

Configuration Manual

MSc Research Project

MSc Data Analytics

Pooja Rakate

Student ID: x19241267

School of Computing

National College of Ireland

Supervisor: Dr. Paul Stynes, Dr Pramod Pathak

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Pooja Rakate

Student ID:

X19241267

Programme:

MSc Data Analytics

Year:

2020 - 2021

Module:

MSc Research Project

Lecturer:

Dr Paul Stynes, Dr Pramod Pathak

Submission Due

Date:

16/08/2021

Project Title:

A Deep Learning Framework to classify Yoga poses Hierarchically

Word Count:

2038 Page Count: 21

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Pooja Rakate

Date:

16/08/2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Pooja Rakate

Student ID: x19241267

1 Introduction

This configuration manual provides information regarding the data source, software, system

specification, hardware specifications, tools, libraries, and code used for executing the

models implemented for the research project “A Deep Learning Framework to classify

Yoga poses Hierarchically”. It also describes the steps undertaken to process the data to

make it ready for implementing the proposed models.

2 System Specifications

This section provides details about the system configurations used for implementation in this

project.

2.1 System Hardware for processing data

Operating System: Windows 10

Processor: AMD Ryzen 5 3550H with Radeon Vega Mobile Gfx 2.10GHz

Installed RAM: 8.00 GB (5.88 GB is usable)

System Type: 64-bit operating system x64based processor
Hard Disk: 1 TB

2.2 System Hardware for training the deep learning models

Training a deep learning model on the system mentioned in section 2.1 took very long hours

to run. Approximately 2 hours per epoch and a total of 30 epochs were to be run. Hence, an

instance of a Microsoft Azure virtual CPU machine (VM) was created1. Data was stored on

this machine so that the model could access it. Each time the model had to be run, the VM

was started and once the training ended it was stopped. Initially, credits provided by the

National College of Ireland were used to create a machine, but as it was a student

subscription a machine with large RAM could not be created and hence, the subscription was

updated from Azure-student to “pay-as-you-go” to be able to use a machine with the below-

specified configuration.

Operating System: Windows (Windows Server 2016)

RAM: 112 Gib (approximately 120GB)

vCPUs 8

1 https://docs.microsoft.com/en-us/azure/virtual-machines/windows/quick-create-portal

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/quick-create-portal

2

3 Softwares Used

All the software and programming languages used for implementing this project are listed in

this section. JAVA 8 was used to download the images from the dataset. Python

programming language was used for processing the downloaded data and running the deep

learning models. The python code was written and executed in Jupyter notebook from the

Anaconda Navigator.

• JAVA 8

• JET BRAINS IntelliJ IDEA (Version 2021.2)

• Python 3.7

• Jupyter Notebook

IntelliJ IDEA can be downloaded from here2 for the windows system. To use Jupyter

notebook. Install Anaconda navigator version 1.9.12 was used.

4 Project Implementation

4.1 Data collection

The Yoga-82 dataset was downloaded from their home page3. The downloaded data had three

text files and one readme file. There was one text file containing the image name and its

corresponding web URL to download it from. The other two text files were the train label file

and the test label file. It consisted of the image name and their corresponding labels on the

three levels of hierarchy. There are a total of three levels in the hierarchy. The first level

classifies a yoga pose into 6 classes, the second level classifies it into 20 classes and the third

fine level classifies them into 82 classes(82 Yoga poses). One can either download the

original data or directly used the processed data that is ready for modelling directly from

here4. The processed data has 4 datasets. One is normal image data, second is its balanced

version, third is the skeleton image dataset created by using OpenPose model and the last one

is the balanced version of the third dataset. Each folder also includes the train, validation and

test files.

4.2 Data Extraction & Cleaning

Downloading images using Python 3.7 took time, hence JAVA was used to download the

images. The GIF format images were excluded while downloading. Entry of images not

found was made into a text file and entry for these images was removed from the train and

test label files. All the images were stored using the JAVA program in to their respective

class folders for each hierarchical level. As this structure would have been difficult to retrieve

the images. All the images were later stored once in a single foler and second time in two

separate folders as test and train images. The JAVA code written for this step can be found

