~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Aggarwal Aditi
Student ID: x18137156

School of Computing
National College of Ireland

Supervisor: Prof. Christian Horn

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Aggarwal Aditi
Student ID: x18137156
Programme: Data Analytics
Year: 2019
Module: MSc Research Project
Supervisor: Prof. Christian Horn
Submission Due Date: 12/12/2019
Project Title: Configuration Manual
Word Count: 1781
Page Count: B7

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 11th December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Contents

1__Introduction| 1
2 Application Environment| 1
2.1 Hardwarel 1
2.2 Softwarel 1
[3 Application| 2
(3.1 Data FExtractionl.o o 2
[3.2 Data Preparation| oo 2
8.3 Feature Extractionlo 3
8.4 Model and Evaluationl 4
[3.5 Hyperparameter Optimization and Evaluation| 5
4__Code Artefacts| 6
(4.1 Data_Preparation| o 6
M2 TFeature Extract] 14
4.3 Modell 18

1

Configuration Manual

Aggarwal Aditi
x18137156

Introduction

This configuration manual provides the instructions and information required to set up
and implement the Convolutional Recurrent Neural Network (CRNN) for speech emotion
classification (SER). The internal details such as process inputs and outputs, file storage,
file manipulation, application development environment, and configurable parameters

have

been discussed in detail. This is a technical manual associated with the thesis

report which describes the concepts and functionalities relevant to CRNN.

2

2.1

2.2

Application Environment

Hardware

Processor: 2.3 GHz Dual-Core Intel Core i5
Memory: 8 GB 2133 MHz LPDDRS3

Graphics: Intel Iris Plus Graphics 640 1536 MB

Software

MacOS Catalina 10.15.1

Anaconda: The open-source and free Anaconda distribution of R and python pro-
gramming languages lets the user perform scientific computing such as machine
learning applications, data science, predictive analysis and many more. This soft-
ware includes data science packages compatible with macOS, Linux and Windows.
The desktop graphical user interface (GUI) of Anaconda distribution is well-known
as Anaconda Navigator. This GUI enables them to launch the application and
manage the conda packages which save the users from using command-line com-
mands. The navigator provides access to eight different applications by default.
Jupyter Notebook is one of the applications installed in the navigator which has
been used to design and implement the SER model. Python 3 is the latest version
of Anaconda which is supported by Jupyter has been used for this project.

3 Application

3.1 Data Extraction

Purpose: To extract dataset of speech audio clips for eight classes of emotions as avail-
able online.

Data Source: A zip file of 1440 audio clips titled as ‘Audio_Speech_Actors_01-24’ is
available at below-mentioned link:
https://zenodo.org/record /11889764 . XersLpP7Su4

Process Steps:
Download the zip file and unzip it. Save the unzipped folder in the desired location
(folder is stored at location mentioned in ’filepath’ variable).

3.2 Data Preparation

Source Code: Data_Preparation
Purpose: To transform the raw data into the suitable format for further processing.

Parameters:
e filepath: The folder path where the extracted raw data is stored.
e dirPath= Path of where a new folder titled ‘paddedAudio’ to be created.
e outPath= Path where all the padded audios get stored (same as dirPath).
e dirPath2= Path where the second directory gets created.
e toFolder = Path to move balanced data to a new folder.
e fromFolder = Path of padded audio files.

e emoPath= Path where eight different emotions of same speaker are stored. This
folder was manually created to understand the audio signals visually. Each file of
eight emotions is added to this folder.

e imgPath= This path is same as emoPath folder where all plots get stored.

Process Steps:

1. Plot a bar chart to check the issue of class imbalance across eight classes of emotion.
(see section cell [4] on page [0)

2. Librosa which is a python audio library has been used to read the audio signal. (see
section cells [5],[8]-[11] on page [7)

3. All audio clips are padded and transformed to the same length of 5.3s. (see sec-
tion [4.1], cell [5] on page [7)

4.

3.3

A new folder is created with the name of ‘modelData’ and all the files from ‘pad-
dedAudio’ folder are copied to the new folder in order to secure the original dataset.

(see section cell [6] on page

Then the contents of ‘modelData’ folder are used to resolve the class imbalance
issue observed in step 1. The ‘neutral’ class of emotion comprised of 96 records is
removed in order to have balanced classes.(see section [4.1] cell [7] on page

To understand the difference between eight classes of emotions, raw audio is plotted
for three different speech representatives: MFFCC, mel spectrogram and energy.

(see section cells [8]-[11] on page [J] to

Feature Extraction

Source Code: Feature_Extract

Purpose: To extract five speech representatives from the preprocessed audio clips and
save them in numpy (array) format.

Parameters:

e frame_size= The size of each frame in an audio signal. The frame size can be

changed and tested for 25ms and 50ms frame as done in this research.

e source_path= The path where the second directory (‘modelData’ folder) consists

prepared for model gets created (Number of audio files used for model: 1344).

e features_path= The path where numpy array of features and labels gets stored.

Process Steps:

1.

Each audio clip obtained after pre-processing passes through all four functions:
extract_features, feature_normalize, frames, one_hot_encode.

The foremost step loads the speech signal and normalizes it using ‘feature_normalize’
named function. (see section cell [3] on page

The two-digit emotion identifier is extracted from the audio file name as a string
and stored in the variable named ‘emotion’. The identifier is appended and the list
of emotions for each file gets stored in ‘labels’” named variable as an array. (see

section cell [3] on page [14] and

Then the audio signal is divided into frame size of 100ms using a function named
‘frames’ which ensures each frame has an overlap of 50% samples from the previous
frame. The value of frame size is defined with ‘frame_size’ variable which is set to
2208 samples, 100ms in time. Total frames: 104(see section , cell [3] on page

and

All the five features are extracted from each frame of a signal using a function
named ‘extract_features’. Then the extracted features are appended and the list
of features is converted to an array. This array gets stored in ‘features’ named

variable. (see section [4.2] cells [4]-[5] on page
Shape of features (1344, 104, 182) and Shape of labels: (1344,7)

3

6. Categorical labels are converted to binary vector using the function named ‘one_hot_encode’.

(see section cell [6] on page

7. Then obtained features and labels get stored in the desired location (features_path).

(see section cell [7] on page

3.4 Model and Evaluation
Source Code: Model

Purpose: To classify seven classes of emotions based on extracted five speech represent-
atives using the proposed model.

