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Detection of the Malpositioned Catheters and
Endotracheal Tubes on Radiographs using Deep

Learning Methods

Ankit Rungta
19241607

Abstract

Deep learning advancements have resulted in wonderful outcomes for a range of
recent image processing research studies in medicine. Chest X-Rays are the most
often performed radiological examination and are an particularly important mod-
ality that is being researched extensively for a variety of purposes. One of them is
tube and line placement, which is usually verified by a radiologist because of the
significant problems that might occur from incorrect placement. Delays are to be
expected when radiologists are engaged with other scans, which offers an opportun-
ity for human error. As COVID-19 accelerates, it will become increasingly critical
to detect misplaced catheters and lines more quickly and accurately as more indi-
viduals are intubated and linked to a ventilator. Deep learning systems can help
prioritize radiographs to interpret potentially misplaced catheters and lines. As
a result, knowledge of contemporary algorithms was gained, as well as the major
problems associated with creating a viable deep learning model for identifying cath-
eter and tube locations on radiographs. This paper proposes a unique technique for
classifying normal and malpositioned tubes on chest radiographs using EfficientNet
CNN along with CBAM (Convolutional Block Attention Module) as a novel ap-
proach and EfficientNet CNN as a baseline approach. This investigation will assist
in developing the machine learning techniques for this critical application.

1 Introduction

For decades, X-ray imaging of the chest has been a cornerstone of radiology and is cur-
rently the topmost conducted radiological test worldwide, with nations getting an aver-
age of 238 erect-view chest X-ray pictures per 1000 people yearly (United Nations, 2008)
(Çallı et al.; 2021). Chest X-rays are used for a variety of purposes, including determining
the placement of catheters and tubes.

To aid the patient’s breathing, different tubes and lines are used, as shown in Figure 1.
A plastic tube called an ETT (Endotracheal tube) seen in Figure 1a is inserted via the
mouth into the windpipe (trachea). After insertion, the ETT is linked with the ventilator,
which provides oxygen to the lungs. Similarly, a tracheostomy tube (NGT) seen in
Figure 1b is a curved tube that is placed into a tracheostomy stoma, which is a hole
in the neck and windpipe. In terms of design, there are several kinds of tracheostomy
tubes that differ regarding their various characteristics for various reasons. Also, a central
venous catheter (CVC) seen in Figure 1c, sometimes referred to as a central line, central
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venous line, or central venous access catheter, is a catheter that is inserted into a large
vein. It is a method of obtaining venous access. For more dependable vascular access,
it is frequently necessary to place bigger catheters in more centrally placed veins in
critically sick patients or those requiring extended intravenous therapy. These catheters
are frequently put into neck veins, chest veins, groin veins, or arm veins (also known as
a PICC line, or peripherally inserted central catheters).These are used if it is required
to sedate and ”rest” a severely ill patient or to maintain the patient’s life. In hospital
patients, lines and tubes may be incorporated, and improper position of these might
cause significant problems. Medical practitioners use checklists as shown in Figure 2 to
verify that they adhere to the procedure for treating patients while placing tubes (Higgs
et al.; 2018). However, these stages are lengthy that are certain to mistakes (Yi et al.;
2020), which is especially true in difficult scenarios involving overcrowded hospitals.

(a) Endotracheal Tube (b) Tracheostomy Tube (c) Central Venous Catheter

Figure 1: Different Tubes and Lines

Figure 2: Intubation CheckList

1.1 Motivation

A nasogastric tube malposition has been observed in the airways of 3% of patients; up
to 40% of these instances have problems. 25% of aged patients who had intubation
away from the operation theater, endotracheal tube malposition is seen. In 30% of the
radiogram, central venous catheters are misplaced (Jain; 2011). The early detection of
misaligned tubes and lines on the chest X-Ray, which is particularly essential because
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millions of COVID-19 patients now need such tubes and lines, is the key to avoiding
severe consequences (including death).

A Chest radiograph is the usual method for verifying the placement of the line and
tube (Sakthivel et al.; 2020). However, these chest x-rays must be carefully inspected by
a radiologist to ensure that the catheters and endotracheal tube are positioned properly.
Not only would this introduce the possibility of mistakes, but delays are also a possibility,
since radiologists may be distracted by other scans. Algorithms based on deep learning
may identify misaligned catheters and lines. After being notified, clinicians should relo-
cate or remove them to avoid potentially deadly consequences. The normal, borderline
and abnormal positions of tubes and lines (annotated points of tubes and lines on chest
radiograph) on chest X-rays from the labeled dataset are depicted in Figure 3, Figure 4
and Figure 5, respectively.

(a) ETT Normal (b) NGT Normal (c) CVC Normal

Figure 3: Normal Position of Tubes and Lines in Chest Radiograph

(a) ETT Borderline (b) NGT Borderline (c) CVC Borderline

Figure 4: Borderline Position of Tubes and Lines in Chest Radiograph

(a) ETT Abnormal (b) NGT Abnormal (c) CVC Abnormal

Figure 5: Abnormal Position of Tubes and Lines in Chest Radiograph

As COVID-19 spreads, it is critical to identify misplaced catheters and lines as soon
as possible. Numerous hospitals are at capacity, and more individuals than ever before
require these tubes and lines. Physicians and radiologists can handle these patients more
effectively if they can promptly monitor catheter and line insertion. Apart from COVID-
19, determining the location of lines and tubes will continue to be critical in the treatment
of so many suffering hospital patients. Early diagnosis would help prevent deaths caused
by malpositioning and would also provide a benefit to the radiology department.
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1.2 Research Question

To what extent deep learning algorithms can detect the malpositioned tubes and lines on
chest radiographs?

