Configuration Manual -

~

N\ National

College
Ireland

Online News Popularity Prediction using

LSTM and Bi-LSTM

M.Sc. Research Project
M.Sc. Data Analytics

Prasad Rudrappa Shivu
Student ID: X19213077

School of Computing
National College of Ireland

Supervisor: Prof. Jorge Basilio

National College of Ireland National
Project Submission Sheet College of

School of Computing Ireland

5 Student Name:

Prasad Rudrappa Shivu

Student ID: x19213077
Programme: M.Sc. Data Analytics
Year: 2021

Module: M.Sc. Research Project
Supervisor: Prof. Jorge Basilio

Submission Due Date:

16th August 2021

Project Title:

Online News Popularity Prediction usingLSTM and Bi-LSTM

Word Count:

647

Page Count:

[0

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Prasad Rudrappa Shivu
Date: 16th August 2021

PLEASE READ THE

FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | [

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual -

Online News Popularity Prediction using LSTM and
Bi-LSTM

Prasad Rudrappa Shivu
x19213077

1 Introduction

The Configuration handbook is a report that provides a step-by-step manual for creation,
setup, implementation, and deployment of project ‘Online News Popularity Prediction
using LSTM and Bi-LSTM’ presented in technical report.The purpose of this record is to
aid through each step to obtain the preferred output, which can be furnished within the
technical record. The whole undertaking is built with a variety of libraries, hardware,
and software combinations.

1.1 Project Overview

The project objective is to predict the popularity of online news articles. The dataset,
articles published by mashable.com, for the experiments is extracted from UCI machine
learning repository. Recurrent Neural Network models, LSTM and Bi-LSTM, are used
in this classification problem. .

2 Pre-requisites

The following are the prerequisites: The software and hardware configurations are presen-
ted below. To train the model for such a large image datasets, the GPU (Graphics
Processing Unit) is required.

2.1 Hardware Requirements

e Processor Required: Intel(R) Core(TM) i5-10210U CPU @ 2.50GHz 1.60GHz, 2112
Mhz, 4 Core(s), 8 Logical Processor(s)

RAM: 8GB

System Type: 64 bit Operating Systems
ROM: 1TB HDD

Operating System: Windows 10

2.2 Software Requirements

1. Python Libraries listed below.

° # Libaries import
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from copy import copy
from time import sleep
from scipy.stats import norm, probplot
from sklearn.preprocessing import StandardScaler
from keras.preprocessing.text import Tokenizer
Ffrom keras.models import Sequential
from keras.layers import Dense,GRU
from keras.layers import Dropout
from keras.layers import LSTM
Ffrom keras.callbacks import ModelCheckpoint
from keras.utils import np utils
from keras.layers import Embedding
from keras.preprocessing.sequence import pad_ sequences
import string
from textblcecb import TextBlob
from nltk.corpus import stopwords
from nltk.stem.wordnet import wWordMetiLemmatizer
import nltk
from keras.callbacks import EarlyStopping
from glob import glob
import numpy as np
from tqgdm import tgdm
from keras.layers import Bidirectional. GlobalMaxPoolilD
from sklearn.preprocessing import StandardScaler, RobustScaler
import os, re, cswv, math, codecs
From numpy import unigque
from numpy import hstack
from numpy import wstack
from numpy import where
from matplotlib import pyplot
from sklearn.datasets import make_blobs
from keras.layers.core import Dense, Activation
from keras.layers import LSTM, GRU, SimpleRMN, Bidirectional
from keras.layers import *
from keras.callbacks import ReducelROnPlateau, ModelCheckpoint, EarlyStopping
import matplotlib.pyplot as plt
from sklearn_.metrics import *
import xgboost as xgb
import pickle
from sklearn.preprocessing import StandardScaler.MinMaxScaler
from random import random
import pswutil
from sklearn.model selection import train_test split
from keras.utils import *
from imblearn.metrics import sensitivity specificity support
from matplotlib import pyplot
rom tqgdm import tgdm
from sklearn import preprocessing
import gc
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.decomposition import PCA
import warnings
from sklearn.feature_ selection port SelectKBest
from sklearn.feature_ selection import chi>
from sklearn.model_selection import train_test_split, GridSearchcv
from collections import Counter

rom imblearn.over_sampling import SMOTE
from collections import Counter
from keras.datasets import mnist
from keras.layers impor Input, Dense
from keras._models import Model
from keras import backend as K
from tensorflow.keras.utils import to_ categorical

