\ National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Short term traffic flow prediction

Hongy1 Yan
Student ID: 19207433

School of Computing
National College of Ireland

Supervisor: Jorge Basilio

Student
Name:

Student ID:
Programme:
Module:
Supervisor:

Submission
Due Date:

Project Title: ..

Word Count: ..

“-‘
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee I
reland
School of Computing
cdHONGYT YaN e e
B L Do 7 3 F RS
...short traffic flow prediction........c.cccc........ Year: ..2021............ .

.MAChINE 1€AMMING.....iii e e e

e dOFGE BaSili0.uei i s

Comparison of machine learning in Intelligence Traffic System.............

... Page Count...10..........cccooiiiiiiiii s

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: e dHONGYT YaN e s

Date: S0 1 0 I

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | v

copies)

Attach a Moodle submission receipt of the online project v
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | v
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Hongyi Yan
19207433

1 Introduction
In fact, the operation background of the whole project comes from the intelligent traffic
system. After studying the development of ITS, I found that traffic flow prediction is a very
basic but important technology. And this technology has been updated and changed with the
development of computer hardware. In the early stage, the principle of statistics was applied
to estimate the peak of traffic, and then artificial regulation was carried out. Later, with the
emergence of new technologies such as machine learning and deep learning, the accuracy of
prediction also increased (Zhao et al; 2012). It can be said that this subject is energetic, and it
is novel when new technologies appear.
The data is from Queensland data website, which is a very original traffic data. The

number of cars passing and leaving in some sections over a period of time is recorded. The
good thing is that it is counted every 15 minutes, which is very in line with the research
standard (MA C et al; 2020).

As for the introduction of the working environment of this study, python programming
language is selected, and anaconda is used as the working environment. Anaconda needs to
be updated to a newer version because the old version does not provide corresponding
services when using some LSTM packages later. In fact, after testing, Anaconda version 2.0
or above needs to be installed. In this way, some packages can be deployed normally and the
code can run normally. In this step, the author has to reinstall the environment to realize the
application of neural network. However, if only the seasonal demonstration experiment is
realized, it can run without too high version.

Traffic information collection Information processing analysis £
Information release system
system system

GPS vehicle
navigation

Artificial decision Mobile phone

Information
server

ehicle electronic
information card

GIS application

Vehicle terminal
system

Broadcasting

Electronic
information board

nfrared radar
detector

elephone service

Optical detector desk

Figure 1 The whole ITS system

2 Preprocessing
This step is in the same file with ARIMA. The most basic packages numpy and pandas are
imported for data preprocessing. First read the data into our working environment, and then
look at the table.

SITE Direction DAY TIME C1 C2 C3 C4-13 Ped Bike

0 2006CC1 Entry 9/05/2006 6€:00:00 0 NaN 0.0 NaN NaN NaN
1 2006CC1 Entry 9/05/2006 6:15:00 0 NaN 0.0 NaN NaN NaN
2 2006CC1 Entry 9/05/2006 6:30:00 1 NaN 0.0 NaN NaN NaN
3 2006CC1 Entry 9/05/2006 6€:45:00 1 NaN 0.0 NaN NaN NaN
4 2006CC1 Entry 9/05/2006 7:00:00 0 NaN 0.0 NaN NaN NaN
95 2006CC1 Exit 23/05/2006 9:45:00 2 NaN 0.0 NaN NaN NaN
96 2006CC2 Entry 9/05/2006 6€:00:00 0 NaN 0.0 NaN NaN NaN
97 2006CC2 Entry 9/05/2006 6:15:00 0 NaN 0.0 NaN NaN NaN
98 2006CC2 Entry 9/05/2006 6€:30:00 2 NaN 0.0 NaN NaN NaN
99 2006CC2 Entry 9/05/2006 6:45:00 1 NaN 0.0 NaN NaN NaN

Using the df.drop() function to delete all the lines which direction is leaving. We choose
the number of vehicles entering the section as the traffic flow. In addition, because the value
of C1 is the largest, that is, the change is the most obvious, therefore C1 column is selected as
the time series for analysis.

