

Configuration Manual

MSc Research Project

Data Analytics

Ian Patterson

Student ID: 18124917

School of Computing

National College of Ireland

Supervisor: Dr. Catherine Mulwa

1

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

…Ian Patterson…………………………………………………………

Student ID:

…18124917……………………………………………………………………….……

Programme:

…MSC Data Analytics………………………………

Year:

………2021………….

Module:

…MSc Research Project………………………………………………………………….………

Lecturer:

………Dr. Catherine Mulwa…………………………………………………….………

Submission Due

Date:

……16/08/2021………………………………………………………………….………

Project Title:

Novel Genetic Algorithms for Optimization of House Price Prediction: USA

Word Count:

…………4144…………………………… Page Count: …………………………27……….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

2

Configuration Manual

Ian Patterson

Student ID: 18124917

1 Introduction

This Configuration Manual details the steps required to set-up the environment and reproduce

the results of the investigation titled "Novel Genetic Algorithms for Optimization of House

Price Prediction: USA". This includes a step-by-step guide in signing up for and configuring

the Google Colaboratory environment, and explains at a function level, how each analysis

was performed and how each result and visualisation was produced.

2 Hardware and Software Requirements

2.1 Hardware Description

Research was performed on a desktop computer with the following technological

specifications

• GPU: Nvidia GeForce GTX 1080

• CPU: Intel i7-7700 CPU, 3.6 Ghz

• RAM: 16GB

• System Type: 64-bit Operating System, x64-based processor

However, it should be noted that almost all processing was performed through the Google

Colaboratory system, which utilises GPUs and CPUs located in Google's data centres

(Google Colab, 2020).

2.2 Software Description

• Latex: Nvidia GeForce GTX 1080

• Google Chrome: Intel i7-7700 CPU, 3.6 Ghz

• Google Colaboratory Environment

o GPU: Unknown (depended on runtime)

o Disk Space: 110 GB

o RAM: 13GB

3 Environment Configuration
This section describes the steps required to activate and configure the Google Colab

environment, including the collection of packages required for the analysis.

3.1 Google Account Creation

A Google account is required to use the Google Colab environment. If no Google account is

available, a profile may be created using the following link:

https://accounts.google.com/signup/v2/webcreateaccount?hl=en&flowName=GlifWebSignIn

&flowEntry=SignUp

Once an account is setup and the user is logged in, the Colab site can be accessed at

https://colab.research.google.com/

https://accounts.google.com/signup/v2/webcreateaccount?hl=en&flowName=GlifWebSignIn&flowEntry=SignUp
https://accounts.google.com/signup/v2/webcreateaccount?hl=en&flowName=GlifWebSignIn&flowEntry=SignUp
https://colab.research.google.com/

3

To create a new profile file, click "New Notebook" (Figure 1).

Figure 1 Click "New Notebook" to create a new project file.

Figure 2. Code to mount

Google Drive

In this new project, you may mount the Google Drive that comes with your account, using

the snippet in Figure 2.

This will prompt you to authenticate your rights to use the Google Drive in the Colab

environment. Visit the link given by this prompt, select your Google account and click "Sign-

in". Copy the authentication token, return to Colab, and paste this token into the prompt

(Figure 3).

Figure 3. Step-by-step guide to authentication and mounting of Google Drive in Colab environment

Once mounted, you will have access to all files and folders in the Google Drive.

4

3.2 Import and Install Packages

Installing

Because the Google Colab environment comes with most Python packages pre-installed, only

one additional package need be installed: 'scikit_posthocs' (Terpilowski, 2019). The pip

install command given in Figure 4 installs this package.

Figure 4. Installing the scikit_posthocs package

Importing

Once all packages are installed, the required packages are imported. These are described in

Figure 5. Some packages are imported "as" abbreviations, and in some cases, only specific

modules from packages are imported; these choices are for convenience's sake.

Figure 5. List of packages to be imported for the analysis

4 Data Acquisition and Ingestion
The data used in this investigation is sourced from Zillow's competition, hosted on Kaggle.

The files described in Table 1 were downloaded from https://www.kaggle.com/c/zillow-

prize-1/data (Kaggle, 2018). Full descriptions are available in Appendix 1.

