~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Devashish Vijay Rayate
Student ID: X19232616

School of Computing
National College of Ireland

Supervisor: Prof. Hicham Rifai

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Devashish Vijay Rayate
Student ID: X19232616
Programme: Data Analytics
Year: 2020
Module: MSc Research Project
Supervisor: Prof. Hicham Rifai
Submission Due Date: 16,/08/2021
Project Title: Configuration Manual
Word Count: 1057
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Devashish Vijay Rayate

Date: 15th August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Devashish Vijay Rayate
X19232616

1 Introduction

The objective of this documentation is to list out all the activities to be performed during
the project implementation stage. In order to recreate the project in the future, software
and hardware requirements are outlined. This article covers the coding and deployment
processes, as well as the procedures that must be completed to run the code.

2 System Configurations

2.1 Hardware Configuration

Figure [1] below shows the hardware configuration of the system on which the code was
implemented.

Windows edition
Windows 10 Home Single Language -- .
© Microsoft Corporation. All rights reserved. .. WI n d OWS 1 O

System

Processor: AMD Ryzen 5 4600H with Radeon Graphics 3.00 GHz
Installed memory (RAM): 16.0 GB (15.4 GB usable)
System type: 64-bit Operating System, x64-based processor I

Pen and Touch: No Pen or Touch Input is available for this Display

Support Information

Figure 1: Hardware configuration

2.2 Software Configuration

This section contains information about the software that were used to implement the
research, as well as their specifications.

2.2.1 Google Colaboratory

Google’s computing infrastructure, also called as Google Colab, is used for the project.
All of the libraries have been loaded, and the model is being coded in Google Colab.

The dataset is uploaded on Google Drive which is then connected to Google Colab using
following code:

a ' google.colab

drive.mount(

Go to this URL in a browser:

Enter your authorization code:

Figure 2: Mounting Google Drive on Google Colab

Following the execution of the command in Figure [2] a hyperlink to get authorization
code is displayed, and if we click on it, an authorization key is produced. Copy that code
and paste it into the colab’s input box, and the drive will be mounted successfully.

We'll switch the Colab notebook’s runtime to GPU because it makes image processing

models run faster. Colab’s runtime can be changed by going to the 'Runtime’ menu, then
‘Change Runtime Type,” and selecting the GPU option.

Notebook settings

Hardware accelerator
GPU

|:| Omit code cell output when saving this notebook

Cancel

Figure 3: Changing Runtime Type to GPU on Google Colab

2.2.2 Other Software Used

Google chrome web browser was used to access Google Colab. TeXstudio is used for
project report documentations which supports creation of documents using Latex. The
software is user friendly and it helps to create latex documents very easily. Figure 4 below
shows Ul of TeXstudio.

[Fi\Final report\RIC Latex Template\text\design.tex - TeXstudio
File Edit Idefix Tools LaTeX Math Wizards Bibliography Magros View Options Help
HHO A0 PP EAU" e v view - pat v
|Structure X < X tex X designtex X 4 hn
=] © mtroduction ~ put it another way, it can distinguish between A
— Vv relatedwork.tex various things in a picture or video. It takes a
E‘ LABELS B picture and returns the item's masks, bounding
[R] v © Related Work 1 boxes, and classes \citep{24}.
E3| © SAR Object Detecti... vl \figurename~\ref{fig:mrcnn_arch} below shows the
m © Data Augmentation = Mask R-CNN design for proposed system.
= © Literature Summar... E
PS] v methodology.tex = \begin{figure}[h]
e] LABELS \begin{center}
i _9 Research Methodology \includegraphics[width =
V. design.tex o 0.8\textwidth]{mrcnn_arch.png}
sl P \caption{Mask R-CNN with ResNet-101 backbone
v © Design Specification ss .
] v © MaskR-CNN) architecture}
k] %) \label{fig:mrcnn_arch}
%] © Region Propos... X \end{center}
© Rol Classifier a... ki \end{figure}
g z:ls:?‘ggn ¥ The Mask R-CNN model works as follows:
« implementation.tex V& \subsubsection{Backbone Network}
LasELs The raw SAR picture is sent to ResNet-101, a
v © Implementation backbone network that acts as a feature extractor.
© Environment Setup Initial layers recognize low level characteristics
© Data Processing such as boundaries and edges, while successive
© Model Training layers identify top level elements in the image (in
v evaluation.tex this case, ships). The picture is changed from
LABELS $1024)\times1024\times3$ (RGB) to a
v © Evaluation and Discussion $32\times32\times2048% feature vector as it passes
v © Model Evaluation across the backbone network. This feature vector is
O Results then used as the input for the subsequent stages.
© Losses The \figurename~\ref{fig:bb} below depicts a
© Mean Average ... rudimentary diagram of how a backbone network
© Discussion operates.
Vv conclusion.tex
LABELS \begin{figure}[h]
© conclusion \begin{center}
refs.bib Vil aaoou:o_ro:as
ahatract tex S Line: 22 Column: 298 INSERT =
5.

