
Configuration Manual

MSc Research Project

MSc in Data Analytics

Jaswinder Singh
Student ID: x19219997

School of Computing

National College of Ireland

Supervisor: Dr. Paul Stynes

Dr. Pramod Pathak

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Jaswinder Singh

Student ID: x19219997

Programme: MSc in Data Analytics

Year: 2021

Module: MSc Research Project

Supervisor: Dr. Paul Stynes, Dr. Pramod Pathak

Submission Due Date: 16/08/2021

Project Title: Configuration Manual

Word Count:

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 22nd September 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Jaswinder Singh
x19219997

1 Initial Environment Setting

The software specifications for the setup are described in the table below:

Programming Language Python (v3.6)
Cloud Platform Google Cloud Platform (GCP)

Virtual Machine OS Ubuntu 18.04LTS
CPU No. of cores: 16; Memory: 64 GB
GPU No. of GPUs: 2; Type: NVIDIA Tesla V100
IDE Jupyter-Lab, VS-Code, Google Colab, Atom

1.1 Setting up Google Cloud Platform

For setting up the google cloud platform for distributed training, the following steps can
be followed:

1. First login with a gmail account to th GCP website

2. Choose the default options for free account for first time login. The first time users
get a 300$ credit into their account to be used by three months. We used these
credits only to train our final model on the platform.

3. Choose the Create VM Instance option.

4. Now choose the CPU and GPU preferences as shown below. The user can choose
whatever GPU and CPU specifications he/she wants, but for the purpose of this
project, we chose the options as shown in figure 1.

(a) CPU specifications (b) GPU specifications

Figure 1: Configurations for GPU and CPU for the virutal instance on GCP

1

https://cloud.google.com/

1.2 Setting up the Google Colab Environment

To set up the code execution in the google colab environment, the following steps can be
followed:

1. Login to the account through gmail.

2. Open the google drive tab and upload the entire dataset folder. this may take a
while to complete since the dataset size is quite large (2 GB)

3. Open the google colab notebook and choose the GPU enabled environment for
execution of the code.

4. Mount the drive to the colab environment using the below code:

from google.colab import drive

drive.mount(’/content/drive ’)

5. Once finished uploading the dataset and mounting, open the first .ipynb notebook
from the artefacts and start the cell execution one by one. Execute the notebooks
sequentially to avoid errors.

Figure 2: Setting the GPU enabled environment in google colab

2 Data Pre-processing and EDA

2.1 Data Preparation

2.1.1 Initial Setup

1. Download all the dataset files for the CHAMPS dataset from kaggle (figure 3).

2. For the pre-processing stage, simply upload the data on google drive and follow
the steps described in section 1.2. For the model training and later steps put the
dataset files in a folder and name it data.

2

Figure 3: CHAMPS dataset on kaggle

2.2 Data Pre-processing

For pre-processing, follow the following series of steps:

1. Put all the python (.py) files in the Custom Modules folder inside your main dir-
ectory, i.e the directory in which the current code file is present. These files are
actually imported as modules in the following notebook as the functions used in
them are used in a lot of files, therefore it makes sense to import them as modules
to increase functionality.

2. Create different folders defined in the constants.py file in the Custom Modules folder
like data, tmp, proc data, predictions, oofs. The csv files created after the pre-
processing file has been run successfully are stored in these directories.

3. Set up the conda environment for colab through following script:

!pip install -q condacolab

import condacolab

condacolab.install ()

!conda install -c conda -forge rdkit

4. Clone the xyz2mol GitHub repository

!git clone https :// github.com/jensengroup/xyz2mol.git

5. Install the modules in the requirement.txt file along with the deepchem and utils
library. The easiest way to do that is to install the files contents using pip as follows.

!pip install -r requirements.txt

!pip install deepchem utils

6. Import the necessary libraries, including the custom modules. Remember the cus-
tom modules in this script are xyz2mol, constants

3

https://github.com/jensengroup/xyz2mol

import gc

import numpy as np

import pandas as pd

from itertools import combinations

from glob import glob

import deepchem as dc

from rdkit.Chem import rdmolops , ChemicalFeatures

from xyz2mol import read_xyz_file , xyz2mol

import utils

import constants as C

2.2.1 Feature Engineering

1. The raw data path is defined in the constants.py file in the Custom modules folder.This
is the path where all the files from the CHAMPS dataset are stored. Store the xyz
files into a python list using the glob function.(refer to figure 4)

Figure 4: Storing xyz files into a python list

2. Write the function to create the RDKit molecule objects. The networkx library is
required if the quick variable is to be set to TRUE.

Figure 5: Creating RDKit molecule objects

3. Now, we create the molecules and their distance matrices from the molecule objects
created in the previous step. This function returns the molecule names, their ids,
molecule features, xyz coordinates, Euclidean distance matrices and graph distance
matrices (refer to figure 6).