Parameters:
o features_path= The path where numpy array of features and labels gets stored.
e bestModel: The path for saving the best model obtained during training.
Process Steps:

1. The array of features and labels are loaded from the location (features_path). (see

section cell [3] on page

2. Dataset is split into two: training dataset and testing dataset. 1008 files (75%) are
used to train the model and 336 files (25%) for testing the model. (see section [4.3]
cell [4] on page

3. The values of six parameters that were optimized are set based on the outcome
received in section 3.5. (see section [4.3] cell [5] on page

4. The model was designed with three functions: CRNN_model build, train_model,
frames, show_summary stats. (see section cells [6]-[8] on page |19 and

5. Once the values are set for the model, the function name ‘train_model’ model
starts with setting up the input. The model is created with the function named
‘CRNN_model_build” and gets the 3D input. Then the model gets trained on the
training dataset and outputs the model and its history. (see section [4.3] cell [9] on

page

6. The accuracy of the model is evaluated and the variable named ‘history’ is passed to
the function named ‘show_summary_stats’ which demonstrates the summary stat-

istics. (see section [£.3] cells [10]-[11] on page

7. Labels were transformed in desired form to make the confusion matrix. (see sec-

tion [4.3] cells [12]-[15] on page

8. The summary of predictions is displayed through a confusion matrix. (see sec-

tion [4.3] cells [16]-[17] on page

9. Dictionary is used to convert the labels into strings to make a the classification
report which is generated to evaluate the performance of model based on the other

metric. (see section [4.3] cells [18]-[20] on page 25| and

4

3.5

Hyperparameter Optimization and Evaluation

Source Code: Optimization

Purpose: To identify optimal hyperparameters which control the learning algorithm.

Parameters:

o features_path= The path where numpy array of features and labels gets stored.

e outPath= The path where the CSV file with all the tried values and outcome gets

stored.

Process Steps:

1.

10.

The array of features and labels are loaded from the location (features_path). (see

section cell [3] on page

Dataset is split into two: training dataset and testing dataset. 1008 files (75%) are
used to train the model and 336 files (25%) for testing the model. (see section [4.4]

cell [4] on page

This code focused on optimizing six parameters: epochs, activation, learning rate,
Adam decay, dropout rate, and batch size. A set of default parameters is defined
under the variable name ‘default_parameters’. Each parameter is assigned with a
range of values to find the optimal parameter values for the proposed model. (see

section cell [5] on page
The model was designed CRNNmodelbuild. (see Feature_Extract, cell [6] on page[28)

Gaussian process is applied using ‘gp_minimize’ function which belongs to ‘skopt’
python library. This intends to find the minimum of a noisy function using a
function named as ‘fitness’ over the range provided in the function’s argument
named as ‘dimensions’. (see section [4.4] cells [7]-[9] on page [29] and

‘fitness’ function takes a single list of parameters as input and ‘use_named_args’ has
been used as a decorator to call it directly with named arguments. This function is
called 20 number of times to find the minimum, the value of 20 is set to the ‘n_calls’
arguments of ‘gp_minimize’ function. (see section [4.4] cells [7]-[9] on page 29 and

30)

The best accuracy out of those 20 evaluations is displayed with the set of best
parameters. (see section [£.4] cells [10]-[11] on page

The hyper tuned model outputs the best combination of parameters out of 50
evaluations. Those 20 evaluations get stored in the location provided in ‘outPath’
variable. The best set of hyper tuned parameters are used to train the model. (see

section cells [12]-[15] on page [32] to

Labels were transformed in desired form to make the confusion matrix. (see sec-

tion [£.4] cells [16]-[22] on page

The summary of predictions is displayed through a confusion matrix. (see sec-
tion 4.4} cells [23]-[24] on page [36)

11. Dictionary is used to convert the labels into strings to make a the classification
report which is generated to evaluate the performance of model based on the other

metric. (see section cells [25]-[28] on page [36] and

4 Code Artefacts

4.1 Data_Preparation

Data_ Preparation

December 10, 2019

[1]: | # Data preparation
[2]: | # Pad audio files to same length and deleting 'meutral’' class of emotion.
[3]: | # Import Libraries

import glob, os, numpy

from pydub import AudioSegment
import librosa

import matplotlib as mpl

import pandas as pd
Jmatplotlib inline

import collections

import matplotlib.pyplot as plt
import shutil

import librosa.display

import numpy as np

from scipy.io import wavfile as wav
import sklearn

[4]: | # Count of audic files in eight classes of emotion
Data dictionary

emo=1{
'01':'Neutral',
'02':'Calm’',
'03':'Happy',
'04':'Sad’',
'05':'Angry’',

'06': 'Fearful',

'07':'Disgust’',

'08':'Surprised’
¥

labels=[]
filepath="./Desktop/Python/Audio_Speech_Actors_01-24/Actor_x/*.wav"
for file in glob.glob(filepath):

[5]:

file_name=os.path.basename(file)

emotion=file_name.split("-") [2]

label=emo[emotion] # Number lables to name labels using data dictionary
labels. append(label)

labelsDf = pd.DataFrame({'Emotions': labels}) # list to dataframe
barChart=labelsDf . groupby ('Emotions', as_index=False).size()
barChart.plot(kind="'bar',color='lightslategray')

plt.ylabel("Number of audio files")

plt.show()

200

175 A

150 4

125 1

100 4

75 4

Number of audio files

&0

Angry
Calm
Disgust
Fearful
Happy
Sad

Neutral

Surprised

Emotions

Create a new folder: "paddedAudio"
Padded audio files are stored in a new folder.
Each audio file is tranformed to the duration of 5.3seconds

dirPathi='./Desktop/Python/Code/PaddedAudio’
filepath="./Desktop/Python/Code/Audio_Speech_Actors_01-24/Actor_*/*.wav"
outPath="'./Desktop/Python/Code/PaddedAudio/"'

os.mkdir (dirPathi)

count=0
for file in glob.glob(filepath):
y, sr = librosa.load(file)
duration = librosa.get_duration(y=y, sr=sr) # Extracts the duration of audio
duration = duration * 1000 # Converts duration ing
—milliseconds
padding ms = 5300 - duration # Calculated the milliseconds of silence,
—needs to be added

silence = AudioSegment.silent(duration=padding ms)

audio = AudioSegment.from_wav(file)

padded = audic + silence # Adds calculated silence after the audio
file_name=os.path.basename(file)

padded.export (outPath+ file_name, format='wav')

count=count+1

print("Total", count, "files are padded and moved a new folder.")

Total 1440 files are padded and moved a new folder.

