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A Graph Neural Network for Predicting the Magnetic Interaction

Between Atoms

Jaswinder Singh
x19219997

Abstract

The magnetic interaction between a pair of atoms can be determined by calculating the value
of the quantity known as the scalar coupling constant (SCC). The SCC plays a crucial role in the
analysis of 3D structure of organic matter and its precise calculation can be used in a variety of
tasks like drug discovery, toxicity determination, etc. The quantum mechanical density functional
theory (DFT) provides a theoretical framework for predicting the magnetic interactions (or SCC)
between the atoms. The quantum mechanical computations use the 3D structural information of
the molecule as an input for precise calculation of SCC. However, these computations are extremely
time consuming and computationally expensive. To compute SCC efficiently and accurately, a novel
graph neural network (GNN) is proposed, combining the message passing elements from the Message
Passing Neural Networks (MPNN) model with the multi-head attention layers as in transformer
encoder. The proposed model is named as the Message Passing Molecular Transformer (MPMT).
Different bond level and atom level features like cosine angles and dihedral angles were created
using the RDkit package, to improve the predictions of the model. To demonstrate and validate the
superiority of the proposed model, the CHAMPS dataset consisting of structural information and
coupling constant values of around 10 million different molecules collected by University of Bristol
was used. The results were evaluated on the basis of the log MAE(mean absolute error) values
for each coupling type and the final score for the model was computed by averaging over all the
coupling types. The MPMT model was able to achieve a final score of -2.873 which corresponds to
the mean absolute error of 0.0565 Hz whereas the MPNN was able to achieve an average final score
of -2.19 corresponding to the MAE of 0.111 Hz. Our proposed model was able to outperform the
state-of-the-art results for the CHAMPS dataset (Jian et al. (2020)) which is MAE value of 0.096 Hz.
This study will eventually benefit to various domains; for e.g it will contribute towards efficient and
drug development for different diseases, it can be utilised to improve the current NMR techniques
for molecular property prediction and can also be used in materials science industry for enhancing
cosmetics’ quality. It will also greatly benefit researchers in studying the molecular structure more
efficiently, saving lot of research costs.

1 Introduction

Two atoms interact magnetically when the magnetic fields produced by their subatomic units (protons
and electrons) are influenced by each other. A scalar coupling constant (SCC), usually denoted by
J is a measure of the interaction between two protons. The molecular interactions are a great and
powerful resource for molecular discoveries. The networks describing molecular interactions can be
found today in almost every biological systems. They have enhanced our understanding of different
biological systems and have enabled us to explore previously unmapped interactions between certain
entities like drug-target interactions, protein-protein interactions, gene-disease interactions, etc. The
precise knowledge of molecular interactions can also be used for determining the structure of a chemical
compound which in turn can be used in determining its various properties like solubility, conductivity,
electrostatic potential, binding affinity, etc. Structure of a compound also greatly influences it behaviour
under different environments. The Nuclear Magnetic Resonance (NMR) is a popular technique widely
used for obtaining the physical and chemical information about the structure of molecules. Scalar coupling
constant (SCC) is one of the two important aspects in NMR spectroscopy besides chemical shift.

The current methods for predicting the magnetic interactions (or SCC) between atoms use quantum
mechanical computations which use only the 3 dimensional structural information of the molecule as
an input. A quantum mechanical framework called the Density Functional Theory (DFT) is used for
carrying out these computations (Gryff-Keller and Szczeciński (2016), Komorovsky et al. (2020)). But
these methods are extremely computationally expensive and require weeks for performing predictions
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for a single molecule. The search for a robust, faster and a reliable algorithm/model for predicting
these interactions is still an active area for research. The graph networks have proven to be a promising
candidate for such models. Over the last few years, researchers have come up with various graph network
based frameworks and accomplished state-of-the-art results for different molecular property prediction
tasks. But there is only a handful of literature involving prediction of coupling constants between the
atoms. This research proposes a novel graph based network which is a combination of two different
architectures - a transformer encoder and a message passing neural network.

The aim of this research is to investigate to what extent a novel geometric deep learning approach
based on graph neural networks (GNN) can be used to predict the magnetic interaction between the atoms
in a molecule ? To address the research question, the following sets of specific research objectives were
derived.

• To design:

– A Message Passing Neural Network (MPNN) based on the work of Gilmer et al. (2017) to
predict the coupling constant between atoms.

– A custom graph neural network Message Passing Molecular Transformer consisting of ele-
ments from the MPNN (Gilmer et al. (2017)) and the transformer encoder (Vaswani et al.
(2017)) for the precise prediction of magnetic interaction (values of SCC) between atomic
pairs.

• To demonstrate the implementation of the above two architectures on the CHAMPS dataset avail-
able on Kaggle.

• To evaluate the performance of the above models on the basis of log mean absolute error (MAE)
and root mean squared error (RMSE) averaged over all coupling types present in the CHAMPS
dataset.

The major contribution of this research is a novel graph based network called Message Passing
Molecular Transformer (MPMT) for predicting the magnetic between the different atomic pairs. It uses
the multi-head attention layers as in transformer encoder (Vaswani et al. (2017)) as the building blocks
and employs the message passing elements from the Message Passing Neural Network (MPNN) model
(Gilmer et al. (2017)). The training time and results for the proposed model will be compared against the
other state-of-the-art machine learning methods that have been previously applied on similar datasets for
molecular property prediction tasks. This study will aid the researchers in performing computationally
expensive quantum computations for molecules efficiently and faster. This research will subsequently
contribute towards development of new drugs to fight diseases more effectively, study of various protein
based biological systems, carrying out different cellular tasks, developing new cosmetics and will save
lots of research costs.