1.3 Research Objective

This study will look for tubes and lines that are incorrectly located on the chest ra-
diograph. Incorrectly positioned endotracheal tubes and lines in hospital patients might
cause significant problems. Deep learning systems may locate missing catheters and lines.
In order to avoid serious acute problems, deep learning can realign or eliminate them.

• Detecting lines and ETT on the chest X-Rays(radiographs).

• Using image augmentation to improve detection accuracy.

• Using CLAHE to enhance the contrast of the picture.

• To construct model using CNN in combination with CBAM (convolutional block
attention module).

• Training of the model and evaluation of the model’s detection accuracy for mis-
placed catheters and tubes.

Section 1 of this paper outlines the research field, motivation (1.1), goal(1.2), and ob-
jective of this study(1.3). Section 2 delves further into earlier and related work. Section
3 discusses the suggested methodology of this research. Section 4 describes the research
design specification, while Section 5 discusses the details regarding the research imple-
mentation, as well as the assessment procedure . Section 6 provides the comprehensive
analysis of the results along with the discussions and findings of the research. Following
that, section 7 provides with the conclusion and future work. At last, the report ends
with the references.

2 Related Work

This section discusses and analyses relevant work on tubes and lines misalignment. This
section is split into several subsections. Each section looks at the efficacy of a certain
technique. To diagnose malposition, it is necessary to first examine the existence of tubes
and lines on the chest radiographs, followed by further information, such as the catheter
tip’s placement. These bits of information can determine the kind and characteristics of
the object. Finally, the tube and line positions may be determined.

2.1 Detection of the inserted catheter and endotracheal tube

In the first place, radiographs of the chest should be taken to check if the tubes and lines
are detectable. It may be possible to train a model to distinguish between chest X-ray
images with and without tubes by building two labeled datasets: one for chest X-rays
with tubes and lines and one without them.

Kao et al. (2015) develop an automated technique for identifying tubes and positions
of their tip in pediatric chest radiography. A seed point was located along the line going
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through the cervical region, and then the direction of the line was traced from the seed
point. 528 pictures were obtained using endotracheal tubes and 816 images without
them in this technique. Overall, 99.1 percent accuracy was achieved in identifying chest
X-Rays with or without tubes. The accuracy of chest X-rays with tubes was 94.3% in
that research, which may be increased by training the model on a bigger dataset. The
ROC curve was used to evaluate the results.

A completely automated technique for segmenting catheters in live 2D X-ray fluoro-
scopic pictures using CNNs is proposed, with execution times of less than 125 milliseconds
(Ambrosini et al.; 2017). The segmentation of the research data produced a median tip
distance error of 0.9 millimeters and a median centreline distance error of 0.2 millimeters,
with 85 percent of frames having a centreline distance error of less than 1 millimeter.
Distance errors are measured in millimeters on the X-ray detector scale. Actual distance
inaccuracies are lower on a patient-by-patient basis. Very few pictures contain false pos-
itives following CNN segmentation. The primary limitation of extracted catheters is that
false negatives might result in significant segmentation gaps. As a result, the proximal
end of the catheter may occasionally be missing. With a bigger training set, the model
should be more generic.

Deep convolutional neural networks (DCNN) are extremely effective at differentiating
images variations in radiography (Lakhani; 2017). DCNN and pre-trained networks are
used in the research. They got an AUC of 0.99, which is a reasonable degree of precision
given the conditions, but having small dataset of 180 pictures, there is a danger of over-
fitting. DCNN (AlexNet and GoogLeNet) also performed well with limited training
data in recognizing pictures with a high degree of apparent variation, such as chest vs.
abdominal radiographs, with an AUC of 1. DCNN, on the other hand, performed poorly
in detecting the location of lines and tubes, having an AUC of 0.81; this suggests that
there is room for improvement and that it may be enhanced further with high precision, as
this is an important component of medical research. Identifying the catheter’s position
in the radiograph needs a large quantity of data to train the model, which would be
insufficient with a relatively limited dataset. Additionally, high locations of the ET tube
can be monitored that were not examined in this study.

The idea of sparse representation is brought into the architecture of the deep learn-
ing network, and its widespread use to represent superior multidimensional data linear
decomposition capability and substantial architectural benefits of multilayer nonlinear
mapping are presented (Liu and An; 2020). To solve the low classifier efficiency issue, a
sparse representation classifier with kernel function optimization is presented. This sparse
representation classifier can help enhance the accuracy of image categorization. Addi-
tionally, this article offers a deep learning model based on stacked sparse autoencoders
that is applied to the fundamental issue of image classification. The technique is evalu-
ated against various traditional image classification systems utilizing a public database,
a medical database, and the ImageNet database. Not only does the suggested technique
have better average accuracy than other traditional approaches, but it also adapts well
to diverse image datasets, as demonstrated by testing findings. This technique is more
accurate with big datasets and could be less accurate with biomedical image analysis, as
the datasets related to it are comparitively smaller.
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2.2 Detection of the tip of the catheter and tube

Along with identifying the existence of the tube, other method is to find the location
of the tip which is necessary for detecting the location of the tube. Kao et al. (2015)
evaluated each pixel value to the preceding average value repeatedly, ending at the point
when the pixel value abruptly declined. The amount of the pixel value decrease at the
tip position varies across images due to picture contrast or noise, and employing a fixed
threshold may cause difficulties. Multiple criteria were utilized to choose positions of the
tip, and the most appropriate candidate was picked to solve these concerns.To determine
the accuracy of the indicated sites, a radiologist confirmed the position of the tip in chest
x-rays with tubes. The difference in distance was utilized to determine the detection
precision of the suggested technique. The average error was 2.01 mm in situations where
the presence of an endotracheal tube was recognized satisfactorily.