[6]: | # Make a copy of padded audio files

dirPath2="'./Desktop/Python/Code/modelData’

path = os.getcwd()

toFolder = os.path.join(path, 'Desktop/Python/Code/modelData/')
fromFolder = os.path.join(path, 'Desktop/Python/Code/paddedAudio/')

os.mkdir (dirPath2)
print("New folder named 'modelData' is created.")

for f in os.listdir(fromFolder):
shutil.copy2(os.path.join(fromFolder, f), toFolder)
print("All the audio files from 'paddedAudio' folder copied to 'modelData'y
—folder")

New folder named 'modelData' is created.
A1l the audio files from 'paddedAudio' folder copied to 'modelData' folder

[71: | # Deletes neutral files code as 01 at the third position of file name.
Remove imbalanced class.
modeldataPath="./Desktop/Python/Code/modelData/*.wav"
count=0
for file in glob.glob(modeldataPath):

file_name=os.path.basename(file)

emotion=file_name.split("-")[2] #splits the filename by "-" and picks upy,
—the third value
if emotion == '01':
os.remove(file)
count=count+1
print(count, "audio files belonged to neutral class are removed!")

96 audio files belonged to neutral class are removed!

[8]: # Plotting Waveforms
dpi is set to 300 in order to use these plots for thesis report!

emoPath="'./Desktop/Python/Code/emoPath/*.wav'
imgPath="./Desktop/Python/Code/emoPath/"
for file in glob.glob(emoPath):
X, sr = librosa.load(file)
plt.figure(figsize=(3,2))
plt.plot(x, color='slateblue')
ax = plt.axes()
ax.set_facecolor("white")
filename = os.path.basename(file)
name = filename.split(".")[0]
plt.title(name, color='black')
plt.ylim(-1, 1)
plt.x1im(0,80000)
plt.savefig(imgPath+ 'wav' + name + '.png', dpi=300)
plt.show()

/Users/aditiaggarwal/anaconda3/lib/python3.7/site-
packages/matplotlib/figure.py:98: MatplotlibDeprecationWarning:
Adding an axes using the same arguments as a previous axes currently reuses the
earlier instance. In a future version, a new instance will always be created
and returned. Meanwhile, this warning can be suppressed, and the future
behavior ensured, by passing a unique label to each axes instance.

"Adding an axes using the same arguments as a previous axes "

- Meutral
05 4
00 =l
—0.5 -
-1.0

0 20000 40000 GOOOD BOOOO

Calm

10
0.5 1
00— et —

—0.5 4

-10
0 20000 40000 60OOOD BOOOO

[9]: # Plotting MFCCS

for file in glob.glob(emoPath) :
X , sr = librosa.load(file, sr=22050)
print (type(x), type(sr))

mfccs = librosa.feature.mfcc(x, sr=sr)

#Displaying the MFCCs:

mfccs = sklearn.preprocessing.scale(mfccs, axis=1)
plt.figure(figsize=(3,2))
librosa.display.specshow(mfccs, sr=sr, x_axis='time')
filename = os.path.basename(file)

name = filename.split(".")[0]

plt.title(name, color='black')

plt.x1im(0,3.3)

plt.savefig(imgPath+ 'MFCC' + mame + '.png', dpi=300)
plt.show()

<class 'numpy.ndarray'> <class 'int'>

/Users/aditiaggarwal/anaconda3/lib/python3.7/site-
packages/sklearn/preprocessing/data.py:172: UserWarning: Numerical issues were
encountered when centering the data and might not be solved. Dataset may contain
too large values. You may need to prescale your features.

warnings.warn("Numerical issues were encountered "
/Users/aditiaggarwal/anaconda3/lib/python3.7/site-
packages/sklearn/preprocessing/data.py:189: UserWarning: Numerical issues were
encountered when scaling the data and might not be solved. The standard
deviation of the data is probably very close to 0.

warnings.warn("Numerical issues were encountered "

10

- 1
1 1 l
] I. . I
i 1
T T T T T T
o o5 1 15 2 25 3
Time

<class 'numpy.ndarray'> <class 'int'>

/Users/aditiaggarwal/anaconda3/lib/python3.7/site-
packages/sklearn/preprocessing/data.py:172: UserWarning: Numerical issues were
encountered when centering the data and might not be solved. Dataset may contain
too large values. You may need to prescale your features.

warnings.warn("Numerical issues were encountered "
/Users/aditiaggarwal/anaconda3/1lib/python3.7/site-
packages/sklearn/preprocessing/data.py:189: UserWarning: Numerical issues were
encountered when scaling the data and might not be solved. The standard
deviation of the data is probably very close to 0.

warnings.warn("Numerical issues were encountered "

Calm
T T W
F g it l
i 1
I|. l. Il‘ I) |
il L | ik
e R v
ml 4 e
-] III '
n n
o Lo |
I T T T T T T
o0 @z 1 15 2 25 3
Time
[10]: | # Mel Spectrogram
plt.figure()
for file in glob.glob(emoPath) :
12

11

n_mels = 128
%, sr = librosa.load(file)
filename = os.path.basename(file)
name = filename.split(".")[0]
plt.figure(figsize=(3,2))
plt.title(name, color='black')
S = librosa.feature.melspectrogram(y=x, sr=sr,
n_mels=n_mels)

S_DB = librosa.power_to_db(S, ref=np.max)
librosa.display.specshow(S_DB, sr=sr,

Xx_axis='time', y_axis='mel')
plt.colorbar (format="'%+2.0f dB')
plt.x1im(0,3.3)
plt.savefig(imgPath+ 'Mel' + name + '.png', dpi=300)
plt.show()

<Figure size 432x288 with 0 Axes>

Meutral
+0dB
g192
A096 -20dB
p 2048 e
1024
513 -5 dB
0 -80 dB
005 1 15 2 25 3
Time
Fearful
-20 dB
-40 dB
i -5 dB
i
2 . o L 5048
005 1 15 2 25 3
Time
13

12

[11]: | # Plotting Root Square Mean Energy:

for file in glob.glob(emoPath):
X, sr = librosa.load(file)
filename = os.path.basename(file)
name = filename.split(".")[0]
hop_length = 256
frame_length = 512

rmse = librosa.feature.rms(x, frame_length=frame_length,
—hop_length=hop_length, center=True)

rmse = rmse[0]

plt.figure(figsize=(3,2))

plt.plot(rmse)

plt.title(name, color='black')

plt.x1im(0,330)

plt.ylim(0,.4)

plt.savefig(imgPath+ 'Energy' + name + '.png', dpi=300)