The remainder of this paper is organised as follows:

• Section 2: This section contains a comprehensive overview of the existing literature in the domain
of molecular property prediction and graph neural networks. The section has been further divided
into several relevant subsections based on the specified criterion.

• Section 3: This section explains the overall methodology followed to obtain the results in detail. It
contains several subsections corresponding to each step in the overall methodology, that explains
and justifies the procedure followed for that particular step.

• Section 4: This section lays out the underlying architecture for the implementation of the proposed
novel graph network. It also contains the description of the proposed Message Passing Molecular
Transformer (MPMT) model.

• Section 5: This section discusses the implementation details of the proposed model. It highlights
various tools and softwares used in the preparation of the model, and the final stages of the model
development i.e the outputs produced, transformed data and the questionnaires administered.

• Section 6: This section discusses the details of different experiments performed and their results. It
is also divided into separate subsections for each experiment. It also contains a discussion section
which summarizes the results of each experiment.

• Section 7: This section discusses the concluding remarks and the prospects of future work in the
domain.
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2 Related Works

Before moving onto the methodology for our research, it is important to critically review and analyze the
existing literature in the domain. This helps us analyze the limitations and shortcomings of the previous
works and gain insights into how they can be improved upon.

The prediction of molecular properties (like chemical shift and SCC) is an essential step in tasks like
development of new drugs, studying the structure of unknown compounds, etc. Strength of magnetic
interaction between the atoms is one such property measured by determining the corresponding scalar
coupling constant (SCC) for the atomic pair. There are different types of SCC based on the types of
atoms involved. There have been several studies over the past few years using a variety of machine
learning algorithms like XGBoost, LightGBM, etc. for molecular property prediction tasks (like drug-
target affinity prediction, toxicity determination, etc.). This section summarizes the key studies in the
domain of molecular property prediction (including prediction of scalar coupling constant). It has been
divided into the following subsections:

• Brief Review of Graph Based Networks: This subsection gives a brief overview of the development of
various graph based networks like Graph Convolutional Network (GCN), Graph Attention Network
(GAT), etc.

• Molecular Property Prediction: This section contains the critical review of the key literature that
is the backbone of this study along with the other essential studies in the domain of molecular
property prediction. It has been further divided into following subsections:

– Using Machine Learning Frameworks: Summarizes the literature which employ machine learn-
ing algorithms for molecular property prediction tasks.

– Using Graph Based Networks: Summarizes the literature which use graph based networks for
predicting the molecular properties.

2.1 Brief Review of Graph Based Networks

In layman’s terms, a graph is a network that helps define and visualize the relationships between various
components. In more formal terms, the components are known as the vertex/nodes and the relationships
between them are known as the edges. Graph theory is all about the study of the properties of these
types of networks and how they can be used to model and solve a whole host of interesting problems.
Recently, the studies of using machine learning algorithms to analyze graphs have been getting more
attention because of the ability of graphs to model and express complex real life structures like social
networks (Hamilton et al. (2017)), physical systems (Battaglia et al. (2016)), protein based biological
networks (Fout (2017)) and many more. The increase in the use of graph based networks in a wide range
of applications is because of the tremendous expressive power of graphs resulting in high performance
for a variety of machine learning tasks.

The first use of graph neural networks (GNN) can be traced back to the year 2005. The major
motivation for GNNs lies in the convolutional Neural Networks (CNNs). The local connections and
the shared weights are the most important keys behind the CNNs ability to extract localized features
and compose them together to construct extremely expressive representations. These properties are
inherited by the graphs quite well and has been the primary reason for their computational efficiency
as compared to the other machine learning algorithms. Zhang, Cui and Zhu (2020) provide the most
comprehensive and up-to-date review of the graph networks. They divide graph neural networks into
5 groups based on their architecture and training strategy: Graph Convolutional Networks (GCNs),
Graph Attention Networks (GATs), Graph auto-encoders, graph generative networks and graph spatial
temporal networks. They also discuss the various potential applications of graph networks and potential
future research work that could be performed.

Hechtlinger et al. (2017) introduced the graph convolutional networks (GCNs) for the first time in
the year 2017. GCN was introduced as a generalization of the CNNs having the capability to operate on
graph structured data in addition to the low-dimensional grid data such as images. They demonstrated
their proposed architecture on the MNIST and the Merck Molecular activity dataset. They extend their
discussion by concluding that the convolution method can be applied even to the usual classification
and regression problems by learning the underlying graph structure through correlation matrix or other
methods.

The major limitation of the GCNs is that they are only designed to learn on the fixed and homogeneous
types of graphs. This limitation was overcome by the introduction of Graph Transformer Network

3



(GTNs) in the year 2019 by Yun et al. (2019). The GTNs have the ability to produce new graph
structures and identify any useful connections between the unconnected nodes in the original graph.
Their study shows that GTNs are able to learn on new graph structure based on the given data and task
without any existing knowldege about the domain. They demonstrated the performance of their proposed
model on three benchmarked node classification datasets and were able to achieve the state-of-the-art
results on all of them.

