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Novel Genetic Algorithms for Optimization of House
Price Prediction: USA

Ian Patterson
18124917

Abstract

Genetic Algorithms and their variants are popular methods of feature selection
optimisation, with applications ranging from medical image denoising to structural
engineering and stock market prediction. Innovations in the Genetic Algorithm it-
self have been limited, and not biologically-inspired. In this investigation, standard
and novel biologically-inspired Genetic Algorithms are used to optimize the feature
selection component of a machine learning-based House Price Prediction applica-
tion. This analysis found the novel Co-Location and Multi-Chromosomal Genetic
Algorithms to achieve superior optimization of XGBoost, Linear Regression and
Decision Tree-mediated prediction. The Co-location Genetic Algorithm reduced
Decision Tree prediction error by an additional 20%, as compared to the Stand-
ard Genetic Algorithm. The Multi-Chromosomal Genetic Algorithm reduced the
required number of features for XGBoost and Decision Tree to achieve optimal pre-
diction error, by 31% and 32% respectively, as compared to the Standard Genetic
Algorithm. These optimal performances were also achieved with fewer generations
of evolution required, corresponding to reduced computational cost. This finding
has implications for all house price prediction analyses in which feature selection is
mediated by genetic algorithms. Further investigation of the utility of these novel
genetic algorithms across different domains may have implications for all applica-
tions of genetic algorithms, regardless of industry or application.

1 Introduction

Genetic Algorithms (GA) belong to a family of optimisation algorithms based on the
principles of evolution and natural selection. They are effective in a range of applications
but excel in the optimisation of np-hard problems, such as the Travelling Salesman Prob-
lem. Machine Learning-related applications include hyperparameter tuning and feature
selection. The optimisation of feature selection is especially important, as machine learn-
ing problems grow more complex and challenging. Minimising the feature set size reduces
computational costs and risk of bias during modelling (Bzdok et al.; 2018). The housing
market in the United States of America constitutes a total value of 32.6 trillion dollars,
according to Zillow, an online property marketplace (Zillow Research; 2020). 2020 saw
the largest annual growth in history, at 2.2 trillion, corresponding to an increase in prop-
erty sales of 5.9% as compared to 2019 (Zillow Research; 2020). Further, Zillow estimates
that 2021 property sales will increase by a further 21.9%. These statistics highlights the
value in property investing, and continued growth of the market. With growth in the
market, the potential for profit increases, as does the value to be gained by understanding
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and predicting market behaviour. GA have successfully improved the ability of machine
learning models to predict property market changes (Dong et al.; 2020) and improve
accuracy of property price predictions (Liu and Liu; 2019; Su et al.; 2021).

The motivation for this investigation is two-tiered. First, benchmarking of existing
and novel GA for optimised feature selection may yield improved house price prediction
models. This can allow for developers to better understand and therefore build properties
with attributes most valued by customers, improving customer satisfaction and profits.
Improved predictive models would also confer an advantage in the purchase and reselling
of properties. Secondly, the novel GA protocols designed and investigated here may
improve upon the state-of-the-art GA. A new optimisation technique would potentially
improve upon any and all existing applications of Standard Genetic Algorithm (SGA),
across research domains.

1.1 Research Question, Objectives and Contributions

The lack of biologically inspired enhancements to the GA, and the ubiquitous and im-
portant application of the optimisation method across industries and domains, motivates
improvement of the methodology. This project therefore aims to answer the research
question:
To what extent do additional biologically-inspired enhancements improve industry stand-
ard Genetic Algorithmic efficiency, in a United States property price prediction applica-
tion.

The total objectives of this analysis are summarised in Table 1. Objectives 1, 2 and 3 aim
to establish a context for the house price prediction domain; these include a literature
review, sourcing and processing of an appropriate analysis dataset and the exploratory
analysis of this dataset. The outputs of these objectives will be the basis from which
the subsequent investigations are completed. Objectives 4 to 8 (inclusive) comprise the
data mining, machine learning, optimisation, and implementation of novel genetic al-
gorithms, for house price prediction. Due to the complexity and novelty of the genetic
algorithms formulated during this study, these objectives (6, 7) include sub-objectives
and sub-investigations.

The major contributions of this investigation are the novel GA methodologies designed
and explored here, and the identification of the machine learning models that most accur-
ately predict house price error. The novel GA methodologies may be used by researchers
from disparate domains to improve the efficiency of their feature selection optimisation.
The house price prediction error model may contribute to more efficient and profitable
price prediction model for real estate agents.

The insights garnered from the exploratory analysis of house price prediction error
in Los Angeles comprise a minor contribution of this study. This exploratory analysis
will allow Zillow to better understand the market in which they operate, and where their
price prediction algorithm is least effective.

This study is limited in that GA performance is only measured against a single data-
set. It may be that the GA explored here performed especially well, but only for this
dataset. Also, the data included here is restricted to recent years in the Los Angeles US
housing market. It is unclear whether the insights garnered through this analysis are
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generalisable to other housing markets. Also, as this investigation is aimed at optimizing
the Zillow Zestimate house pricing model, the insights from the machine learning com-
ponents may be less useful for non-Zillow pricing. Although GA may perform well in
optimising the architecture of neural networks, there is insufficient time to include neural
networks in this study. Therefore, it may be possible to improve predictor accuracy and
efficiency through GA-optimisation of neural networks.