MNeutral
0.4
0.3 4
0.2
0.1 -
0.0 Derlorar, ;
H 100 200 300
Fearful
0.4
0.3 1
0.2 4
0.1 -
0.0 . . T
o 100 200 300
16

13

4.2 Feature_Extract

[1]:

[2]:

[3]:

Feature Extract

December 10, 2019

Feature Extraction

#Importing librarires

import glob

import pandas as pd
import os

import librosa
import numpy as np

from sklearn.model_selection import

def

def

def

feature_normalize(dataset):

mu = np.mean(dataset, axis=0)
sigma = np.std(dataset, axis=0)
return (dataset - mu) / sigma

frames(data, frame_size):
start = 0
while start < len(data):
yield int(start), int(start

train_test_split

+ frame_size)

start += (frame_size / 2) # stepping at half window size

extract_features(file ,bands = 40):
frame_size = 2208 # For 100ms frame
#frame size: 552 for 256ms frame
#frame size: 5622 = 1104 for 50ms frame

features=[]
labels=[]

featurel= []
feature2= []
feature3= []
featured= []
feature5= []

14

fileNew=glob.glob(file)

for i, sound_file_path in enumerate(fileNew):
sound_clip,s = librosa.load(sound_file_path)
sound_clipN = feature_normalize(sound_clip)
file_name=os.path.basename (sound_file_path)
emotion=file_name.split("-") [2]
mfces = []
mels=[]
chromas=[]
ton=[]
rms=[]
zers=[]

framing of audio clips
for (start,end) in frames(sound_clip,frame_size):

if (len(sound_clip[start:end]) == frame_size):

signal = sound_clip[start:end]
signalN = sound_clipN[start:end] # normalize the walues

mfcc = np.mean(librosa.feature.mfcc(y=signalN, sr=s, n_mfcc =,
—.bands) .T, axis=0)

mel=np.mean(librosa.feature.melspectrogram(signal, sr=s).
~T,axis=0)

stft=np.abs(librosa.stft(signal)) #Short time fourier transform

chroma=np.mean(librosa.feature.chroma_stft(S=stft, sr=s).
T,axis=0)

rmse=np.mean(librosa.feature.rms(y=signal) .T,axis=0) #,
—Root-Mean—-Square Energy

zcr=np.mean(librosa.feature.zero_crossing_rate(signal).
~T,axis=0) # Zero-Crossing Rate

Append frames from each file
mfccs.append(mfcc)
mels.append(mel)
chromas . append (chroma)

rms . append (rmse)
zcrs.append(zcr)

Emotion per file
labels.append (emotion)

Append files

15

[4] :

[5]:

[6]:

featurel.append(mfccs)
feature?2.append(mels)
feature3.append(chromas)
feature4.append(rms)
featureb.append(zcrs)

Convert list to array
fl=np.array(featurel)
f2=np.array (feature2)
f3=np.array (feature3)
fd=np.array (featured)
f5=np.array (feature5)

print("MFCC:",f1.shape, "Mel:",f2.shape,"Chroma:",f3.shape,"RMSE:",f4.
—shape,"ZCR:",f5.shape)

features=np.concatenate([f1,f2,£3,f4,f5] ,axis=2)

print("Shape of features array:", features.shape)
return np.array(features), np.array(labels,dtype = np.str)

def one_hot_encode(labels):
return np.asarray(pd.get_dummies(labels), dtype = np.float32)

source_path="./Desktop/Python/Code/modelData/*.wav"
features,labels = extract_features(source_path, bands = 40)
print("All features and labels are extracted for 100ms frame size")

/Users/aditiaggarwal/anaconda3/lib/python3.7/site-
packages/librosa/core/pitch.py:146: UserWarning: Trying to estimate tuning from
empty frequency set.

warnings.warn('Trying to estimate tuning from empty frequency set.')

MFCC: (1344, 104, 40) Mel: (1344, 104, 128) Chroma: (1344, 104, 12) RMSE: (1344,
104, 1) ZCR: (1344, 104, 1)

Shape of features array: (1344, 104, 182)

All features and labels are extracted for 100ms frame size

print("Shape of labels:",labels.shape)

Shape of labels: (1344,)

Categorical varibales encoded as binary vectors.
labels = one_hot_encode(labels)

16

[7]1:

Save features and labels to 'Features' folder.
features_path='./Desktop/Python/Features/’

np.save (features_path + 'X_100ms',features)
np.save (features_path + 'Y_100ms',labels)

17

4.3 Model

[1]:

[2]:

[3]:

[4] :

[5]:

Model

December 10, 2019

Convolutional Recurrent Neural Network

#Importing libraries : Check libraries

from sklearn.model_selection import train_test_split

import numpy as np

import os

import keras

from keras.models import Sequential, Model

from keras.layers import Input, Dense, LSTM, Dropout, Activation,
—#TimeDistributed

from keras.layers import ConvlD, MaxPoolinglD, Flatten, BatchNormalization
from keras.callbacks import ModelCheckpoint, TensorBoard, ReduceLROnPlateau
from keras.optimizers import Adam

import pandas as pd

from keras import regularizers

import librosa

import matplotlib.pyplot as plt

Using TensorFlow backend.

Fetch features and labels data
features_path='./Desktop/Python/Features/'

X=np.load(features_path + 'X_100ms.npy')
y=np.load(features_path +'Y_100ms.npy')

Holdout approach : train-test split
X_train, X_test, y_train, y_test = train_test_split(
X, y , test_size=0.25, random_state=10)

Based on optimized outcome
learning_rate=0.00075
adam_decay=0.00052
batch_size = 24

epochs = 70
dropout_rate=0.00267
activation='relu'

18

[6]: | # Model design

num_layers = 3
kernel_size = 5
conv_filters = 56
1stm = 96
num_hidden = 64
12penalty = O.
num_classes =

001
7

def CRNN_model_build(model_input):
print('Building model...')
layer = model_input

3 1D Convolution Layers
for i in range(num_layers):
give name to the layers
layer = ConviD(
filters=conv_filters,
kernel_size=kernel_size,
kernel_regularizer=regularizers.12(12penalty),
name='convolution_' + str(i + 1)
) (layer)
layer = BatchNormalization(momentum=0.9) (layer)
layer = Activation(activation) (layer)
layer = MaxPoolinglD(2) (layer)
layer = Dropout(dropout_rate) (layer)
LSTM Layer
layer = LSTM(1lstm,return_sequences=False) (layer)
layer = Dropout(0.4) (layer)