Table 1. Data Files Acquired for Analysis

Filename Description

Properties_2016.csv CSV containing descriptions of properties on market in 2016

Properties_2017.csv CSV containing descriptions of properties on market in 2017

Train_2016.csv Csv containing list of transactions for the year 2016

Train_2017.csv CSV containing list of transactions for the year 2017

Zillow_data_dictionary.xlsx Data dictionary describing each variable, and categories within categorical variables.

Open Google Drive in the browser and add a new folder titled "MSC Files". Each of the

CSVs above are to be uploaded to this folder, allowing for their ingestion by Colab.

Once uploaded, these files are read into Colab using the code in Figure 6.

https://www.kaggle.com/c/zillow-prize-1/data
https://www.kaggle.com/c/zillow-prize-1/data

5

Figure 6. Reading in dataset files from Google Drive

5 Pre-Processing and Transformation

5.1 Pre-Processing

The property datasets from 2016 and 2017 were first compared to ensure the same column

names were present in both (Figure 7).

Each properties dataset was pre-processed separately due to limitations on disk space in

Colab. The columns were renamed with the help of the Zillow data dictionary (Figure 8).

Figure 7. Checking to ensure the 2016 and 2017 files have the same

column names

Figure 8. Renaming the colours for ease of use

Figure 9. Changing data types to match the

appropriate form for each variable

Data types were then changed to the appropriate form, and float64 and int64 were converted

to float 32 and int 32 to reduce impact on disk space (Figure 9).

The transactions 2016 dataset was similarly processed and then merged with the properties

2016 dataset, through an inner join, using parcel_id as the key (Figure 10).

Figure 10. Merging the transaction and properties datasets

6

To investigate missing values, the dataframe was looped over such that the sum of the "NA"

values for each column in the feature set was printed. The seaborn package was also used to

create a heatmap representation of the missing values across variables (Figure 11).

Figure 11. Checking and visualising the missing data across the dataset

5.2 Feature Engineering

To create a version of the transaction date that could be incorporated into machine learning

and matrix multiplication-based models, the date was converted to a "Days since 0" field,

named "date_dif" (Figure 12). Values in the binary categorical "tax_del" field were also

changed such that "Y" was replaced with 1 and "N" or missing was replaced with 0 Figure

13). Redundant columns were dropped from the dataset (Figure 14).

Figure 12. Creating a date field appropriate for data mining

Figure 13. Editing the codes used for the “tax_del” variable

Figure 14. Dropping redundant columns

7

Missing values were then replaced either through median imputation or replaced with 0s.

Other binary categorical variables were converted such that codes were either 0 or 1, rather

than the inconsistent codes used across variables (Figure 15).

Figure 15. Imputing values and otherwise harmonizing the codes used for binary categorical

variables

6 Exploratory Analysis

6.1 Descriptive Statistics and Histograms

Matplotlib and SciPy were used to create descriptive statistics, perform normality tests, and

generate histograms describing the target variable ("logerror"). The first two histograms were

built off the total target variable, whereas the second two histograms zoomed in on the values

within the interquartile range (Figure 16). Both histograms are available in the technical

report (TR Fig. 3).

8

Figure 16. Code for descriptive statistics, normality test and histogram generation

6.2 Correlation Analysis

The code in Figures 17-19 comprise a single for loop. This looped through all variables and

performed tests appropriate to the data type. Numeric and binary categorical variables

underwent Spearman’s Rho correlation produced scatter plots (Figure 17). Multi-class

categorical variables underwent Kruskal Wallis tests and were plotted on boxplots (Figure

18). Where significant Kruskal Wallis results were found (p < 0.05), post-hoc Dunn tests

with Bonferroni correction were performed to identify differences within the variable.

Results of these post-hoc Dunn tests added as annotations on relevant graphs (Figure 19).

Plots for the tests that yielded significant results are available in the technical report (TR Fig.

4)

9

Figure 17. Spearman’s Rho correlation, used for numerical and binary categorical variables

Figure 18. Kruskal Wallis tests, used for multi-class categorical variables

Figure 19. Post-hoc Dunn tests triggered by significant p-values in the Kruskal Wallis tests

10

The label_loc function (Figure 20) standardised the location of the label on each of the plots

generated by the code above.