The next step is to find special values. After visualizing the data as a line chart, it is found
that the data fluctuates very irregularly for two days. The code and implementation are as
follows.

plt. plot (dfl. timeid, dfl.C1)

#olt. x1im(0, 2)

plt. figure (dpi=300, figsize=(24,8))
plt. show ()

20 1

10 A

0 4
297200 297300 297400 297500 297600 297700 297800 297900
So use drop () to delete the data of March 14 and March 15. Then use the DF. ToCSV ()
function to export the data which has been processed. This will help you directly reference
other models when you build them later.
The following is some exploratory analysis, which will not be explained too much in this

paper, because it is analyzed in detail in the report.

3 ARIMA

This step only needs to be carried out according to the submitted code. First, import the
relevant statistical package. The code is as follows:

import statsmodels.api as sm;

Present the relevant ACF and PACF diagrams of the time series and judge the relevant

AR (P) and MA (q) (D. cvetek et al; 2020).

fig = plt. figure(figsize=(18,8))

axl=fig. add_subplot f221)|

fig = sm. graphics. tsa. plot_acf(data, lags=20, ax=axl)
ax2 = fig. add_subplot (222)

fig = sm. graphics. tsa. plot_pacf(data, lags=20, ax=ax2)
plt. show()

Autocorrelation Partial Autocorrelation
10 10

08

EZ HHHHHHHHIH "

00

02 L llll'l .llll".

-04 -02

Next, check the stability. Finally, my subjective judgment is diff =1, P =[2,3], q=[1,2].

Here, in order to find the optimal solution of the model, several parameters are modeled
separately. The ARIMA () function in the statsmodels package is used. Input the parameters
judged above, and put it in the model. Summary() function is used to summarize the
performance of the model. In the optimization stage, I choose AIC and BIC as the

3

optimization criteria. The value of the model should be as small as possible. Finally, after
modeling several possible parameter models, select the best group. Therefore, the final model
is as follows:

ARIMA(2, 1, 1)

Dep. Variable: y No. Observations: 480
Model: SARIMAX(2, 1, 1) Log Likelihood 368.061
Date: Tue, 27 Jul 2021 AlC -728.122
Time: 22:04:36 BIC -711.435
Sample: 0 HQIC -721.562

-480

Covariance Type: opg

coef stderr zZ P>|z] [0.025 0.975]

arL1 -0.2271 0.148 -1.535 0.125 -0.517 0.063
arL2 -0.0857 0.080 -1.070 0.284 -0.243 0.071
ma.L1 -0.3320 0.149 -2.242 0.025 -0.624 -0.042

sigma2 0.0126 0.001 23.793 0.000 0.012 0.014

Ljung-Box (Q): 64.74 Jarque-Bera (JB): 195.61

Prob(Q): 0.01 Prob(JB): 0.00
Heteroskedasticity (H): 1.1 Skew: 0.62
Prob(H) (two-sided): 0.53 Kurtosis: 5.88

4 SARIMA

Here, first define the drawing function. The code is as follows:

def tsplot(y, lags=Nome, figsize=(12, 7), style=bmh’):
Plot time series, its ACF and PACF, calculate Dickey - Fuller test

y — timeseries
lags — how many lags to include in ACF, PACF calculation

if not isinstance(y, pd.Series):
v = pd. Series(y)

with plt. style. context(style):
fig = plt. figure(figsize=figsize)
layout = (2, 2)
ts_ax = plt. subplot2grid(layout, (0, 0), colspan=2)
acf ax = plt. subplotZ2egrid(layout, (1, 0))
pacf_ax = plt. subplot2grid(layout, (1, 1))

v. plot (ax=ts_ax)

p_value = sm. tsa.stattools. adfuller(v) [1]

ts_ax. set_title(’ Time Series Analysis Plots\n Dickey—Fuller: p={0:.5f} . format(p_value))
smt. graphics. plot_acf(y, lags=lags, ax=acf ax)

smt. graphics. plot_pacf(y, lags=lags, ax=pacf ax)

plt. tight layout ()

This can bring all the graphs together in the subsequent ACF and PACF checks. When
using, you only need to run in the format of tsplot (x, y). X is the time series to be modeled,
and Y is the lags quantity which you need to view. This is very important, because in this
subject, the seasonal value is too large, especially it is important to check the changes after
one or two seasons. Therefore, in my experiment, first define the lags as 100, and then
observe the change. As for my seasonal choice, it is not entirely determined by observing
these two pictures. The seasonality is 96. This is because I regard a day as a season, and then
a day is 24 hours, but I count it four times per hour. Therefore, a total of 96 times of data
were counted in one day (U. ashwini et al; 2021).