This study proposes a method for identifying the edge of an implanted catheter using
supervised deep learning (Lee et al.; 2018). After segmenting the lung areas and the PICC,
the tip was defined as the PICC’s lowest terminus inside the lung area. In addition to
PICCs, these approaches may be used to find the tips of other types of catheters, such as
central venous catheters and tunneled catheters linked to ports. On 150 test examples,
the model with mean, SD, and RMSE of 3.10 mm, 2.03 mm, and 3.71 mm, respectively,
estimated absolute distances from ground truth after being trained on 400 training cases
and 50 validation cases on a case-by-case basis. Winding up the catheter and placing it
irregularly in respect to anatomical landmarks, such as when the tip is elevated to the
lungs, are two variables that may lead to the failure of these techniques. As a result, a
more precise approach for determining the tip placement is necessary.

This article provides an in-depth review of deep learning-based object recognition
systems that solve a number of sub-problems, including occlusion, clutter, and poor
resolution, using different degrees of R-CNN modification (Zhao et al.; 2019). Direct
regression, which is extensively used in deep learning for generic object recognition, is
another approach with the most promise for recognizing catheter tips. Instead of the
four corners of the bounding box, which are utilized for general object recognition, the
tip location will be used as the regression goal for catheter tip detection.

The tip of a peripherally inserted catheter (PICC) was identified and segmented on
chest X-ray images in this research utilizing a multi-task deep learning model (Yu et al.;
2020). To determine appropriate catheter placement on radiographs, the catheter tip
must be identified. They conducted the study on a limited dataset of 348 X-ray pictures,
given the application’s criticality. As a result, further study in this sector is necessary to
increase the overall accuracy of position detection.

To determine catheter placement, the catheter tip must be found. To guarantee
effective operation of the catheter tips and to minimize the risk of issues, they should
be positioned in certain anatomic areas. To minimize the risk associated with bronchial
intubation, the tip of the ETT should be high above the tracheal carina (Yi et al.; 2020).

2.3 The type of catheter present in the Radiograph

In this study, preliminary tests were used to differentiate between the NGT, ETT,
Tracheostomy, Drainage Tube, Central Venous Lines, and Swan-Ganz Catheter (Jain;
2011). Due to the fact that the nasogastric tube is used to feed patients or aspirate gast-
ric contents, its tips should be placed in the stomach. It can penetrate the small intestine
to a depth of 10 to 12 cm. The endotracheal tube provides ventilation for the lungs while
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also avoiding aspiration. The tip of the collar should be 5-7 cm above the carina in the
neutral position. The tracheostomy point should be approximately midway between the
stoma and the carina. In contrast to the ET tunnel, it maintains its position during
neck flexion and extension. Central venous lines (catheters) are used for a number of
purposes, including hemodynamic pressure management, medication delivery, nutritional
support, and fluid administration. The patient may experience heart perforation and
arrhythmias as a result of improperly positioned catheters. The Swan-Ganz is a catheter
for the pulmonary artery that features a flow-directed balloon tip. It should be no more
than one centimeter lateral to the mediastinum.

2.4 Position of the catheter in the Radiograph

Another study used the TensorFlow framework for Inception V3, ResNet50, and DenseNet
to classify feeding tube malposition on chest and abdomen radiographs as critical (bron-
chial insertion) or non-critical (i.e., a feeding tube in the esophagus, stomach, or duo-
denum) (Singh et al.; 2019). The highest AUC of 0.877 was obtained by categorizing
radiographs as vital or non-critical intestinal tube locations using Inception V3. In this
study, the use of imbalanced data sets resulted in a poor AUC, which may be improved
by expanding the size of the training data. The incorporation of more DCNNs into fu-
ture models has the potential to enhance performance. Pre-trained networks consistently
outperformed untrained networks in all scenarios. With the assistance of convolutional
neural networks, critical feeding tube malpositions may be recognized and conveyed more
readily.

The data set utilized in this work was used to train CNNs to classify chest radiographs
as normal or abnormal following their evaluation of a collection of 533 pictures manually
labeled by radiologists (Dunnmon et al.; 2019). The impacts of network design on end
performance were quantified using standard binary classification measures, as well as a
comprehensive error analysis that included visualization of CNN activations. The mean
area under the receiver operating characteristic curve (AUC) for a CNN trained with
200000 pictures was 0.96. This AUC value was greater than that obtained when the model
was trained with 2000 pictures (0.84) but not significantly higher than that obtained
when the model was trained with 20000 images (AUC = 0.95). While CNNs trained
on such a big dataset are beneficial, they might be more accurate because the dataset
used for training is so vast and the AUC can be increased to enhance segmentation
accuracy. Radiograph classification must be precise in order to advance this field further
and discover misplaced catheters and tubes.

2.5 Attention Mechanism

This paper presents a Residual Attention Network with an encoder-decoder module
(Wang et al.; 2017). The Residual Attention Network is made up of attention-aware
features. Different modules’ attention-aware features adjust as layers deepen. Within
each Attention Module, the feed-forward and feedback attention processes are combined
into a single feed-forward process.

Attention residual learning is used to train incredibly deep Residual Attention Net-
works with hundreds of layers. An alternative to directly calculating the 3D attention
map was proposed by Woo et al. (2018). Because the separate attention generation
method for 3D feature maps is less computationally intensive, it can be easily integrated
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into current CNN architectures.
This work adaptively calibrates channel-wise feature responses by modeling interde-

pendencies between channels. Hu et al. (2018) show how to stack these components to
build SENet topologies that generalize well across datasets. For current state-of-the-art
CNNs, SE blocks increased output considerably with minimal computational expense. As
in the previous module, global averaged characteristics are utilized to calculate channel-
wise attention. To infer fine channel focus, Woo et al. (2018) suggest using max-pooled
features instead. Hu et al. (2018) study missed spatial attention, which is essential in
deciding where to focus.