2 https://www.jetbrains.com/idea/download/#section=windows
3 https://sites.google.com/view/yoga-82/home
4 https://studentncirl-
my.sharepoint.com/:f:/g/personal/x19241267_student_ncirl_ie/Et30BQwnBeZEujd1iMLFniUBuC16k8Jb3ztuEU
So3bLHsA?e=ABb8Ls

https://www.jetbrains.com/idea/download/%23section=windows
https://sites.google.com/view/yoga-82/home
https://studentncirl-my.sharepoint.com/:f:/g/personal/x19241267_student_ncirl_ie/Et30BQwnBeZEujd1iMLFniUBuC16k8Jb3ztuEUSo3bLHsA?e=ABb8Ls
https://studentncirl-my.sharepoint.com/:f:/g/personal/x19241267_student_ncirl_ie/Et30BQwnBeZEujd1iMLFniUBuC16k8Jb3ztuEUSo3bLHsA?e=ABb8Ls
https://studentncirl-my.sharepoint.com/:f:/g/personal/x19241267_student_ncirl_ie/Et30BQwnBeZEujd1iMLFniUBuC16k8Jb3ztuEUSo3bLHsA?e=ABb8Ls

3

here5. Download the “Data_extraction_Java_code.zip” file unzip it and run application 3 in

your IDE. This same code is available in the “Java_Code” folder in the cade artefacts.

Hereafter, the Python programming language was used. Install OpenCV (library for computer

vision tasks) and import all the other libraries. At this stage we start running the

“YOGA_main.ipynb” file cell by cell.

Figure 1: Import Required Libraries

Images that were downloaded by the JAVA code but were still unreadable were downloaded

again using Python and saved locally.

Figure 2: Download unreadable images again – Part 1

5 https://github.com/PoojaRakate26/DataAnalytics_Thesis/blob/main/Data_extraction_Java_code.zip

https://github.com/PoojaRakate26/DataAnalytics_Thesis/blob/main/Data_extraction_Java_code.zip

4

Figure 2: Download unreadable images again – Part 2

Images that were still unreadable were deleted and they were noted.

Figure 3: Delete Unreadable images

Make sure the images saved in the local drive are in sync with the entries in the train and test

label files. This was done by matching all downloaded images and entries in test and train

text files. Keep only those entries in text files of which corresponding images are present.

5

Figure 4: Synching the images saved and the data in the train and test label files

Due to system constraints, the entire dataset was not used for model training. Hence, the data

was reduced by 50% by first reducing the entries in the two label files and then using these

updated text files to keep only 50% of the images.

Figure 5: Reducing the data in the label files by 50%

6

Figure 6: Reducing the images by 50%

4.3 Data Transformation

In this step, firstly Skeleton images were extracted from the normal images using the

OpenPose model. Secondly, Data augmentation was carried out to balance the dataset.

4.3.1 OpenPose

The normal images were converted into skeleton images with a black background using the

OpenPose model. The “pose_deploy_linevec.prototxt” and the

“pose_iter_440000.caffemodel” files to run the OpenPose model can be downloaded from

here6. Since there were images in the dataset in which the yoga poses were in silhouette form

of sketches form, key points for them could not be identified. Such images were bypassed.

Required libraries were imported and then the OpenPose model was run to create the skeleton

images. This code is present in the “OpenPose_create_skeleton.ipynb” file.

Figure 7: Importing the required libraries

6 https://github.com/foss-for-synopsys-dwc-arc-processors/synopsys-caffe-

models/tree/master/caffe_models/openpose/caffe_model

https://github.com/foss-for-synopsys-dwc-arc-processors/synopsys-caffe-models/tree/master/caffe_models/openpose/caffe_model
https://github.com/foss-for-synopsys-dwc-arc-processors/synopsys-caffe-models/tree/master/caffe_models/openpose/caffe_model

7

Figure 8: Creating Skeleton Images using OpenPose model – part 1

Figure 8: Creating Skeleton Images using OpenPose model – part 2

8

Figure 9: Creating Skeleton Images using OpenPose model – part 3

Figure 10: Creating Skeleton Images using OpenPose model – part 4

After applying the OpenPose model, few images had to be deleted as no key points for them

were returned by the openPose model. Thus, to maintain uniformity, these images were

removed from the folder of normal images too. Reference to build the code for extracting key

points and plotting it on the image was taken from here7.

7 https://github.com/shahil1993/Thesis/blob/main/Final_code.py

https://github.com/shahil1993/Thesis/blob/main/Final_code.py

9

4.3.2 Data Augmentation

The Yoga-82 dataset was highly imbalanced. So we tried to balance the data on the third

level which has 82 classes. On checking the number of images per class it was found that

there the number of images in the classes is varying with the maximum and minimum value

being 230 and 13 respectively. Hence, we balanced images in these classes by keeping the

utmost 65 images per class. Classes having more than 65 images were down-sampled while

those having fewer images were upsampled by adding vertically flipped and rotated versions

of the original image. The below code was used to achieve all this simultaneously. The same

code was run for the normal image dataset and the skeleton image dataset. The code for this

is present in the “Data_Balancing_using_Augmentation_techniques.ipynb” file.