L

The seasonal difference
ts diff = ts.Cl — ts.Cl. shift(96)
tsplot(ts_diff[96:], lags=10)

Time Series Analysis Plots
Dickey-Fuller: p=0.00000

20 -

10 -

=10 -

-20 -

100 150 200 250 300 350 400 450
Autocorrelation Partial Autocorrelation
10+~ 10 -
08 - 08k
06 - 06 -
04 - 04 -
02- 02~
00 [] v . o L J - 2 - l 00 - 3 T T a T - I s l
-0.2 - + -0.2

The above figure, together with the code part, is the observation after incorporating the
seasonality 96 as the difference value. Firstly, it can be seen that the stability has improved.
And then by observing the long-time lag, I found that the seasonality has disappeared.
Therefore, the series data with a seasonality of 96 can be modeled. The model parameter
judgment process is introduced in the report, so only the code implementation is introduced
here.

Next, adjust and build the model by calling the sarimax () function. The specific codes are
as follows (Kang et al; 2021):

sm.tsa.statespace. SARIMA X(data, order=(1, 1, 1),

seasonal_order=(1, 1, 1, 96)).fit(disp = -1)

Turning to the mathematical formula, we chose a new model.
The process of adjusting parameters is the same as that of ARIMA model. Finally, model.
Summary () is used to summarize the model.

S LSTM

Use the following code to allocate the data value and target value.look Back is the number of
dimensions characterized by several rows of data.
def creat_dataset(dataset,look back):
data x =]
data y =]
for i in range(len(dataset)-look back):
data_x.append(dataset[i:i+look back])
data_y.append(dataset[i+look back])
return np.asarray(data_x), np.asarray(data_y)

Finally, the value of Look back is actually 2 as the feature dimension. Then, len () * 0.7
is used to obtain the division of training set and test set.

As for the data previously converted to ndarray, it needs to be converted to the tensor data
which is required in pytorch. Use torch.from Numpy() function to convert it. This step is
necessary, and non conversion will lead to data mismatch (Qu et al; 2020).

The next step is the establishment of the model. First call the class RNN which is
designed in the torch package, and then initialize it.

super(RNN;,self). init () #Inheritance

Next, set the parameters of LSTM, define the dimension of the input eigenvalue as 2, and
the two Istm are connected in series. Here I set six hidden layers. Of course, if your laptop is
efficient, the value of the hidden layer can also be slightly adjusted.

Finally, there is a linear fitting layer. It receives a data dimension of 6 and outputs a
dimension of 1.

Of course, the connection of the whole model needs dimension transformation to be
connected together. Define a forward () to handle such problems, as follows.

def forward(self,x):
x1, =self.lstm(x)
a,b,c = x1.shape
#Because the linear layer inputs two-dimensional data, the three-dimensional data x1
#output by LSTM should be adjusted to two-dimensional data here,
#and the final feature dimension cannot be changed
out = self.out(x1.view(-1,c))
#Because it is a cyclic neural network,
#the two-dimensional out should be adjusted into three-dimensional data at the last
#time, which can be recycled next time
outl = out.view(a,b,-1)
return outl

The torch package optim.Adam () function is used to optimize the parameters of the
model. The loss function is used as the optimization index here, and I choose a learning rate
of 0.02.