Dense Layer

layer = Dense(num_hidden,kernel_regularizer=regularizers.12(12penalty),
—name="'densel') (layer)

layer = Dropout(0.4) (layer)

Softmax Output

layer = Dense(num_classes) (layer)

layer = Activation('softmax', name='output_realtime') (layer)
model_output = layer

model = Model (model_input, model_output)

opt = Adam(lr=learning_rate, decay= adam_decay)
model . compile(
loss='categorical_crossentropy',

19

optimizer=opt,
metrics=['accuracy']

print (model. summary ())
return model

[7]: def train_model(x_train, y_train, x_val, y_val):

n_features = x_train.shape[2]
n_frames=x_train.shape[1]

input_shape = (n_frames, n_features)
model_input = Input(input_shape, name='input')

model = CRNN_model_build(model_input)
bestModel=". /Desktop/Python/model.h5'

checkpoint_callback = ModelCheckpoint(bestModel, monitor='val_accuracy',
—.verbose=1,
save_best_only=True, mode='max')

reducelr_callback = ReduceLROnPlateau(
monitor='val_acc', factor=0.75, verbose=0, mode='auto',
—:cooldown=30, min_1lr=0.0001
)
callbacks_list = [checkpoint_callback, reducelr_callback]

Fit the medel and get training history.
print('Training...")
history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,
validation_data=(x_val, y_val), verbose=1,
—.callbacks=callbacks_list)

return model, history

[8]: def show_summary_stats(history):
List all data in history
print (history.history.keys())

Summarize history for accuracy
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')
plt.show()

20

[9]:

Summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')
plt.show()

model, history = train_model(X_train, y_train, X_test, y_test)

WARNING: Logging before flag parsing goes to stderr.

W1210 04:41:12.908634 4787482048 deprecation.py:506] From
/Users/aditiaggarwal/anaconda3/lib/python3.7/site-
packages/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling
BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops)
with constraint is deprecated and will be removed in a future version.
Instructions for updating:

If using Keras pass *_constraint arguments to layers.

W1210 04:41:13.089951 4787482048 module_wrapper.py:139] From
/Users/aditiaggarwal/anaconda3/lib/python3.7/site-
packages/keras/backend/tensorflow_backend.py:4070: The name tf.nn.max_pool is
deprecated. Please use tf.nn.max_pool2d instead.

Building model..
Model: "model _1"

Layer (type) Output Shape Param #
input (InputlLayer) (None, 104, 182) 0
convolution_1 (ConviD) (None, 100, 56) 51016
batch_normalization_1 (Batch (None, 100, 56) 224
activation_1 (Activation) (None, 100, 56) 0
max_poolingld_1 (MaxPoolingl (None, 50, 56) 0
dropout_1 (Dropout) (None, 50, 56) 0
convolution_2 (ConviD) (None, 46, 56) 15736
batch_normalization_2 (Batch (None, 46, 56) 224
activation_2 (Activation) (None, 46, 56) 0

1

21

max_poolingld_2 (MaxPoolingl (None, 23, 56) 0

dropout_2 (Dropout) (None, 23, 56) 0
convolution_3 (ConviD) (None, 19, 56) 15736
batch_normalization_3 (Batch (None, 19, 56) 224
activation_3 (Activation) (None, 19, 56) 0
max_poolingld_3 (MaxPoolingl (None, 9, 56) 0
dropout_3 (Dropout) (None, 9, 56) 0
1stm_1 (LSTM) (None, 96) 58752
dropout_4 (Dropout) (None, 96) 0
densel (Dense) (None, 64) 6208
dropout_5 (Dropout) (None, 64) 0
dense_1 (Dense) (None, 7) 455
output_realtime (Activation) (None, 7) 0

Total params: 148,575
Trainable params: 148,239
Non-trainable params: 336

None
Training.

W1210 04:41:17.092154 4787482048 module_wrapper.py:139] From
/Users/aditiaggarwal/anaconda3/lib/python3.7/site-
packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables
is deprecated. Please use tf.compat.vl.global_variables instead.

Train on 1008 samples, validate on 336 samples

Epoch 1/70

1008/1008 [] - bs bms/step - loss: 2.1326 -
accuracy: 0.2361 - val_loss: 1.8650 - val_accuracy: 0.4048

Epoch 00001: val_accuracy improved from -inf to 0.40476, saving model to
./Desktop/Python/model .h5
Epoch 2/70

72/1008 [=>.] - ETA: 2s - loss: 1.8439 - accuracy:

[

22

[10]:

[11]:

accuracy: 0.

Epoch 00065:
Epoch 66/70
1008/1008 [

9960 - val_loss: 1.1390 - val_accuracy: 0.7827

val_accuracy did not improve from 0.81845

accuracy: 0.

Epoch 00066:
Epoch 67/70
1008/1008 [

9851 - val_loss: 1.3132 - val_accuracy: 0.7649

val_accuracy did not improve from 0.81845

accuracy: 0.

Epoch 00067 :
Epoch 68/70
1008/1008 [

9950 - val_loss: 1.2227 - val_accuracy: 0.7917

val_accuracy did not improve from 0.81845

accuracy: 0.

Epoch 00068:
Epoch 69/70
1008/1008 [

9950 - val_loss: 1.1968 - val_accuracy: 0.7857

val_accuracy did not improve from 0.81845

accuracy: 0.

Epoch 00069:
Epoch 70/70
1008/1008 [

9950 - val_loss: 1.0764 - val_accuracy: 0.8065

val_accuracy did not improve from 0.81845

accuracy: 0.

Epoch 00070:

9960 - val_loss: 1.09356 - val_accuracy: 0.8065

val_accuracy did not improve from 0.81845

accuracy = model.evaluate(X_test,y_test)

print('Test

set\n Loss: {:0.3f}\n Accuracy: {:0.3f}'.

