~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Shveta Srivastava
Student ID: 18194851

School of Computing
National College of Ireland

Supervisor:  Dr. Rashmi Gupta




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Shveta Srivastava
Student ID: 18194851
Programme: Data Analytics
Year: 2020-2021
Module: MSc Research Project
Supervisor: Dr. Rashmi Gupta
Submission Due Date: 16-08-2021
Project Title: Configuration Manual
Word Count: 1189
Page Count: [20]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Genetic Algorithm Optimized Deep Learning Model
for Parkinson’s Disease Severity Detection

Shveta Srivastava
18194851

1 Introduction

This configuration manual contains the information for complete implementation of the
research project including hardware and software used, so as to replicate the work done
at any time. This step-by-step manual will aid the users to understand the code and its
implementation.

2 Hardware Specification

The project was carried out on a Dell G3 15 laptop using the configuration shown in
Figure [1] and Figure [2

Device specifications

HP Pavilion Laptop 14-ceOxxx
Device name LAPTOP-J34R64GG

Processor Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80
GHz

Installed RAM 8.00 GB (7.88 GB usable)

Device ID AB5SEAB88C-8281-4E73-B739-7FB851606739

Product ID 00325-96500-78779-AAOEM

System type 64-bit operating system, x64-based processor

Pen and touch  No pen or touch input is available for this display

Figure 1: Device Specifications

3 Software Requirement and Environment Setup

The research work was implemented using R and Python. The process of setting up R
environment and Python environment are shown below.

1



OS Name Microsoft Windows 10 Home
Version 10.0.19043 Build 19043
Other OS Description Not Available

OS Manufacturer Microsoft Corporation
System Name LAPTOP-J34R64GG

Figure 2: System Specifications

3.1 R

R is a software environment that is free for use for building machine learning tools, graph-
ical tools and statistical computing (Matloff; 2011)). R (Version 4.1.1) can be installed
using Cran R website/]

3.2 Anaconda for Python

Anaconda is the data science toolkit mainly for python programming (Van Rossum
; 2000). For python, Anaconda was installed from the website for Windowsﬂ. Once
Anaconda is installed successfully, Jupyter Notebook can be launched and used for Py-

thon Programming as shown in Figure [3|

{D ANACONDA NAVIGATOR
ﬁ Home
Applications on base (root) v Channels Refresh
n Environments ~
- e

. ° <&
* Learning Y ’;7'

Jupyter %

N7 4
ah Community Notebook Powershell Prompt

6.0.3 0.0.1

Web-based, interactive computing notebook Run a Powershell terminal with your current
X environment. Edit and run human-readable environment from Navigator activated
Documentation docs while describing the data analysis.

Launch Launch
v

Develoner Bloa

¥y @ ¢

Figure 3: Launch Jupyter Notebook from Anaconda Navigator

3.3 Tensor Flow

Tensorflow environment can be installed by using the CMD.EXE prompt following the
instructions given at Anaconda online user guide [ [Abadi et al.| (2016) describes several
tensorflow applications for machine learning algorithm in detail.

"https://cran.r-project.org/bin/windows/base/
Zhttps://www.anaconda.com/products/individual
3https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/


https://cran.r-project.org/bin/windows/base/
https://www.anaconda.com/products/individual
https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

N = O ©

Wow NN NN N NN NN
= o © 3]

@

3.4 Google Colaboratory

Google Colaboratory, also called "Google Colab’ is a free cloud service which offers Jupyter
Notebook for running python by selecting GPU and TPU setup within Colab (Carneiro
et al.; 2018). Dataset can be retrieved from Google Drive by mounting it in Colab
Notebook.

4 Data Collection and Merging

Parkinson’s Disease patient’s motor and non-motor assessment data has been collected
from PPMI (Parkinson’s Progressive Markers Initiative) on approval of request from the
PPMI website [

The merging and data transformation has been done using R programming. Down-
loaded all the motor and non-motor assessments data and uploaded on R environment.

4.1 Read and Understand Datasets

The following datasets have been downloaded from the website. The structure of the
datasets have been visualized and understood the important features from each of the
dataset, using code dictionary given at PPMI.

#read the datasets

UPDRS1 <- read.csv("MDS_UPDRS_Part_I.csv", header = T)
head (UPDRS1)
str (UPDRS1)

UPDRSII <- read.csv("MDS_UPDRS_Part_II.csv", header = T)
str (UPDRSII)

UPDRSIII <- read.csv("MDS_UPDRS_Part_III.csv", header = T)
str (UPDRSIII)
; head (UPDRSIII)
5 SCOPA <- read.csv("SCOPA-AUT.csv", header = T)
str (SCOPA)
MOCA <- read.csv("Montreal_Cognitive_Assessment__MoCA.csv", header = T)

str (MOCA)

BOSTON <- read.csv("Modified_Boston_Naming_Test.csv", header = T)
str (BOSTON)

