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Configuration Manual

Pooja Rakate
Student ID: x19241267

1 Introduction

This configuration manual provides information regarding the data source, software, system
specification, hardware specifications, tools, libraries, and code used for executing the
models implemented for the research project “A Deep Learning Framework to classify
Yoga poses Hierarchically”. It also describes the steps undertaken to process the data to
make it ready for implementing the proposed models.

2  System Specifications

This section provides details about the system configurations used for implementation in this
project.

2.1 System Hardware for processing data

Operating System: Windows 10

Processor: AMD Ryzen 5 3550H with Radeon Vega Mobile Gfx 2.10GHz
Installed RAM: 8.00 GB (5.88 GB is usable)

System Type: 64-bit operating system x64based processor

Hard Disk: 1TB

2.2 System Hardware for training the deep learning models

Training a deep learning model on the system mentioned in section 2.1 took very long hours
to run. Approximately 2 hours per epoch and a total of 30 epochs were to be run. Hence, an
instance of a Microsoft Azure virtual CPU machine (VM) was created®. Data was stored on
this machine so that the model could access it. Each time the model had to be run, the VM
was started and once the training ended it was stopped. Initially, credits provided by the
National College of Ireland were used to create a machine, but as it was a student
subscription a machine with large RAM could not be created and hence, the subscription was
updated from Azure-student to “pay-as-you-go” to be able to use a machine with the below-
specified configuration.

Operating System: Windows (Windows Server 2016)

RAM: 112 Gib (approximately 120GB)

vCPUs 8

1 https://docs.microsoft.com/en-us/azure/virtual-machines/windows/quick-create-portal
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3 Softwares Used

All the software and programming languages used for implementing this project are listed in
this section. JAVA 8 was used to download the images from the dataset. Python
programming language was used for processing the downloaded data and running the deep
learning models. The python code was written and executed in Jupyter notebook from the
Anaconda Navigator.

JAVA 8

JET BRAINS IntelliJ IDEA (Version 2021.2)
Python 3.7

Jupyter Notebook

IntelliJ IDEA can be downloaded from here? for the windows system. To use Jupyter
notebook. Install Anaconda navigator version 1.9.12 was used.

4 Project Implementation
4.1 Data collection

The Yoga-82 dataset was downloaded from their home page®. The downloaded data had three
text files and one readme file. There was one text file containing the image name and its
corresponding web URL to download it from. The other two text files were the train label file
and the test label file. It consisted of the image name and their corresponding labels on the
three levels of hierarchy. There are a total of three levels in the hierarchy. The first level
classifies a yoga pose into 6 classes, the second level classifies it into 20 classes and the third
fine level classifies them into 82 classes(82 Yoga poses). One can either download the
original data or directly used the processed data that is ready for modelling directly from
here*. The processed data has 4 datasets. One is normal image data, second is its balanced
version, third is the skeleton image dataset created by using OpenPose model and the last one
is the balanced version of the third dataset. Each folder also includes the train, validation and
test files.

4.2 Data Extraction & Cleaning

Downloading images using Python 3.7 took time, hence JAVA was used to download the
images. The GIF format images were excluded while downloading. Entry of images not
found was made into a text file and entry for these images was removed from the train and
test label files. All the images were stored using the JAVA program in to their respective
class folders for each hierarchical level. As this structure would have been difficult to retrieve
the images. All the images were later stored once in a single foler and second time in two
separate folders as test and train images. The JAVA code written for this step can be found

2 https://www.jetbrains.com/idea/download/#section=windows

3 https://sites.google.com/view/yoga-82/home

4 https://studentncirl-

my.sharepoint.com/:f:/g/personal/x19241267 student ncirl ie/Et30BQwnBeZEujd1iMLFniUBuC16k8Jb3ztuEU
So3bLHsA?e=ABb8Ls
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here®. Download the “Data_extraction_Java_code.zip” file unzip it and run application 3 in
your IDE. This same code is available in the “Java_Code” folder in the cade artefacts.

Hereafter, the Python programming language was used. Install OpenCV (library for computer
vision tasks) and import all the other libraries. At this stage we start running the
“YOGA_main.ipynb” file cell by cell.

Ipip3 install opencv-python

import requests

from pathlib import Path
import os

import glob

import cv2

from PIL import Image
import numpy as np
import random

import pandas as pd
import shutil

import cv2

import time

import math

import re

import pickle

import matplotlib.pyplot as plt

Figure 1: Import Required Libraries

Images that were downloaded by the JAVA code but were still unreadable were downloaded
again using Python and saved locally.

def downloadImage(imageUrl,filename,extension,Train_or_Test,FolderPath):
url = imagelrl

try:
response = requests.get(url
if response.status_code == 200: ##If image iz found
if Train_or_Test == "TRAIN":

Path("D:/Pooja_Thesis/2.8/imags_downloaded not_redable_train/").mkdir(parents=True, exist_ok=True)
£ = open("D:/Pooja_Thesis/2.8/image_downloaded_not_redable_train/"+filename+extension, "x")
with open("D:/Pooja_Thesis/2.8/image_downloaded not_redable train/"s+filenametextension, "wb") as f
£.urite(response.content)
else:
Path("D:/Pooja_Thesis/2.8/image_dawnloaded not_redable_test/").mkdir(parents-True, exist_ok=True)
£ = open("D:/Pooja_Thesis/2.8/image_dounloaded_not_redable_test/"+Filenamesextension, "x")
with open("D:/Pooja_Thesis/2.0/image_downloaded_not_redable_test/"+filename+extension, "wb™) as f:
f.urite(respense.content)
##If image 1is not found make an entry in respective text file
else:
if Train_or_Test == "TRAIN":
with open("D:/Pooja_Thesis/2.8/not_found_train.txt”,"a+") as f:
f.write(filename + '\t")
f.write(FolderPath + "\t'})
F.urite(url)
f.write("\n")
else:
with open("D:/Pocja_Thesis/2.8/not_found test.txt","a+") as f:
f.write(filename + '\t')
f.write(FolderPath + "\t')
Fourite(url)
fowrite("\n')

print(filename, response. status_code)

except Exception as e:
print(“An exception occurred”,e)

Figure 2: Download unreadable images again — Part 1

5 https://github.com/PoojaRakate26/DataAnalytics Thesis/blob/main/Data extraction Java code.zip
3



https://github.com/PoojaRakate26/DataAnalytics_Thesis/blob/main/Data_extraction_Java_code.zip

substringl = 'TRAIN'
substring2 = 'TEST'

with open("D:/Pooja_Thesis/2.9/image_downleoaded_not_redable.txt", "r") as a_file:
for line in a_file:
stripped_line = line.strip()

FileMameString = stripped_line[@:stripped_line.find(".jpg")]
#orint(FileNameString)

stripped line 2 = stripped line[stripped line.find(" ")+1:]
imageUrl = stripped line 2.strip()

Url = imageUrl[@:imageUrl.find(" ")]

#orint(url)

ext = Url[-4:]
#orint(ext)

stripped_line 3 = stripped line 2.strip()

FolderPath = stripped_line_3[stripped_line_3.find(" "):]
FolderPath = FolderPath.strip()