Woo et al. (2018) examine the aspect of attention in architectural design. Attention
not only guides concentration but also assists in the expression of interests. They propose
a novel network module named ”Convolutional Block Attention Module” in this study
to increase representation power by focusing on relevant characteristics while suppressing
irrelevant ones. Convolution procedures extract insightful characteristics by combining
information across both the channel and spatial module. They created channel and
spatial attention modules for each branch to learn what and where to pay attention.
By understanding which knowledge to emphasize or conceal, their module successfully
facilitates network information flow. They found that by adding their lightweight module,
network speed increased considerably on several benchmarks (ImageNet-1K, MS COCO,
and VOC 2007). They also observed that the module causes the network to correctly
focus on the target item.

This article focused on the influence of attention on deep neural networks. The
BAM is a simple and efficient attention module that can be used with any feed-forward
convolutional neural network (Park et al.; 2018). From two different routes, their module
produces an attention map. They put it where the feature maps are downsampled in each
model. The module may be trained end-to-end for any feed-forward models and creates
hierarchical attention at bottlenecks. They tested its efficacy on three different benchmark
datasets. They found a hierarchical thinking system. Adaptive feature refining at the
bottleneck may be observed in various vision tasks.

Using the self-attention mechanism, this research (Fu et al.; 2019) obtains a wide range
of context-dependent connections. The Dual Attention Network (DANet) was suggested
to adaptively integrate local and global characteristics. Two attention modules were
integrated on the FCN , one for modeling spatial semantic interdependencies and the
other for modeling channel semantic interdependencies. The location attention module
aggregates the features at each position into a weighted average of all positions. The
channel attention module highlights interdependent channel maps by combining relevant
characteristics across all channel maps. Dual attention modules efficiently collect context
and offer better segmentation data. An analysis of four scene segmentation datasets shows
that our attention network regularly beats the competition. Also, reducing computational
complexity and improving model resilience are essential and will be studied in future
studies.

This article offers a Spatial Group-wise Enhance (SGE) system that may modify
each sub-feature’s value by establishing a factor of attention for each spatial location
in each semantic category (Li et al.; 2019). When SGE is coupled with standard CNN
backbones, image recognition efficiency may be substantially improved. Using ResNet50
backbones, SGE improves accuracy by 1.2 percent on the ImageNet test. The SGE
module will greatly improve feature groups’ capacity to convey various meanings. Despite
its simplicity, SGE has demonstrated its practical value by consistently progressing in
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image classification and detection tasks.
Self-attention is viewed as an alternative to convolutions in this article (Bello et al.;

2019). Using relative self-attention in two dimensions outperforms convolutions as an im-
age categorization computational primitive. So they suggest concatenating convolutional
feature maps with self-attention feature maps to enhance convolutional operators with
self-attention. In the fully attentional environment, future research may examine how
different attention mechanisms balance computing efficiency and representational power.
By removing downsampling and average pooling, a computational method based on local
attention might be developed.

This article classifies current CNN architectural advances into seven groups based on
intrinsic taxonomy observed in newly published deep CNN architectures (Khan et al.;
2020). Each of the seven categories is described below. Also addressed are basic CNN
components, current issues, and CNN applications. CNN’s block-based design simplifies
and clarifies architecture, allowing for modular learning. The block concept will continue
to be employed, and CNN’s performance will improve. In addition to spatial information,
attention and channel information manipulation will be increasingly relevant in deep
learning model building.

2.6 Research Gaps and Proposed Solution

Previous work on evaluating radiographs using pre-trained networks has been conducted
on a very limited and unbalanced dataset, which does not meet the requirements of this
essential application of medical research. Many studies conducted in this field demon-
strate that segmenting or categorizing radiographs based on specific criteria (Normal or
Abnormal, Et tubes present or absent) is rather accurate, with an AUC (ROC curve) of
about 0.99. Additionally, while detecting the tip of the tubes is performed with satisfact-
ory precision, there is room for improvement by using the tip position as the regression
goal for catheter tip detection rather than the four corners of the bounding box, which is
utilized for general object recognition (Zhao et al.; 2019). However, detecting the tubes
and lines in such radiographs remains a study topic, and no research has achieved the
level of precision necessary in this sector.

Malpositioning can result in a variety of problems, including death. Convolutional pro-
cedures on position determination extract insightful characteristics by combining cross-
channel and spatial information, which may result in the loss of many critical and target
aspects in biomedical pictures. The purpose of this paper is to propose the use of the
”Convolutional Block Attention Module”. A successful technique that relies on acquiring
certain features from an input image and applying them to the network, which leads to
the network locating the targeted objects, as experimentally shown by Woo et al. (2018).
Further, in-depth investigation is conducted on various datasets in order to establish the
viability of this approach to image analysis, as reported in the paper proposed by Woo
et al. (2018).