STAI <- read.csv("State-Trait_Anxiety_Inventory.csv", header= T)
5 str (STAI)
QUIP <- read.csv("QUIP_Impulsive Compulsive Disorder.csv", header= T)
str (QUIP)
GDS <- read.csv("Geriatric_Depression_Scale.csv", header= T)
str (GDS)

“https://www.ppmi-info.org/



V]

s COGNITIVE <- read.csv("Cognitive_Categorization.csv

HVLT <- read.csv("Hopkins_Verbal_Learning_Test.csv", header = T)
str (HVLT)

LNS <- read.csv("Letter-Number_Sequencing.csv", header = T)
str (LNS)

SFT <- read.csv("Semantic_Fluency.csv", header = T)

str (SFT)

SDM <- read.csv("Symbol_Digit_Modalities.csv", header = T)
str (SDM)

CLOCK <- read.csv("Clock_Drawing.csv", header = T)
str (CLOCK)

header = T)
str (COGNITIVE)

T)

LFT <- read.csv("Lexical_Fluency.csv", header
str (LFT)

TRAIL <- read.csv("Trail_Making_ A_and_B.csv", header = T)
str (TRAIL)

EPWORTH <- read.csv("Epworth_Sleepiness_Scale.csv", header = T)
str (EPWORTH)

REM <- read.csv("REM_Sleep_Disorder_Questionnaire.csv", header = T)
str (REM)

Listing 1: Reading and Understanding Datasets

The list of several motor and non-motor assessment datasets used in this study can
be seen in R environment as shown in Figure [ with the number of variables and the
number of patient records in the PPMI database. It should be noted that LF'T, BOSTON,
CLOCK and TRAIL have been excluded from study due to very few number of patient
records which will not add any value to the analysis and might hinder the model building
process.

The target variable "THY” severity scale scores are contained in "UPDRS III" dataset.

4.2 Select important variables

Next, the important variables from all the datasets have been selected using 'Dplyr’
function.

library (dplyr)
N_UPDRS1 <- UPDRS1 ¥%>%
select (PATNO, EVENT_ID, NP1COG, NP1HALL ,NP1DPRS, NP1ANXS, NP1APAT,
NP1DDS)
head (N_UPDRS1)

N_UPDRSII <- UPDRSII %>%
select (PATNO, EVENT_ID, NP2SPCH, NP2SALV, NP2SWAL, NP2EAT, NP2DRES,
NP2HYGN, NP2HWRT, NP2HOBB,
NP2TURN, NP2TRMR, NP2RISE, NP2WALK, NP2FREZ)



11

SIS

%)

6

) BOSTON 438 obs. of 13 wvariables
O CLOCK 332 obs. of 18 variables
) COGNITIVE 7030 obs. of 18 variables
) EPWORTH 8227 obs. of 19 variables
) GDs 8546 obs. of 25 variables
O HVLT 6999 obs. of 23 wvariables
OLFT 443 obs. of 13 wvariables
O LNS 6969 obs. of 34 variables
O moca /860 obs. of 38 wvariables
D ouip 8229 obs. of 24 variables
D REM 8836 obs. of 32 wvariables
i scoPA 8229 obs. of 46 variables
D sDm 6986 obs. of 15 wvariables
O SFT 6995 obs. of 16 wvariables
i STAT 8535 obs. of 50 variables
0 TRAIL 436 obs. of 16 variables
) UPDRS1 13904 obs. of 17 variables
) UPDRSII 13908 obs. of 24 variables
{3 UPDRSIII 15843 obs. of 54 variables

Figure 4: List of Datasets from PPMI

N_UPDRSIII <- UPDRSIII %>%
select (PATNO, EVENT_ID, NP3SPCH, NP3FACXP, NP3RIGN, NP3RIGRU,
NP3RIGLU, PN3RIGRL ,NP3RIGLL, NP3FTAPR,
NP3FTAPL ,NP3HMOVR, NP3HMOVL, NP3PRSPR,6 NP3PRSPL ,NP3TTAPR,

NP3TTAPL , NP3LGAGL ,
NP3LGAGR , NP3RISNG,

NP3GAIT, NP3FRZGT, NP3PSTBL, NP3POSTR, NP3BRADY, NP3PTRMR,
NP3PTRML, NP3KTRMR, NP3KTRML, NP3RTARU,
NP3RTALU, NP3RTARL, NP3RTALL,NP3RTALJ, NP3RTCON, DYSKPRES, NHY
)
. N_SCOPA <- SCOPA %>Y%
select (PATNO, EVENT_ID, SCAU1, SCAU2, SCAU3, SCAU4, SCAU5, SCAU6,
SCAU7 , SCAUS,
SCAU9, SCAU10, SCAU11, SCAU12, SCAU13, SCAU14, SCAU15, SCAU16,
SCAU17 ,
SCAU18, SCAU19, SCAU20, SCAU21, SCAU24, SCAU26A, SCAU26B,
SCAU26C, SCAU26D)
str (N_SCOPA)
N_MOCA <- MOCA %>%
select (PATNO, EVENT_ID, MCAALTTM, MCACUBE, MCACLCKC, MCACLCKN,
MCACLCKH, MCALION, MCARHINO,
MCACAMEL , MCAFDS, MCABDS, MCAVIGIL, MCASER7, MCASNTNC, MCAVFNUM, MCAVF,
MCAABSTR, MCAREC1,