#orint(FolderPath)

if substringl in line:
Train_or_Test = substringl
else:
Train_or Test = substring2
#orint({Train_or_Test)

downloadImage(Url,FileNameString,ext,Train_or_Test,FolderPath)

Figure 2: Download unreadable images again — Part 2

Images that were still unreadable were deleted and they were noted.

try:
imdir = 'D:/Pooja_Thesis/2.8/image_downloaded_not_redable_ test/check_again/’
len_imdir = len(imdir)
#ext = ['png’, "jpg'] # Add image formats here

files = []
#[files.extend(glob.glob(imdir + "*.
[files.extend(glob.glob(imdir + "*.*'})]

"+ e)) for e in ext]

for file in files:
im = cv2.imread(file) ##returns none if image is not readable

if im is None:
stripped line = file.strip()
filename = stripped_line[len_imdir:]

###make a note of images that agre stille unreadable and delete them from folder
with open("D:/Pooja_Thesis/2.8/delete_entreis_from_main_test_data.txt","a+") as f:
f.write(filename)
f.write("\n")
os.remove(file)
print("Removed:"+' "+filename+ ' ' + file)

except Exception as e:
print("aAn exception occurred”,e)

Figure 3: Delete Unreadable images

Make sure the images saved in the local drive are in sync with the entries in the train and test
label files. This was done by matching all downloaded images and entries in test and train
text files. Keep only those entries in text files of which corresponding images are present.



imdir = 'D:/Pooja_Thesis/2.8/TRAIN/'
len_imdir = len(imdir)
#ext = ['png’, 'jpg'] # Add image formats here

count = @
imageName = []
retain = []

for file in glob.glob(imdir + "*.*"}):
stripped_line = file.strip()
imName = stripped_line[len_imdir:]
imagehame . append(imNams)

print(len(imageName))
with open('D:/Pooja_Thesis/Train.txt’, 'r') as f:
for line in f:
for name in imageName:
if name.lower() in line.lowar():
with open('D:/Pooja_Thesis/Train_final.txt', 'a+') as newfile: ## maoke a newfile with updated entries
newfile. write(line)
retain.append(name)
count = count + 1

print("number of matches found: "+ str(count))
print(“retain: "+ str(len(retain)))

except Exception as e:
print("An exception occurred”,e)

Figure 4: Synching the images saved and the data in the train and test label files

Due to system constraints, the entire dataset was not used for model training. Hence, the data
was reduced by 50% by first reducing the entries in the two label files and then using these
updated text files to keep only 50% of the images.

###First Reducing the Labels file of train and test images

def reducedata(imdir, classMame):
new_lines = []
with open(imdir+'Train_final.txt','r') as file:
for line in file:
if className in line:
line = line[:line.find("/n")]
new_lines.append(line)

num = len{new_lines)

half = int(round{num*g.5))
print(half)

index = [n for n in range(num)]
random. shuffle(index)

count = @
with open(imdir+'Train_final_reduced.txt","a+") as ff:
for m in range(half):
count = count + 1
ff.write(new_lines[index[m]])
ff.urite('\n")

#print(“Entries added to " + className + str(count))
#print(“Entries for " + className + “: " + str(num))

try:
list_classes = []
imdir = 'D:/Pooja_Thesis/2.8/Reducing_Data/"

with open('D:/Pooja_NCI/3_Semester/Class_Names.txt®,'r') as file:
for £ in file:
f = f[:f.find("/n")]
list_classes.append(f)
for 1 in list_classes:
#print("class " + i.split('/n')[-1] +':")

reducedata(imdir, i)

except Exception as e:
print("An excepticn occurred”,e)

Figure 5: Reducing the data in the label files by 50%
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### Reducing the image data using the reduced train and test Label files

try:
imdir = 'D:/Pooja_Thesis/2.8/TRAIN/'

with open{imdir+'Train_final reduced.txt’,'r') as ff:
lines = ff.readlines()

path = imdir + 'Image_data_reduced/’
len_path = len(path)

new_path = imdir + 'Image data_ reduced/Train/’

for file in glob.glob(path+"*.*"):
stripped _line = file.strip()
path = stripped_line[:len_path]
imFullName = stripped_line[len_path:]

for line in lines:
if imFullName in line:
print({line)
shutil.move(path+imFullName, new_path+imFullName)

except Exception as e:
print({"An exception occurred”,e)

Figure 6: Reducing the images by 50%

4.3 Data Transformation

In this step, firstly Skeleton images were extracted from the normal images using the
OpenPose model. Secondly, Data augmentation was carried out to balance the dataset.

4.3.1 OpenPose

The normal images were converted into skeleton images with a black background using the
OpenPose model. The “pose_deploy_linevec.prototxt” and the
“pose_iter_440000.caffemodel” files to run the OpenPose model can be downloaded from
here®. Since there were images in the dataset in which the yoga poses were in silhouette form
of sketches form, key points for them could not be identified. Such images were bypassed.
Required libraries were imported and then the OpenPose model was run to create the skeleton
images. This code is present in the “OpenPose_create_skeleton.ipynb” file.

import cv2

import time

import numpy as np

import os

import matplotlib.pyplot as plt
import math

impert re

import glob

import pickle

import pandas as pd

Figure 7: Importing the required libraries

6 https://github.com/foss-for-synopsys-dwc-arc-processors/synopsys-caffe-
models/tree/master/caffe_models/openpose/caffe_model
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def getSkeletonImages(imdir,file):
nPoints = 18
POSE_PATRS = [ [1,8],[1,2],[1,5],[2,3].[3,4],[5.6],[6,7],[1,8],[8,2].[%,1€],[1,11],[11,12],[12,13],[@,14],[@,15],[14,16], [15.
t = Time.time()
TEXT_COLOR = (@,8,8)
inkWiidth = 256
inHeight = 256
threshold = @.1
pot = []
#pot_train =
#pot_test
#pot_val =
#imageNames = []

splits = file.split(".")
splits splits[a]
dataset = splits[1:splits.find("_"}]

with open(imdir+file,"r") as fi:
for line in f1:
stripped_line = line.strip()
splitted = stripped_line.split(",")
print("Image being processed: ",splitted[a])

path = imdir +'Images/'+splitted[@]

frame = cv2.imread(path)

#print(frame)

if (frame.shape[1l] » &0@ and frame.shape[@] > 6@8):
scale_percent = 5@ £ percent of original size
width = int(frame.shape[1] * scale_percent / 18@)
height = int(frame.shape[8] * scale percent / 16@)
dim = (width, height)
frame = cv2.resize(frame, dim)
print(frame.shape)

frameCopy = np.copy(frame)
count_none = @

frameWidth = frame.shape[1]
print(’'frameWidth: '+ str(framewWidth))
frameHeight = frame.shape[@]
print('frameHeight: '+ str(frameHeight))

inpBlob = cv2.dnn.blobFromImage(frame, 1.8 / 255, (inWidth, inHeight),(@, ®, @), swapRB=False, crop=False)
net.setInput(inpBlob)
output = net.forward()

H = output.shape[2]

#orint(H)

W = output.shape[3]

#print (W)

# Empty list to store the detected keypoints
points = []

Figure 8: Creating Skeleton Images using OpenPose model — part 1

for i in range(nPoints):
# confidence map of corresponding body's part.
probMap = output[e, i, :, :]