Figure 1: Python Libraries Used

2. Web Browser: The Google Chrome web browser version 87.0.4280.88 was used .
Earlier versions of Google Chrome failed to support colab notebook.

3. Google Colaboratory (colab) IDE: This project is built with Google Colaboratory
(colab) IDE, a free cloud service product by google allowing numerous Artificial
Intelligence (AI) libraries, powerful GPU and TPU.

4. Google Colaboratory (colab) IDE: This project is built with Google Colaboratory
(colab) IDE, a free cloud service that supports numerous Artificial Intelligence (AI)
libraries.

3 Data Collection

The Datasets for this project is collected from UCI Machine Learning Repository. Steps
for collecting the data are below:

e First the file is downloaded and stored in google drive Figure

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

Online News Popularity Data Set

Download Data Folder, Data Set Description

Abstract: This dataset summarizes a heterogeneous set of features about articles published by Mashable in a period of two years.

Data Set Characteristics: Multivariate Number of Instances: || 39797 || Area: Business
Attribute Characteristics: Integer, Real Number of Attributes: | 61 Date Donated 2015-05-31
Associated Tasks: Classification, Regression || Missing Values? NFA Number of Web Hits: | 337697

Figure 2: Dataset in UCI

e Google Drive is then mounted onto Google Colab, as the data for the experiment
is stored on it. Figure

from google.colab import drive
bdrive.mount('/content/drive’)

Go to this URL in a browser: https://accounts.google.com/

Enter your authorization code:
(411 AX4XiWjjimaAdpPhAvoQ)

Figure 3: Mounting Google Drive onto Google Colab

The dataset, containing the list of articles published was published in 2 years, by
mashable.com.

4 Data Preprocessing & Exploratory Data Analysis

4.1 Preprosessing

The data was already preprocessed by K. Fernandes et al. There are slight modifications
to be done for making it ready for exploratory data analysis. Dropping 'url’ 'timedelta’
and using ’ shares’ (a space character at the left) as a space character is appended to the
left in the column headers.

Here we drop the two non-preditive (url and timedelta) attributes. They won't contribute anything
data.drop(labels=["'url’, ' timedelta'], axis = 1, inplace=True)
data.head(n=4)

describing the data

data.describe()

from the data, there is a need to normailze to consider any machine learning model.
creating a grading criteria for the shares

share data = data[' shares']

Figure 4: Data Pre-processing

4.2 Exploratory Data Analysis

Data is explored in depth to analyse the attributes, their statistics like distribution and
correlation. Few of the visuals can be seen in Figure [5] and Figure [0]

23 data_channel
B Entzrtainment
I Business
B Ech
B lifestyle

3 Werld
I Others
[Social Media

—

5

; M lh

Very Poor Poor Good Average Very Good Excellent Exceptional
Popularity

2

Num_im
—
S

Figure 5: Data by News Channel

1
o= -
: - -
= - -
=
=
1
.
=
o6
=‘I
f =1
=
-t —1 N
= —4 —— N
g 1
=04
-
; * ’
*
: .
o2 .
E-3 . N
Very Poor Poor Good Average Wery Good Excellent Exceptional
Popularity

Figure 6: Popularity by n_non_stop_unique_tokens

5 Feature Selection

Six feature sets are used in the experiment - traning and testing the model with LSTM
and Bi-LSTM models.