Figure 20. Function that helps position chart annotations consistently

6.3 Mapping of Transactions

The latitude and longitude were divided by 1 million to convert the raw values into the

standard format used in mapping (Figure 21).

Figure 21. Dividing latitude and longitude values to match mapping standards

The borders of the map were then extracted from the dataset based on the minimum and

maximum of the latitudes and longitudes (Figure 22).

Figure 22. Boundaries of the location calculated from latitudes and longitudes

These coordinates were then input into http://Openstreetmap.org (OpenStreetMap, 2021.) to

generate a map for the corresponding area. A screenshot of the map was downloaded and

then uploaded to the MSC files folder on Google Drive (Figure 23).

Figure 23. Openstreet website where map image file is sourced

Once saved, it was read into the Colab environment using the snippet in Figure 24.

Figure 24. Reading in the map image file

http://openstreetmap.org/

11

Matplotlib and a distribution-based colour map from seaborn were used to highlight the

distribution of large errors in price prediction across the analysis are (Los Angeles). The

matplotlib package "patches" was used to add a red circle around an area of dense errors

(Figure 25). The plot generated by this code is available in the technical report (TR Fig. 6).

Figure 25. Code that produces a map showing the density and magnitude of prediction errors across

the map

12

6.4 Timeseries Analysis of Transactions

For the time series analysis of transactions, pandas was used to summarise the price errors

and count of transactions per month, and matplotlib was used to plot these on a dual-axis line

graph (Figure 26). The plot generated by this code is available in the technical report (TR

Fig. 5).

Figure 26. Code used to plot time series analysis of transactions

Following creation of this graph, the “trans_date” field was deleted, as it was only needed for

this graph. The “date_dif” field generated in the feature engineering section replaced it for the

machine learning component (Figure 27).

Figure 27. Dropping of the old transaction date field

7 Initial Data Mining
Two functions were created for the modelling phase: make_dummies and predictor.

Make_dummies was essentially a slightly more customised version of the standard

pandas.get_dummies function. (Figure 28)

Figure 28. Function for creating dummies when applicable

13

The predictor function receives the dataframe, the number of cross-validation stages (K), and

the model. This splits the data into train and test dataframes. For each train-test split, the

models were fit to the training data and tested against the test. The evaluation metric was

mean absolute error (MAE). Following the K iterations, the MAE for the model was

calculated by taking the average MAE across the iterations. The XGBoost model required

some additional parameters and processing steps such as use of DMatrix rather than

dataframes (Figure 29).

Figure 29. Function for applying machine learning model to dataset and evaluating performance.

A loop through a list of models was used to generate and tabulate the results from the

unoptimized models (Figure 30).

14

Figure 30. Code for looping through list of models to be applied

The results of this modelling were then visualised using matplotlib. A bar chart was

generated to compare the MAE obtained by each model, a bar chart was created to compare

the time required by each model, and a third bar chart was used to compare the time required

by each model with Random Forest excluded (to allow for easier comparison of the

comparable models) (Figure 31). The plot generated by this code is available in the technical

report (TR Fig. 7).

Figure 31. Visualisations for unoptimized modelling

15

8 Genetic Algorithm Coding
As there were four types of genetic algorithms used for this analysis, there were multiple

operations shared among algorithms. Each operation (function) is described below.

Create Chromosome

In the feature selection algorithm, chromosomes were vectors of 1’s and 0’s, representing

inclusion or exclusion of a feature, respectively. Chromosomes for the Travelling Salesman

GA were vectors of integers from 0 to the number of features. Therefore, the

create_chromosome needed to be able to switch between these modes; the “mode” argument

was used (Figure 32).

Figure 32. Function that creates a chromosome

Change Chromosome

This function was a simple method of changing the feature selection chromosomes from 1’s

and 0’s to Trues and False, to allow for filtering of the dataframe for the variables represented

by 1s in the vector (Figure 33).

Figure 33. Function that converts an integer vector to a bool vector

Initialise_pop

This function was required at the start of each genetic algorithm, to generate the initial

population of chromosomes to undergo evolution (in all types of GA). This function allows

for creation of populations of any desired size. The mode argument determines which type of

chromosome creation is used (Figure 34).