# Find global maxima of the probMap.
minVal, prob, minLoc, point = cv2.minMaxLoc({probMap)

# Scale the point te fit on the original image
% = (frameWidth * point[e]) / W

print("x:"+ str(x))

y = (frameHeight * point[1]) / H

print{"y:"+ str(y))

if prob > threshold
cv2.circle(frameCopy, (int(x), int(y)), 8, (@, 255, 255), thickness=-1, lineType=cv2.FILLED)
cv2.putText(frameCopy, "{}".format(i), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, (@, @, 255), 2, lineTyg

# Add the point to the List if the probability is greater than the threshold
points.append((int(x), int(y)))
else :
count_none+=1
points.append((None,None)}

print(points)
print(count_none)

if (count_none == 18 or count_none >15):
print("Key-points cannot be detected by OpenPose for: "+ splitted[®])

##Images for which key points could not be generated

with open{imdir+dataset+"_OpenPose_failed.txt","a+") as f2:
f2.write(line)

else:
points.append(splitted[@8]) #®#ppend image name to the points array in case needed
points.append(splitted[1]) ##Append image Label 1 to the points array in case needed
points.append{splitted[2]) ##Append image Label 2 the points array in case needed
points.append(splitted[3]) ##Append image Llabel 3 the points array in case needed

print(points)

Figure 8: Creating Skeleton Images using OpenPose model — part 2



print(points)

frame = np.zeros((frameHeight,framewWidth,3),np.uint8) # For making the background black
TEXT_COLOR = (255,255,255)

for pair in POSE_PAIRS:
partA = pair[@]
partB = pair[1]

if points[partA][@] and points[partB][8]:
cv2.line(frame, points[partA], points[partB], (8, 255, 255), 1, lineType=cv2.LINE_AA)
cv2.ellipse(frame, points[partA], (4, 4), @, 8, 368, (255, 255, 255), cv2.FILLED)
cv2.ellipse(frame, points[partB], (4, 4), @, @, 360, (255, 255, 255), cv2.FILLED)
cv2.putText(frame, str(partA), points[partA], cv2.FONT_HERSHEY_SIMPLEX, @.5, (255, 255, 255),2,cv2.LINE_AA)
cv2.putText(frame, str(partB), points[partB], cv2.FONT_HERSHEY_SIMPLEX, @.5, (255, 255, 255),2,cv2.LINE_AA)

pot.append(points) ##Add key points for all images to a list, in case needed
#print("pot array: ", pot)

destpath = imdir+"/Skeleton_Images/"+splitted[e]

cv2.imwrite(destpath, frame) ##Save the skeleton images with black-background to Local drive
cv2.waitKey(2)

cv2.waitKey(8)

cv2.destroyAllWindows ()

return pot

Figure 9: Creating Skeleton Images using OpenPose model — part 3

protoFile = "D:/Pooja_Thesis/OpenPose/pose_deploy_linevec.prototxt”
weightsFile = "D:/Pooja_Thesis/OpenPose/pose_iter_ 448088.caffemodel”

imdir = "D:/Pooja_Thesis/OpenPose/
len_imdir = len(imdir)

net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile)

##adding new
list = ["/Test_final.txt","/Train_final.txt","/Validation.txt"]

#list = ["/trial_final.txt"]

for items in list:
pot = getSkeletonImages(imdir,items)
splits = items.split(".")
splits = splits[e]
data_file = splits[1l:splits.find("_")]

if data_file == "Train":
with open(imdir+"Train_pickle.txt", 'wb') as fp:
pickle.dump(pot, fp) #Pickling so that it can be Loaded back in case needed
print{"Train pickle file created.™)

elif data_file == "Test":
with open("Test_pickle.txt", "wb’) as fp:
pickle.dump(pot, fp)
print({"Test pickle file created.")

else:
with open("validaition_pickle.txt", 'wb') as fp:
pickle.dump(pot, fp)
print("validation pickle file created.")

Figure 10: Creating Skeleton Images using OpenPose model — part 4

After applying the OpenPose model, few images had to be deleted as no key points for them
were returned by the openPose model. Thus, to maintain uniformity, these images were
removed from the folder of normal images too. Reference to build the code for extracting key
points and plotting it on the image was taken from here’.

7 https://github.com/shahil1993/Thesis/blob/main/Final code.py
8
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4.3.2 Data Augmentation

The Yoga-82 dataset was highly imbalanced. So we tried to balance the data on the third
level which has 82 classes. On checking the number of images per class it was found that
there the number of images in the classes is varying with the maximum and minimum value
being 230 and 13 respectively. Hence, we balanced images in these classes by keeping the
utmost 65 images per class. Classes having more than 65 images were down-sampled while
those having fewer images were upsampled by adding vertically flipped and rotated versions
of the original image. The below code was used to achieve all this simultaneously. The same
code was run for the normal image dataset and the skeleton image dataset. The code for this
is present in the “Data_Balancing_using_Augmentation_techniques.ipynb” file.

import requests

from pathlib import Path
import os

import glob

import cw2

from PIL import Image
import numpy as np
import random

import pandas as pd
import shutil

Figure 11: Import required libraries

def augmentData(imdir, className):
new_lines = []
default = 65 ##number of images should be present in each class on the third Level of hierarchy which has a total of 82 clas:
angle = 45 ##value for rotating images
src = "D:/Pooja_Thesis/OpenPose/Skeleton_Images/"
dest=imdir+"OpenPose_sugmented_Images/"

with open(imdir+'Train_OpenPose.txt','r") as file:
for line in file:
if className in line:
line = line[:line.find("/n")]
new_lines.append(line)

num = len{new lines)

1st = [n for n in range(num)]
index = random.sample(lst, num)
#print{new_Lines)

count = 8
if (num > default): ## Classes that need down sampling to be done since they have more than 65 images
print(“Category 1: ",className)

with open{imdir+'Train_OpenPose_aAugnmented.txt’,'a+’) as ff:
for m in range(default):
count = count+l
ff.write(new_lines[index[m]])
ff.write("\n")

entry = new_lines[index[m]]
fileName = entry.split(",")
#orint(fileName[@])

shutil.copy(src + fileName[@], dest)

print(“Augmented Images for " + className + ": " + str(count))

Figure 12: Data Augmentation — Part 1



elif (num < default and num > 20): ## up sampling needed
print("Category 2: ",className)
diff = default - num
num_images_to_be_augmented = int(diff/2)
print("Category 2 - Images to be augmented:

',num_images_to_be_augmented)

with open{imdir+ ' Train_OpenPose_sugnmented.txt','a+’) as ff:
for m in range(num):
count = count+l
ff.write(new_lines[m])
ffourite("\n")
entry = new_lines[m]
fileName = entry.split(",")
#print(fileName[6])
shutil.copy(src + fileName[8], dest)

for m in range(num_images_to_be_augmented):
entry = new_lines[index[m]]
fileName = entry.split(",")
imghName = fileName[&]
ext = imgHame[imgName.find("."):]
img_wo_ext=imgName[:imgHame.find("." )]
image = cv2.imread(src+imghame)