2.2 Molecular Property Prediction

In the previous section, we have seen that the graph neural networks emerged as a way to efficiently deal
with the graph structured data but they have successfully paved their way across many domains over
the years. The reason for the success of the graph based networks across diverse domains is the ability
to learn on complex structured data and their computational efficiency due to their sharing weights
property. We have also seen that some of these networks perform extremely well on molecular graphs
(Coley et al. (2017), Kearnes et al. (2016)) resulting in their wide usage in the domain of molecular
property prediction. This section critically review some of the key literature in the application of graph
based networks in molecular property prediction. It also highlights the works which inspired our current
research. Section 2.2.1 summarizes various machine learning frameworks that have been used for various
molecular property prediction tasks. Section 2.2.2 is at the heart of this study and discusses the key
literature in which graph networks have been used in the prediction of molecular property. It also
highlights the studies which inspired the underlying architecture of proposed MPMT (Message Passing
Molecular Transformer) model.

2.2.1 Using Machine Learning Frameworks

The most recent work on the CHAMPS dataset(which is used by our research) for predicting the coupling
constant was done by Zhang, Deng and Jia (2020). They used two tree based gradient boosting algorithms
namely XGBoost and LightGBM for predicting the SCC (scalar coupling constant). They used the 3D
coordinates of the atoms in the molecule to find the objective function able to map relationship between
the features and the target variable i.e SCC. Their best result on the 90:10 train-test split data has
the MAE of 4.34, an R2 value of 0.93 and RMSE value of 8.65. They were even able to achieve an
R2 value of 1 for some of the molecules. From plotting the learning curve they were able to conclude
that although, the error for training and test set continuously reduced and attained a specific value at
the end, this value was less for LightGBM which leads to the conclusion that LightGBM is the better
performing algorithm. The major limitation of their work is that the predictions they obtained deviate
from the DFT calculations.

Another research on the same dataset was done by Shibata and Kaneko (2021). They also used the
LightGBM algorithm for the task. Their study heavily depends on the feature engineering process. They
propose several descriptors like hybridization, aromaticity, Euclidean Distance, etc to build regression
models of the form y = f(X) between the descriptors X and the NMR results y, from which the y-values
can be determined from the X values of samples whose y-values are unknown. They obtained the best
R2 and RMSE values of 0.986 and 1.25 respectively for the 1JCH coupling type. They were able to
outperform the traditional method in which the descriptors are RDkit descriptors for all the coupling
types. But their algorithm also suffered from the same limitation as Zhang, Cui and Zhu (2020), i.e the
less predictive accuracy as compared to DFT calculations.

The lightGBM algorithm has also been able to perform well in other molecular property prediction
tasks like drug affinity prediction. In an interesting research done by Pu et al. (2019), 4 different
algorithms namely LightGBM, XGBoost, CNN and Multi Layer Perceptron (MLP) were compared in a
drug affinity prediction task on the dataset containing around 160k samples. They used the RMSE and
R2 as the evaluation metrices. They found out that the gradient boosting algorithms namely XGBoost
and LightGBM were able to outperform the CNN and MLP

2.2.2 Using Graph Based Networks

Graph based networks have emerged as a computational efficient method when it comes to predicting
various molecular properties. The conventional machine learning algorithms, boosting algorithms like
LightGBM in particular, have shown promising results in predicting the molecular properties like the
scalar coupling constant which means they can be also be used for other related tasks as well. Although
being significantly faster, the results produced by the algorithms deviate significantly from the quantum
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mechanical methods like DFT, which are considered state-of-the-art. This section highlights some of
the important literature where graph based networks have been used for molecular property prediction
tasks ranging from coupling constant prediction to drug binding affinity prediction to protein-protein
interaction determination.

The most recent work using graphs for predicting the magnetic interaction was done by Jian et al.
(2020). The authors propose a novel architecture called graph embedding local self attention encoder
(GELAE). They use different features like bond angle, bond length and dihederal angle to represent
the coupling system in a structure invariant way and then use the self attention module along with the
adjacency matrix to effectively extract various features of the system. They used the classification based
loss function and demonstrated their architecture on CHAMPS dataset. They were able to achieve an
MAE value of 0.0963 Hz.

Xiong et al. (2019) proposed a novel GNN architecture called Attentive FP which uses the graph
attention mechanism to learn from drug discovery dataset. Their architecture consists of a fully connected
input layer, two different graph attention modules - one containing 3 layers for atom embedding and the
other containing 2 layers for molecule embedding followed by a fully connected task later. They test their
model on the MoleculeNet and the QM9 datasets and were able to achieve state-of-the-art results for
various tasks. Their model achieved the lowest RMSE on all benchmarked physical chemistry datasets.

The major motivation for the current study comes from the work of Gilmer et al. (2017) proposing a
novel framework called Message Passing Neural Networks (MPNN). Through MPNN, they proposed an
efficient method through which the model can learn the message passing algorithm and an aggregation
method for computing the function of the whole input graph. They demonstrated the efficiency of their
model on various different molecular property benchmarked datasets including QM9. The authors were
able to show that MPNNs with appropriate update, message and output functions can easily outperform
baseline models eithout having the need for performing any feature engineering. They also described
the different variants of the MPNN model, each with a slightly different method of learning and input
function. They also throw some light on designing the MPNNs for larger graph networks.