38

MCAREC2, MCAREC3, MCAREC4, MCAREC5, MCADATE, MCAMONTH, MCAYR, MCADAY,
MCAPLACE, MCACITY, MCATOT)

N_REM <- REM %>Y%
select (PATNO, EVENT_ID, DRMVIVID, DRMAGRAC, DRMNOCTB, SLPLMBMV,
SLPINJUR, DRMVERBL, DRMFIGHT,
DRMUMV , DRMOBJFL, MVAWAKEN, DRMREMEM, SLPDSTRB, STROKE, HETRA,
RLS, NARCLPSY, DEPRS,
EPILEPSY, BRNINFM)

head (N_REM)

N_GDS <- GDS %>%
select (PATNO, EVENT_ID, GDSSATIS, GDSDROPD, GDSEMPTY, GDSBORED,
GDSGSPIR, GDSAFRAD, GDSHAPPY,
GDSHLPLS, GDSHOME, GDSMEMRY, GDSALIVE, GDSWRTLS, GDSENRGY, GDSHOPLS,
GDSBETER)

N_STAI <- STAI %>%
select (PATNO, EVENT_ID, STAIAD1, STAIAD2, STAIAD3, STAIAD4, STAIADS,

STAIAD6 , STAIAD7, STAIADS,

STAIAD9, STAIAD10, STAIAD11, STAIAD12, STAIAD13, STAIAD14,
STAIAD15, STAIAD16, STAIAD17,

STAIAD18, STAIAD19, STAIAD20, STAIAD21, STAIAD22, STAIAD23,
STAIAD24, STAIAD25, STAIAD26,

STAIAD27, STAIAD28, STAIAD29, STAIAD30, STAIAD31, STAIAD32,
STAIAD33, STAIAD34, STAIAD35,

STAIAD36, STAIAD37, STAIAD38, STAIAD39, STAIAD40)

N_QUIP <- QUIP %>%
select (PATNO, EVENT_ID,TMGAMBLE, CNTRLGMB, TMSEX, CNTRLSEX, TMBUY,
CNTRLBUY, TMEAT, CNTRLEAT,
TMTORACT, TMTMTACT, TMTRWD)

N_EPWORTH <- EPWORTH %>%
select (PATNO, EVENT_ID, ESS1, ESS2, ESS3, ESS4, ESS5, ESS6, ESS7,
ESSS8)

N_SFT <- SFT %>%
select (PATNO, EVENT_ID, VLTANIM, VLTVEG, VLTFRUIT)
str (N_SFT)
library (Amelia)
missmap (N_SFT)

N_HVLT <- HVLT ¥%>%
select (PATNO, EVENT_ID, HVLTRT1, HVLTRT2, HVLTRT3, HVLTRDLY, HVLTREC,
HVLTFPRL, HVLTFPUN)
missmap (N_HVLT)

N_LNS <- LNS %>%
select (PATNO, EVENT_ID, LNS_TOTRAW)

7 N_SDM <- SDMY%>Y%

select (PATNO, EVENT_ID, SDMTOTAL)

Listing 2: Selecting Variables from each dataset



4.3 Merge datasets

The datasets have been merged together by unique patient number 'PATNO’ and their
visit ID * EVENT_ID’. The Datasets with very few records have been avoided. The final
merged dataset has been saved in the google drive for further retrieval in Colab notebook
for further analysis.

#merge
D1 <- merge(N_UPDRSl,N_UPDRSIII, by= c("PATNO", "EVENT_ID"))
str (D1)

s D2 <- merge(D1,N_UPDRSII, by= c("PATNO", "EVENT_ID"))
str (D2)
D3 <- merge(D2,N_REM, by= c("PATNO", "EVENT_ID"))
str (D3)
D4 <- merge(DS,N_GDS, by= c("PATNO", "EVENT_ID"))
str (D4)

5 D6 <- merge(D4,N_STAI, by= c("PATNO", "EVENT_ID"))
str (D5)
D7 <- merge(DS,N_QUIP, by= c("PATNO", "EVENT_ID"))
D8 <- merge(D7,N_EPWORTH, by= c("PATNO", "EVENT_ID"))
str (D8)

s D9 <- merge(DS,N_SCDPA, by= c("PATNO", "EVENT_ID"))

; #exclude MOCA, LNS, HVLT, SDM, SFT

#as the number of rows reduced drastically

#D9 <- merge(DS,N_MOCA, by= c("PATNO", "EVENT_ID"))
#str (D9)
#D10 <- merge (D9,N_LNS, by= c("PATNO", "EVENT_ID"))

Listing 3: Merging datasets

4.4 Coding the Events

The table of the number of total visits from participants can be visualized as shown in
figure f| 'Event_ID’ of "PW’, ’ST’, "U01’, "VO01’, "V03’, V05’ have been excluded from
study due to insufficient data. The rest are coded numerical values for analysis.