—.format (accuracy[0] ,accuracy[1]))

336/336 [] - 0s 594us/step
Test set

Loss: 1.094

Accuracy: 0.807

show_summary_stats(history)

dict_keys(['

val_loss', 'val_accuracy', 'loss', 'accuracy',

13

23

] - 28 2ms/step - loss:

] - 2s 2ms/step - loss:

] - 2s 2ms/step - loss:

] - 2s 2ms/step - loss:

] - 2s 2ms/step - loss:

'Ir'D

0.2048

0.1785

0.1762

0.1856

0.1807

accuracy

loss

model accuracy

maodel loss
— frain

200 4
175 1
150
125 -
100
0.75 1
0.50 4
0.25 1

T T T T T T T T

0 10 20 0 40 &0] 70

epoch
14

24

[12]: y_pred=model.predict(X_test)
y_pred = np.argmax(y_pred, axis=1)

[13]: | #categorical to binary vector
def one_hot_encode(labels):
return np.asarray(pd.get_dummies(labels), dtype = np.float32)
predictions=one_hot_encode (y_pred)
[14]: predictions=[np.where(r==1)[0][0] for r in predictions]
[15]: | Ytest=[np.where(r==1) [0] [0] for r in y_test]
[16]: from sklearn.metrics import confusion_matrix

cm=confusion_matrix(Ytest, predictions)

index = ['calm','happy', 'sad','angry','fearful', 'disgust','surprised']
columns = ['calm','happy', 'sad','angry','fearful','disgust','surprised']

[17]: | import pandas as pd
confusionMatrix = pd.DataFrame(cm,index,columns)

confusionMatrix

[17]: calm happy sad angry fearful disgust surprised
calm 47 0 0 0 0 1 0
happy 0 29 6 2 4 0 8
sad 6 2 32 1 3 1 2
angry 0 0 0 46 3 3 1
fearful 0 1 4 3 43 1 3
disgust 1 0 2 0 1 38 0
surprised 0 2 1 0 1 2 36

[18]: emotions={

:'calm’',

: 'happy',
:'sad’',
:'angry',
:'fearful',
:'disgust',
:'surprised’

D O W N O

}

[19]: | # numbers to emotion names
import numpy as np
test=[]

25

for i, item in enumerate(Ytest):
test.append(emotions [item])

pred=[]

for i, item in enumerate(predictions):

pred.append (emotions [item])

[20]: | from sklearn.metrics import classification_report

report = classification_report(test, pred)

print(report)
precision
angry 0.88
calm 0.87
disgust 0.83
fearful 0.78
happy 0.85
sad 0.71
surprised 0.72

accuracy

macro avg 0.81
weighted avg 0.81

[1:

recall fil-score

(=l elle e el Nl

(=]

.87
.98
.90
.78
.69
.68
.86

.81
.81

.88
.92
.86
.78
.70
.70
.78

[=lN e lNe el el

o

.81
.80
0.80

[=)

16

26

support

53
48
42
55
49
a7
42

336
336
336

4.4 Optimization

[1]:

[2]:

Optimization
December 10, 2019

Hyperparameter Optimization: Bayesian optimization

#Importing libraries : check them

from sklearn.model_selection import train_test_split

import numpy as np

import os

from keras.models import Sequential, Model

from keras.layers import Imput, Dense, TimeDistributed, LSTM, Dropout,
—Activation

from keras.layers import ConviD, Flatten, BatchNormalization,MaxPoolinglD
from keras.layers.advanced activations import ELU

from keras.callbacks import ModelCheckpoint, TensorBoard, ReduceLROnPlateau
from keras.optimizers import Adam

import pandas as pd

from keras import regularizers

from keras.wrappers.scikit_learn import KerasClassifier

import skopt

Ipip install scikiti-optimize if necessary

from skopt import gbrt_minimize, gp_minimize

from skopt.utils import use_named_args

from skopt.space import Real, Categorical, Integer

import librosa

import keras

import temnsorflow

from tensorflow.python.keras import backend as K

from sklearn.metrics import confusion_matrix

Using TensorFlow backend.
/Users/aditiaggarwal/anaconda3/1ib/python3.7/site—
packages/sklearn/externals/joblib/__init__.py:15: DeprecationWarning:
sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23.
Please import this functiomality directly from joblib, which can be installed
with: pip install joblib. If this warning is raised when loading pickled models,
you may need to re-serialize those models with scikit-learn 0.21+.
warnings.warn(msg, category=DeprecationWarning)

27

[3]: | # Fetch features and labels data
features_path='./Desktop/Python/Features/'

X=np.load(features_path + 'X_100ms.npy')
y=np.load(features_path +'Y_100ms.npy"')

[4]: | # 75:25 train:test split
X_train, X_test, y_train, y_test = train_test_split(
X, y , test_size=0.25, random_state=10)

[6]: | #This code focuses on optimizing the below parameters:

dim_learning rate = Real (low=1e-4, high=1le-2,
—prior='log-uniform',name='learning_rate')

dim_activation = Categorical(categories=['relu', 'sigmoid'],name='activation')

dim_epochs= Integer (low=70, high=200, name='epochs')

dim_dropout_rate= Real(low=0,high=0.1,name='dropout_rate')

dim_batch_size = Integer(low=4, high=64, name='batch_size')

dim_adam_decay = Real(low=1e-6,high=1e-3,name="adam_decay")

dimensions = [dim_learning_rate,
dim_activation,
dim_epochs,
dim_dropout_rate,
dim_batch_size,
dim_adam_decay
]
default_parameters = [le-3,'relu',100,0.1,8, 1le-3]

[6]: num_layers = 3
kernel_size = b
conv_filters = 56
lstm = 96
num_hidden = 64
12penalty = 0.001
num_classes = 7

def conv_recurrent_model_build(learning_rate, activation,dropout_rate,
—.adam_decay) :

print ('Building model...')

n_features = X_train.shape[2]

n_frames=X_train.shape[1]

input_shape = (n_frames, n_features)

model_input = Input(input_shape, name='input')#n_input

layer = model_input

Three 1D Convolution Layers

28

for i in range(num_layers):
layer = ConviD(
filters=conv_filters,
kernel_size=kernel_size,
kernel_regularizer=regularizers.12(12penalty),
name='convolution_' + str(i + 1)
) (layer)
layer = BatchNormalization(momentum=0.9) (layer)
layer = Activation(activation) (layer)
layer = MaxPoolinglD(2) (layer)
layer = Dropout(dropout_rate) (layer)
LSTM Layer
layer = LSTM(1lstm,return_sequences=False) (layer)
layer = Dropout(0.4) (layer)

Dense Layer

layer = Dense(num_hidden, kernel_regularizer=regularizers.12(12penalty),,
—name="'densel') (layer)

layer = Dropout(0.4) (layer)

Softmax Output

layer = Dense(num_classes) (layer)

layer = Activation('softmax', name='output_realtime') (layer)
model_output = layer

model = Model(model_input, model_output)

opt = Adam(lr=learning rate, decay= adam_decay)
model . compile(
loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy']

return model
[7]: @use_named_args(dimensions=dimensions)
def fitness(learning rate, activation, epochs, dropout_rate, batch_size, |,
—.adam_decay) :
model = conv_recurrent_model_build(learning rate=learning rate,
activation=activation,
dropout_rate=dropout_rate,

adam_decay=adam_decay

)