# 1st augmentation technique: Flipping the image upon the y-axis
image_flipped_vertically= cv2.flip(image, 1)

destpath_FV = dest+img_wo_ext+" FV"+ext
cv2.imurite(destpath FV,image flipped vertically)

count = count+l

# 2nd augmentation technique: Rotating the image by 45 degrees

angle = int(random.uniform(-angle, angle))

h, w = image.shape[:2]

M = cv2.getRotationMatrix2D((int(w/2), int(h/2)), angle, 1)

rotated_image = cv2.warpAffine(image, M, (w, h))

destpath_R = dest+img_wo_ext+"_R"+ext

cv2. imurite(destpath_R, rotated_image)

count = count+l

## appending these newly created images entry into the Llabel fﬂe|

FV_line = img_wo ext+" FVW"+ext+","+fileName[1]+","+fileName[2]+", "+fileName[3]
ff.urite(FV_line)

ffourite("\n")

R_line = img_wo_ext+"_R"+ext+","+fileName[1]+","+FileName[2]+", "+FileName[3]
ff.urite(R_line)

ff.write("\n")

Figure 13: Data Augmentation — Part 2

elif (num == default): ## classes which already have only 65 images
print("Category 3: ",className)

with open(imdir+'Train_OpenPose_Augnmentad.txt',’a+') as ff:
for m in range(num):
count = count+l
ff.uwrite(new_lines[m])
ff.write("\n")

entry = new_lines[m]
fileName = entry.split(",")
imghame = fileName[8]

shutil.copy(src + imgName, dest)

Figure 14: Data Augmentation — Part 3

10




else:
print("Category 4: “,className)
with open(imdir+'Train_OpenPose Augnmented.txt','a+') as ff:
for m in range(num):

count = count+3
entry = new_lines[index[m]]
fileName = entry.split(",")
imghName = fileName[8]
shutil.copy(src + imgName, dest) #Copying the image to new(dest) folder
ext = imgName[imghame.find("."):]
img_wo_ext=imgName[ :imgMame.find(" .")]

image = cv2.imread{src+imghame)

# 1st augmentation technique: Flipping the image upon the y-axis
image_flipped_vertically= cv2.flip(image, 1)

destpath_FV = dest+img_wo_ext+"_ FV"+ext

cv2.imwrite(destpath_FV, image_flipped_vertically)

# 2nd augmentation technique: Rotating the image by 45 degrees
angle = int(random.uniform(-angle, angle))

h, w = image.shape[:2]

M = cv2.getRotationMatrix2D((int(w/2), int(h/2)), angle, 1)
rotated_image = cv2.warpAffine(image, M, (w, h))

destpath_R = dest+img_wo_ext+"_R"+ext
cv2.imwrite(destpath_R,rotated_image)

## appending these newly created images entry into the Llabel file
ff.urite(entry)

ff.write("\n")

FV_line = img_wo_ext+"_FV'iext+","+fileName[1]+","+fileName[2]+","+FileName[3]
f.write(FV_line)

ff.write("\n")

R_line = img wo_ext+" R"+ext+","+fileName[1]+","+FileName[2]+", "+fileName[3]
ff.urite(R_line)

ff.write("\n")

return num, count

Figure 15: Data Augmentation — Part 4

try:
list_classes = []
imdir = 'D:/Pooja_Thesis/Augmentation/
before_lst = []
after_lst = []

with open(’D:/Pooja_NCI/3_Semester/Class_Names.txt','r') as file:
for f in file:
f = f[:f.find("/n")]
list_classes.append(f)

for i in list_classes:
before, after - augmentData(imdir, i)
print(“class " + i.split('/n')[-1] +' total images before and after augmentation:’, before, after)

before_lst.append(before)
after_lst.append(after)
#print(val)

print("Max number of images in a class Before Augmentation”,max(before_lst))
print("Max number of images in a class After Augmentation",max(after_lst))
print(“Before Augmentation”,sorted(before_lst, reverse = True))

print("After Augmentation",sorted(after_lst, reverse = True))

print(“Total number of images before augmentation”,sum(before_lst))
print(“Total number of images after augmentation",sum(after_lst))

except Exception as e:
print("An exception occurred”,e)

Figure 16: Data Augmentation — Part 5

Below is the output after running the above code.

..... s % s ecrameans e e e s m_maame ¢ mars _pmmn e g M s m am e aed mm s et e o e

Max number of images in a class Before Augmentation 238

Max number of images in a class After Augmentation 65

Before Augmentation [238, 22e, 153, 145, 125, 11@, 97, 97, 97, 96, 94, 93, 92, o1, %@, %@, 9@, 83, 86, 86, 85, 85, 84, 84, 8

e, 79, 77, 74, 73, 71, &%, 68, &5, 65, &5, 64, 83, 63, 63, 62, 61, 6@, 58, 58, 58, 57, 57, 54, 54, 54, 52, 52, 5@, 49, 49, 4

6, 45, 44, 43, 42, 41, 48, 39, 39, 38, 36, 38, 29, 29, 28, 27, 27, 27, 24, 28, 19, 18, 18, 16, 15, 14, 13]

After Augmentation [65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 6
5, 65, &%, 65, 65, &5, 65, 65, &5, &5, &5, 65, &5, 65, 65, 65, 65, 65, 65, 65, 65, &5, 65, 65, 65, 65, 65, 64, 64, 64, 64, B

4, 64, 64, 64, 64, 64, 64, 64, B4, 64, 64, 64, 64, 64, 64, 64, 64, 6@, 57, 54, 54, 48, 45, 42, 39]

Total number of images before augmentation 5358

Total number of images after augmentation 5188

Figure 17: Output after running Data Augmentation code
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4.4 Data Modelling & Evaluation

In this step, the SOTA model (DenseNet201), the modified version of the SOTA network,
and the modified VGG19 networks were implemented. Before that, since the data had only
the train and test split files, the test label file was divided into validation and test files. The
data was generated in batches and the data generator function was the same for the train,
validation, and test data, Only difference being the train data was shuffled and randomly
generated. Below are code snippets for importing necessary libraries, packages, and the data
generator function. Code for building the SOTA model was referred from Verma et al.