scalled all the feature selections

data_featurel nor = scaler.fit_transform(data_featurel.values)

data_feature2 nor = scaler.fit_transform{data_feature2.values)

data_feature_fisher_nor = scaler.fit_transform(data_feature_fisher.values)
data_featurel_normal_nor = scaler.fit_transform(data_featurel normal.values)
data_feature_fisher_normal_nor = scaler.fit_transform(data_feature_fisher_normal.values)
data_feature2_normal_nor = scaler.fit_transform{data_feature2_normal.values)

features_selection = [data_featurel nor, data_feature2 nor, data_feature_fisher nor, data_featurel normal_nor,
data_feature_fisher_normal_nor, data_festure2_normal_nor]

features_selection labels = ['Features on Hypothesis®, 'All Features', 'Fisher based Features',

'Features on Hypothesis - Normal Distribution', 'Fisher based Features - Normal Distribution’,
'All Features - Normal Distribution’]

Figure 7: Feature Selection

6 Model Implementation

The models employed in predicting the news popularity are LSTM and Bi-LSTM, with
and without Autoencoder.

The steps are as follows:

Split the test and train data in the ratio 70/30 - Figure

Deal with class imbalance by using the oversampling, SMOTE technique - Figure 9]

Reshape the dataset as required - Figure

Apply the model

[1 # Splitting the data for Training and Testing
train and test for a feature selections
¥ _train_1, X_test_1, y_train_1, y_test_1 = train_test_split(data_featurel nor, encoded labels, test_size=8.3, shuffle=False)
X _train_2, X_test_2, y_train_2, y_test_2 = train_test_split(data_feature2 nor, encoded labels, test_size-8.3, shuffle=False)
X train_3, X test 3, y train 3, y_test 3 = train_test split(data_feature fisher nor, encoded labels, test size=8.3, shuffle=False)
X_train_4, X _test_4, y train_4, y_test_4 = train_test_split(data_featurel normal_nor, encoded_labels, test_size=8.3, shuffle=False)
X_train_5, X _test_5, y _train_5, y_test_5 = train_test_split(data_feature_fisher normal_nor, encoded_labels, test_size=8.3, shuffle=False)
X_train_6, X_test_6, y_train_6, y_test_6 = train_test_split(data_feature2 normal_nor, encoded_labels, test_size=8.3, shuffle=False)

Figure 8: Train-Test Data Split

[] print("WORKING OF SMOTE ALGORITHM")
print(” ™)
print("Y_TRAIN Mumber transactions X_train dataset: ", data_featurel_nor.shape)
print("Y_TRAIN Number transactions y train dataset: ", encoded_labels.shape)
print("Before OverSampling, counts of label '@': {}".format(sum(encoded_labels == 8})))
print("Before OverSampling, counts of label '1': {} \n".format(sum(encoded_labels == 1)})
print("Befors OverSampling, counts of label
(
(
(
(

"2 {}".format(sum(encoded_labels == 2}))
print("Befors OverSampling, counts of label '3': {} “n".format(sum(encoded_labels —= 3)})
print(“Before OverSampling, counts of label '4': {}".format(sum(encoded labels == 4}))
print("Before OverSampling, counts of label '5': {} \n".format(sum(encoded_labels == 5)})
6

print(“Before OverSampling, counts of label : {} \n".format(sum(encoded_labels == 6)})

import SMOTE module from imblearn library

sm = SMOTE{random_state = 2)

data_featurel norl,encoded_labelsl= sm.fit_sample(data_featurel_nor, encoded_labels.ravel())
data_feature2_nor2,encoded_labels2= sm.fit_sample(data_feature2_nor, encoded_labels.ravel())
data_feature_fisher_nor3,encoded_labels3= sm.fit_sample(data_feature_fisher_nor, encoded_labels.ravel())
data_featurel normal nord,encoded labelsd= sm.fit sample(data_ featurel normal nor, encoded labels.ravel())
data_feature_fisher_normal_nor5,encoded labels5= sm.fit_sample(data_feature_fisher_normal_nor, encoded_labels.ravel())
data_feature2?_normal_noré,encoded_labelsé= sm.fit_sample(data_feature2_normal_nor, encoded_ labels.ravel())