BL PW ST uv0l vO01I w02 v03 w04 V05 Vv06 w08 v10 w12 v13 vl4 v15 V16
1558 10 201 2 12 1029 2 1535 2 1399 1135 985 818 489 524 262 42

Figure 5: List of Datasets from PPMI

Final_Data <- D9
str (Final_Data)



1
5
6
7
8

9

16

19

#FIND DEPENDENT VARIABLE 'NHY'

table (Final _Data$NHY)
table (Final _Data$EVENT_ID)

# select visits that are of interest for modeling

#encoding of visits from baseline till visit 14

Final_Data$EVENT_ID <- ifelse(Final_Data$EVENT_ID == 'BL',1,
ifelse(Final_Data$EVENT_ID == 'V02', 2,
ifelse(Final _Data$EVENT_ID == 'V04
I’S,
ifelse(Final _Data$EVENT_ID
== 'V06',4,
ifelse(Final_Data$
EVENT_ID == 'V08',5,
ifelse (Final _
Data$EVENT_ID == 'V10',6,
ifelse
(Final_Data$EVENT_ID == 'V12',7,
ifelse(Final_Data$EVENT_ID == 'V13',8, 9)
)))))))
write.csv(Final_Data, file = "Final_Data.csv")

Listing 4: Coding Visits of Interest

5 EDA and Pre-processing

5.1 Load the data in Google Colab

Rest of the analysis is done using Python on Jupyter Notebook in Google Colab. The data
is retrieved from Google Drive which has to be mounted on Colab using authentication
code. Then the libraries are imported followed by uploading the 'Final Data’ from the
data path.

from google.colab import drive
drive.mount ('/content/drive/"')

import tensorflow as tf

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split,cross_val_score

data_path = '/content/drive/MyDrive/Final_Data.csv'
data = pd.read_csv(data_path)

Listing 5: Read the Data



1C

11

1

2

5.2 Exploratory Data Analysis

The dataset is visualized initially using the following steps.

data.head ()

data.shape # Dataset has 9472 rows and 175 features

data.dtypes # all the variables have either integer or float values

data.describe() # describes the count of variables, mean, std.
deviation, range of values with min, max values.

sns.catplot(x='NHY',kind="'count',data=data) # The severity scale based
on 'HY' index is from 'l' to 'S' indicating various stages of
Parkinson's disease.

sns.catplot (x='EVENT_ID',kind='count',data=data) # Number of patients
participating by visits. number '9' is the fimnal visit. It can be
observed that there is a decline in visits.

print (data['PATNO'].value_counts ())

n = len(pd.unique (data['PATNO']))

print ("Number of Patients participating in assessments :",

n) #Number of Patients participating in assessments : 1478

Listing 6: Exploratory Data Analysis

The following figure [6] and figure [7] shows the plot of the target variable 'NHY’ and
"EVENTS’ respectively.

4000

3000

count

2000

1000

0.0 10 20 30 40 5.0
NHY

Figure 6: Different stages of Disease Severity

5.3 Handling Missing Records

Missing variables can be visualized using heatmap. Missing records has been replaced
with previous assessment score for that patient’s visits.
# plot the missmap to visualize the columns with missing records

sns.heatmap (data.isnull (), cbar=False, yticklabels=False, cmap='viridis

D)



10
11
12

1600

1400 -

1200 1

1000 -

count
=]
o

200 -

EVENT_ID

Figure 7: Different visits for PD Assessments

data= data.drop(['SCAU20','SCAU21','SCAU24'],axis=1) # These column has
mostly missing values, so its better to remove them

data.isna() .sum().sum() # 827 missing records in dataset
data['NHY'].isna () .sum()

# f£fill NA with interpolate function after sorting each patient with
their visits.

data = data.set_index (['PATNO']).sort_index(level='PATNO') #set index
and sort data

data = data.interpolate(method='linear',6 axis=1)

# replace the late stages into moderate stages due to insufficient data
, and as we want to predict if the patients are 'severe' and need
medical attention or 'mot-severe'

data['NHY'] = data['NHY'].replace([5.0, 4.0], 3.0)

PD_data = data

print (PD_data) # data is now ready for analysis

Listing 7: Handling Missing Records

The heat map for missing variables can be seen in figure [§

6 Modelling

The data is split into features and labels where 'NHY” is label and rest all are features.
The features are further standardized using min-max normalisation. The data is then
split into train and test in the ratio of 80-20. The steps are shown below.