2.7 Summary details of the related work

In Table 1 summary of the previous works are provided.
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Author(s) Objectives Research Design Keywords Findings

Kao et al.
(2015)

Identifying ETT and their
tip positions

Used a seed point and util-
ized numerous line paths
threshold to determine the
candidate position

Seed point, threshold,
cervical region, Lmax
& C

99.1% in locating the ETT on
chest radiographs

Ambrosini
et al. (2017)

Segmenting catheters in
live 2D X-ray fluoroscopic
images

Automated techniques us-
ing CNN

Fluoroscopic Images,
CNN, segmentation

Few images contain false posit-
ives and false negatives are res-
ulting in significant segmenta-
tion gaps

Lakhani
(2017)

Differentiated Image vari-
ations using DCNN & Pre-
trained networks

Based on AlexNet and
GoogLeNet

AlexNet, GoogLe-
Net,DCNN, ETT

AUC of 0.99 but over-fitting is
possible due to very small data-
set

Wang et al.
(2017)

Using attention residual
learning and train Resid-
ual Attention Networks

Residual Attention Net-
work with an encoder-
decoder

Residual Attention,
encoder-decoder,
feed-forward

Directly calculated the 3D at-
tention map

Lee et al.
(2018)

Identifying the edge of an
implanted catheter using
supervised deep learning

Segmented the lungs area
and defined the tip area

PICC, deep learning,
CVC

Mean, standard deviation, and
root mean square error of 3.10
mm, 2.03 mm,and 3.71 mm, re-
spectively. A more precise ap-
proach is required.

Hu et al.
(2018)

Calibrated channel-wise
feature responses

SENet topologies by mod-
eling interdependencies
between channels

SENet,channel-wise,
CNN

SE blocks increased output
with minimal computational
expense

Woo et al.
(2018)

Examine aspect of atten-
tion in architectural design

Used features from both
channel and spatial at-
tention modules using
”CBAM”

CBAM, channel axis,
spatial axis, attention

Network speed increased on
several benchmark dataset us-
ing CBAM architecture.

Park et al.
(2018)

Using BAM with any feed-
forward CNNs to see the
influence of attention on
deep neural networks

BAM with deep neural
networks

BAM, neural net-
works, attention

Found a hierarchical thinking
system

Zhao et al.
(2019)

Review of deep learning-
based object recognition
systems

Designed to solve a num-
ber of sub-problems using
different degrees of R-CNN
modification

Occlusion, Clutter,R-
CNN

Using tip location instead of
bounding box in object recog-
nition

Singh et al.
(2019)

Used tensorFlow frame-
work to classify feeding
tube malposition on chest
and abdomen radiographs
as critical or non-critical

Used Inception V3, Res-
Net50, and DenseNet in
classification

Inception V3, Res-
Net50, DenseNet,
DCNNs

AUC of 87.7% in classifying the
radiographs

Dunnmon
et al. (2019)

Classified chest radio-
graphs as as normal or
abnormal

Trained CNN and used
binary classification for er-
ror analysis

CNN, Radiographs,
AUC

AUC 84%(With 2000 images),
AUC 96%(with 200000 images)

Fu et al.
(2019)

To obtain a wide range
of context-dependent rela-
tions

Used Dual attention net-
work to integrate local and
global dependencies

DANet, FCN, at-
tention modules,
semantic

efficiently collected context re-
lations and offered better seg-
mentation data.

Li et al.
(2019)

Established a factor of at-
tention for each spatial
location in each semantic
category

Spatial Group-wise En-
hance (SGE) system that
modified the value of each
sub-feature

SGE, CNN, ResNet50,
ImageNet

SGE module greatly improved
feature groups capacity to con-
vey various meanings

Bello et al.
(2019)

Concatenating convo-
lutional feature maps
with self-attention feature
maps to enhance convo-
lutional operators with
self-attention

Used self-attention with
CNN

self-attention, CNN,
average pooling

Removed downsampling and
average pooling in order to sat-
isfy the objective

Yu et al.
(2020)

Tip of a peripherally inser-
ted catheter (PICC) was
identified

Segmented on chest X-
ray images in this research
utilizing a multi-task deep
learning mode

Deep learning, PICC,
RPN, ROI pooling
route

Identifed the location of the tip
using 348 chest X-Rays

Yi et al.
(2020)

Determined catheter
placement

Used various medical tech-
nicalities to decide the
placement

Catheter, anatomic Tip of ETT should be posi-
tioned higher

Khan et al.
(2020)

Classified current CNN ar-
chitectural advances into
seven groups based on in-
trinsic taxonomy

Used CNN architecture CNN, spatial informa-
tion

Spatial information,attention
and channel information ma-
nipulation will be increasingly
relevant in deep learning model
building

Table 1: Summary details of the related work to detect the position of catheter and tubes
on chest radiographs

3 Methodology

This study employs the Knowledge Discovery in Databases (KDD) methodology. This
technique was chosen because it enables the project’s developers to go back to a previous
stage if necessary.. Figure 6 illustrates the flow of chest radiographs that would be used
to train a deep learning model for predicting whether tubes and lines are placed correctly
or incorrectly. The data, which consists of chest radiographs, would be pre-processed
in order to be used in later phases and to make the model more accurate. Following
that, it would be enhanced by using Python’s Albumentation package. The purpose of
augmentation is to generate more training data from the current chest radiographs. Due
to the high level of noise in the radiograph pictures, the dataset will be modified using
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CLAHE (Contrast Limited Adaptive Histogram Equalization) to increase its contrast in
order to more precisely detect the implanted tubes and catheters.

After pre-processing and transformation, the data is model-ready and can be input
into the suggested modeling approach to generate a reliable model which is capable of
detecting misplaced tubes and lines and implementation of it is explained in a detailed
manner in section 5. CBAM is used in combination with CNN in modeling to improve the
sensitivity of identifying catheters that have been misplaced. Design of the CBAM along
with CNN approach used in this research is explained in section 4. Numerous literature
reviews in subsection 2.5 demonstrate the efficacy of attention mechanisms in image
analysis, and Woo et al. (2018) proposed technique of integrating CBAM with CNN
architecture has demonstrated tremendous results, and several experiments on various
datasets demonstrate the efficacy of CBAM in image analysis. As a consequence, in
this critical field of medical science, we suggest this approach to increase the precision
of detecting misplaced tubes and lines and informing doctors automatically, rather than
depending on manual human involvement.