(2020).

import os
#0s.environ[ "CUDA_DEVICE ORDER"]= "PCI_BUS_ID"

#os.environ[ "CUDA_VISIBLE DEVICES"]-

"g"

from _ future__ import absolute_import
from _ future__ import division
from _ future__ import print_function

import warnings

## Added

warnings.filterwarnings("ignore")

import os
import tensorflow as tf
tensorflow import keras

from
from
from
from
from

from
from
from
from
from
from
from
from
from
from
from
from
from
from

tensorflouw. keras
tensorflouw. keras
tensorflouw. keras
tensorflouw. keras

tensorflow.keras.
tensorflow.keras.

tensorflouw. keras

tensorflouw. keras

tensorflow.keras

tensorflow.keras.

import numpy as np
import pandas as pd
import random
import matplotlib.pyplot as plt

from

PIL import Image

import
import
import
import

models
layers

.layers
tensorflow.keras.
tensorflow.keras.

layers
layers

.layers
tensorflow.keras.

layers
models
Input

backend

import
import
import
import
import
import

Model, load_model

Dense, Dropout, Activation, Reshape

Conv2D, Conv2DTranspose, UpSampling2D
AveragePooling2D, MaxPooling2D, GlobalAveragePooling2D
concatenate

BatchNormalization

optimizers import SGD,Adam, RMSprop

.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping, ReducelLROnPlateau
tensorflow.keras.

regularizers import 12

utils import get_file, to_categorical, get_source_inputs
keras_applications.imagenet_utils import _obtain_input_shape
tensorflow.keras.applications.imagenet_utils import decode_predictions

tensorflow.keras.layers import Dense,Dropout,Conv2D,MaxPool2D,Flatten,Activation, GlobalAveragePooling2D
tensorflow.keras.layers import BatchNormalization, MaxPooling2D, Concatenate
keras.backend.set_image_data_format('channels_last’)

from pathlib import Path

from PIL import ImagefFile
from sklearn import metrics
from sklearn.metrics import classification_report, confusion matrix
ImageFile.LOAD_TRUNCATED_IMAGES = True

Figure 18: Importing necessary libraries and packages for model building and training
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def generator_train_batch(train_txt,batch_size,num_classes,img_path):
ff = open(train_txt, 'r")
lines = ff.readlines()
num = len{lines)
class_6 = num_classes[@]
class_28 = num_classes[1]
class_82 = num_classes[2]
while True:
new_line = []
index = [n for n in range(num)]
random. shuffle(index)
for m in range(num):
new_line.append(lines[index[m]])
for i in range(int(num/batch_size)):
a = i*batch_size
b = (i+1)*batch_size
x_train, x1_labels, x2_labels, x3_labels = process_batch(newu_line[a:b],img_path,train=True)
x = preprocess(x_train)

yl = to_categorical(np.array(xl_labels), class_6)
y2 = to_categorical(np.array(x2_labels), class_28)
¥3 = to_categorical(np.array(x3_labels), class_82)

y = [y1,y2,y3]
yield x, y

Figure 19: Data Generator function

def process_batch(lines,img_path,train=True):
num = len(lines)
batch = np.zeros((num,224,224,3),dtype="float32")
%x1_labels = np.zeros(num,dtype="int")
x2_labels = np.zeros(num,dtype="int")
x3_labels = np.zeros(num,dtype="int")
for i in range(num):

path = lines[i].split(',")[@]
x1_label = lines[i].split(","')[1]
x2_label = lines[i].split(","')[2]
x3_label = lines[i].split(",")[-1]
x3_label = x3_label.strip("\n")

x1_label = int(x1_label)
x2_label = int(x2_label)
x3_label = int(x3_label)
imgs = img_path+path

if train:
image = Image.open(imgs).convert("RGE")

image = image.resize((224,224), Image.ANTIALIAS)
batch[i][:][:1[:] = image
x1_labels[i] = x1_label
x2_labels[i] = x2_label
x3_labels[i] = x3_label
else:
image = Image.open(imgs).convert("RGE™)

image = image.resize((224,224), Image.ANTIALIAS)
batch[i][:][:1[:] = image
x1_labels[i] = x1_label
x2_labels[i] = x2_label
x3_labels[i] = x3_label
return batch, x1_labels, x2_labels, x3_labels

Figure 20: Function for processing the batches of images and returning the array format of
images and their corresponding one-hot encoded labels

def preprocess(inputs):
inputs [=255.

return inputs

Figure 21: Function for normalizing the values of the input array of images
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The original architecture of DenseNet201 with just one output branch was modified to build
the SOTA model with three output branches. Which was further modified in this project as
proposed to gain better classification accuracy. Similarly, the VGG19 architecture was
modified for hierarchical classification purposes in this project. The original code .py files of
both the DenseNet2018 and VGG19° were used to modify their architecture. Models are built
in the functions and then the functions are called before compiling the model. Below are
snippets showing the modified/ added parts to the model.

4.4.1 DenseNet201 — Hierarchical — Using connectivity pattern

bn_axis = 3 if keras.backend.image_data_format() == 'channels_last’ else 1
% = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
% = layers.Conv2D(64, 7, strides=2, use bias=False, name="convl/cenv')(x)
x = layers.BatchNormalization(
axis=bn_axis, epsilon=1.8@1le-5, name='convl/bn’)(x)
= layers.Activation{'relu’, name='convl/relu’)(x)
= layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
= layers.MaxPooling2D(3, strides=2, name='pocoll')(x)
= dense_block(x, blocks[@8], name='conv2')
= transition_block(x, @.5, name="pool2")
= dense_block(x, blocks[1], name='conv3')

E R

x = transition_block(x, 8.5, name="pool3")
H1=x ##0utput branch for coarse level 1 in hierarchy
% = dense_block(x, blocks[2], name='convd')
x = transition_block(x, @.5, name="pool4d")
H2=3 ##0utput branch for coarse level 2 in hierarchy
% = dense_block(x, blocks[3], name='conv5')
% = layers.BatchNormalization(
axis=bn_axis, epsilon=1.ee1e-5, name="bn")(x)
% = layers.Activation{ 'relu’, name='relu’)(x) ##0utput branch for fine Level in hierarchy
if include_top:

x = layers.GlobalAveragePooling2D(name="avg_pool')(x)
x = layers.Dense(classes, activation='softmax', name='+fcle@e")(x)

else:
if pooling == 'avg':
x = layers.GlobalAveragePooling2D(name="avg pool’){x)
elif pooling == "max':

x = layers.GlobalMaxPooling2D(name="max_pool')(x)

# Ensure that the model takes into account
# any potential predecessors of “input_tensor”.
if input_tensor is not None:

inputs = get_source_inputs(input_tensor)
else:

inputs = img_input

# Create model.

model = models.Model(inputs, [x1,x2,x], name='densenet201_hir')

Figure 22: Modified the original Keras densent.py file here in the function “DenseNet”

def DenseNet2@l hir(include_top=True,
weights="imagenet’,
input_tensor=None,
input_shape=None,
pooling=None,
classes=1868,
*¥kwargs) :
return Denselet([6, 12, 48, 32],
include top, weights,
input_tensor, input_shape,
pooling, classes,
¥*lwargs )

Figure 23: Function for modified DenseNet201 architecture (SOTA model)

8 https://github.com/keras-team/keras-applications/blob/master/keras applications/densenet.py
° https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py
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https://github.com/keras-team/keras-applications/blob/master/keras_applications/densenet.py
https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py

‘n [17]: def dense2@1_hirar_concat(
input_shape = (224,224,3),
class_6=6,
class_28=29,
class_82=82):

inputs = Input{input_shape)

base_model= DenseNet281_hir(include_top=False, weights=None, input_tensor = inputs,
backend = keras.backend , layers = keras.layers ,
fnodels = keras.models , utils = keras.utils)

[x1,%2,x] = base_model.output

x1 = dense_block_hir(x1, 32, name="denseblockClassé")

x1 = BatchMormalization( epsilon=1.8@1e-5, name = 'bn_classé_last')(xl)

x1 = Activation('relu’, name='relu_class6_last')(x1)

x1 = GlobalAveragePooling2D(name="GAvgPool_class6_last')(x1)

coarse_1_pred = Dense(class_6, activation= 'softmax’, name = "coarse_1_pred')(x1)