#The dataset is split into features(the independent variables) and
labels (the dependent or target variable):

10



N

yVooron L L 1 1 1 1 L L 1
OEDdEXD>»>Z2Z2XsT VIO -—lhmmm.—-hxbtrmmwrcg
A0>00d T dofcwuEpgoddammul nsS AN

E30013x=Y 35 Sa=2200000u3I BTSSR
aIrsoxk I:,_uwow——dﬁt-{qq'g '-”tﬁb,{«#[:

CEMIAES NNGxO@=EfCaxsaat 2 AR
Zzpoas 230z RAYVGRGHG %

=== = B

Figure 8: Heat Map for Missing Variables

features=PD_data.drop (['NHY'],axis=1)

labels=PD_data['NHY']

#normalize the data using the minmax scaler to bring the feature
variables within the range -1 to 1:

scaler=MinMaxScaler ((-1,1))

X=scaler.fit_transform(features)

y=labels

#split for training data is 80% and testing is 20%
X_train,X_test,y_train,y_test=train_test_split(X, y, test_size=0.2)
print ('X_train num',X_train.shapel[0])

print ('X_test num',X_test.shape[0])

Listing 8: Standardization and Train Test split

6.1 LSTM

Long Short Term Memory Model is built for predicting Parkinson’s Disease Severity.
LSTM model deals well with the complexities of longitudinal data of PD patients, learning
from long-term dependencies. The code is given below. Keras has been utilized to import
models and layers.

from tensorflow import keras

from tensorflow.keras import layers

import matplotlib.pyplot as plt

from keras.models import Sequential

from keras.layers import Dense, Dropout, LSTM

from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

from keras.wrappers.scikit_learn import KerasClassifier
from keras.callbacks import EarlyStopping

from keras.callbacks import ModelCheckpoint

from sklearn import metrics

from sklearn.metrics import accuracy_score

11



V]

V)

from sklearn.metrics import confusion_matrix, classification_report,
roc_auc_score, roc_curve
from keras.layers.core import Activation

Listing 9: import required libraries

The standardized data is reshaped into Time-series with time-steps equal to number
of average visits for each patient, i.e. 5.

# reshape input to be 3D [samples, timesteps, features]

timesteps = 5

X_train = X_train.reshape((X_train.shape[0], timesteps, int(X_train.
shape[1]/timesteps)))

X_test = X_test.reshape((X_test.shape[0], timesteps, int(X_test.shape
[1]/timesteps)))

print (X_train.shape, y_train.shape, X_test.shape, y_test.shape)

#(7577, 5, 34) (7577,) (1895, 5, 34) (1895,)

Listing 10: Reshape according to time-steps

The LSTM model is built with 10% dropouts to avoid over-fitting after each dense
layer. Softmax activation is used for outer layer to make sure the probability outcomes
totals to 1. Optimizer used in compiling the LSTM architecture is ’adam’ optimizer and
metrics is ’sparse categorical accuracy’.

model = Sequential ()

model.add (LSTM (44, input_shape=(X_train.shape[1], X_train.shapel[2])))
model .add (Dense (20))

model .add (Activation('relu'))

model.add (Dropout (0.1))

model .add (Dense (10))

model .add (Activation('relu'))

model.add (Dropout (0.1))

model .add (Dense (4))

model .add (Activation('softmax"'))

model.compile (loss="'sparse_categorical_crossentropy', optimizer='adam',
metrics= ['sparse_categorical_accuracy'])

model . summary ()

Listing 11: LSTM Model Architecture

Model is implemented with early stopping for model loss and model checkpoint for
validation accuracy.
early_stopping = keras.callbacks.EarlyStopping(monitor= 'wval_loss',
mode= 'min', patience= 10)

model_checkpoint = ModelCheckpoint ('model.h5', monitor= '
val_sparse_categorical_accuracy', mode = 'max', verbose= 1,
save_best_only= True)

history = model.fit(X_train, y_train, validation_data=(X_test, y_test),
batch_size=32, epochs=100, shuffle= False,
callbacks=[early_stopping, model_checkpoint],
verbose=2)

Listing 12: Fit the Model

Plot the loss and accuracy for comparing validation sample results.

12



1 # plot the loss

2 history_df = pd.DataFrame(history.history)

3 history_df.loc[:, ['loss', 'val_loss']].plot(title="LSTM Model Loss")
. plt.ylabel('loss"')

5 plt.xlabel ('epoch')

7 #plot model accuracy

s plt.plot(history.history['sparse_categorical_accuracy'])

o plt.plot(history.history['val_sparse_categorical_accuracy'])
10 plt.title ('LSTM model accuracy')

11 plt.ylabel('accuracy')

12 plt.xlabel ('epoch')

13 plt.legend(['train', 'validation'], loc='upper left')

14 plt.show ()

16 # Make Predictions
17 y_score = model.predict(X_test)
18 y_pred y_score

20 y_pred = (y_pred>0.5)
21 y_pred = y_pred.astype(int)
22 y_pred [0] #array ([0, 1, O, 0])

Listing 13: Plots for Model Loss and Model Accuracy
Accuracy for LSTM model is 88%. Model doesn’t seem to overfit as the curves of

train and validation data are not spaced apart. The LSTM model plots for loss function
and model accuracy is shown in figure [9] and figure [I0] respectively.