Figure 9: Dealing Class Imbalance

[1 #from keras.utils import to categorical
X train 1=np.reshape(X train 1,(X train 1.shape[@],X train 1.shape[1],1))
X _test 1=np.reshape(X test 1,(X test 1.shape[@],X test 1.shape[1],1})
¥ TRAINl=to categorical(y train 1,num classes=7)
¥ TESTl=to categorical(y test 1,num classes=7)

Figure 10: Reshaping after Treating Class Imbalance

6.1 Model 1: LSTM
Applying LSTM Model for the dataset considering the six combinations of features

° earlystopping = EarlyStopping(monitor = 'loss', verbose = 1,patience = 8, mode = 'min’)

def model_stack(X_train 1,X test 1,Y TRAIN,Y TEST):
#input_img= Input(shape=shape) #(32,)
model = Sequential()

model.add({L5TM(128, input_shape=(X_train_1.shape[1],X_train_1.shape[2]),return_sequences=True))
model.add ((LSTM(64, return_sequences=True)})
model.add(Dropout(8.25))
model.add((LSTM(64, return_sequences=True)))
model.add(Dropout(2.28))
model.add({(LSTM(64, return_sequences=True)))
model.add(Dropout(2.25))
model.add((LSTM(64,return_sequences=True)})
model . add({Dropout(@.28))
model.add((LSTM(&4, return_sequences=True)})}
model.add(Dropout(8.25))
model.add((LSTM(64, return_sequences=True)))
model.add(Dropout(2.28))
model.add({(LSTM(64, return_sequences=True)))
model. add(Dropout(2.25))
model.add((LSTM(64)))

model . add(Dropout(@.28))

model.add(Dense(7, activation='softmax'})
print{model.summary())

compile network

model.compile(loss="categorical_crossentropy’, optimizer='adam', metrics=["accuracy'])

fit network

checkpoint = ModelCheckpoint(“check.h5", monitor='loss', verbose=1, save_best_only=True, mode="min')

callbacks_list = [checkpoint,earlystopping] #

model.fit(X train_1, Y _TRAIN,batch_size=64, epochs=48, verbose=1,callbacks=callbacks_list,validation_data=(X_test_1,Y TEST))
#model.save("BILSTM.h5")

Figure 11: LSTM model

6.2 Model 2: Bi - LSTM
Applying Bi-LSTM Model for the dataset considering the six combinations of features

° earlystopping = EarlyStopping(monitor = 'loss', verbose = 1,patience = 8, mode = 'min’)

def model_stack(X_train 1,X test 1,Y TRAIN,Y TEST):
#input_img= Input(shape=shape) #(32,)
model = Sequential()

model.add({L5TM(128, input_shape=(X_train_1.shape[1],X_train_1.shape[2]),return_sequences=True))
model.add ((LSTM(64, return_sequences=True)})
model.add(Dropout(8.25))
model.add((LSTM(64, return_sequences=True)))
model.add(Dropout(2.28))
model.add({(LSTM(64, return_sequences=True)))
model.add(Dropout(2.25))
model.add((LSTM(64,return_sequences=True)})
model . add({Dropout(@.28))
model.add((LSTM(&4, return_sequences=True)})}
model.add(Dropout(8.25))
model.add((LSTM(64, return_sequences=True)))
model.add(Dropout(2.28))
model.add({(LSTM(64, return_sequences=True)))
model. add(Dropout(2.25))
model.add((LSTM(64)))

model . add(Dropout(@.28))

model.add(Dense(7, activation='softmax'})
print{model.summary())

compile network

model.compile(loss="categorical_crossentropy’, optimizer='adam', metrics=["accuracy'])

fit network

checkpoint = ModelCheckpoint(“check.h5", monitor='loss', verbose=1, save_best_only=True, mode="min')

callbacks_list = [checkpoint,earlystopping] #

model.fit(X train_1, Y _TRAIN,batch_size=64, epochs=48, verbose=1,callbacks=callbacks_list,validation_data=(X_test_1,Y TEST))
#model.save("BILSTM.h5")