The other half of the MPMT architecture proposed in this research utilises the multi-head attention
layers, same as described by Vaswani et al. (2017) in their ground breaking research. The idea of building
a blenedd model from MPNN and transformer was inspired from the study conducted by Withnall et al.
(2020) in which they introduced attention and edge memory elements to the existing MPNN architecture.
They proposed three different MPNN architectures variations - SELU-MPNN, using the SELU activation
fucntion with the standard MPNN. Attention Message Passing Neural Network (AMPNN), using the
attention mechanism for computing the aggregate function and EMNN (Edge Memory Neural Network),
which uses the aggregate information from the neighbouring atoms to compute the message for central
atom. They demonstrate the performance of their models as part of data pre-processing, in addition to
using the benchmarked MolNet and QM8 datasets for various standard classification tasks.

Jørgensen et al. (2018) following the works of Gilmer et al. (2017) proposed another variation of
MPNN with an edge update network which allows the information exchange between the atoms depend
on the state of the receiving atom. They tested their model on three benchmarked datasets namely
QM9, the materials project and OQMD. They trained their model with Adam optimizer and an initial
learning rate of 5 × 10−4 and were able to achieve the lowest MAE for all the three datasets (10.5 for
QM9, 22.7 for Mat. Proj. and 14.9 for OQMD).

2.3 Conclusion

After a critical review of the aforementioned studies, we can conclude that among the existing tech-
niques for SCC prediction, the graph based neural networks like Graph Neural Networks (GNNs), Graph
Attention Networks (GATs) and different variations of the Message Passing neural Networks (MPNNs)
were found to outperform the traditional machine learning algorithms like LightGBM and XGBoost,
by a significant amount. This can be affirmed by comparing the log MAE values of different models.
Particularly, for the CHAMPS dataset, the state-of-the-art MAE value of 0.0963 was obtained by Jian
et al. (2020) using a novel GELAE (Graph Embedding Local Self-Attention Encoder) framework. Other
machine learning approaches like XGBoost, Light GBM were adopted by Zhang, Deng and Jia (2020)
who were able to achieve an overall MAE of 4.34, averaged over all the coupling types. Another study
using LightGBM was conducted by Shibata and Kaneko (2021) in which various new features were engin-
eered to determine the SCC. They were able to RMSE value of 1.25, outperforming the previous study
done by Zhang, Deng and Jia (2020). Although, all of the above models perform well for predicting
SCC, the power and efficiency of graph networks remain unexplored. The major limitation of all of
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the machine learning approaches is the significant difference from the values computed by the quantum
mechanical/experimental methods. The lack of useful features in the models to produce significantly
accurate results is another shortcoming of the traditional machine learning approaches. The state-of-
the-art GELAE framework is a graph based architecture and it explores to some extent, how we can
utilise the expressive power of graphs is such tasks, while also giving some useful directions for future
work. Therefore, in this study, we explore a graph neural network combining the elements of a MPNN
and a transformer for predicting the SCC values between atoms. This choice of architecture has been
inspired after carefully analyzing the existing methods and their shortcomings and advantages.

3 Methodology

The methodology is one of the most essential part of a research. It is important to follow the correct
methodology for the research problem chosen as it essential for the successful implementation of the
proposed ideas leading to successful completion of the research objectives. For this research, the meth-
odology can be divided into the steps described below (refer to figure 1). The following steps can be
followed in order to replicate the results obtained by our proposed model.

Figure 1: Research Methodology for the Study

3.1 Data Acquisition

Data acquisition is the first and most important step before commencing any research. For our research,
the data chosen to demonstrate the proposed MPMT (Message Passing Molecular Transformer) model is
the CHAMPS dataset (CHAMPS Dataset-Kaggle). The CHAMPS dataset has been collected by a team
of four institutions - Bristol University, Cardiff University, Imperial College and Leeds University under
the sponsored CHAMPS (Chemistry and Mathematics in Phase Space) program. It is publicly available
on kaggle for research purposes. The CHAMPS dataset is actually derived from the QM9 dataset
(Ruddigkeit et al. (2012), Ramakrishnan et al. (2014)) (QM9 Dataset) by making some modifications.
This dataset contains the .xyz format files which contains the structural information (x,y,z coordinates)
about the molecules (recognized by their unique numeric ID). The coordinates are also provided in a
csv file along with the molecule names and index of the atoms involved. There are 8 different coupling
types in the dataset based on the type and number of atoms involved in the interaction. These are
1JHC , 1JHN , 2JHH , 2JHC , 2JHN , 3JHH , 3JHC , 3JHH . The distribution of these 8 coupling types in the
training and test data is shown in the figure 2. The target variable i.e scalar coupling constant for atoms
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is present in the train.csv file. The description of both files is given in figures 3a and 3b. Additionally,
there are 5 more csv files containing the information about different properties of the molecules. These
files are: dipole moments.csv, magnetic shielding tensors.csv, mulliken charges.csv, potential energy.csv.

Figure 2: Distribution of different coupling types in the train and test files

(a) Description of train.csv

(b) Description of structures.csv

Figure 3: Data description for CHAMPS dataset

3.2 Data Pre-processing

The data pre-processing was performed in two different stages. The following subsections describe each
stage in detail.