Model Loss
0.7
— loss
val_loss
06 1
0.5 1
@
=2
0.4 1
03‘ \
0.2
0 5 10 15 20 25
epoch

Figure 9: LSTM Model Loss Plot

6.2 DEEP NEURAL NETWORK- Multi-Layer Perceptron

The feed forward network has been built using similar steps as before for binary classi-
fication.
1 #Patients with 0.0 and 1.0 score on HY scale are considered 'unilateral
normal' patients,

2 #whereas patients with score of 2 or more needs medical attention and
are considered 'cognitively impaired' in this project.

13



LSTM model accuracy
—— frain
090 validation
—
—
0.85
-,
o
5
0.80
¥
0.75
0.70
0 5 10 15 20 pL3
epoch

Figure 10: LSTM Model Accuracy Plot

PD_data['NHY'] PD_data['NHY'].replace ([0.0],1.0)
PD_data['NHY'] = PD_data['NHY'].replace([3.0], 2.0)

#split for training data is 80% and testing is 20%
X_train,X_test,y_train,y_test=train_test_split(X, y, test_size=0.2)
print (X_train.shape)

input_shape = [X_train.shapel[1]] # (7577, 170)

#Model architecture

mlp_model = Sequential ()

mlp_model.add(layers.Dense (170, activation='relu', input_dim=
input_shape))

mlp_model.add (Dropout (0.1))

mlp_model.add(layers.Dense (70, activation='relu'))

mlp_model.add (Dropout (0.1))

mlp_model.add(layers.Dense (16, activation='relu'))

mlp_model.add (Dropout (0.1))

mlp_model.add(layers.Dense(l, activation='sigmoid'))

# compile model with optimizing algorithm, loss function and accuracy

function

mlp_model.compile (optimizer="adam", loss="binary_crossentropy", metrics

=["binary_accuracy"])

early_stopping = keras.callbacks.EarlyStopping(monitor= 'val_loss',
mode= 'min', patience= 10)

history = mlp_model.fit(X_train, y_train, validation_data=(X_test,

y_test) ,batch_size=32, epochs=100, shuffle= False,
callbacks=[early_stoppingl,verbose=2)

#Model Plots

history_df = pd.DataFrame (history.history)

history_df.loc[:, ['loss', 'val_loss']].plot(title="Cross-entropy")

history_df.loc[:, ['binary_accuracy', 'val_binary_accuracy']].plot(
title="Accuracy")

#Make predictions

mlp_preds = mlp_model.predict(X_test)

#Evaluate

14



35 accuracy = mlp_model.evaluate (X_test, y_test) [1]

36 print ('Accuracy:', accuracy)

7 #60/60 [==============================] - 0s 1lms/step - loss:
-2475099947008.0000 - binary_accuracy: 0.4739

38 #Accuracy: 0.4738786220550537

', metrics.mean_absolute_error (y_test,

30 print ('Mean Absolute Error:
mlp_preds))

0o print ('Mean Squared Error:', metrics.mean_squared_error (y_test,
mlp_preds))

11 print ('Root Mean Squared Error:
y_test, mlp_preds)))

2 #Mean Absolute Error: 0.5261213720316623

3 #Mean Squared Error: 0.5261213720316623

4+ #Root Mean Squared Error: 0.72534224475875

Listing 14: Multi Layer Perceptron Model

', np.sqrt(metrics.mean_squared_error (

7 Hybrid Model- GA-LSTM

Next, built LSTM model within genetic algorithm heuristic search engine to find the best
hyperparameters of the model.

1 # import the required libraries. The model was built using bitstring
and Deap framework.

2> !pip install bitstring

3 !'pip install deap

i from keras.models import Model

5 from deap import base, creator, tools, algorithms

¢ from scipy.stats import bernoulli

7 from bitstring import BitArray

s np.random.seed (1120)

Listing 15: install depedencies and libraries

Collecting bitstring

Downloading bitstring-3.1.9-py3-none-any.whl (38 kB)
Installing collected packages: bitstring
Successfully installed bitstring-3.1.9

Figure 11: BitString Installation

Collecting deap
Downloading deap-1.3.1-cp37-cp37m-manylinux_2_5_x86_64.manylinuxl_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (16@ kB)
| 16@ kB 12.1 MB/s
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from deap) (1.19.5)
Installing collected packages: deap
Successfully installed deap-1.3.1

Figure 12: DEAP Installation

The successful installation message will appear as shown in figure (11| and

1 # reshape data into l1-dimensional array
2> data = np.reshape(np.array(PD_data['NHY']) ,(len(PD_datal['NHY']) ,1))
3 data.shape

15



# Use first 8525 points as training/validation and rest of the points
as test set.

train_data = data[0:8525]

test_data = data[8525:]

# Prepare the dataset with X,Y pair where for a given time t, X is the
previous values and Y is the future values
def prep_dataset(data, window_size):
X, Y = np.empty((0,window_size)), np.empty ((0))
for i in range(len(data)-window_size-1):
X = np.vstack([X,data[i:(i + window_size) ,0]])
Y = np.append([Y,data[i + window_size ,0]])
X = np.reshape(X,(len(X),window_size ,1))
Y = np.reshape(Y,(len(Y),1))
return X, Y