29

[e]:

[9]:

checkpoint_callback = ModelCheckpoint('weights_best.h5',,
—monitor="'val_accuracy', verbose=1,
save_best_only=True, mode='max')

reducelr_callback = ReduceLROnPlateau(
factor=0.75, verbose=0, mode='auto', cooldown=30, min_lr=0.0001
)
callbacks_list = [checkpoint_callback, reducelr_callback]

blackbox = model.fit (X train, y_train, batch_size=batch_size, epochs=epochs,
validation_data=(X_test, y_test), verbose=1,,
—.callbacks=callbacks_list
)
#return the validatzion accuracy for the last epoch.
accuracy = blackbox.history['val_accuracy'] [-1]

Print the classification accuracy.
print()

print ("Accuracy: {0:.2J}".format(accuracy))
print()

Delete the Keras model with these hyper-parameters from memory.
del model

K.clear_session()
tensorflow.reset_default_graph()

the optimizer aims for the lowest score, so we return our negative,
—accuracy
return -accuracy

Restart tensorflow
K.clear_session()
tensorflow.reset_default_graph()

Gausszian

gaussian_result = gp_minimize(func=fitness, #function to minimize
dimensions=dimensions, # bounds on each dimension
n_calls=20, # numbers of evaluations of func
noise= 0.01,
n_jobs=-1,
kappa = 5,
x0=default_parameters)

30

WARNING: Logging before flag parsing goes to stderr.

W1210 15:34:04.092263 4494056896 deprecation.py:506] From
/Users/aditiaggarwal/anaconda3/lib/python3.7/site-
packages/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling
BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops)
with constraint is deprecated and will be removed in a future version.
Instructions for updating:

If using Keras pass *_constraint arguments to layers.

Building model..

W1210 15:34:04.162539 4494056896 module_wrapper.py:139] From
/Users/aditiaggarwal/anaconda3/1lib/python3.7/site-
packages/keras/backend/tensorflow_backend.py:4070: The name tf.nn.max_pool is
deprecated. Please use tf.nn.max_pool2d instead.

W1210 15:34:06.129909 4494056896 module_wrapper.py:139] From
/Users/aditiaggarwal/anaconda3/1lib/python3.7/site-
packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables
is deprecated. Please use tf.compat.vl.global_variables instead.

Train on 1008 samples, validate on 336 samples

Epoch 1/100

1008/1008 [] - 3s 3ms/step - loss: 2.0845 -
accuracy: 0.2371 - val_loss: 1.7950 - val_accuracy: 0.3988

Epoch 00001: val_accuracy improved from -inf to 0.39881, saving model to
weights_best.hb

Epoch 2/100

1008/1008 [] - 2s 2ms/step - loss: 1.8751 -
accuracy: 0.3571 - val_loss: 1.7208 - val_accuracy: 0.3988

Epoch 00002: val_accuracy did not improve from 0.39881

Epoch 3/100

1008/1008 [] - 2s 2ms/step - loss: 1.7666 -
accuracy: 0.3889 - val_loss: 1.5083 - val_accuracy: 0.5238

Epoch 00003: val_accuracy improved from 0.39881 to 0.52381, saving model to
weights_best.hb

Epoch 4/100

1008/1008 [] - 2s 2ms/step - loss: 1.6769 -
accuracy: 0.4345 - val_loss: 1.5532 - val_accuracy: 0.4851

Epoch 00004: val_accuracy did not improve from 0.52381

Epoch 5/100

1008/1008 [] - 2s 2ms/step - loss: 1.6197 -
accuracy: 0.4573 - val_loss: 1.4122 - val_accuracy: 0.5208

[

31

weights_best.hb

Epoch 69/70

1008/1008 [] - 1s 1ms/step - loss: 0.9175 -
accuracy: 0.7728 - val_loss: 1.4164 - val_accuracy: 0.6250

Epoch 00069: val_accuracy did not improve from 0.71429

Epoch 70/70

1008/1008 [] - 1s 1lms/step - loss: 0.8398 -
accuracy: 0.81256 - val_loss: 1.5472 - val_accuracy: 0.6131

Epoch 00070: val_accuracy did not improve from 0.71429

Accuracy: 61.31%

[10]: |print("The best accuracy was " + str(round(gaussian_result.fun *-100,2))+"%.")

The best accuracy was 83.33}%.

[11]: | #Returns parameters for the best function
gaussian_result.x

[11]: [0.0001, 'relu', 200, 0.1, 4, le-06]
[12]: | #Models tested by search function

tuned_results_100ms=pd.concat([pd.DataFrame(gaussian_result.x_iters, columns =
- ["learning rate",

"activationg
—function","epochs","dropout","batch size","adam learning rate decay"]),
(pd.Series(gaussian_result.func_vals*-100, name="accuracy"))], axis=1)

[13]: | #save results to csv
outPath="'./Desktop/100ms.csv'
tuned_results_100ms.to_csv(outPath,index=False)

[14]: gaussian_model = conv_recurrent_model_build(gaussian_result.
—x[0] ,gaussian_result.x[1] ,gaussian_result.x[2] ,gaussian_result.x[3])
gaussian_model.summary ()

WARNING: Logging before flag parsing goes to stderr.

W1210 17:16:26.703282 4622884288 deprecation.py:506] From
/Users/aditiaggarwal/anaconda3/1lib/python3.7/site-
packages/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling
BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops)
with constraint is deprecated and will be removed in a future version.
Instructions for updating:

If using Keras pass *_constraint arguments to layers.

302

32

W1210 17:16:26.792479 4622884288 module_wrapper.py:139] From
/Users/aditiaggarwal/anaconda3/lib/python3.7/site-
packages/keras/backend/tensorflow_backend.py:4070: The name tf.nn.max_pool is
deprecated. Please use tf.nn.max_pool2d instead.