Figure 34. Function that initialises a population of chromosomes

Model_chromos

This function allowed for the application of the chromosome to the machine learning

problem. It applies the chromosomes to machine learning model and produces results that

allow for comparison of fitness (Figure 35).

16

Figure 35. Function that applies the chromosome to modelling problem

Hamming

The hamming distance function is a method of comparing two vectors and calculating the

difference between each (how many changes would need to be made to one vector such that

it matched the other) (Macleod, 1993). This was used to determine the overall diversity of the

population (Figure 36).

Figure 36. Function that calculates the hamming distance between two chromosomes (measures

diversity)

Select_mates

This function was used to select the chromosomes from the population who would be used to

reproduction. The selection probability was based on rank selection. The probability of each

chromosome being selected was determined by its ranked position in the population (best =

1, worst = 30) (Figure 37).

Figure 37. Function that selects parents for mating, from the population of chromosomes

17

Pm_crossover

The PM_crossover function is one of two crossover methods used for the genetic algorithms.

Specifically, it is used only for the TSGA, whereas the crossover function is used for the

feature selection ga.

This function takes in two parent chromosomes from the select_mates function, and two

positions (explained in the crossover function). It works by crossing the two chromosomes,

and where any repetitions of numbers appears, swaps them with the corresponding position in

the other chromosome. An explanation is available here (Figure 38).

Figure 38. Function that crosses over chromosomes in the Travelling Salesman-type Genetic

Algorithm, using the partial-map operator

Crossover

The crossover function include pm_crossover, and the regular crossover. The mode is

determined by the “mode” argument. Pos 1 (position 1) and Pos 2 are selected at random, as

being the points at which the chromosomes will crossover. With two crossover points, there

are three chunks of chromosome. Each chunk is exchanged and stuck together to form the

children (c1 and c2). The Partial Map Operator was used, as it has been found to be the most

effective operator for Travelling Salesman Genetic Algorithms (Hussain et al., 2017), each

child is specified by the pm_crossover function described above (Figure 39).

Figure 39. Function for crossing over of chromosomes

Split_chromos

The split_chromos function is uniquely applied in the Multi-Chromosomal Genetic

Algorithm rubric. For MCGA, each chromosome is further split into sub chromosomes based

on the gene clusters determined by k means clustering (as will be seen later). This function

essentially creates mini chromosomes, which each behave the same as large chromosomes

(Figure 40).

18

Figure 40. Function for splitting chromosomes into sub-chromosomes, used for the Multi-

Chromosomal Genetic Algorithm

Flip

The flip function is a component of the mutation function. It flips a 1 to a 0 when activated

(Figure 41).

Figure 41. Function for flipping a gene to the opposite value, in the feature selection rubric

Mutate

The mutate function again comes in two forms. For the feature selection algorithm, it flips 1’s

to 0’s and 0’s to 1 based on a mutation rate (each gene has a x chance to flip, where x = the

mutation rate). For the TSP GA, instead of flipping values from 1 to 0, the gene takes on a

new random value within the rage (defined by number of features). Because this is likely to

cause a single value to be included at two positions in the route (not allowed), the second

occurrence is changed to the previous value. That is, in the vector [1,2,3,4], if the “2”

changed to 4, the original 4 changes to 2: [1,2,3,4] → [1,4,3,4] → [1,4,3,2] (Figure 42).

Figure 42. Function for mutating the chromosome, based on a mutation rate and the mode

Cross_mute

The cross_mute function essentially combines the crossover and mutation steps. As these

functions allow for multiple parent pairs, a for loop cycles through each pair of parents. The

Multi-Chromo mode requires an additional for loop because the split chromos function turns

each parental chromosome into an array of sub chromosomes. Each sub chromosome is then

crossover and mutated (Figure 43).

In both methods, the new chromosomes are added to an array called “children”

19

Figure 43. Combination of the crossover and mutation processes

Eval_chromo_results

Before being added back to the population of chromosomes, the performance of each child is

assessed. Following that modelling however, the eval_chromo_results function takes those

results and puts them in a results vector, to allow for cleaner and easier sorting.

To assess whether the new children are better or worse than their parents or the other

chromosomes in the population, they are applied to the modelling (Figure 44).