• Converting the Structural Information into Graphs: This subsection describes how the structural
information of the molecules (like x, y, z coordinates) was converted into graph structures for
visualizing the relationship between the different atoms sharing a common coupling type.

• Creating RDKit Molecule Objects: This subsection describes how different molecule objects were
created using the RDKit library in python and how these will be used in further pre-processing
steps.

3.2.1 Converting the Structural Information into Graphs

The structural information of the molecules, i.e the x, y and z coordinates were first converted into graph
objects and plotted to visualize the relationships between the atoms and the molecules. These are shown
in figure 4.
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Figure 4: Graph representation of the data

3.2.2 Creating RDKit Molecule Objects

After the relationships between the atoms was visualized, the coordinates of the atoms were gathered
and converted into molecule objects. The molecule level features were stored in the adjacency matrix.
A GitHub repository created by Jan H. Jensen named xyz2mol was utilised to convert the xyz file into
RDKit molecule objects. The function get molecules() in the code file was designed to accomplish this.
This function returned the following:

• The molecules IDs: A unique set of string identifying each molecule in the dataset.

• A set of molecule level features: The set of molecular features are returned as a pandas series.

• An array of the xyz coordinates: A numpy array of the x, y and z coordinates are returned.

• The graph distance matrix: The graph distance matrix contains the distances of every atom(nodes)
from every other atom in the coupling type.

3.3 Feature Engineering and Transformation

The feature engineering is a major and most essential part of our research methodology since the per-
formance of our model depends largely on the number and the importance of the features engineered
from the existing data.

3.3.1 Creating Features at Scalar Coupling Level

The following series of steps were followed for creating the features at the scalar coupling level:

• First the coordinates of the atoms were merged into a pandas dataframe.

• Then the euclidean distances for all the atoms were calculated and appended into the above data-
frame. Then we calculate the sum of inverse distances of SCC grouped at the atomic level.

• After that, the number of atoms (total and per coupling type) were added into the dataframe
created above.

• The dihedral and the cosine angles using the dot product formula were then calculated and added
to the dataframe along with the different edge and molecule level features.

• The scalar coupling contributions were then added to the train dataframe and then normalized
by subtracting the mean from each value in the target column and then dividing the result by
standard deviation of the column.

8



3.3.2 Creating Atom and Bond Level Features

Since there are two types of entities in a graph data structure i.e nodes and edges, there are two types
of features in the data the graph is operating on, corresponding to each level - node and edge. The node
(atom) level features include the element type, hybridization, number of linked hydrogen atoms, atomic
number, aromatic, etc. On the other hand, the edge (bond) level features include bond length, bond
type, etc. For the purpose of our study, we engineer some of these features and encode some of them
using the one-hot encoding method. The final engineered atom and bond level features for our model is
given in table 1. After this step, all the features engineered were stored into pandas data frames along
with the distance matrices. The cosine angles for all the bonds were computed and were stored into data
frames iteratively along with the atom index through a number of for loops.

Node (Atom) Level Features Edge (Bond) Level Features
1. Atom Type: H, C, N, O, F (one-hot) 1. Bond Type(categorical): 1: single, 2:

double, 3: triple, 4: aromatic (one-hot)
2. Degree: 1, 2, 3, 4, 5 (one-hot) 2. Is Conjugated: bool 0, 1
3. Hybridization: SP, SP2, SP3 (one-hot) 3. Is in Ring: bool 0, 1
4. Is Aromatic (bool): 0, 1 4. Euclidean Distance: float
5. Formal Charge: int 5. Normalized Euclidean Distance: float
6. Atomic Number: float 6. Average Bond Length: float
7. Average Weight of Neighboring Atoms: float
8. Donor: bool 0, 1
9. Acceptor: bool 0, 1

Table 1: Node and Edge Level Features for Message Passing Molecular Transformer (MPMT)

3.4 Modelling

After analyzing the data, studying relationships between the atoms using graphs and engineering different
features, it’s now time to put all these together into our proposed model. The proposed model MPMT
(Message Passing Molecular Transformer is a blend of two different architectures combined into one. It
inherits the message passing elements from the Message Passing Neural Network (MPNN) first proposed
by Gilmer et al. (2017). Gilmer used MPNN on the QM9 dataset, from which the CHAMPS dataset
has been constructed. Although, the paper predicts bulk properties of the molecules and we are only
interested in the edges,modifications can be made in the model so as to fit the requirement. The other
half of our model is inspired by the revolutionary work of Vaswani et al. (2017) proposing the transformer
architecture. The transformer architecture serves as the basic building block for our model. The only
difference is that the encoder block in our model is made of 2 message passing layers which is followed
by 3 multi-head attention layers, each layer followed by the layer normalization and finally followed by
a feed-forward network (same as in transformer architecture).

3.5 Evaluation

After the model has been implemented, it is important to evaluate the results/predictions obtained in
order to establish the validity of the proposed model. For our proposed MPMT model, the following
evaluation metrices will be used:

• Log Mean Absolute Error (LMAE): The log MAE is determined by calculating the logarithm
of MAEs for each of the coupling types and then taking the average over all the types. The formula
for the same is given as below. Here T is the total number of coupling types which in our dataset
is seven. nt is no. of observations of type t and yi and ŷi are the actual and the predicted values
of the target variable i.e SCC.

