
Configuration Manual

MSc Research Project

Data Analytics

Aggarwal Aditi
Student ID: x18137156

School of Computing

National College of Ireland

Supervisor: Prof. Christian Horn

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Aggarwal Aditi

Student ID: x18137156

Programme: Data Analytics

Year: 2019

Module: MSc Research Project

Supervisor: Prof. Christian Horn

Submission Due Date: 12/12/2019

Project Title: Configuration Manual

Word Count: 1781

Page Count: 37

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 11th December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Contents

1 Introduction 1

2 Application Environment 1
2.1 Hardware . 1
2.2 Software . 1

3 Application 2
3.1 Data Extraction . 2
3.2 Data Preparation . 2
3.3 Feature Extraction . 3
3.4 Model and Evaluation . 4
3.5 Hyperparameter Optimization and Evaluation 5

4 Code Artefacts 6
4.1 Data Preparation . 6
4.2 Feature Extract . 14
4.3 Model . 18
4.4 Optimization . 27

Configuration Manual

Aggarwal Aditi
x18137156

1 Introduction

This configuration manual provides the instructions and information required to set up
and implement the Convolutional Recurrent Neural Network (CRNN) for speech emotion
classification (SER). The internal details such as process inputs and outputs, file storage,
file manipulation, application development environment, and configurable parameters
have been discussed in detail. This is a technical manual associated with the thesis
report which describes the concepts and functionalities relevant to CRNN.

2 Application Environment

2.1 Hardware

• Processor: 2.3 GHz Dual-Core Intel Core i5

• Memory: 8 GB 2133 MHz LPDDR3

• Graphics: Intel Iris Plus Graphics 640 1536 MB

2.2 Software

• MacOS Catalina 10.15.1

• Anaconda: The open-source and free Anaconda distribution of R and python pro-
gramming languages lets the user perform scientific computing such as machine
learning applications, data science, predictive analysis and many more. This soft-
ware includes data science packages compatible with macOS, Linux and Windows.
The desktop graphical user interface (GUI) of Anaconda distribution is well-known
as Anaconda Navigator. This GUI enables them to launch the application and
manage the conda packages which save the users from using command-line com-
mands. The navigator provides access to eight different applications by default.
Jupyter Notebook is one of the applications installed in the navigator which has
been used to design and implement the SER model. Python 3 is the latest version
of Anaconda which is supported by Jupyter has been used for this project.

1

3 Application

3.1 Data Extraction

Purpose: To extract dataset of speech audio clips for eight classes of emotions as avail-
able online.

Data Source: A zip file of 1440 audio clips titled as ‘Audio Speech Actors 01-24’ is
available at below-mentioned link:
https://zenodo.org/record/1188976#.XersLpP7Su4

Process Steps:
Download the zip file and unzip it. Save the unzipped folder in the desired location
(folder is stored at location mentioned in ’filepath’ variable).

3.2 Data Preparation

Source Code: Data Preparation

Purpose: To transform the raw data into the suitable format for further processing.

Parameters:

• filepath: The folder path where the extracted raw data is stored.

• dirPath= Path of where a new folder titled ‘paddedAudio’ to be created.

• outPath= Path where all the padded audios get stored (same as dirPath).

• dirPath2= Path where the second directory gets created.

• toFolder = Path to move balanced data to a new folder.

• fromFolder = Path of padded audio files.

• emoPath= Path where eight different emotions of same speaker are stored. This
folder was manually created to understand the audio signals visually. Each file of
eight emotions is added to this folder.

• imgPath= This path is same as emoPath folder where all plots get stored.

Process Steps:

1. Plot a bar chart to check the issue of class imbalance across eight classes of emotion.
(see section 4.1, cell [4] on page 6)

2. Librosa which is a python audio library has been used to read the audio signal. (see
section 4.1, cells [5],[8]-[11] on page 7)

3. All audio clips are padded and transformed to the same length of 5.3s. (see sec-
tion 4.1, cell [5] on page 7)

2

4. A new folder is created with the name of ‘modelData’ and all the files from ‘pad-
dedAudio’ folder are copied to the new folder in order to secure the original dataset.
(see section 4.1, cell [6] on page 8)

5. Then the contents of ‘modelData’ folder are used to resolve the class imbalance
issue observed in step 1. The ‘neutral’ class of emotion comprised of 96 records is
removed in order to have balanced classes.(see section 4.1, cell [7] on page 8)

6. To understand the difference between eight classes of emotions, raw audio is plotted
for three different speech representatives: MFFCC, mel spectrogram and energy.
(see section 4.1, cells [8]-[11] on page 9 to 13)

3.3 Feature Extraction

Source Code: Feature Extract

Purpose: To extract five speech representatives from the preprocessed audio clips and
save them in numpy (array) format.

Parameters:

• frame size= The size of each frame in an audio signal. The frame size can be
changed and tested for 25ms and 50ms frame as done in this research.

• source path= The path where the second directory (‘modelData’ folder) consists
prepared for model gets created (Number of audio files used for model: 1344).

• features path= The path where numpy array of features and labels gets stored.

Process Steps:

1. Each audio clip obtained after pre-processing passes through all four functions:
extract features, feature normalize, frames, one hot encode.