%2 = BatchMormalization( epsilon=1.8@1e-5, name = 'bn_class2@_last’)(x2)

%2 = Activation('relu’, name='relu_class28_last')(x2)

%2 = GlobalAveragePooling2D(name="GAvgPool_class2@ last')(x2)

%2 = keras.layers.concatenate([x2,x1])

coarse_2 pred = Dense(class_28, activation= 'softmax', name = 'coarse_2 pred’)(x2)

% = GlobalAveragePooling2D()(x)
% = keras.layers.concatenate([x,x2])
fine_pred = Dense(class_82, activation="softmax', name = 'fine_pred")(x)

model = Model{inputs, [coarse_1 pred,coarse_2_pred,fine_pred])
for layer in base_model.layers:
layer.trainable = True

return model

Figure 24: Building the SOTA model with fully connected layers and concatenation layers in
a function

4.4.2 VGG19 - Hierarchical — Using connectivity pattern

sp_anpus = supue_conso
Block 1
= layers.Conv2D(64, (3, 3), activation='relu’, padding="same', name='blockl convl'})(img_input)
ayers.Conv2D(64, (3, 3), activation="relu', padding='same', name='blockl_conv2')(x)
ayers.MaxPooling2D((2, 2), strides=(2, 2), name="blockl_pool" }(x)
ck 2
ayers.Conv2D(128, (3, 3), activation='relu', padding="same', name='block2_convl')(x)
ayers.Conv2D(128, (3, 3), activation='relu', padding="same’', name='block2_conv2')(x)
= layers.MaxPooling2D((2, 2), strides=(2, 2), name="block2_pool')(x)
Block 3
layers.Conv2D(256, (3, 3), activation='relu', padding="same', name="block3_cenvl')(x)
layers.Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')}(x)
layers.Conv2D(256, (3, 3), activation='relu', padding="same', name="block3_conv3')(x)
layers.ConvaD(256, (3, 3), activation='relu', padding='same’', name='block3 conv4')(x)
= layers.MaxPooling2D((2, 2), strides=(2, 2), name="block3_pool'}(x)
##Coarse level 1 Output - Output Branch 1
x1 = x

ock 4
layers.Conv2D(512, (3, 3), activation='relu', padding="same', name='blockd convl')(x)
layers.Conv2D(512, (3, 3), activation='relu', padding='same’', name='block4 conv2')(x)
layers.Conv2D(512, (3, 3), activation='relu', padding="same', name='blockd conv3')(x)
layers.Conv2D(512, (3, 3), activation='relu’, padding='same’, name='block4_conv4')(x)
= layers.MaxPooling2D((2, 2), strides=(2, 2), name="block4_pool')(x)
##Coarse level 2 Output - Output Branch 2

m
-

#
x
x
X
#
X
X
3
#
3
X
x
x
x

@

R

ock 5

layers.Conv2D(512, (3, 3), activation='relu', padding='same', name='blockS_convl'}(x)
layers.Conv2D(512, (3, 3), activation='relu', padding="same', name="block5_conv2')(x)
layers.Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')}(x)
layers.Conv2D(512, (3, 3), activation='relu', padding="same', name='block5_conv4')(x)
layers.MaxPooling2D((2, 2), strides=(2, 2), name="block5 pool"}(x)

if include_top:

# Classification block

I m
= i

ERE R
[

x = layers.Flatten(name='flatten')(x)

x = layers.Dense(4836, activation='relu’, name='fcl')(x)

x = layers.Dense{4896, activation="relu’, name='fc2')(x)

x = layers.Dense(classes, activation='softmax’', name='predictions'}(x)
else:

if pooling == ‘avg':

x = layers.GlobalAveragePooling2D() (x)
elif pooling == "max':

x = layers.GlobalMaxPooling2D()(x)

o account
input_tensor™.

# ure that the model takes
# potential predecessors of
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input

# Create model
model = models.Model(inputs, [x1, x2, x], name='hir vgglda')

Figure 25: Modified original VGG19 architecture to have a model with 3 output branches in
the VGG19 function
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def Hir VGG19(include top=True,

weights="imagenet",

input_tensor=None,

input_shape=None,

pooling=None,

classes=1008,

*Flwargs):

return VGG19(include_top, weights,

input_tensor, input_shape,
pooling, classes, **kwargs)

Figure 26: Function for calling the modified VGG19 architecture

def Yoga_Hir_Concat_VGG19(
input_shape = (224,224,3),
class_6=6,
class_20=2@,
class_B2=82):

inputs = Input(input_shape)

base_model= Hir_VGG1%9({include_top=False, weights=None, input_tensor = inputs,
backend = keras.backend , layers = keras.layers ,
hodels = keras.models , utils = keras.utils)

[%1,x2,x] = base_model.output

x1 = layers.Flatten(name="coarse_1_flatten'}(x1)

x1 = layers.Dense(256, activation="relu', name="coarse_1_fcl"){x1)
x1 = BatchNormalization()({x1)

x1 = Dropout(@.5)(x1})

coarse_1 pred = layers.Dense(class_6, activation="softmax', name='coarse_1 pred')(xl)

x¥2 = layers.Flatten(name="coarse_2 flatten')(x2)

%2 = layers.Dense(512, activation="relu", name='coarse_2_fcl')(x2)
%2 = BatchMormalization()(x2)

%2 = Dropout(@.5)(x2)

%2 = keras.layers.concatenate{[x2,x1])

coarse_2_pred = layers.Dense(class_2@, activation='softmax’, name="coarse_2_pred")(x2)

layers.Flatten(name="fine flatten')(x)

layers.Dense(512, activation="relu', name='fine_fcl')(x)
BatchNormalization()(x)

Dropout{®.5) (x)

keras.layers.concatenate([x2,x])

ine_pred = layers.Dense(class_82, activation="softmax’, name="fines_pred®)(x)

H X X X X X

model = Model(inputs, [coarse_l_pred,coarse_2_pred,fine_pred])

for layer in base_model.layers:
layer.trainable = True

return model

Figure 27: Building the modified VGG19 model with fully connected layers and
concatenation layers in a function