LMAE =
1

T

T∑
t=1

log

(
1

nt

nt∑
i=1

|yi − ŷi|

)
(1)

• Root Mean Squared Error (RMSE) Loss: It is the square root of the mean of squared errors
for each coupling type. There is a contribs rmse loss() function in the code which facilitates the
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computation of this evaluation metric. It returns the sum of RMSEs for each scalar coupling
contribution and SCC in a batch. It takes 2 different tensors of dimensions 2 and 3 which contain
the predictions from the model and the true values of the coupling constants.

4 Design Specification

The design flow for the research is discussed in detail in the following subsequent subsections:

4.1 Multi-Head Attention and Message Passing Layers

As described in the section 3, our proposed model i.e Message Passing Molecular transformer (MPMT)
is a blend of two completely different types of architectures - a Message Passing Neural Network and
a Transformer. The MPMT contains 3 multi-head attention layers, with layer normalization after each
layer, same as in the transformer encoder architecture and 2 message passing layers. Each layer in
the multi head attention block computes attention using the features that we engineered in 5.3. The
graphical representation of all the different layers and the overall architecture of MPMT is shown in the
figure 6. The three attention layers are described below:

• Layer 1 - Gaussian attention layer : Uses Euclidean distance between the atoms to compute atten-
tion

• Layer 2 - Graph distance attention layers: Uses the embedding of the graph distance matrix (in
other words, graph distances) to compute attention.

• Layer 3 - Scaled Dot Product Attention: This the same input layer as in the transformer encoder.
According to Vaswani et al. (2017) It uses the dot product of the query with all the keys and
divided each product by sqrtdk followed by a softmax function for obtaining the weights on the
values. Here

√
dk is the dimension of keys and queries.

The two message passing layers are described below. The entire message passing algorithm is described
in figure 5.

• Bond Message Passing Layer : Uses the bond features and cosine angles that were described in the
previous subsection to compute the message for the next edge.

• Scalar Coupling Message Passing Layer : Uses the scalar coupling level features to compute the
message for the next node.

4.2 MPMT Architecture

The major changes introduced in the existing MPNN architecture that allowed the successful imple-
mentation of MPMT model are summarized below. The final model architecture is shown in the figure
6.

• Introduction of separate MP functions for the atomic pairs.

• Engineering various node, edge and molecule level features. Specifically, dihedral angles for coupling
type 3J and cosine angles for type 2J).

• Addition of attention mechanism on the incoming message functions on the basis of cosine angles.

• Replacing the set2set() function with an attention layer based on the Euclidean distance between
the atoms.

• Before making the final predictions, the four coupling contribution terms (fc, sd, pso and dso) were
computed separately first. Then all of them were added to the residual term for predicting the
final SCC. These predictions for these contributions were added to the loss function.

(Note: The SCC in the train.csv file is sum of four terms. These are Fermi-Contact (fc), Spin-dipolar
(sd), Para-magnetic spin-orbit (pso) and Diamagnetic spin-orbit (dso). These four contribution terms
can be found in the scalar coupling contributions.csv file mentioned in the data description in section
3.1.)
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(a) Node and Edge features in a atom (b) Messages are computed from node features,
edge features and node state

(c) Node states are computed from all incoming
messages

(d) Predictions are computed from node states

Figure 5: Visual representation of Message Passing Algorithm

Figure 6: Representation of MPMT architecture
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5 Implementation

5.1 Softwares and Technologies Used

The following specifications for the softwares/libraries were used to produce the outputs and results.

• Cloud Platform for Model Training: GCP (Google Cloud Platform)

• Programming Language: Python

• Database management: Google Drive

• IDE: Google Colab, Jupyter Lab, VS Code

• Python Libraries/Modules:

– Pre-Processing : Numpy, Pandas

– Feature Engineering : RDKit, DeepChem, xyz2mol (a custom GitHub repository made by Jan
H. Jensen and made publicly available. It is based on the work of Kim and Kim (2015))

– Modelling and Evaluation: Sklearn, PyTorch, Fastai (for speeding up the training process),
Fcnet, Layernorm

5.2 Data Preparation on Google Cloud Platform (GCP)

The preparation of the data was an important aspect of this research. Before starting any pre-processing,
the data was uploaded to google drive. Then the Google Cloud Platform was set up by creating a VM
instance as described in figure 7. The specifications selected for the instance are specified below. The
other instance properties like SSH keys, security, etc. were chosen for their default values.

• OS: Ubuntu 18.04LTS

• CPU : No. of cores: 16, Memory: 64GB

• GPU : 2 NVIDIA Tesla V100

(a) CPU specifications (b) GPU specifications

Figure 7: Configurations for GPU and CPU for the virutal instance on GCP

5.3 Feature Engineering

The feature engineering was the major part of the implementation of our proposed model. The more
features we can engineer, the better will be predictions. This is because, the scalar coupling is an inherent
property of the protons (which are present inside the nucleus of he atom) and despite the huge success
of the quantum mechanics in computing the scalar couplings over the years, we still do not completely
understand what specific properties of the element really affect the magnetic interaction between them.
The different types of features engineered are described below:
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• Coupling Level Features: These features are basically those features which can directly influence
the magnetic interaction or in other words the value of scalar coupling constant between the atoms.
These features include the Euclidean distances between the atoms, inverse distances of SCC grouped
at the atomic level, harmonic mean of inverse distances, dihedral and cosine angles and the scalar
coupling edge and molecule level features.