The final training code and training process are as follows:

HERER training
for i in range(1000) :
var_x = Variable(x_train). type (torch. FloatTensor)
var v = Variable (v train). type(torch. FloatTensor)
out = lstm(var_x)
loss = loss_func(out, var_v)
MAE mean_absolute_error(var_y. view(=1). detach(). numpy (), out. view(~1). detach(). numpy())
RMSE = mean squared_error (var y.view(-1).detach(). numpy(), out.view(-1).detach(). numpy())
optimizer. zero_grad()
loss. backward ()
optimizer. step()
if (i +1) % 100 = 0:
print (Epoch: {}, Loss:{:.5f}, MAE:{:.3f}, RMSE:{:.3f} .format(i + 1, loss.item(), MAE, RMSE))

torch. save (1stm. state_dict (), ' time_seq_parameter.pkl’)
Epoch:100, Loss:0.01052, MAE:0.067, RMSE:0.011
Epoch:200, Loss:0.00968, MAE:0.065, RMSE:0.010
Epoch:300, Loss:0.00925, MAE:0.063, RMSE:0.009
Epoch:400, Loss:0. 00896, MAE:0.063, RMSE:0.009
Epoch:500, Loss:0.00938, MAE:0.066, RMSE:0.009
Epoch:600, Loss:0.00837, MAE:0.061, RMSE:0.008
Epoch:700, Loss:0.00790, MAE:0.059, RMSE:0.008
Epoch:800, Loss:0.00765, MAE:0.059, RMSE:0.008
Epoch:900, Loss:0.01035, MAE:0.074, RMSE:0.010

Epoch:1000, Loss:0.00712, MAE:0.057, RMSE:0.007

RMSE: It is the square root of the ratio of the square of the difference between the
predicted value and the real value to the number of predictions. The full name is Root Mean
Square Error. In this research, it is used to measure the difference between the predicted
value and the real value of the final model, which can be regarded as the prediction accuracy.
The formula is as follows:

m

RMSE (X, /) = \/ 1 > G-y
m53
Here, RMSE is used as the same measure of the three models. I designed it for my own
time series model. By calculating the predicted value and the real value, the error of each
time is calculated, and the prediction accuracy of the model is obtained. The code is as
follows. Try _model.fittedvalues represents the predicted value and data represents the value
of the original data.

def rmse(predictions, targets):
return np.sqrt(((predictions - targets) ** 2).mean())
rmse(try_model.fittedvalues, data)

Finally, compare the RMSE values of each model and draw a conclusion.

References

D. Cvetek, M. Mustra, N. Jelusi¢ and B. Abramovi¢, "Traffic Flow Forecasting at Micro-
Locations in Urban Network using Bluetooth Detector," 2020 International Symposium
ELMAR, Zadar, Croatia, 2020, pp. 57-60, doi: 10.1109/ELMAR49956.2020.9219023.

H. -J. Kang, C. Kallas, M. -H. Park and J. Kim, "A Scalable Learning Model for Multi-
seasonal Time Series Forecasting," 2021 International Conference on Electronics,
Information, and Communication (ICEIC), Jeju, Korea (South), 2021, pp. 1-4, doi:
10.1109/ICEIC51217.2021.9369826.

H. Qu, J. Li and Y. Zhang, "Long Short-term Memory Network Prediction Model Based on
Fuzzy Time Series," 2020 IEEE International Conference on Artificial Intelligence and
Information Systems (ICAILS), Dalian, China, 2020, pp. 417-421, doi:
10.1109/ICAI11S49377.2020.9194902.

Ma C, Tan L, Xu X. Short-term Traffic Flow Prediction Based on Genetic Artificial Neural
Network and Exponential Smoothing. Promet - Traffic&Transportation. 2020;32(6):747-60.
DOI: 10.7307/ptt.v32i6.3360

U. Ashwini, K. Kalaivani, K. Ulagapriya and A. Saritha, "Time Series Analysis based
Tamilnadu Monsoon Rainfall Prediction using Seasonal ARIMA," 2021 6th International

Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 2021, pp.
1293-1297, doi: 10.1109/ICICT50816.2021.9358615.

Zhao, Y. Dai and Z. Zhang, "Computational Intelligence in Urban Traffic Signal Control: A
Survey," in IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 42, no. 4, pp. 485-494, July 2012, doi: 10.1109/TSMCC.2011.2161577.