4.4.3 Model Compiling, Training, and Predicting

On completing the model training, the training and validation accuracy and training and
validation loss plots are plotted for each output level and a total loss plot for the entire model
is plotted. This is functionality is coded in the “PlotConfusionMatrix” function. For
evaluation purposes, the top-1, 3, and 5 accuracy rates for predicted samples for all the three
output levels are calculated using the functions “top_n_accuracy” and “arg_sort_desc”.
Below are the code snippets of these functions.
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##To plot confusion matrix for all the three Levels of hierarchy
def PlotConfusicnMatrix(preds,test_file):

lewel 1 = preds[@]

lewel 2 = preds[1]

level 3 = preds[2]

predicted_class_indices_1 = np.argmax{level_l,axis=1}
print(predicted class_indices_1)
predicted class_indices_2 = np.argmax{level 2,axis=1)
print(predicted_class_indices_2)
predicted_class_indices_3 = np.argmax{level_3,axis=1)
print{predicted class_indices_3)

length = len(predicted class_indices_1)

true_labels_1 = []
true_labels 2 =[]
true_labels 3 = []
count = @
with open{test_file, 'r') as f:
for line in f:
if {count < length):
count = count + 1
stripped_line = line.strip()
label_indices = stripped_line.split(",")

true_labels_1.append(int(label_indices[1]))
true_labels_2.append(int(label_indices[2])})
true_labels_3.append(int(label_indices[3]))

print(""}

print("Total test Images: ",count)

print(true_labels_1)

print(true_labels_2)

print(true_labels_3)

true_labels = [true_labels_1, true_labels_2, true_labels_3]

x = [1 for i in range(6)]
y = [i for i in range(28)]
z = [1 for i in range(82)]
cml = metrics.confusion_matrix(true_labels_1,predicted_class_indices_1, labels=x)

crl = metrics.classification_report(true_labels_1, predicted_class_indices_1, labels=x)
cm2 = metrics.confusion_matrix{true_labels_2,predicted class_indices_2, labels = y)
cr2 = metrics.classification_report(true_labels_2, predicted class_indices_2, labels=y)
cm3 = metrics.confusion_matrix(true_labels_3,predicted_class_indices_3, labels = z)
cr3 = metrics.classification_report(true_labels_3, predicted_class_indices_3, labels=z)

cmdl = metrics.ConfusionMatrixDisplay(cml, display_labels=x)

cmdl.plot()

cmdl.ax_.set(title = "Confusion Matrix for Level 1 classes{coarse level)”,xlabel="Predicted Labels', ylabel="True Labels')
print{crl)

cmd2 = metrics.ConfusionMatrixDisplay(cm2, display_labels=y)

cmd2 . plok()

cmgd2.ax_.set(title = "Confusion Matrix for Level 2 classes{intermediate classes)”,xlabel="Predicted Labels', ylabel="True Lal
print{cr2)

print(cm3)

print{cr3)

return true_labels

Figure 28: The “PlotConfusionMatrix” function

## Functions to calculate Top-n accuracy of the model

def arg _sort_desc{ar):
P=ar.argsort(axis=1)
=[]
for i in range(P.shape[@]):
p=list(P[i,:][::-1])
Q.append(p)

R=np.array(Q)
return{R)

def top n_accuracy(A,C,n):
B=arg_sort_desc(C)
topn = B[:,:n]
A = np.array(A)
return np.mean({np.array{[1 if A[k] in topn[k] else @ for k in range(len(topn})]))

Figure 29: Function for calculating top-n accuracy
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In the code artifacts, all the models are implemented in different Jupyter notebook files for
simplicity. Finally, all the variables are initialized. The code snippets below remain the same
for both models. The only variation is which model function is being called.

path = "C:/Users/x19241267VM/Desktop/VGG_19 concat_Imbalanced_MNormal/"® #give your folder path
img_path = path+'Image_data/’

train_file = path+’'Train_MNormal.txt®

test_file = path+'Test_Normal.txt'

val_file = path+'Validation_Normal.txt®

#test_test ="yoga_test.txt’

f1l = open(train_file, 'r’)
f2 = open(val_file, 'r")
f3 = open(test_file, 'r")

linesl = fl.readlines()
fl.close()

train_samples = len(linesl)
#orint(train_samples)
lines2 = f2.readlines()
f2.close()

val_samples = len(lines2)
lines3 = f3.readlines()
f3.close()

test_samples = len(lines3)
num_classes = [6,28,82]
batch_size = 32

epochs = 38

model = Yoga_Hir_Concat_VGG19() ##Call the reguired modeq

Figure 30: Load the model for the training phase

Values for the callbacks, optimizer, loss function were defined. The model was compiled and
trained using the fit_generator function of Keras. The trained model was saved so that its
weight and architecture both could be retained to be loaded in the future.

lr = 9.003 # orig= ©.803

sgd = SGD(1lr=1r, momentum=8.9, nesterov=False)

adam = Adam(1lr=0.801, beta_1=08.9, beta_2=0.999, epsilon=None, decay=08.0, amsgrad=False)
rmsprop = RMSprop(learning_rate = lr, momentum=@.9)

model.compile(loss=["'categorical crossentropy','categorical crossentropy', 'categorical crossentropy'],
loss_weights=[1,1,1], optimizer= sgd, metrics=['accuracy’])}#, ‘top k_categorical_accuracy'])

model. summary ()

checkpointer = ModelCheckpoint(filepath=path+ weights_VGG19_Hir_Concat_Normal_Imb.hdf5",
verbose=1, save_best_only= True, monitor='val_loss’)

csv_logger= (CSVlLogger(path+'log VGG19_Hir_Concat_Mormal_Imb.csv')

early_Stop = EarlyStopping(monitor='val_loss', patience=15, verbose=1l)

reduce_lr = ReducelROnPlateau(monitor='val_loss', factor=0.1, patience=5, cooldown=1, verbose=1)

train_wval = model.fit_generator(generator_train_batch(train_file, batch_size, num_classes,img_path),
steps_per_epoch=train_samples // batch_size,
epochs=epochs,
callbacks=[checkpointer, csv_logger,early Stop,reduce_lr],
validation_data=generator_val_batch(val_file, batch_size,num_classes,img_path),
validation steps=val samples // batch size,
verbose=1)

model.save(path+"VGG19 Hir Concat Mormal Imb model.h5")

metricsl = model.metrics_names

print{metricsl)

print("")

score = model.evaluate_generator(generator_val_batch(val_file,8,num_classes,img_path),steps=val_samples // 8, verbose=1)
print(score)

print("")

Figure 31: Model compilation, training, and saving
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accuracy_Levell = train_wal.history['coarse_1 pred accuracy']
accuracy_Level? = train_wval.history['coarse_2 pred_accuracy']
accuracy_Level? = train_wval.history['fine _pred accuracy']

val_acc_Levell = train_val.history['val_coarse_1 pred_accuracy’]
val_acc_Level?2 = train_wval.history['val coarse_2 pred accuracy']
val_acc_Level? = train_val.history[ 'val_fine_pred_accuracy’]

loss Levell = train_val.history['coarse_ 1 pred loss']
loss_Lewvel2 = train_val.history['coarse_2 _pred loss']
loss_Lewvel3 = train_val.history[ " fine_pred loss']

val_loss_Levell = train_wval.history['val _coarse_1 pred_loss']
val_loss Level2 = train_wval.history['val coarse 2 pred loss']
val_loss Levell = train_wal.history['val fine pred_loss']

val_loss']

loss = train_wval.history['los
val_loss = train_wval.history|[

epochs = range(len{accuracy Levell))

plt.plot{epochs, accuracy Levell, 'r', label="Training Lewvel 1 accuracy’)
plt.plot{epochs, val_acc_levell, 'b', label='Validation Level 1 accuracy')
plt.title( ' Training and wvalidaticon accuracy for classes in Level 1 (coarse Level 1)")
plt.legend()

plt.figure()

plt.plot{epochs, accuracy Level2, 'r', label="Training Lewvel 2 accuracy’)
plt.plot{epochs, wval_acc_Lewel2, 'b', label='Validation Level 2 accuracy')

plt.title( Training and validation accuracy for classes in Level 2 (coarse Level 2)")
plt.legend()