4

Figure 6: Creating molecules and distance matrices

4. Add the Euclidean Distance, xyz coordinates to a dataframe df. Apply the mean
transformation on the feature atom index in dist column. (refer to figure 7)

Figure 7: Mapping atom information t the dataframe and applying mean transformation

5. Calculate the cosine and dihedral angle for the atoms using the cross product for-

5

mula. (refer to figure 8)

Figure 8: Angles Calculations for the molecules

6. Now, add the scalar coupling edge (euclidean distance) and molecule level (atomic
radius, electronegativity) features to the dataframe (refer to figure 9)

Figure 9: Adding features to the dataframe

6

7. Now, create the atom and bond level features. The node (atom) level features
include the element type, hybridization, number of linked hydrogen atoms, atomic
number, aromatic, etc. On the other hand, the edge (bond) level features include
bond length, bond type, etc. For the purpose of our study, we engineer some of
these features and encode some of them using the one-hot encoding method (refer
to figure 10 and 11).

Figure 10: Creating bond level features

Figure 11: Creating atom level features

7

8. Now store all the graph distances and Euclidean distances into the dataframe and
export the dataframe to a csv file to be used later in the modelling process. Also
export the atoms and bond level features created in previous steps (7 & 8) to a csv
file. (refer to figures 12, 13)

Figure 12: Storing the distances into a dataframe and exporting the dataframe to a csv
file

Figure 13: Exporting the bond and atom features dataframe to a csv file

9. Read the csv files created in the earlier steps using pandas to make sure all the
features have been stored properly into the datframes. Merge all the features dataset
into a single dataframe and concatenate train and test into a single dataframe all df.
Create the features using the functions defined above by calling them and giving
the appropriate dataframes in the arguments (refer to figure 14).

Figure 14: Creating and storing the features into dataframes

8

10. The last step in the pre-processing is to create a validation subset using K-fold
cross validation technique. We create a function which create the K folds for mo-
lecules using the molecules’ ID. The validation and training ids are then exported
to respective csv files (refer to figure 15).

Figure 15: K-fold cross validation on the data

3 Designing Utility Functions

In this section, we show how to create some utility functions. The first step is to import
the necessary libraries (refer to figure 16).

Figure 16: Importing the required libraries for designing utility functions

1. First create a random seed setter function for pytorch to increase the functionality
of the code. This function also checks if the pytorch package has all the necessary
CUDA drivers available for execution or not (refer to figure 17).

Figure 17: Seed Setter Function

9

2. Now, we define a scatter add function which adds all the elements from the src
dataframe into out dataframe specified by the id of the molecule. The index ’idx’
nly has to match the size of ’src’ in dimension ’dim’ (refer to figure 18)

Figure 18: Defining the scatter add function

3. Now, we design the functions to store the predictions obtained into csv files, which
can used later for evaluating thee results and model (refer to figure 19

Figure 19: Functions for storing the results into a csv file

4. Scale the features between the values 0 and 1. This is done by subtracting mean of
the values of the features from the original values and then dividing by the standard
deviation (refer to figure 20).

10

Figure 20: Function for scaling the features

4 Layers Initialization

This section deals with the designing of the general layout of the layers that will used later
in the next section for designing the proposed Message Passing Molecular Transformer
(MPMT) architecture. The first step as usual is to import the necessary libraries.

import torch.nn as nn

from layernorm import LayerNorm

1. First, define the layernorm() class to initialize the parameters according to the
default initialization of batch normalization layers in pytorch package. We also
define the hidden layer function which appends the layer normalization and dropout
after each one dimensional batch normalization layer (refer to figure 21).

Figure 21: Defining default layer normalization procedure

2. Next, define the fully connected neural net class. This serves as the general purpose
neural network with fully connected layers. It stacks together the batch normaliz-
ation, dropout and hidden layers through the pre-defined Sequential() function in
pytorch library.

11

Figure 22: General class neural network with fully connected layers

5 Model Designing

This section is extremely crucial and at the heart of the implementation of the proposed
MPMT architecture. It discusses the steps involved in the designing of the entire MPMT
architecture from scratch using pytorch. First, the following libraries have to be imported:

import math

import copy

import torch

import torch.nn as nn

import torch.nn.functional as F

from fcnet import FullyConnectedNet , hidden_layer

from scatter import scatter_mean

from layernorm import LayerNorm

1. First we design a clone function for producing the identical layers. Then we define
the sublayerConnection() function which defines a residual connection followed by
a layer normalization procedure. It also applies the residual connection to any
sublayer with the same size (refer to figure 23

12

Figure 23: Desifining clone() and sublayerconnection() functions

2. Now, define the edge network message passing procedure (same as proposed by
Gilmer et al. (2017)). It adds additional cosine angle based attention mechanism
over incoming messages (refer to figures 24 and 25). There is an add message()
function which computes and updates the message for an atom using the following
mechanism.