Following the model’s development, we split data into train and test folds using strat-
ified group k-Fold cross-validation to maintain the percentage of samples for each class
and to guarantee that the same group does not occur in both folds. This model would
be trained on misplaced tubes and lines and evaluated using the procedures explained in
6. Successfully developing this model and increasing its accuracy will assist doctors in
automatically spotting misplaced tubes and lines and would be less error-prone owing to
reduced manual labor by radiologists, particularly during these tough times of COVID-19.

Figure 6: Research methodology for detecting the malpoistion of Catheters on Chest
Radiographs

3.1 Dataset Collection

The dataset used in this study was made freely available on Kaggle by RANZCR (Royal
Australian and New Zealand College of Radiologists). The dataset is sufficiently big
having 30.1K chest radiograph images excluding test dataset to undertake the analysis,
and this is likely the first time that a dataset of this size has been utilized to determine
the position of lines and tubes. The data publisher has taken into account the privacy
concerns of patients and has concealed the patients’ identities in this dataset. This dataset
contains images of normal, borderline, and abnormal ETT (Endotracheal Tube), NGT
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(Nasogastric Tube), and CVC (Central Venous Catheter) placements on chest radiographs
that were hand labeled by radiologists. Along with the images file, a CSV file is present
which contains image IDs, binary labels and patient IDs. Below is the binary labels
present in the dataset.

• ETT - Abnormal

• ETT - Borderline

• ETT - Normal

• NGT - Abnormal

• NGT - Borderline

• NGT - Incompletely Imaged

• NGT - Normal

• CVC - Abnormal

• CVC - Borderline

• CVC - Normal

• Swan Ganz Catheter Present

Additionally, this dataset includes a CSV file including data annotations for the lines
and tubes on the chest radiograph to assist non-medical individuals in tracing them as
shown in Figure 3, Figure 4 and Figure 5.

3.2 Dataset Preparation

In this process, chest radiograph data goes under pre-processing techniques and is cleaned
to prepare it for the subsequent phase in the applicable methodology. Because this
study is focused on biological images, the implemented machine learning method must
be very accurate. To improve the model’s accuracy in categorizing radiographs as well-
positioned or malpositioned, an image augmentation approach (Albumentation) is used.
To achieve augmentation, a funtion named ”image augment” is built for augmenting the
image horizontally (random flip left right) and vertically (random flip up down) which is
called when dataset is created on the function call of ”dataset creation”. Figure 7 shows
the images before and after augmentation.

(a) Images before Augmentation (b) Augmented Images

Figure 7: Images before and after augmentation
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After albumentation, Chest radiographs were processed to enhance contrast in the
images. CLAHE is used to equalize the data and avoid over-amplifying the images. The
CLAHE procedure on a chest radiograph is demonstrated in Figure 8 from the RANZCR
dataset, enhancing the image’s contrast. It would be incredibly beneficial for identifying
tube and line locations and categorizing radiographs as misplaced or correctly aligned.

Figure 8: CLAHE applied on a Chest Radiograph

4 Design Specification

Convolutional Neural Networks (CNN) are combined with the CBAM module provided
by Woo et al. (2018) to construct a deep learning model that classifies radiographs as
normal (properly positioned tubes and lines) or abnormal (mispositioned tubes and lines).
As seen in Figure 9 by Woo et al. (2018) the CBAM is connected to the CNN and receives
the input as intermediate features F including information from both the channel and
spatial axes of the CNN block. CBAM then highlights distinct properties along the
channel (F) and spatial axes (F) by concentrating on ”what” and ”where” to attend.
As a consequence, it learns which knowledge should be highlighted and which should be
repressed, resulting in an improvement in the accuracy of recognizing misplaced catheters
and tubes. Channel and Spatial attention module are explained in subsection 4.1 and 4.2
respectively.

Figure 9: CBAM integrated with CNN (Woo et al.; 2018)

4.1 Channel Attention Module

The focus in the channel attention module of CBAM is on ’what’ is significant in the
context of an input chest radiograph. This channel attention module aggregates the
spatial information included in the feature map using max-pooling and average-pooling.
The average and maximum pooled features are sent into a shared multi-layer perceptron
(MLP) that has a hidden layer. After applying MLP to each feature, the result is merged
using element-wise summation, as seen in Figure 10 of the channel attention module.
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Figure 10: Channel Attention Module (Woo et al.; 2018)

4.2 Spatial Attention Module

The spatial attention module of CBAM puts a focus on determining ”where” is significant
in relation to an input chest radiograph. The channel refined feature is subjected to
average and maximum pooling, which is then merged to create an effective feature, as
seen in Figure 11 . A convolutional layer is used to this produced feature to construct
spatial attention that learns which characteristics should be emphasized and which should
be hidden.

Figure 11: Spatial Attention Module (Woo et al.; 2018)

5 Implementation

Once pre-processing and transformation have been done, the data is model-ready, and
it can be used to build a model and implementation of it is discussed in great depth
in this section. We used pre-trained model such as EfficientNet (EfficientNetB3) in the
baseline approach and the different EfficientNet Model with the CBAM (Convolutional
Block Attention Module) in the novel approach. Concept of transfer learning is shown in
Figure 12,

5.1 Baseline Approach

The study of the literature established that convolutional neural networks were successful
at categorizing chest radiographs as critical or non-critical and at recognizing the posi-
tion of lines and tubes on chest radiographs(Singh et al.; 2019; Dunnmon et al.; 2019).
Adding additional layers and developing a dense structure can increase accuracy, which
is why we chose to conduct this research using transfer learning. EfficientNet is a pre-
trained model which has shown exceptional results on some well-known datasets, such as
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Figure 12: Transfer learning used in research

ImageNet, CIFAR-100, Flowers. The EfficientNet models outperform conventional CNNs
in terms of accuracy and efficiency, decreasing parameter size and FLOPS by an order of
magnitude1.Its specialisation may be used to determine the location of tubes and lines
on chest radiographs.