plt.figure()

plt.plot({epochs, accuracy_Level3l, 'r', label='Training Lewvel 3 accuracy’)
plt.plot{epochs, wval_acc_Lewel?, 'b', label='Validation Level 3 accuracy')
plt.title( Training and validation accuracy for classes in Level 3 (Fine Level)')
plt.legend()

plt.figure()

plt.plot{epochs, loss_Lewell, 'r', label="Training Level 1 loss')
plt.plot{epochs, val loss Lewvell, 'b’, label="Validation Lewvel 1 loss')
plt.title( Training and validation loss for classes in Level 1 (coarse Lewvel 1)")
plt.legend()

plt.figure()

plt.plot{epochs, loss_Lewel2, 'r', label="Training Level 2 laoss')
plt.plot{epochs, val_loss Lewvel2, 'b’, label="Validation Level 2 loss')
plt.title{'Training and validation loss for classes in Level 2 (coarse Level 2)')
plt.legend()

plt.figure()

plt.plot{epochs, loss_Lewel3, 'r', label="Training Level 3 loss')
plt.plot{epochs, val_loss Lewvel3, 'b’, label="Validation Level 3 loss')
plt.title( ' Training and walidaticn loss for classes im Lewvel 3 (Fine Lewvel)')
plt.legend()

plt.figure()

p}t.p}ot{epochs, 10_55f ‘r',l}gbe}=iTra?niTglla§5'}_ 3
Figure 32: Plotting all the accuracy and loss graphs
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#Prediction with test images

preds_vGGle = model.predict generator(generator=generator_test_batch(test_file,&,num classes,img path),
ﬁteps:test_samples /I 8, verbose=1)

#print(preds)

true_labels = PlotConfusionMatrix{preds_VGG19,test_file)

##5 Top - n accuracy for all the three Levels of hierarchy
preds_level 1 = preds VGG19[@]
preds_level 2 = preds VGE19[1]
preds_level 3 = preds VGG19[2]

true_labels 1
true_labels 2
true_labels 3

true_labels[a]
true_labels[1]
true_labels[2]

## Top-1 and Top-5 accuracy for Level 1 of Hierarchy - Coarse Level with 6 classes

top_1 acc 1 = top_n_accuracy(true_labels 1,preds_level 1,1)

top 3 acc 1 = top_n_accuracy(true labels 1,preds level 1,3)

top 5 acc_1 = top_n_accuracy(true_labels 1,preds_level 1,5)

print("Tep-1 Accuracy of model for Level 1 of Hierarchy - Coarse level with 6 classes: ", top_1_acc_1)
print("Tep-3 Accuracy of model for Level 1 of Hierarchy - Coarse level with 6 classes: ", top_3 acc_1)
print("Top-5 Accuracy of model for Level 1 of Hierarchy - Coarse level with 6 classes: ", top 5 acc_1)

## Top-1 and Top-5 accuracy for Level 2 of Hierarchy - intermediate level with 28 classes

top_1 acc_2 = top_n_accuracy(true_labels 2,preds_level 2,1)
top_3 acc 2 = top_n_accuracy(true_labels 2,preds_level 2,3)
top 5 acc_ 2 = top_n_accuracy(true labels 2,preds level 2,5)

print("Tep-1 Accuracy of model for Level 2 of Hierarchy - intermediate level with 28 classes: ", top_1_acc_2)
print("Top-3 Accuracy of model for Level 2 of Hierarchy - intermediate level with 2@ classes: ", top_3_acc_2)
print("Tep-5 Accuracy of model for Level 2 of Hierarchy - intermediate level with 28 classes: ", top_5_acc_2)

## Top-1 and Top-5 accuracy for Level 3 of Hierarchy - Fine level with 82 classes(82 Yoga Poses)

top_1 acc 3 = top_n_accuracy(true_labels 3,preds_level 3,1)

top_3 acc_3 = top_n_accuracy(true_labels 3,preds_level 3,3)

top 5 acc_3 = top_n_accuracy(true_labels 3,preds_level 3,5)

print("Top-1 Accuracy of model for Level 3 of Hierarchy - Fine level with 82 classes(82 Yoga Poses): ", top_1 _acc_3)
print("Tep-3 Accuracy of model for Level 3 of Hierarchy - Fine level with 82 classes(82 Yoga Poses): ", top_3 acc_3)
print("Tep-5 Accuracy of model for Level 3 of Hierarchy - Fine level with 82 classes(82 Yoga Poses): ", top_5_acc_3)

Figure 33: Prediction on test images and calculating the top-n test accuracy

Below is a sample of how the evaluation plots look like and the calculated top-1, 3, and 5 test
accuracy values for all three levels of hierarchy for the DenseNet201 — Hierarchical — Using
connectivity pattern model (Densenet201_hir_Concat)

Below are the train and validation accuracy plots for all three levels during training.

Training and validation accuracy for classes in Level 1 (coarse Level 1) Trarung and validation accuracy for classes in Level 2 (coarse Level 2) Trasmng and validation accuracy for classes in Level 3 (Fine Level)
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Figure 34: Train and validation accuracy plots for all three levels
Below are the train and validation loss plots for all three levels during training.
Training and vahdation loss for classes in Level 1 (coarse Level 1) Training and validation loss for classes in Level 2 (coarse Level 2) Training and validation loss for classes in Level 3 (Fine Level)
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Figure 35: Train and validation loss plots for all three levels
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Below is the train and vali

dation loss plot of the entire model during training.

Training and validation loss of the entire model

0

= Taining loss
— Validation loss

Figure 36:

0 5 er 15 2;3 2|5 30
train and validation loss plot for all the entire model

Below are the top-1, top-3, and top-5 accuracy rates on the predicted test set for all three
levels of the model and the confusion matrix for the first and second levels of hierarchy.

Teop-1 Accuracy of model for
Top-3 Accuracy of model for
Top-5 Accuracy of model for
Top-1 Accuracy of model for
Top-3 Accuracy of model for
Top-5 Accuracy of model for
Top-1 Accuracy of model for
Top-3 Accuracy of model for
Top-5 Accuracy of model for

Level 1 of Hierarchy - Coarse level with 6 classes: ©.7306547619847619

Level 1 of Hierarchy - Coarse level with 6 classes: 8.9375

Level 1 of Hierarchy - Coarse level with 6 classes: ©.983895238@952381

Level 2 of Hierarchy - intermediate level with 20 classes: ©.6354166666666666

Level 2 of Hierarchy - intermediate level with 20 classes: @.8497@238@95238@9

Level 2 of Hierarchy - intermediate level with 20 classes: 8.9151785714285714

Level 3 of Hierarchy - Fine level with 82 classes(82 Yoga Poses): @.5193452388952381
Level 3 of Hierarchy - Fine level with 82 classes(82 Yoga Poses): ©.6994847619847619
Level 3 of Hierarchy - Fine level with 82 classes(82 Yoga Poses): @.761%247619847619

Confusion Matnix for Level 1 classes(coarse level)

0 1

2 3
Predicted Labels
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Confusion Matrix for Level 2 classes(intermediate classes)
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012345678 810111213141516171619
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Figure 37: Top-n test accuracy and confusion matrix for the predicted images
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