Listing 16: Prepare dataset for genetic algorithm search

Next, Define a function to get window size and number of units by decoding GA
solution. Then,prepare the dataset using GA searched window size, further divide the
dataset into train and validation set. Finally, train the LSTM model, calculate fitness
score of the current solution by Genetic Algorithm.

def train_evaluate(ga_individual_solution):
# Decode GA solution to integer for window_size and num_units

window_size_bits = BitArray(ga_individual_solution[0:6])
num_units_bits = BitArray(ga_individual_solution[6:])
window_size = window_size_bits.uint
num_units = num_units_bits.uint
print ('\nWindow Size: ', window_size, ', Num of Units: ', num_units
)

# Return fitness score of 100 if window_size or num_unit is
Zero
if window_size == 0 or num_units == O0:

return 100,

# Segment the train_data based on new window_size; split into train
and test (80/20)

X,Y = prep_dataset(train_data,window_size)

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size
= 0.20, random_state = 1120)

# Train LSTM model and predict on validation set

inputs = Input(shape=(window_size ,1))

lstm = LSTM(num_units, input_shape=(window_size ,1)) (inputs)
predictions = Dense(l, activation='linear') (lstm)

gamodel = Model (inputs=inputs, outputs=predictions)

gamodel .compile (optimizer="'adam',loss='binary_crossentropy')
gamodel .fit (X_train, y_train, epochs=10, batch_size=10,shuffle=True

y_pred = gamodel.predict(X_test)
y_pred = y_pred.astype(int)

# Calculate the RMSE score as fitness score for GA

rmse = np.sqrt(mean_squared_error (y_test, y_pred))
print ('Validation RMSE: ', rmse,'\n')

16



N

3

return rmse,

Listing 17: Define Functions for Generating Genetic Algorithm Search

Using DEAP package, defined parameters for implementing GA. Here, the solution is
represented by a binary representation '0’s and ’1’s. Bernoulli distribution will randomly
initialize the generation. Crossover and mutation are randomly selected by roulette wheel.
Finally, the GA parameter values are arbitrarily initialized.

population_size = 4
num_generations = 4
gene_length = 10

# to minimize the RMSE score, weights are defined as -1.0.
creator.create('FitnessMax', base.Fitness, weights = (-1.0,))
creator.create('Individual', list , fitness = creator.FitnessMax)

toolbox = base.Toolbox ()

toolbox.register ('binary', bernoulli.rvs, 0.5)

toolbox.register ('individual', tools.initRepeat, creator.Individual,
toolbox.binary,

n = gene_length)

toolbox.register ('population', tools.initRepeat, list , toolbox.
individual)

5 toolbox.register('mate', tools.cxOrdered)

toolbox.register ('mutate', tools.mutShuffleIndexes, indpb = 0.6)

7 toolbox.register('select', tools.selRoulette)

toolbox.register ('evaluate', train_evaluate)

population = toolbox.population(n = population_size)
r = algorithms.eaSimple (population, toolbox, cxpb = 0.4, mutpb = 0.1,
ngen = num_generations, verbose = False)

Listing 18: Define Genetic Algorithm parameters

# Print top N solutions - (1st only)
best_individuals = tools.selBest(population,k = 1)
best_window_size = None

best_num_units = None

for bi in best_individuals:
window_size_bits = BitArray(bi[0:6])
num_units_bits = BitArray(bi[6:])
best_window_size = window_size_bits.uint
best_num_units = num_units_bits.uint
print ('\nTop Solution for Window Size: ', best_window_size, ', Num
of Units: ', best_num_units)

; ##### Result for top solution

#Top Solution for Window Size: 12 , Num of Units: 8

Listing 19: Print the top solutions

# Train the model using best configuration on complete training set
#and make predictions on the test set

X_train,y_train = prep_dataset(train_data,best_window_size)

X_test, y_test = prep_dataset(test_data,best_window_size)

17



V)

inputs = Input(shape=(best_window_size ,1))
GA_LSTM = LSTM(best_num_units, input_shape=(best_window_size ,1)) (inputs
)

predictions = Dense(l, activation='linear') (GA_LSTM)
gamodel = Model (inputs = inputs, outputs = predictions)
gamodel.compile (optimizer="'adam',loss='binary_crossentropy', metrics=

['mean_squared_error'])
gamodel .fit (X_train, y_train, epochs=50, batch_size=32,shuffle=True)
y_pred = gamodel.predict(X_test)

rmse = np.sqrt(mean_squared_error(y_test, y_pred))
print ('Test RMSE: ', rmse)

#Epoch 50/50

#266/266 [==============================] - 1s 4ms/step - loss: 0.1349
- mean_squared_error: 0.1349

#Test RMSE: 0.32939433126774104

#y_pred = gamodel.predict(X_test)
#print ('Accuracy:', metrics.accuracy_score(y_test, y_pred)) ##

############ Not working on GA-LSTM model as the classification metrics
can't handle a mix of binary and continuous targets.