Building model..
Model: "model 1"

Layer (type) Output Shape Param #
input (InputlLayer) (None, 104, 182) 0
convolution_1 (ConviD) (None, 100, 56) 51016
batch_normalization_1 (Batch (None, 100, 56) 224
activation_ 1 (Activation) (None, 100, 56) 0
max_poolingld_1 (MaxPoolingl (None, 50, 56) 0
dropout_1 (Dropout) (None, 50, B6) 0
convolution_2 (ConviD) (None, 46, 56) 15736
batch_normalization_2 (Batch (None, 46, 56) 224
activation_2 (Activation) (None, 46, 56) 0
max_poolingld_2 (MaxPoolingl (None, 23, 56) 0
dropout_2 (Dropout) (None, 23, 56) 0
convolution_3 (ConviD) (None, 19, 56) 15736
batch_normalization_3 (Batch (None, 19, 56) 224
activation_3 (Activation) (None, 19, 56) 0
max_poolingld_3 (MaxPoolingl (None, 9, 56) 0
dropout_3 (Dropout) (None, 9, 56) 0
1stm_1 (LSTM) (None, 96) 58752
dropout_4 (Dropout) (None, 96) 0
densel (Dense) (None, 64) 6208
303

33

dropout_5 (Dropout) (None, 64) 0

dense_1 (Dense) (None, 7) 455

output_realtime (Activation) (None, 7) 0

Total params: 148,575
Trainable params: 148,239
Non-trainable params: 336

[1B] : | #retrain our best model architecture
gaussian_model.fit(X_train,y_train, epochs=200, batch_size=4)
gaussian_model.evaluate (X_test,y_test)

W1210 17:16:47.567802 4622884288 module_wrapper.py:139] From
/Users/aditiaggarwal/anaconda3/lib/python3.7/site-
packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables
is deprecated. Please use tf.compat.vl.global_variables instead.

Epoch 1/200

1008/1008 [] - 4s 4ms/step - loss: 2.2414 -
accuracy: 0.1746

Epoch 2/200

1008/1008 [] - 3s 3ms/step - loss: 2.1421 -
accuracy: 0.2044

Epoch 3/200

1008/1008 [] - 3s 3ms/step - loss: 2.0487 -
accuracy: 0.2470

Epoch 4/200

1008/1008 [] - 3s 3ms/step - loss: 1.9684 -
accuracy: 0.2927

Epoch 5/200

1008/1008 [] - 3s 3ms/step - loss: 1.9094 -
accuracy: 0.3403

Epoch 6/200

1008/1008 [] - 3s 3ms/step - loss: 1.8445 -
accuracy: 0.3591

Epoch 7/200

1008/1008 [] - 3s 3ms/step - loss: 1.7845 -
accuracy: 0.3790

Epoch 8/200

1008/1008 [] - 3s 3ms/step - loss: 1.7648 -
accuracy: 0.4028

Epoch 9/200

1008/1008 [] - 3s 3ms/step - loss: 1.7136 -

304

34

accuracy: 0.9563
Epoch 186/200
1008/1008 [

accuracy: 0.9812
Epoch 187/200

1008/1008 [
accuracy: 0.9702
Epoch 188/200

1008/1008 [

accuracy: 0.9802
Epoch 189/200
1008/1008 [

accuracy: 0.9871
Epoch 190/200
1008/1008 [

accuracy: 0.9821
Epoch 191/200
1008/1008 [

accuracy: 0.9772
Epoch 192/200

1008/1008 [
accuracy: 0.9782
Epoch 193/200

1008/1008 [

accuracy: 0.9792
Epoch 194/200
1008/1008 [

accuracy: 0.9643
Epoch 195/200

1008/1008 [
accuracy: 0.9792
Epoch 196/200

1008/1008 [

accuracy: 0.9683
Epoch 197/200
1008/1008 [

accuracy: 0.9891
Epoch 198/200
1008/1008 [

accuracy: 0.9732
Epoch 199/200
1008/1008 [

accuracy: 0.9692
Epoch 200/200

1008/1008 [
accuracy: 0.9851

336/336 [

316

35

- 3s

3ms/step

3ms/step

3ms/step

3ms/step

3ms/step

3ms/step

3ms/step

3ms/step

3ms/step

3ms/step

3ms/step

3ms/step

3ms/step

3ms/step

3ms/step

Os 1lms/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.2168

.2502

.2184

.2024

2113

.2208

2272

.2139

.2620

2229

.2356

.1895

.2203

2373

.1997

[15]: [0.9658633058979398, 0.8125]

[16]: y_pred=gaussian_model.predict (X_test)
y_pred = np.argmax(y_pred, axis=1)

[17]: def one_hot_encode(labels):
return np.asarray(pd.get_dummies(labels), dtype = np.float32)

[18]: | #categorical to binary vector
predictions=one_hot_encode (y_pred)

[19]: | # Binary vector to Integer
predictions=[np.where(r==1)[0] [0] for r in predictions]

[20]: | Ytest=[np.where(r==1) [0] [0] for r in y_test]

[21]: | # List to array
predictions=np.asarray(predictions)

[22]: | Ytest=np.asarray(Ytest)
[23]: cm=confusion_matrix(Ytest, predictions)

index = ['calm', 'happy', 'sad','angry','fearful','disgust', 'surprised']

columns ['calm','happy', 'sad','angry','fearful','disgust','surprised']

[24]: cm_df = pd.DataFrame(cm,index,columns)

cm_df
[24] : calm happy sad angry fearful disgust surprised
calm 46 0 2 0 0 0 0
happy 2 35 5 2 3 0 2
sad 7 4 33 1 1 1 0
angry 0 1 2 49 0 0 1
fearful 0 3 5 2 44 0 1
disgust 1 0 2 1 37 1
surprised 0 4 5 1 1 29
[25] : | emotions={
0:'calm',
1:'happy',
2:'sad’',
3:'angry',
4:'fearful',
5:'disgust’,
6:'surprised'
317

36

}

[26]: | #numbers to emotion states

import numpy as np
test=[]

for i, item in enumerate(Ytest):
test.append(emotions[item])

[27]: pred=[]

for i, item in enumerate(predictions):

pred.append (emotions [item])

[28]: from sklearn.metrics import classification_report
report = classification_report(test, pred)

print(report)
precision
angry 0.89
calm 0.82
disgust 0.95
fearful 0.86
happy 0.74
sad 0.61
surprised 0.85

accuracy
macro avg 0.82
weighted avg 0.82
[]:|#—— end of tuned model

recall fl-score

[« =lele e Nellel

.92
.96
.88
.80
.71
.70
.69

.81
.81

.91
.88
.91
.83
.73
.65
.76

o0 0 OO0 00

(=]

.81
.81
0.81

o

318

37

support

53
48
42
55
49
a7
42

336
336
336

	Introduction
	Application Environment
	Hardware
	Software

	Application
	Data Extraction
	Data Preparation
	Feature Extraction
	Model and Evaluation
	Hyperparameter Optimization and Evaluation

	Code Artefacts
	Data_Preparation
	Feature_Extract
	Model
	Optimization