– First the coordinates of the atoms were merged into a pandas dataframe. Then the euc-
lidean distances for all the atoms were calculated and appended into the dataframe. Then we
calculate the sum of inverse distances of SCC grouped at the atomic level.

– We then calculate the dihedral and the cosine angles using the dot product formula and add
these features into the dataframe.

– We then add the edge and molecule level features to the dataframe. These features were
returned by the get molecules() function. The scalar coupling contributions were then added
to the train dataframe and then normalized by subtracting the mean from each value in the
target column and then dividing the result by standard deviation of the column.

• Node and Edge Level Features: Node and edge level features are the features corresponding
specifically to the atoms and bonds. In other words, these features only affect the particular
atom or bond they are involved with. Node or atom level features include atomic type, degree,
hybridization, charge, average weight of neighbouring atom, or whether the atom is a donor or
an acceptor. Edge or bond level features include bond type, bond length, Euclidean distance
(normalized), whether the atom is part of ring structure, etc.

5.4 Gradient Clipping

For the training of the final MPMT model, the gradient clipping technique was adopted in order to
prevent the overshooting gradients. Under this method, we changed the differential of the error before
the start of back propagation through the network and then using it for updating the weights.

5.5 Model Training

The training for the final model was performed using the fastai library. The use of this particular method
was adopted because the size of the model was significantly large and the fastai library facilitates the
faster training of models with just a few lines code. The model training was performed on the Google
Cloud Platform (GCP). The final MPMT model has been trained for 100 epochs using the one cycle
learning rate method. The model had the maximum learning rate of 5× 10−4 and a decay rate of 10−2.
The final training was done using the Google Cloud Platform using the distributed training method on
2 NVIDIA Tesla V100 GPUs. Total training time was roughly around 14 hours for the final model.

6 Evaluation

The following experiments were performed and their results were evaluated based on the evaluation
metrices described in section 3.5. The results of all the experiments have been discussed in detail below.

6.1 Experiment 1

The aim of this experiment is to build a message passing neural network (MPNN) which can predict the
magnetic interactions between the atoms (i.e the values of scalar coupling constant).

6.1.1 Modelling

This experiment is based on and is inspired by the work done by Withnall et al. (2020) for predicting
molecular property by using edge message passing network. The different layers in the model are as
follows:

• Message Passer

• Aggregator

• Node Update Layer
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• Edge Update Layer

• Output Layer (Edge Regressor)

• Message Passing Layer

6.1.2 Results

The model was able to achieve the log MAE value of -2.19 which translates to an error in the scalar
coupling value of about 0.11 Hz. The 4 best predictions of the coupling types is shown in the figure 9.
The loss curve is shown in the figure 8 and the plots of predicted vs the actual target values is shown
in the figure 9. In practice, it means that MPNN could be used as a viable alternative to the different
machine learning approaches that we discussed for predicting the various molecular properties. Various
different variations of the MPNN architecture, can also be employed, depending upon the prediction task
to be performed.

Figure 8: Loss curve for training and test data

(a) 1 JHC (b) 1 JHN

Figure 9: Predicted vs Target Values for Coupling Constant Predictions for MPNN model

6.2 Experiment 2

The aim of this experiment is to build the proposed Message Passing Molecular Transformer network for
the predicting the values of scalar coupling constants between the atoms.

6.2.1 Modelling

The model consists of the 3 multi-head attention layers and two message passing layers. In addition, it
uses layer normalization after each sub layer. These 5 layers are followed by 3 feed forward networks.
The final feed forward network computes the coupling contributions from all the four terms separately
and stores them in the loss function. These four terms and the residual is used for predicting the SCC
for the atoms in the train.csv file.
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6.2.2 Results

The final MPMT model with a learning rate of 5×10−4 and the weight decay of 10−2 was able to achieve
the log MAE value of -2.873 on a 8-fold MPNN architecture. The loss curve for the model is shown in the
figure 10. The plot for the predicted vs target values for the two coupling types with best log MAE values
is shown in the figure 11. In practice, it means that our proposed message passing molecular transformer
(MPMT) model has outperformed the state-of-the-art work on the CHAMPS dataset (Jian et al. (2020))
which reported MAE of 0.096 Hz, achieving an overall MAE of 0.056 Hz. This means that our study can
be used to set a new standard in molecular property prediction domain for the benchmarked CHAMPS
dataset.