Figure 44. Function for evaluating the performance of new chromosomes when applied to the

modelling problem

Route distance

The Route distance function is unique to the Travelling Salesman problem. As will be seen

later, the TSP involves the optimisation of a route through a network. Therefore, this function

takes in a distance matrix, and calculates the sum total distance required to traverse a specific

route through the matrix network. The route is determined by the chromosome. This function

20

essentially determines the fitness of the chromosome, with shorter route distances

corresponding to more fit chromosomes (Figure 45).

Figure 45. Function for calculating the total distance of a route through the network

FS_GA

The FS_GA function sticks the above functions together to create a single algorithm for the

feature selection variant of the genetic algorithm. It is used for the Standard, Co-Location and

Multi-Chromosomal Genetic Algorithm rubrics (Figure 46).

Figure 46. Function that amalgamates all functions involved in the feature select genetic algorithm

process into a single function.

21

TSP_GA

The TSP GA is almost the same as the FS GA, and it may have been possible to reduce some

redundancy between the functions. The process is the same in that a population is initialised,

then for each chromosome fitness is determined and a generational results dataframe is

created. For each generation, parents are selected, crossed over and mutated to create

children. The fitness of these children is evaluated, and the population is restricted such that

the worst performers are removed (Figure 47).

Figure 47. Function that amalgamates all functions involved in the Traveling Salesman genetic

algorithm process into a single function

22

9 Co-Location Genetic Algorithm Pre-Processing
The construction of the Co-Location Genetic Algorithm methodology required pre-

processing such that the optimal order of genes could be determined. This involved the

creation of a distance matrix and network graph. The optimal route through this network was

determined by the TSP GA, and a new dataframe was created by reindexing the analysis

dataframe with the new order

Creation of distance matrix/correlation network

Dummy columns were created for each of the categorical variables with more than 2 levels.

The dataframe was used to create a correlation matrix. Because this included correlations

between dummy columns, the correlations of each dummy column were aggregated to the

root level using a for-loop and regex (Figure 48).

Figure 48. Code required to create the correlation matrix on which the distance matrix and network

graphs are based

Plotting of matrix

The correlation matrix was then turned into a distance matrix by taking the absolute value of

each correlation. This was then processed into a dataframe with three columns. A “From”, a

“To”, and a “Distance” column (represented in this analysis as “Var 1”, “Var 2” and “value”)

(Figure 49). These links were then stacked and used to create the network graph seen in the

Technical Report (TR Fig. 10).

Figure 49. Code for translating correlation matrix into a distance matrix, and plotting as a network

graph

23

Running and plotting results of TSP GA

As the composition of the TSP has been described in earlier sections, it will not be described

here. Figure 50 described the parameters used to run the travelling salesman GA. Due to the

reduced computational cost of this optimisation problem as compared to machine learning

(seen in section 11), a larger population of chromosomes was used, evolution was allowed

run for 100,000 generations, and instead of 1 pair of parents being selected each generation, 6

pairs of parents were selected. This allowed for more reproduction per generation.

Figure 50. Code used to run the TSP ga

The results of this analysis were plotted (Figure 51), and the results are available in the

technical report (TR Fig. 11). A relatively simple snippet of matplotlib code was required to

generate this graph. The results were also saved and downloaded.

Figure 51. Code for plotting of the TSP results

Reindexing dataframe such that order matched the optimal column order

The best chromosome from the tsp results corresponded to the optimal route through the

network. This chromosome was used to select the column names in the correct order, from

the distance matrix. This ordered list of columns was then used to reindex the analysis

dataframe and generate the colocation analysis dataframe (coloc_df) (Figure 52).

The opt_order_df was also generated in this step, to be used later in generating the k means

clustering df for the MCGA rubric.

Figure 52. Code for applying the optimal order to reindex the analysis dataframe

24

10 Multi-Chromosomal Genetic Algorithm Pre-Processing
Translation of network onto 2D plane

Translating the distances from the distance matrix onto a 2D plane involved the use of the

manifold package, and specifically the MDS package (Figure 53). This uses the relative

distance between each node on the network to map each node to coordinates on a 2D plane.