label ¥

tiny

B af

5

AA

LT

Implementation

- [m] X
EEEZEEH 4 A
o @[l B = »
= =T A
jgure 5: ResNet-101 backbone ssple illstration
¢ (ROIS). T
x Refinrnent
12
i
Pages1ato15of21 53%. © i ®
en_US, UTF-8, Ready Automac W B B

Figure 4: Documentation using TeXstudio

3 Data Preparation

Dataset used for the research is downloaded from Kaggle’s *Airbus Ship Detection chal-

lenge’El shown in Figure

Featured Prediction Competition

Airbus Ship Detection Challenge
Find ships on satellite images as quickly as possible

Figure 5: ’Airbus Ship Detection’ dataset for project implementation

The dataset contains 2 folders: train_v2 and test_v2. It also contains one annotation
file which has Imagelds and EncodedPixels information. The annotations are provided
in RLE format. As shown in Figure [6] we uploaded our dataset on Google Drive.

Thttps:/ /www.kaggle.com/c/airbus-ship-detection

L Drive Q se

Folder

File upload

Folder upload

B Google Docs >

Google Sheets >
Google Slides >
More >

Figure 6: Upload dataset on Google Drive

After uploading the folders on Google Drive, we read the data using below code and
split the data under train_v2 folder into training and testing dataset with ratio of 75:25
as shown in Figure [7]

-EncodedPixels.notnull()].ImageId.unique().tolist()
7 i (Filles 2 {F et An el Qs zral F fn Grefim_geeed]

image fps_train, image fps_val = train_test_split{(ftrain_names, train size = 8.75, teztizizs-:EEI.ZS)l

rain[:168]
[:100]

print(len(image fps_train), len(image fps_wval))

8499 2833

Figure 7: Splitting the dataset into training and testing set

4 Model Implementation

Implementing Mask R-CNN along with data augmentation is novelty of the project.
Mask R-CNN is a straightforward and effective object segmentation approach for object
recognition applications. It achieved first position at COCO 2016 Competition (He et al.;
2017)). In this research we used the Mask R-CNN library which is publicly available on
githubﬂ. It allows us to create an object detection model using Mask R-CNN. We can
also add our own code into those script as required.

Zhttps://github.com/matterport/Mask RCNN

The code snippet of "git clone’ command shown in Figure |8 below is used to clone the
github repository into our colab environment.

° lgit clone https://www.github.com/matterport/Mask_ RCNN.git|

Cloning into "Mask_RCNN'...

warning: redirecting to

remote: Enumerating objects: 956, done.

remote: Total 956 (delta @), reused @ (delta @), pack-reused 956
Receiving objects: 1% (956/956), 125.23 MiB | 32.81 MiB/s, done.
Resolving deltas: 108% (562/562), done.

Figure 8: Splitting the dataset into training and testing set

We will write a few functions to decode the RLE encodings present in annotation file.

We will also create a class for associating these encodings to each image and preparing
them for training.

, image annotations, orig height, orig width):

orig_width)

image.shape[2] != 3:
*3, -

3, -1)

‘1, 1), dty). uintg)

count), dtype=np.uintg)

Figure 9: Creating a class for preparing dataset

We will create dataset object for training and testing datasets and invoke prepare()
method for them respectively (shown in Figure .

torDataset(image_fps_train, image_annotations, ORIG_SIZE, ORIG_SIZE)

CPU times: user 5 , Sys: 6 , total: 56.6 s
Wall time: 56.6 s

ral = DetectorDataset(image fp , image annotations, ORIG SIZE, ORIG SIZE)
4 datas ral.prepare()

CPU times: user 18.2 s, sys: ® ms, total: 18.4 s
Wall time: 18.4 s

Figure 10: Preparing training and testing dataset

We are using ImageAug library for data augmentation. Figure 11 below shows differ-
ent data augmentations that were used in the project.

[y

augmentation = iaa.Sequential([
i One0t ([
iaa.Affine(rotate=0),
.Affine(rotate=5
.Affine(rotate=

oW s R

a.Flipud(

a.0neof ([
iaa.Multiply((@.9, 1.1)),
jaa.ContrastNormalization((@.9, 1.1)),

aa.0ne0f ([
iaa.GaussianBlur{sigma=(98.8, 8.1)),
iaa.Sharpen(alpha=(8.8, 8.1)),

Figure 11: Data augmentation

We will specify the configurations for training our Mask R-CNN model. The config.py
file which is cloned from github contains default configuration and hyperparameter values
which can be manipulated using code mentioned in Figure below.