Figure 12: Bi-LSTM model

6.3 Model 3: Autoencoder LSTM

Applying Autoencoder LSTM Model for the dataset considering the six combinations of
features

def model stack(shape,si,X_train_1,X test_1,Y_TRAIN,Y TEST):
input_img= Input(shape=shape) #(32,)

encoded = Dense{units=si, activation='relu')}(input_img)
encoded = Densefunits=188, activation='relu')(encoded)

encoded = Dense({units=58, activation='relu’)(encoded)
encoded = Dense(units=25, activation='relu')(encoded)
encoded = Dense{units=12, activation='relu')(encoded)
encoded = Dense{units=6, activation="relu’)({encoded)

decoded = Densefunits=12, activation="relu')(encoded)
decoded = Dense({units=25, activation='relu'}{decoded)
decoded = Dense{units=58, activation='relu')(decoded)
decoded = Dense{units=188, activation='relu')(decoded)
decoded = Dense{units=288, activation='relu')(decoded)
decoded = Dense{units=si, activation='softmax')(decoded)

autoencoder=Model (input_img, decoded)

#ile can extract the encoder which takes input data and outputs the encoded data of dimension 32
encoder = Model{input_img, encoded)

autoencoder. summary ()
encoder.summary ()

autoencoder.compile(optimizer="adam"', loss="mse', metrics=['accuracy'])

Figure 13: Encoder LSTM model

6.4 Model 4: Autoencoder Bi - LSTM

Applying Autoencoder Bi-LSTM Model for the dataset considering the six combinations
of features

def model_stack(shape,si,X_train_1,X test_1,Y TRAIN,Y TEST):
input_img= Input(shape=shape) #(32,)

encoded = Dense(units=si, activation="relu')(input_img)
encoded = Dense(units=18e, activation="relu')(encoded)
encoded = Dense(units=5@, activation='relu')(encoded)
encoded = Dense(units=25, activation='relu')(encoded)
encoded = Dense(units=12, activation='relu’}{encoded)
encoded = Dense(units=6, activation='relu’)(encoded)

decoded = Dense(units=12, activation='relu')(encoded)
decoded = Dense(units=25, activation='relu')(decoded)
decoded = Dense(units=5@, activation='relu')(decoded)
decoded = Dense(units=188, activation='relu')(decoded)
decoded = Dense(units=2@8, activation="relu')(decoded)
decoded = Dense(units=si, activation='softmax')(decoded)

autoencoder=Model (input_img, decoded)

#ile can extract the encoder which takes input as the input and the output of encoder is the encoded of dimension 32
encoder = Model(input_img, encoded)

autoencoder. summary ()
encoder. summary ()

autoencoder.compile(optimizer="adam', loss='mse', metrics=['accuracy'])
#ile finally train the autoencoder using the training data with 5@ epochs and batch size of 256.
autoencoder.fit(X_train_1, X train_1,
epochs=128,
batch_size=64,
shuffle=True,
validation_data=(X_test_1, X_test_1))
encoder = Model(input_img, encoded)
encoder.compile(optimizer="adam’, loss='categorical_crossentropy’, metrics=['accuracy'])

Figure 14: Encoder Bi-LSTM model

10

	Introduction
	Project Overview

	Pre-requisites
	Hardware Requirements
	Software Requirements

	Data Collection
	Data Preprocessing & Exploratory Data Analysis
	Preprosessing
	Exploratory Data Analysis

	Feature Selection
	Model Implementation
	Model 1: LSTM
	Model 2: Bi - LSTM
	Model 3: Autoencoder LSTM
	Model 4: Autoencoder Bi - LSTM