EfficientNet-B3 To use the model effectively, we conducted some EDA (Explor-
atory data analysis) to gain a thorough understanding of the data and then used this
understanding to construct the model. To avoid class imbalance, we examined the dis-
tribution of different labels in the dataset and plotted the chest radiographs with the
annotated data points to gain additional information on the placement of tubes and lines
in those X-rays. Additionally, the distribution of each individual label in respect to all
other labels is shown to illustrate the dataset distribution. Figure 13 shows the EDA
performed before the modeling to get more insights of the dataset. A ’BaseConfig’ is de-
signed with batch size of of 32, n epochs as 15 (number of epochs), and drop rate as 0.4.
’Adam’ optimizer is used with minimum learning rate of ’1e-5’. The loss function used
is ’binary crossentropy’ with AUC as the evaluation metrics. Early stopping is also used
with the value of patience being 5. Two checkpoints are also added in the class, one is
saving the best model and the another is saving the last model to compare with the next
model. Now, two different class named ’load pretrained model’ and ’build my model’
class is built. While building the model ’GlobalAveragePooling2D’ is used and also batch
normalization is used with the pre-trained CNN. After building the model, it is validated
on the validation batch by generating an array of valid labels whether the predicted labels
are correct or not.

(a) Distribution of Labels (b) Chest X-rays with Annotated Data Points

Figure 13: EDA

1https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
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5.2 Novel Approach

Convolutional Neural Networks (EfficientNet) will be used to construct the classification
model, as well as the CBAM (Convolutional Block Attention Module) module proposed
by Woo et al. (2018). While CNN extracts insightful features by combining cross-channel
and spatial data, CBAM prioritizes relevant characteristics along the channel and spatial
axes independently for each branch in order to learn ”what” and ”where” to attend on
the channel and spatial axes. It learns which knowledge to emphasize or suppress; as a
result, information flows effectively within the network and can improve the accuracy of
classifying radiographs with normal and abnormal tube and line positions by having par-
ticular information from an input image that causes the network to properly concentrate
on tube and line positions, as demonstrated by Woo et al. (2018). Detailed design of this
novel approah used is discussed in 4. We modified a portion of the CBAM mechanism and
the last section of its spatial module by including the Global Weighted Average Pooling
(GWAP) technique.

GWAP (x, y, d) =
∑

x

∑
y Attention(x, y, d)Features(x, y, d)/

∑
x

∑
y Attention(x, y, d)

A ’data train config’ class is created in which the learning rate, batch size, number of
images in each batch, and base networks for the five different folds are defined. Another
class, ’Spatial Attention’ is being built which will take the tensorflow keras layer as the
parameter (Woo et al.; 2018). To separate the channel attention module from the spatial
attention module, a different class called ’Channel Attention’ is built which takes the
parameters as keras layer. After the two layers are built from the two above mentioned
classes, GWAP is used. To attain this, a class called ’AttentionWeightedAverage2D’ was
built which takes parameters as keras layer.

On successful building of the above classes, the ’Chest Data Classifier’ class is built,
which will take an input parameter as a keras model and will build multiple layers calling
different classes described above. EffecientNet is used as the pre-trained CNN and the
model built by infusing all the defined layers with the pre-trained CNN is saved to load
the weights later.

After saving the weights, the model is built using the above classes and built to pre-
dict the labels of the test dataset.

Figure 14 shows the model plot which has different layers of the model built using the
novel approach.

6 Evaluation

Radiographs with normal and misaligned tubes and lines are not balanced in the util-
ized dataset. As a result, sensitivity and specificity are employed in these instances.
The True Positive rate (percentage of radiographs found with malpositioned catheters
and tubes) and True Negative rate (proportion of radiographs detected without malposi-
tioned catheters and tubes) would be calculated. Catheter categorization is a multi-class
classification based on radiographic images. An uncertainty matrix, a special kind of
contingency table, may be used to determine the correctness of each class. Numerous
evaluative measures may be calculated using the confusion matrix. Also, accuracies and
losses across multiple folds would be verified in order to see the performance of the novel
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Figure 14: Model plot of the Novel approach

model created. Also, a spreadsheet containing the image’s instance ID and the probab-
ility of the image falling into one of the categories (ETT Normal, ETT Borderline, ETT
Abnomal, NGT Normal, NGT Borderline, NGT Abnormal, CVC Normal, CVC Border-
line, CVC Abnormal, SWAN GANZ Catheter present, NGT incorrectly imaged) will be
seen and validated for all the labels present.