Mi+ =
∑
j

[attnijAijxj]

Figure 24: Edge Network MP layer

13

Figure 25: Edge Network MP layer (cont.)

3. Now design the first multi-head attention layer which computes the attention through
Euclidean Distances between the nodes (refer to figure 26).

Figure 26: First multi-head attention layer

4. Design the second multi-head attention layers which computes the attention by
utilizing the embedding of the distance matrix of the graph (refer to figure 27).

14

Figure 27: Second multi-head attention layer

5. Next, define the third attention layer which takes the parametrized eucildean dis-
tance matrix of the molecule as input.

Figure 28: Third Attention Layer

6. Define the multi-headed self attention class exactly as in the transformer paper
(Vaswani et al. (2017)) (refer to figure 29).

Figure 29: Defining the multi-head self attention class similar to transformer architecture

15

7. Now, stack the three attention layers and the point-wise feed forward neural network
(refer to figure 30).

Figure 30: Stacking the three attention layers

8. Define the MessagePassingLayer() class which stacks the bond and scalar coupling
pair MP layers together (refer to figure 31)

Figure 31: Message Passing Layer

9. Define the Encoder class which stacks the N attention and one message passing
layers together. The forward() function passes and masks the input through each
encoder block in turn (refer to figure 32).

Figure 32: Encoder class for stacking the MPNN and transformer elements together

16

10. Now define the final feed forward neural network used for calculating the individual
scalar coupling contributions from each of the four terms and the final prediction
of SCC using these four values (refer to figure 33).

Figure 33: Defining the feed-forward NN

11. Join the scalar coupling type specific residual block with the scalar coupling con-
tribution block defined in the previous step (refer to figure 34)

Figure 34: Joining residual block to type specific block

12. Build the final MPMT architecture by stacking all the layers and blocks together
(refer to figure 35)

17

Figure 35: Stacking all the layers to build MPMT’s final architecture

6 Model Training

The model training is achieved through the fastai library. First we import the necessary
fastai utilities and packages necessary through the training (figure 36). The training code
is similar to the training tutorials with pytorch provided on the fastai webpage.

Figure 36: Importing packages for model training through fastai

18

https://docs.fast.ai/

1. Parse the arguments like batch size, no. of epochs, learning rate, etc. through the
argument parser function in pytorch (refer to figure 37).

Figure 37: Parsing the model parameters as arguments

2. Check if the distributed training functionality is available and set the model de-
scription (refer to figure 38).

Figure 38: Checking for the distributed training on GPUs

3. Now read all the csv files that were generated from the pre-processing stage and
store them in appropriate pandas dataframes. Also scale the features using the
SC.FEATS TO SCALE() function in the constants.py file/module (refer to figure
39).

Figure 39: Reading the csv files from pre-processing stage

19

4. Set up the fastai dataset objects and databunch by using the test, train and valid-
ation dataframes from the previous step (refer to figure 40).

Figure 40: Creating fastai dataset objects and databunch

5. Set up the model using the transformer class defined in previous section and the
no. of features defined in the constants.py file (refer to figure 41).

Figure 41: Setting up the MPMT model

6. Define the gradient clipping and the group log MAE callback functions for report
the results during the training. The gradient clipping function is mainly used to
avoid the problem of exploding gradients during training the deep neural networks
(refer to figure 42).

20

Figure 42: Defining callback functions for training

7. Train the model using the callback functions, and using group mean log MAE as
the evaluation metric for each epoch. Obtain the predictions and store them into a
csv file format (refer to figure 43).

Figure 43: Training the model and storing the results in the dataframes

7 Model Evaluation

The model evaluation is done through the log MAE, RMSE and contrib rmse() demos-
ntarted in figure 44 after importing all the necessary packages described below:

21

import numpy as np

import pandas as pd

import torch

import torch.nn.functional as F

import constants as C

Figure 44: Evaluation functions

References

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. and Dahl, G. E. (2017). Neural
message passing for quantum chemistry, International conference on machine learning,
PMLR, pp. 1263–1272.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.
and Polosukhin, I. (2017). Attention is all you need, Advances in neural information
processing systems, pp. 5998–6008.

22

	Initial Environment Setting
	Setting up Google Cloud Platform
	Setting up the Google Colab Environment

	Data Pre-processing and EDA
	Data Preparation
	Initial Setup

	Data Pre-processing
	Feature Engineering

	Designing Utility Functions
	Layers Initialization
	Model Designing
	Model Training
	Model Evaluation