Figure 53. Code for mapping and plotting of the distance matrix onto a 2D plane

K means clustering on 2D plane

Once the variables were mapped to a 2D plane, k means clustering was used to cluster each

variable into groups of related variables. A for loop was used to vary K and record the total

sum squared distance for each K, such that it was possible to evaluate the best value for K.

this step also created a kmeans_df, which would be later used to split chromosomes into sub

chromosomes in the genetic algorithm rubric (as mentioned earlier, when describing the

split_chromos function) (Figure 54). A second snippet then created a colour version of the 2D

plane such that the sub chromosome for each variable was visible (Figure 55).

Figure 54. Code for looping through different values for K and assessing optimal value.

25

Figure 55. Code for plotting the 2D plane but with variables coloured based on the cluster to which

they belong

Plots created by the codes above (Figures 53,54 and 55) are each represented in the technical

report (TR Fig. 14).

11 Modelling and Results Visualisation
Modelling of Genetic Algorithms

The sections above have explained in depth how each genetic algorithm methodology was

conceived and implemented. However, the actual computation section is almost the same for

each model, and for each genetic algorithm. Therefore, a single representative snippet is

included in Figure 56. The points at which minor differences are present are highlighted and

commented upon.

For each genetic algorithm and for each machine learning model, the snippet below was run,

with some slight variations. These variations are given in the colour comment boxes to the

right.

Figure 56. Representative code used for running of each model for each Genetic Algorithm. Colour-coded comments describe

the changes to be made to the code for each model and Genetic Algorithm

Visualisation of results (per genetic algorithm)

Visualisations of the results within each genetic algorithm section was mediated through the

intra_ga_vis function (Figure 57). This function took in the results dataframes from each

model and produced the results visualisations for that genetic algorithm. For example, the

snippet below produced the results for the MCGA algorithm, seen in the technical report (TR

Fig. 8, 9, 12, 13, 15, 16).

Figure 57. Code that calls a function that visualises the results of each GA modelling

The function itself is a composite of matplotlib plots. Each plot is relatively simple and self-

explanatory (Figure 58).

26

Figure 58. Function that visualises the results of each model's performance for a given genetic

algorithm

Visualisation of genetic algorithm benchmarking

Following modelling of each machine learning method and each Genetic Algorithm

methodology, visualisations were used to compare the evolutionary performance of each

genetic algorithm. Again, this involved a composite of simple matplotlib graphs. Two bar

charts compared the best MAE or best Features achieved by each model and genetic

algorithm combination, and multiple line plots compared the course of evolution per model

and per genetic algorithm. A representative snippet of code is given for the bar charts (Figure

27

59), and for the line plots (Figure 60). These snippets generated the visuals in the technical

report (TR Fig. 17, 18).

Figure 59. Representative code for a bar chart used for comparing genetic algorithm with one

another

Figure 60. Representative code for a line chart used for comparing genetic algorithms with one another

12 Appendix 1

Table 2 – Description of Properties Data Tables

Properties 2016 & 2017 Rows: 5,970,434 Columns: 58

Variable Description
'airconditioningtypeid' Type of cooling system present in the home (if any)

'architecturalstyletypeid' Architectural style of the home (i.e. ranch, colonial, split-level, etc…)
'basementsqft' Finished living area below or partially below ground level
'bathroomcnt' Number of bathrooms in home including fractional bathrooms
'bedroomcnt' Number of bedrooms in home

'buildingqualitytypeid'
 Overall assessment of condition of the building from best (lowest) to worst
(highest)

'buildingclasstypeid' The building framing type (steel frame, wood frame, concrete/brick)
'calculatedbathnbr' Number of bathrooms in home including fractional bathroom

'decktypeid' Type of deck (if any) present on parcel
'threequarterbathnbr' Number of 3/4 bathrooms in house (shower + sink + toilet)

'finishedfloor1squarefeet' Size of the finished living area on the first (entry) floor of the home
'calculatedfinishedsquarefeet' Calculated total finished living area of the home

'finishedsquarefeet6' Base unfinished and finished area
'finishedsquarefeet12' Finished living area

28

'finishedsquarefeet13' Perimeter living area
'finishedsquarefeet15' Total area
'finishedsquarefeet50' Size of the finished living area on the first (entry) floor of the home