Figure 11: Import required libraries

Figure 12: Data Augmentation – Part 1

10

Figure 13: Data Augmentation – Part 2

Figure 14: Data Augmentation – Part 3

11

Figure 15: Data Augmentation – Part 4

Figure 16: Data Augmentation – Part 5

Below is the output after running the above code.

Figure 17: Output after running Data Augmentation code

12

4.4 Data Modelling & Evaluation

In this step, the SOTA model (DenseNet201), the modified version of the SOTA network,

and the modified VGG19 networks were implemented. Before that, since the data had only

the train and test split files, the test label file was divided into validation and test files. The

data was generated in batches and the data generator function was the same for the train,

validation, and test data, Only difference being the train data was shuffled and randomly

generated. Below are code snippets for importing necessary libraries, packages, and the data

generator function. Code for building the SOTA model was referred from Verma et al.

(2020).

Figure 18: Importing necessary libraries and packages for model building and training

13

Figure 19: Data Generator function

Figure 20: Function for processing the batches of images and returning the array format of

images and their corresponding one-hot encoded labels

Figure 21: Function for normalizing the values of the input array of images

14

The original architecture of DenseNet201 with just one output branch was modified to build

the SOTA model with three output branches. Which was further modified in this project as

proposed to gain better classification accuracy. Similarly, the VGG19 architecture was

modified for hierarchical classification purposes in this project. The original code .py files of

both the DenseNet2018 and VGG199 were used to modify their architecture. Models are built

in the functions and then the functions are called before compiling the model. Below are

snippets showing the modified/ added parts to the model.

4.4.1 DenseNet201 – Hierarchical – Using connectivity pattern

Figure 22: Modified the original Keras densent.py file here in the function “DenseNet”

Figure 23: Function for modified DenseNet201 architecture (SOTA model)

8 https://github.com/keras-team/keras-applications/blob/master/keras_applications/densenet.py
9 https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py

https://github.com/keras-team/keras-applications/blob/master/keras_applications/densenet.py
https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py

15

Figure 24: Building the SOTA model with fully connected layers and concatenation layers in

a function

4.4.2 VGG19 – Hierarchical – Using connectivity pattern

Figure 25: Modified original VGG19 architecture to have a model with 3 output branches in

the VGG19 function

16

Figure 26: Function for calling the modified VGG19 architecture

Figure 27: Building the modified VGG19 model with fully connected layers and

concatenation layers in a function

4.4.3 Model Compiling, Training, and Predicting

On completing the model training, the training and validation accuracy and training and

validation loss plots are plotted for each output level and a total loss plot for the entire model

is plotted. This is functionality is coded in the “PlotConfusionMatrix” function. For

evaluation purposes, the top-1, 3, and 5 accuracy rates for predicted samples for all the three

output levels are calculated using the functions “top_n_accuracy” and “arg_sort_desc”.

Below are the code snippets of these functions.

17

Figure 28: The “PlotConfusionMatrix” function

Figure 29: Function for calculating top-n accuracy

18

In the code artifacts, all the models are implemented in different Jupyter notebook files for

simplicity. Finally, all the variables are initialized. The code snippets below remain the same

for both models. The only variation is which model function is being called.

Figure 30: Load the model for the training phase

Values for the callbacks, optimizer, loss function were defined. The model was compiled and

trained using the fit_generator function of Keras. The trained model was saved so that its

weight and architecture both could be retained to be loaded in the future.

Figure 31: Model compilation, training, and saving

19

Figure 32: Plotting all the accuracy and loss graphs

20

Figure 33: Prediction on test images and calculating the top-n test accuracy

Below is a sample of how the evaluation plots look like and the calculated top-1, 3, and 5 test

accuracy values for all three levels of hierarchy for the DenseNet201 – Hierarchical – Using

connectivity pattern model (Densenet201_hir_Concat)

Below are the train and validation accuracy plots for all three levels during training.

Figure 34: Train and validation accuracy plots for all three levels

Below are the train and validation loss plots for all three levels during training.

Figure 35: Train and validation loss plots for all three levels

21

Below is the train and validation loss plot of the entire model during training.

Figure 36: train and validation loss plot for all the entire model

Below are the top-1, top-3, and top-5 accuracy rates on the predicted test set for all three

levels of the model and the confusion matrix for the first and second levels of hierarchy.

Figure 37: Top-n test accuracy and confusion matrix for the predicted images

References

Verma, M. et al. (2020) ‘Yoga-82: A New Dataset for Fine-grained Classification of Human

Poses’, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), pp. 4472–4479. doi: 10.1109/CVPRW50498.2020.00527.

https://doi.org/10.1109/CVPRW50498.2020.00527
https://doi.org/10.1109/CVPRW50498.2020.00527
https://doi.org/10.1109/CVPRW50498.2020.00527