6.1 Baseline Approach : EfficientNet CNN

The EfficientNet model was trained and validated using images. The model was trained
using 30.1 thousand training images with a batch size of 32. Each epoch step had 846
images. The model was trained with pre-trained weights and 15 epochs. As seen in
Figure 15, the results of EfficientNet on the dataset for classifying chest radiographs with
appropriately positioned tubes and lines resulted in high accuracy with minimal loss. The
model attained a test accuracy of 0.91 and a validation accuracy of 0.89. The loss curve
in the figure was close to zero, and the accuracy of validation increased as the number
of epochs increased. We utilized the early stopping callback in the code with patience 5,
which means that once the model gets the required output and the loss does not change
further, the model would terminate. This optimization technique speeds up the model.
The results indicate that EfficientNet, when trained using a transfer learning technique,
is capable of detecting the position of tubes and lines on chest radiographs with a high
degree of accuracy and a negligible loss value.
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Figure 15: Loss and Accuracy of Training and Validation data

6.2 Novel Approach : EfficientNet CNN with CBAM and GWAP

The Convolutional block attention module combined with a pre-trained network is ex-
tremely effective at learning from radiographs and assigning the probability of that chest
radiograph falling into one of the categories. The accuracy and loss plots are shown for
five folds in each of six epochs in Figure 16. The primary criterion for evaluation is the
accuracy and loss of information over many folds. The accuracy parameter determines
the accuracy of that specific fold and train set for a certain batch size, whereas the loss
parameter determines the loss using binary cross-entropy loss. As seen in Figure 16a, the
CBAM model obtained a validation accuracy of 0.96 and a very low loss of 0.1257 in the
first fold. The model learns from the instance with a second-fold accuracy of 0.96, making
it extremely effective and quick. At early epochs in each of the folds, the loss diminishes
and approaches zero. It can be seen that in Figure 16b that the validation accuracy and
loss has improved by a very small amount and has become 0.9607 and 0.1252 respectively.
As usual the training loss is approaching towards zero. After the second fold, in the third
fold the validation accuracy and loss has become 0.9625 and 0.1231 respectively as seen
in Figure 16c. Both the loss and accuracy is improving across every fold. In the fourth
fold as is seen in Figure 16d, the accuracy and loss has become 0.9627 and 0.1228. Now,
in the last fold i.e. fifth fold the accuracy and loss values are 0.9630 and 0.1235 as seen
in Figure 16e which is the highest amongst all the folds. This demonstrates that the
developed model is extremely successful, and that separating the mixed characteristics
into distinct channel and spatial features improves the model’s accuracy in recognizing
the catheters and lines on the chest radiograph. Table 2 shows the results for 5-fold
cross-validation explained above in the tabular format. Cross-validation was performed
to evaluate the novel model’s performance using previously unknown data. That is, to
test the model’s general performance when used to make predictions on data that was
not used during the model’s training.
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(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure 16: Loss and AUC for different Folds

n fold Validation Loss Validation Accuracy

1 0.1257 0.9600
2 0.1252 0.9607
3 0.1231 0.9625
4 0.1228 0.9627
5 0.1235 0.9630

Table 2: 5-fold cross validation

6.3 Discussion

The purpose of this research is to assess the performance of a newly suggested strategy
that incorporates an attention-based CBAM technique. This approach was prompted by
observed studies in the field of computer vision mentioned in related work. This tech-
nique was tested on several image datasets (ImageNet-1K, MS COCO, and VOC 2007),
and it was discovered that adding this lightweight module significantly enhanced network
speed, which we selected as the state-of-the-art for this research (Woo et al.; 2018). We
compared transfer learning models with CBAM for the purpose of resolving the problem
of detecting the position of tubes and lines on chest radiographs (Singh et al.; 2019; Dun-
nmon et al.; 2019).

As indicated in the preceding subsections 6.1 and 6.2, we compared the models’ ac-
curacies. EfficientNet’s accuracy on the chest radiograph dataset is 0.89 for validation
and 0.91 for testing, as previously mentioned. The novel technique CBAM based on the
attention mechanism achieved the maximum achievable accuracy, 0.9630, for validation
and test data sets. CBAM is more exact than transfer learning models in detecting tubes
and lines on chest radiographs. According to the state-of-the-art at the time of this
research, the accuracy attained was about 0.9 percent for various benchmark datasets,
demonstrating the uniqueness of this research effort in detecting the position of tubes
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and lines on chest radiographs using the CBAM approach. Figure 17 shows the final
CSV created after running the baseline model against test dataset. Figure 18 depicts a
snapshot of the final spreadsheet, which contains the estimated proportion of images that
fall into each group. The highlighted point illustrates the precise output that the CBAM
model produces for each radiograph. All other probabilities are negligible and may be
easily overlooked. All of the data indicate that CBAM is quite effective at detecting the
location of tubes and lines on chest radiographs.

Figure 17: Final Predictions of the Test data having probability of being the particular
label

Figure 18: Spreadsheet showing the results achieved by CBAM

7 Conclusion and Future Work

This research presented a method of combining CNNs and CBAMs to determine how
effectively deep learning algorithms can detect misplaced tubes and lines on chest radio-
graphs. CBAM is a novel technique presented by Woo et al. (2018) that highlights charac-
teristics along the channel and spatial axes independently in order to choose ”what” and
”where” to attend. As a consequence, the network learns which characteristics should be
stressed and which should be suppressed, therefore increasing the network’s information
flow efficiency. The suggested technique significantly improves the detection accuracy of
misplaced tubes and lines compared to prior studies. The model’s accuracy is excellent
and consistent when compared to other transfer learning approaches.

The strength of the proposed unique CBAM approach is that it learns by segmenting
the features and concentrating on the most essential portions of the image, which results
in increased accuracy. The model’s drawback is that it requires an exceptionally long
amount of time to train due to the size of the dataset. The research in this area can
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eliminate the need for radiologists to view radiographs and determine the location of
tubes and lines manually, which is extremely error-prone when hospitals are already
overcrowded, and even when a large number of patients require intubation due to the
COVID-19 explosion. As accuracy and sensitivity are critical in the medical domain, this
research can be expanded or used as a foundation for achieving 100 percent accuracy in
determining the location of tubes and lines on chest radiographs in the future by utilizing
larger datasets, as larger datasets improve the results and provide a more accurate model.
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