Dot
NAN s
GPU_COUNT = 1
IMAGES PER GPU = 1
NUM_CLASSES = 2
IMAGE_MIN_DIM = 7¢

IMAGE MAX DIM 763

RPN_ANCHOR_SCALES = (8, 16,

STEPS _PER_EPOCH = 15 if debug e
VALIDATION_STEPS = 18 if debug e

3 config = DetectorConfig()
A config.display()

Figure 12: Data augmentation

In order to implement transfer learning, we have used COCO pre-trained weights
while training. The coco weights file is also downloaded from Mask R-CNN’s github
repository. model.load_weights() function is used to load these COCO weights into our
model.

1 COCO_WEIGHTS PATH = os.path.join(ROOT_DIR, "n
3 model = modellib.MaskRCNN(mode="training’, config=config, model dir=ROOT_DIR)
4

Figure 13: COCO transfer learning

After executing all activities mentioned above, we are ready to train our model. We
will set LEARNING_RATE variable to 0.001 and train model heads for 2 epochs using
code mentioned in Figure [14])

me
nodel.train{dataset_train, dataset_val,
g_rate=LEARNING RATE,
epochs
layers
augmentat

8 history = model.keras_model.history.history

Figure 14: Training model heads

After training the model heads, we will apply some learning rate decay to our model
and train its all layers for 50 epochs. Each epoch will maintain information about different

7

losses experienced during training and testing and on the basis of these losses we will select
the best epoch which has minimum val loss for model evaluation. Figure shows how
our model executes during training.

- 362s 725ms/step - s: ©.8952 - rpn_class_loss: ©.8059 - rpn_bbox loss: ©.3797 - mrcnn_clas

685 617ms/step - loss - rpn_cla .8855 - rpn_bbox loss: 8.4029 - mrcnn_clas
115 621ms/step - loss - rpn_cla : 8.8857 - rpn_bbox loss: ©.3638 - mrcnn_clas
16s 62ems/step - loss 34 - rpn_cla: : ©.8054 - rpn_bbox_loss: ©.3429 - mrcnn_clas

626ms/step - loss - rpn_cla : 8.6861 - rpn_bbox loss: ©.3747 - mrcnn_clas

Figure 15: Model execution

After selecting best epoch, we will recreate the model in inference mode and load the
weights produced by best epoch. Refer the code in Figure for the same.

IMAGES_PER GPU = 1

5 inference_config = InferenceConfig()

13 model_path
14 print(Fi model_p
15 model2 _weights(model_path, b
WARNING: tensorflow:From /content/drive/Myl ip/Mask_RCNN/mrcnn/model .py:728: The name tf.sets.set_intersection is
nsorflow:From /content/drive/Myi e/Ship/Mask RCNN/mrcnn/model.py:722: The name tf.sparse tensor to_dense i
orflow:From /content/drive/MyDrive/Ship/Mask RCNN/mrcnn/model.py:772: to float (from tensorflow.python.ops|

CEL
from /content/drive/MyDrive/Ship/airbus28218818T8625/mask_rcnn_airbus_6@49.h5
Re-starting from epoch 49

Figure 16: Model recreation in inference mode

Once the model is recreated in inference mode, we can evaluate its performance. We
will use mean average precision (mAP) metrics to evaluate our model. a model is con-
sidered as a balanced model if its mAP is between 0.5 to 1.0. We can see from Figure
below that our model was able to achieve mAP of 0.715 which denotes that the model is
balanced.

3 print(

[» Train mAP: @.715

Figure 17: Model Evaluation

The testing results can be visualized using visualize.display_instances() method defined
in Mask R-CNN library. Figure below shows visualizations for sample images.

1), ax=Fig.axes[-1])

Ship.0.914

ship = Ship 0.899
maces mAcEs

Figure 18: Visualization

In the last stage we can feed our validation dataset to the model which will predict
whether or not there is a ship in given sar image. For that, we will define a function
predict() which will make predictions on all images present in validation set and write
down the results in submissions.csv file.

predict(image_fps, filepath=" > min_conf=config .DETECTION MIN_CONFIDENCE):
resize factor = ORIG_SIZE / config.IMAGE_SHAPE[®]

iith open(filepath,

for image id tqdm(image_fps)
found
st _names_nothing:
ath.join(test_dicom dir, image_id))
image.shape[2] != 3:
([image])

== len(r[ids"]) == len(r

file.write(image_id + ", + rle_encode(r[’
found =

if not found:
file.write(image_id + ",\n")

fp = os.path.join(DATA DIR, '
t_image_fps, filepath=submission_fp)

Figure 19: Making predictions on validation dataset

The scripts and functions mentioned in this document are all provided in the ICT
solutions along with this report.

References

He, K., Gkioxari, G., Dollar, P. and Girshick, R. (2017). Mask r-cnn, 2017 IEEE Inter-
national Conference on Computer Vision (ICCV), pp. 2980-2988.

9

	Introduction
	System Configurations
	Hardware Configuration
	Software Configuration
	Google Colaboratory
	Other Software Used

	Data Preparation
	Model Implementation

