project I have chosen to use the agile approach for its development. This will allow me to
plan my project in incremental phases that can adapt and change depending on different variables. I
will outline various requirements by researching the topic related to my project and by using various
methods such as use case modelling, mind mapping and scope management.

I will also create a list of goals that need to be reached and will mark off each goal when their
conditions have been met.

When the requirements have been identified I will outline tasks which will each have a deadline.
Specific features of the application will all have their own requirements and respective deadlines. To
list these tasks and organize the project requirements I will use Microsoft software such as Access
and Project. Using this software will allow me to efficiently keep track of tasks and what times
should be allocated to performing these tasks. The agile approach in software development allows
for adaptive strategies meaning it will give more freedom to change various tasks/deadlines to
create a better product for the user. It also includes fast and productive incremental steps which can
easily be kept track of by using the software mentioned before.

5.0 Technical Details

I intend to use java as the primary language for this project. Due to the nature of the project, it will
need to be a web-based application. To do this I will need to use java servlet technology and JSP.
This will then allow me to create a java-based web app. This means I will also be using HTML and
CSS. For the server environment, I will be using Apache Tomcat and for the database I will be using
MySQL.

Due to the system dealing with passwords and important information, I plan to use the AES
(Advanced Encryption Standard) algorithm to securely encrypt and decrypt the data.

I may develop the two-factor authentication feature through email input or by using apis, other
external resources, etc. This is still something I am researching to create the best result.

I intend to use IntelliJ IDEA and Atom for development of the project.

6.0 Special Resources Required

As mentioned, before I may need to use APIs and other external resources. Two resources I am
currently looking at for two factor authentication is Twilio API for two factor authentication or
Sessions mobile app API.

41

7.0 Project Plan

This plan may be subject to change and is following an agile approach of project management. I plan
on creating a list of requirements and tasks. These will then be placed and listed in a Microsoft
Access or Microsoft Project document. The main tasks that need to be completed are currently as
follows:

• Create a secure login system for application (12th Nov)

• Create two factor authentication for login system (No set date)

• Create a Home page for application site (20th Nov)

• Create random password generation (28th Nov)

• Create system for password storing (8th Dec)

• Create a list of stored passwords (using hashing and other encryption methods) (19th
December)

The listed goals above are the main tasks that will need to be completed for my project with their
predicted and set dates for completion. Each goal will have a list of sub goals to make development
go more smoothly.

Mid-Point implementation is due on December 21st , this means I should have a functional login
system, home page, password storing and generation with encryption and decryption methods. I
also hope to have two factor authentication implemented by this point as well.

The following list will include goals and tasks that I hope to complete after my mid-point
implementation:

• Have app auto fill details into another website

• Have password change for test website automatically every 24 hours

• Two factor authentication functional (if not already)

• Create auto create and password storage from test website

• Polish/clean up website design (CSS)

8.0 Testing

To test my project, I will use the four main stages of testing in software: Unit testing, Integration
testing, System testing and Acceptance testing. For unit testing, I will go through units of source
code one by one to ensure all units are working based on the goals of the project. I will use various
techniques such as Black box and White box testing. There will be a list of functional requirements
and goals, such as the mentioned in my project plan. With the use of integration tests such as big
bang testing, incremental testing, top-down, and bottom-up testing, etc; I can test the compliance of
my systems with the already listed requirements. For system testing I can also use the Black box
testing method.

42

Acceptance testing will be based on:

• Performance

• Data Integrity

• Usability

• Functionality

If the above tests are successful, I will then get an end user to test the project. To do this I will need
to complete an ethics form. Once I find a user suitable to test the project, I will have them test all the
different features and will base the success of the test on how many functional requirements and
goals have been met. These tests will ensure my project works as intended.

6.2. Reflective Journals
Month 1:

This month I began researching ideas for my project. I have decided to create a
password manager with a unique difference to existing password managers. My
application will change passwords on a daily or hourly basis, constantly changing them
to random complex Strings periodically.

Month 2:

This month I began development on my project. I decided to call it Dragon Pass and have
used red and black as its colour design. I have created a basic UI and plan to create a
login, registration system by the end of next month.

Month 3:

This month I have completed the applications login/registration system, created a
navigation menu, a mock website for testing and have also finished the prototypes for
my password manager UI.

Month 4:

This month I decided to create a mock application in place of the previous mock website
and have implemented it to work with the application. I have also finished the password
manager with addition, deleting and the refreshing of passwords for user accounts. I
have also added password hashing to my login and registration system for user
verification. This month has been my most productive so far.