Figure 10: Loss Curve for the MPMT model

(a) 2 JHC (b) 2 JHH

Figure 11: Predictions for the MPMT model for 2JHC and 3JHN coupling types

6.3 Discussion

This study shows that the Message Passing Molecular Transformer model was able to outperform the
state-of-the-art results obtained by Jian et al. (2020) for the CHAMPS dataset. It was able to achieve an
overall LMAE score of -2.873 which corresponds to the mean absolute error value of 0.056 Hz compared
to the MAE value of 0.096 Hz reported by Jian et al. (2020). For the MPNN model, we were able to
achieve an overall LMAE of -2.19 corresponding to absolute error of 0.111 Hz. Through the plot shown in
figures 8, we can see that the loss decreases smoothly with the increase in the learning rate which can be
attributed to the choice for our weight decay parameter. From the predicted vs target variable plot shown
in figure 11, it can be seen that there are few values for the 2 JHC coupling type having large RMSE.
This may be because of the fact that we have created a single model for all the coupling types. Creating
different small graph networks for each coupling type could resolve this issue. Our proposed architecture
was also able to outperform the machine learning based gradient boosting algorithm frameworks employed
by Shibata and Kaneko (2021) and Zhang, Deng and Jia (2020) which reported an overall MAE of 1.23
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Hz and 4.34 Hz respectively, for the prediction of scalar coupling constant. This means that our research
can set a new standard for the state-of-the-art for the benchmarked CHAMPS dataset.

This study can contribute to the field of the molecular property prediction by significantly reducing
the training times for SCC predictions as compared to the quantum computations. Our research has the
potential to consequentially contribute towards the development of new drugs by significantly reducing
the research costs. It can also aid in studying the protein structures in different organisms and also
improving the current NMR techniques by enhancing our understanding of the molecular structure.
most importantly adding to our knowledge of different physical and biological systems in nature.

7 Conclusion and Future Work

In this study, our aim was to design and investigate a graph neural network for predicting the magnetic
interaction between the atoms in a molecule. We designed a Message Passing Neural Network (MPNN)
and a novel Message Passing Molecular Transformer (MPMT) for determining the coupling constants for
atoms in the CHAMPS dataset. A number of node, edge and molecule level features were engineered.
Each coupling type in the dataset was studied individually first through a series of exploratory analysis
using graph structures. After a thorough critical review of the current state-of-the-art methods, a novel
Message Passing Molecular Transformer (MPMT) architecture was proposed, designed and implemented
on the benchmarked CHAMPS dataset (derived from the QM9 dataset). The proposed architecture was
evaluated on the basis of log MAE score averaged over the 8 coupling types. It was able to achieve
an overall log MAE of -2.873 which corresponds to a mean absolute error of about 0.056 Hz. The
state-of-the-art result for the CHAMPS dataset is 0.096 Hz which was produced by Jian et al. (2020).

There is plenty of room for the future research purposes in the domain. Although, our proposed
model produced very good predictions, it was pretty big to be trained on a single GPU. Therefore, we
utilized the distributed training feature in pytorch and trained the model on two Tesla V100 GPUs
on the google cloud platform (GCP). A smaller model could be designed, without having the need to
engineer features, using just the message passing network (as described by Withnall et al. (2020)) with a
few modifications, without loosing the efficiency of the model. Another direction for the future research
where some progress can be made is the feature engineering part of the methodology. If we can rank the
engineered features according to their importance, better prediction models can be constructed using
those descriptors. This issue was also highlighted by Shibata and Kaneko (2021) in their study. We have
built a single neural network for all the coupling types, that’s why MAE values for some coupling types
is better than the others. This limitation could be improved by building different graph neural networks
for each of the coupling types based on their distribution and graph structure.

If deployed on a larger scale with enough computing resources, our proposed architecture could prove
more valuable to the researchers and scientists. With some modifications, it could even be used as a
black box by scientists for predicting not just the scalar coupling constant, but many other molecular
properties like drug affinity, toxicity, etc. as well.
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Withnall, M., Lindelöf, E., Engkvist, O. and Chen, H. (2020). Building attention and edge message
passing neural networks for bioactivity and physical–chemical property prediction, Journal of chemin-
formatics 12(1): 1–18.

Xiong, Z., Wang, D., Liu, X., Zhong, F., Wan, X., Li, X., Li, Z., Luo, X., Chen, K., Jiang, H. et al.
(2019). Pushing the boundaries of molecular representation for drug discovery with the graph attention
mechanism, Journal of medicinal chemistry 63(16): 8749–8760.

Yun, S., Jeong, M., Kim, R., Kang, J. and Kim, H. J. (2019). Graph transformer networks, Advances in
Neural Information Processing Systems 32: 11983–11993.

Zhang, X.-x., Deng, T. and Jia, G.-z. (2020). Nuclear spin-spin coupling constants prediction based on
xgboost and lightgbm algorithms, Molecular Physics 118(14): e1696478.

Zhang, Z., Cui, P. and Zhu, W. (2020). Deep learning on graphs: A survey, IEEE Transactions on
Knowledge and Data Engineering .

17


	Introduction
	Related Works
	Brief Review of Graph Based Networks
	Molecular Property Prediction
	Using Machine Learning Frameworks
	Using Graph Based Networks

	Conclusion

	Methodology
	Data Acquisition
	Data Pre-processing
	Converting the Structural Information into Graphs
	Creating RDKit Molecule Objects

	Feature Engineering and Transformation
	Creating Features at Scalar Coupling Level
	Creating Atom and Bond Level Features

	Modelling
	Evaluation

	Design Specification
	Multi-Head Attention and Message Passing Layers
	MPMT Architecture

	Implementation
	Softwares and Technologies Used
	Data Preparation on Google Cloud Platform (GCP)
	Feature Engineering
	Gradient Clipping
	Model Training

	Evaluation
	Experiment 1
	Modelling
	Results

	Experiment 2
	Modelling
	Results

	Discussion

	Conclusion and Future Work