Listing 20: Train the LSTM model using the top solutions

Hence, Test Root Mean Square Error (RMSE) was significantly reduced from 0.72 of
baseline approach to 0.33 in GA-LSTM model

8 Multiple Baseline Machine Learning Algorithms

Multiple baseline classification models have been trained and evaluated to monitor the
classification performance on Parkinson’s disease data.

#Importing various classification algorithm to find which algorithm
suits the best for the dataset:

from sklearn.neural_network import MLPClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC

from sklearn.gaussian_process import GaussianProcessClassifier

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.gaussian_process.kernels import RBF

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import ExtraTreesClassifier

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

from sklearn.linear_model import SGDClassifier

Listing 21: Importing Classifiers

names = ["Nearest_Neighbors", "Linear_SVM", "Polynomial_ SVM", "RBF_SVM"
, "Gaussian_Process",
"Gradient_Boosting", "Decision_Tree", "Extra_Trees", "
Random_Forest", "Neural_Net", "AdaBoost",
"Naive_Bayes", "QDA", "SGD"]
classifiers = [

18



6 KNeighborsClassifier (3),
7 SVC(kernel="linear", C=0.025),

8 SVC(kernel="poly", degree=3, C=0.025),

9 SVC (kernel="rbf", C=1, gamma=2),

10 GaussianProcessClassifier (1.0 * RBF(1.0)),

11 GradientBoostingClassifier(n_estimators=100, learning_rate=1.0),
12 DecisionTreeClassifier (max_depth=5),

13 ExtraTreesClassifier(n_estimators=10, min_samples_split=2),
14 RandomForestClassifier (max_depth=5, n_estimators=100),

15 MLPClassifier (alpha=1, max_iter=1000),

16 AdaBoostClassifier(n_estimators=100) ,

17 GaussianNB (),

18 QuadraticDiscriminantAnalysis (),

19 SGDClassifier (loss="hinge", penalty="12")]
Listing 22: Fitting the classification models

1 scores = []

2> for name, clf in zip(names, classifiers):
3 clf .fit(X_train, y_train)

4 score = clf.score(X_test, y_test)

5 scores .append(score)

6

7 df = pd.DataFrame ()

¢ df ['name'] = names
9 df ['score'] = scores
10 df

11

12 #Plot the results for comparison

13 sns.set(style="whitegrid")

14 ax = sns.barplot(y="name", x="score", data=df)

Listing 23: Evaluate and compare the classifiers

The plot has been shown in figure It can be seen that XG Boost model shows the
best performance for classification.

Nearest_Neighbors
Linear_SVM
Polynomial_SVM
RBF_SvM I—
Gaussian_Process
Gradient_Boosting

“E" Decision_Tree
[} Extra_Trees
Random_Forest
Neural_Net

AdaBoost
Naive_Bayes

QDA

SGD

0.

=]

02 0.4 0.6 08
score

Figure 13: Comparison Plot

Further the classification scores can be seen in figure [14] which shows XG Boost al-
gorithm with accuracy of 89.76% whereas deep learning neural network shows the accur-
acy of 88.75%. Even though the score for most of the machine learning algorithms are
high, they do not consider the multiple time steps for multiple visits of patients.

19



name score

o

Nearest_Neighbors 0.833245
1 Linear_SVM 0.874934
2 Polynomial_SVM 0.868074
3 RBF_SVM 0.559894
4  Gaussian_Process 0.890237

5 Gradient_Boosting 0.897625

6 Decision Tree 0.887071
7 Extra Trees 0.891821
8 Random Forest 0.889182
9 Neural Net 0.887599
10 AdaBoost 0.874406
11 Naive_Bayes 0.810026
12 QDA 0.829551
13 SGD 0.857520

Figure 14: Classification Scores for different Models

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M. et al. (2016). Tensorflow: A system for large-scale machine
learning, 12th { USENIX} symposium on operating systems design and implementation
({OSDI} 16), pp. 265-283.

Carneiro, T., Da Noébrega, R. V. M., Nepomuceno, T., Bian, G.-B., De Albuquerque, V.
H. C. and Reboucas Filho, P. P. (2018). Performance analysis of google colaboratory
as a tool for accelerating deep learning applications, IEEFE Access 6: 61677-61685.

Matloff, N. (2011). The art of R programming: A tour of statistical software design, No
Starch Press.

Van Rossum, G., Drake, F. L. et al. (2000). Python reference manual, iUniverse Indiana.

20



	Introduction
	Hardware Specification
	Software Requirement and Environment Setup
	R
	Anaconda for Python
	Tensor Flow
	Google Colaboratory

	Data Collection and Merging
	Read and Understand Datasets
	Select important variables
	Merge datasets
	Coding the Events

	EDA and Pre-processing
	Load the data in Google Colab
	Exploratory Data Analysis
	Handling Missing Records

	Modelling
	LSTM
	DEEP NEURAL NETWORK- Multi-Layer Perceptron

	Hybrid Model- GA-LSTM
	Multiple Baseline Machine Learning Algorithms