'fips'
 Federal Information Processing Standard code - see

https://en.wikipedia.org/wiki/FIPS_county_code for more details
'fireplacecnt' Number of fireplaces in a home (if any)
'fireplaceflag' Is a fireplace present in this home
'fullbathcnt' Number of full bathrooms (sink, shower + bathtub, and toilet) present in home

'garagecarcnt' Total number of garages on the lot including an attached garage
'garagetotalsqft' Total number of square feet of all garages on lot including an attached garage
'hashottuborspa' Does the home have a hot tub or spa

'heatingorsystemtypeid' Type of home heating system
'latitude' Latitude of the middle of the parcel multiplied by 10e6

'longitude' Longitude of the middle of the parcel multiplied by 10e6
'lotsizesquarefeet' Area of the lot in square feet
'numberofstories' Number of stories or levels the home has

'parcelid' Unique identifier for parcels (lots)
'poolcnt' Number of pools on the lot (if any)

'poolsizesum' Total square footage of all pools on property
'pooltypeid10' Spa or Hot Tub
'pooltypeid2' Pool with Spa/Hot Tub
'pooltypeid7' Pool without hot tub

'propertycountylandusecode' County land use code i.e. it's zoning at the county level
'propertylandusetypeid' Type of land use the property is zoned for

'propertyzoningdesc' Description of the allowed land uses (zoning) for that property

'rawcensustractandblock'
 Census tract and block ID combined - also contains blockgroup assignment by

extension

'censustractandblock'
 Census tract and block ID combined - also contains blockgroup assignment by
extension

'regionidcounty' County in which the property is located
'regionidcity' City in which the property is located (if any)
'regionidzip' Zip code in which the property is located

'regionidneighborhood' Neighborhood in which the property is located
'roomcnt' Total number of rooms in the principal residence

'storytypeid'
 Type of floors in a multi-story house (i.e. basement and main level, split-level,

attic, etc.). See tab for details.
'typeconstructiontypeid' What type of construction material was used to construct the home

'unitcnt' Number of units the structure is built into (i.e. 2 = duplex, 3 = triplex, etc...)
'yardbuildingsqft17' Patio in yard
'yardbuildingsqft26' Storage shed/building in yard

'yearbuilt' The Year the principal residence was built
'taxvaluedollarcnt' The total tax assessed value of the parcel

'structuretaxvaluedollarcnt' The assessed value of the built structure on the parcel
'landtaxvaluedollarcnt' The assessed value of the land area of the parcel

'taxamount' The total property tax assessed for that assessment year
'assessmentyear' The year of the property tax assessment

'taxdelinquencyflag' Property taxes for this parcel are past due as of 2015
'taxdelinquencyyear' Year for which the unpaid propert taxes were due

Table 3 – Description of Transaction Data Tables

Transactions 2016-2017 Rows: 167,838 Columns: 3

Variable Description

29

Transaction_date Date the sale of the property occurred

Parcel_id Id of the property sold
logerror Error achieved by the Zillow Zestimate model

References
Google Colab. (2020). Welcome to Colaboratory - Colaboratory. Getting Started -

Introduction. https://colab.research.google.com/notebooks/intro.ipynb

Hussain, A., Muhammad, Y. S., Nauman Sajid, M., Hussain, I., Mohamd Shoukry, A., &

Gani, S. (2017). Genetic Algorithm for Traveling Salesman Problem with Modified

Cycle Crossover Operator. Computational Intelligence and Neuroscience, 2017.

https://doi.org/10.1155/2017/7430125

Kaggle. (2018). Zillow Prize: Zillow’s Home Value Prediction.

https://www.kaggle.com/c/zillow-prize-1/data?select=properties_2017.csv

Macleod, M. D. (1993). Hamming Distance - an overview ScienceDirect Topics.

https://www.sciencedirect.com/topics/engineering/hamming-distance

OpenStreetMap. (n.d.). OpenStreetMap. Retrieved August 2, 2021, from

https://www.openstreetmap.org/#map=9/33.9548/-117.9300&layers=T

Terpilowski, M. (2019). scikit-posthocs: Pairwise multiple comparison tests in Python.

Journal of Open Source Software, 4(36), 1169. https://doi.org/10.21105/JOSS.01169