Month 5:

This month I have implemented two-factor authentication for the user login verification
using the TOTP algorithm and Google authenticator. I have also implemented AES-GCM
encryption for the password manager to secure any stored passwords within the
application database. I have also begun working on the Auto-Change feature.

43

Month 6:

This month I have finished the Auto-Change feature, allowing the user to select a
stored password from within the manager and then apply a time interval to the
password. The password will then change based on the time interval chosen while
still using encryption for the newly changed passwords. A hash of that same
password is then sent to the test login application for verification. I have also
polished and fixed any bugs I could find based on testing and during development.

6.3. Invention Disclosure Form
1. Title of Invention

Dragon Pass

2. Inventors

Name
School/Research
Institute

Affiliation
with
Institute
(i.e.
department,
student,
staff, visitor)

Address, contact phone
no., e-mail

%
Contribution
to the
Invention

Gavin
Corr

National
College of
Ireland (NCI)

Student Student 100%

 0838730761

 Gavincorr18@gmail.com

44

3. Contribution to the Invention

I am the sole inventor of this project. I intend to use the knowledge I have gained
throughout the course of my studies at National College of Ireland to create and
effective security application.

12/05/2022

4. Description of Invention

The novelty aspect of this project is the ‘Auto-Change’ feature. This feature will allow
users to select any of their application/website accounts and on a set timed basis,
change their desired account password automatically. For example, if a user sets their
password to change every 24 hours, the application will generate a new complex
password every 24 hours for the chosen account. This is to prevent damage from
password leaks or data breaches. The dynamic nature of this feature is what makes the
idea unique and is not found in other password managers.

5. Why is this invention more advantageous than present technology?

For more security and convenience, automatic password changing defends more
effectively against password leaks, data breaches and other malicious attacks. If a
system is making passwords more complex and changing them automatically on a
constant basis, this will make it extremely difficult to gain access to material protected
by a password. Also due to human constraints and limitations, a computer can store
hundreds of complex passwords, whereas a human brain usually cannot. Furtherly, if
those complex passwords are constantly being changed, it creates an extremely secure
system.

45

6. What is the current stage of development / testing of the invention?

The application is fully functional and fully developed. As it is a college project and not
currently a commercial product, the use of test applications has been used as means of
demonstrating how the application would function in real life scenarios. Real life use
would require business cooperation for the full implementation of the project in the
commercial sphere.

7. List the names of companies which you think would be interested in using, developing or
marketing this invention

Google, Microsoft, NordPass, NortonLifeLock and Dashlane.

8. Where was the research carried out?

National College of Ireland

9. What is the potential commercial application of this invention?

To be used as an extension or addition to already existing password manager
technologies. Possibly its own standalone password manager application that benefits
from the cooperation of other companies within a commercial landcape. The application
would offer users an extra layer of security for their password management and overall
password usage.

10. Was there transfer of any materials/information to or from other institutions
regarding this invention?

No

11. Have any third parties any rights to this invention?

No

46

12. Are there any existing or planned disclosures regarding this invention?

 Please give details.

The project will be showcased from May 30th to June 3rd

13. Has any patent application been made? Yes/No

No

14. Is a model or prototype available? Has the invention been demonstrated practically?

The full application model and prototype is available at:
https://github.com/gavinc99/project

I/we acknowledge that I/we have read, understood, and agree with this form and the
Institute’s Intellectual Property and Procedures and that all the information provided in
this disclosure is complete and correct.

I/we shall take all reasonable precautions to protect the integrity and confidentiality
of the IP in question.

Inventor: Gavin Corr ____12/05/2022_____

 Signature Date

Signature

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.4. Report Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Requirement 1: Login and User Security
	2.1.1.2. Description & Priority
	2.1.1.3. Use Case
	2.1.1.4. Requirement 2: Secure Registration
	2.1.1.5. Description & Priority
	2.1.1.6. Use Case
	2.1.1.7. Requirement 3: Secure Password Manager
	2.1.1.8. Description & Priority
	2.1.1.9. Use Case
	2.1.1.10. Requirement 4: Auto-Change feature
	2.1.1.11. Description & Priority
	2.1.1.12. Use Case
	2.1.2. Data Requirements
	2.1.3. User Requirements
	2.1.4. Environmental Requirements
	2.1.5. Usability Requirements
	2.2. Design & Architecture
	2.3. Implementation
	2.4. Graphical User Interface (GUI)
	2.5. Testing
	2.6. Evaluation

	3.0 Conclusions
	4.0 Further Development or Research
	5.0 References
	6.0 Appendices
	6.1. Project Proposal
	6.2. Reflective Journals
	6.3. Invention Disclosure Form