2. The foremost step loads the speech signal and normalizes it using ‘feature normalize’
named function. (see section 4.2, cell [3] on page 14)

3. The two-digit emotion identifier is extracted from the audio file name as a string
and stored in the variable named ‘emotion’. The identifier is appended and the list
of emotions for each file gets stored in ‘labels’ named variable as an array. (see
section 4.2, cell [3] on page 14 and 15)

4. Then the audio signal is divided into frame size of 100ms using a function named
‘frames’ which ensures each frame has an overlap of 50% samples from the previous
frame. The value of frame size is defined with ‘frame size’ variable which is set to
2208 samples, 100ms in time. Total frames: 104(see section 4.2, cell [3] on page 14
and 15)

5. All the five features are extracted from each frame of a signal using a function
named ‘extract features’. Then the extracted features are appended and the list
of features is converted to an array. This array gets stored in ‘features’ named
variable. (see section 4.2, cells [4]-[5] on page 16)
Shape of features (1344, 104, 182) and Shape of labels: (1344,7)

3

6. Categorical labels are converted to binary vector using the function named ‘one hot encode’.
(see section 4.2, cell [6] on page 16)

7. Then obtained features and labels get stored in the desired location (features path).
(see section 4.2, cell [7] on page 17)

3.4 Model and Evaluation

Source Code: Model

Purpose: To classify seven classes of emotions based on extracted five speech represent-
atives using the proposed model.

Parameters:

• features path= The path where numpy array of features and labels gets stored.

• bestModel: The path for saving the best model obtained during training.

Process Steps:

1. The array of features and labels are loaded from the location (features path). (see
section 4.3, cell [3] on page 18)

2. Dataset is split into two: training dataset and testing dataset. 1008 files (75%) are
used to train the model and 336 files (25%) for testing the model. (see section 4.3,
cell [4] on page 18)

3. The values of six parameters that were optimized are set based on the outcome
received in section 3.5. (see section 4.3, cell [5] on page 18)

4. The model was designed with three functions: CRNN model build, train model,
frames, show summary stats. (see section 4.3, cells [6]-[8] on page 19 and 20)

5. Once the values are set for the model, the function name ‘train model’ model
starts with setting up the input. The model is created with the function named
‘CRNN model build’ and gets the 3D input. Then the model gets trained on the
training dataset and outputs the model and its history. (see section 4.3, cell [9] on
page 21)

6. The accuracy of the model is evaluated and the variable named ‘history’ is passed to
the function named ‘show summary stats’ which demonstrates the summary stat-
istics. (see section 4.3, cells [10]-[11] on page 23)

7. Labels were transformed in desired form to make the confusion matrix. (see sec-
tion 4.3, cells [12]-[15] on page 25)

8. The summary of predictions is displayed through a confusion matrix. (see sec-
tion 4.3, cells [16]-[17] on page 25)

9. Dictionary is used to convert the labels into strings to make a the classification
report which is generated to evaluate the performance of model based on the other
metric. (see section 4.3, cells [18]-[20] on page 25 and 26)

4

3.5 Hyperparameter Optimization and Evaluation

Source Code: Optimization

Purpose: To identify optimal hyperparameters which control the learning algorithm.

Parameters:

• features path= The path where numpy array of features and labels gets stored.

• outPath= The path where the CSV file with all the tried values and outcome gets
stored.

Process Steps:

1. The array of features and labels are loaded from the location (features path). (see
section 4.4, cell [3] on page 28)

2. Dataset is split into two: training dataset and testing dataset. 1008 files (75%) are
used to train the model and 336 files (25%) for testing the model. (see section 4.4,
cell [4] on page 28)

3. This code focused on optimizing six parameters: epochs, activation, learning rate,
Adam decay, dropout rate, and batch size. A set of default parameters is defined
under the variable name ‘default parameters’. Each parameter is assigned with a
range of values to find the optimal parameter values for the proposed model. (see
section 4.4, cell [5] on page 28)

4. The model was designed CRNNmodelbuild. (see Feature Extract, cell [6] on page 28)

5. Gaussian process is applied using ‘gp minimize’ function which belongs to ‘skopt’
python library. This intends to find the minimum of a noisy function using a
function named as ‘fitness’ over the range provided in the function’s argument
named as ‘dimensions’. (see section 4.4, cells [7]-[9] on page 29 and 30)

6. ‘fitness’ function takes a single list of parameters as input and ‘use named args’ has
been used as a decorator to call it directly with named arguments. This function is
called 20 number of times to find the minimum, the value of 20 is set to the ‘n calls’
arguments of ‘gp minimize’ function. (see section 4.4, cells [7]-[9] on page 29 and
30)

7. The best accuracy out of those 20 evaluations is displayed with the set of best
parameters. (see section 4.4, cells [10]-[11] on page 32)

8. The hyper tuned model outputs the best combination of parameters out of 50
evaluations. Those 20 evaluations get stored in the location provided in ‘outPath’
variable. The best set of hyper tuned parameters are used to train the model. (see
section 4.4, cells [12]-[15] on page 32 to 34)

9. Labels were transformed in desired form to make the confusion matrix. (see sec-
tion 4.4, cells [16]-[22] on page 36)

10. The summary of predictions is displayed through a confusion matrix. (see sec-
tion 4.4, cells [23]-[24] on page 36)

5

11. Dictionary is used to convert the labels into strings to make a the classification
report which is generated to evaluate the performance of model based on the other
metric. (see section 4.4, cells [25]-[28] on page 36 and 37)

4 Code Artefacts

4.1 Data Preparation

6

7

8

9

10

11

12

13

4.2 Feature Extract

14

15

16

17

4.3 Model

18

19

20

21

22

23

24

25

26

4.4 Optimization

27

28

29

30

31

32

33

34

35

36

37

	Introduction
	Application Environment
	Hardware
	Software

	Application
	Data Extraction
	Data Preparation
	Feature Extraction
	Model and Evaluation
	Hyperparameter Optimization and Evaluation

	Code Artefacts
	Data_Preparation
	Feature_Extract
	Model
	Optimization