Table 1 - Research Objectives
Obj. Objective Description Techniques Evaluation
1 Review of the Genetic Algorithms and House Price Prediction Error
2 Pre-Processing, Feature Engineering and Missing Value In-

vestigation
Cleaning
Imputation

Visualisations

3 Exploratory Analysis of price prediction errors in Los Angeles Hypothesis tests Statistics
Visualisation

4 Unoptimized House Price Prediction, and benchmarking of
unoptimized modelling techniques.

Random Forest
XGBoost
Linear Regression
Decision Tree

Mean Absolute
Error

5 Implementation of Standard GA for Feature Selection, using
superior models from objective 4

Genetic Algorithm Mean Absolute
Error
Features Used

6 Design and Implementation of a novel Gene Co-location GA for Feature Selection
6a Correlation analysis of features and Construction of a Net-

work
Correlation
Graph Theory

Spearman Rho

6b Implementation of a Travelling Salesman -Type Genetic Al-
gorithm for optimisation of network graph

Genetic Algorithm Total Distance

6c Implementation of gene co-location algorithm with superior
predictive models from objective 4

Genetic Algorithm Mean Absolute
Error
Features Used

7 Design and Implementation of a novel multi-chromosomal GA for Feature Selection
7a Translate optimal solution from obj. 6b into a 2D Matrix

and identify groups of related genes via K means Clustering.
KMeans Cluster-
ing

Total Sum
Squared Error

7b Implementation of Multi-Chromosomal GA for Feature Se-
lection, using superior model from objective 4

Genetic Algorithm Mean Absolute
Error

8 Compare and benchmark GA performance among novel vari-
ants explored here

Visualisations Descriptive
Statistics

The structure of this technical report is as follows: A review of the related academic
work will be presented in Section 2. This will be followed by an overview of the Method-
ology used in this investigation, in Section 3. The Design Specification will be presented
in Section 4. This will be followed by the Implementation, Results and Evaluation of
each investigation, in Section 5. This section will also include a Discussion of the results.
Section 6 will include the Conclusions of the investigation will be presented, alongside
Limitations and Future Work.
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2 Related Work

This review of the related work in the literature includes an investigation into and critique
of feature selection techniques used for optimisation of machine learning and house price
prediction analyses. As this study focuses on improving Genetic Algorithm performance,
this family of algorithms is also investigated. The review concludes with an examination
of the house price prediction domain, and a critique of machine learning and optimisation
techniques that have found success. The scope of this review is restricted to developments
in the feature selection, genetic algorithm and house price prediction domains from the
years 2013 to 2021.

2.1 Feature Selection and Techniques

Feature selection is a technique used to select the best features to be used during the
modelling and machine learning steps of an analysis. The aim is to reduce the number of
features incorporated into the model such that the most predictive features remain, and
the least predictive (including redundant and counter-productive) features are removed.
This is especially relevant today, as datasets become larger and more heterogeneous;
there is more irrelevant and erroneous data obscuring the meaningful data (Li et al.;
2017). Reducing the number of features included in a model leads to simpler models
that are more interpretable (Blanquero et al.; 2019). It also reduces the amount of
noise, improves the computation speed during modelling and reduces risk of overfitting
and biasing models (Muñoz-Romero et al.; 2020). Feature selection is key for producing
predictive or classification models with reproducible and more generalisable performance.
This is vital in modern fields of biotechnology such as microarray screening of genetic
disease, where the vast majority of genes do not contribute to disease (Saeid et al.; 2020).
This field involves the analysis of thousands of genes in the human genome (each gene is
a feature), feature selection is required to “ignore” irrelevant features that interfere with
important features (Hambali et al.; 2020).

2.1.1 Critique of Feature Selection Techniques

Feature selection techniques can be objectively grouped into three different types: filter
methods, wrapper methods and embedded/hybrid methods. Filter methods are based
on the individual characteristic features. These methods are simpler and less computa-
tionally expensive, but they do not account for interactions and relationships between
component features and the learning approach. Filter methods rely on basic statistics
describing the properties of the feature set, such as correlation and variance, and their
more generic and quick application comes at a cost of decreased accuracy (Jha and Saha;
2021).

Wrapper methods incorporate machine learning or evolutionary computation into
the selection process. This allows for detection of relationships between variables, and
therefore are more likely to achieve greater accuracy, at the cost of computational expense.
This was demonstrated when filter and wrapper feature selection methods were applied to
a Parkinson’s disease classification problem. The wrapper method outperformed the filter
method by 21% in classification accuracy (wrapper: 88%; filter: 67%) (Gündüz; 2019).
Although it is expected that filter methods are always less computationally expensive,
it has been demonstrated that this may be rectified through choice of machine learning
model. In a comparison of filter and wrapper methods aimed at optimising classification
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across multiple datasets (ranging from beans to flowers to lung disease), Wrappers using
Decision Tree (DT) and Näıve Bayes performed faster than the filter methods. Although,
these were the exception, as the filter methods were faster than K Nearest Neighbours
and Support Vector Machines (Xue et al.; 2015).

The third approach, Embedded methods, are a hybrid of the two; specific learning
algorithms and heuristics are applied to speed up computation while preserving most of
the Wrapper method’s superior performance. An embedded method was used to optimise
the feature set used for understanding and predicting crashes, automatically generated
through an IT system. This method first involved a shortlisting of features using an
information gain-ratio filter method, and further delineated the optimal features using a
weighted balanced distribution adaptation wrapper method. This was embedded method
was found to outperform 25 filter methods across 7 different experiments (Xu et al.; 2021).

2.2 Genetic Algorithms and Recent Advances

GA are composed of 5 main steps: population initialisation, selection, fitness evaluation,
crossover, and mutation. These steps can be altered and reconfigured such that the be-
nefits of GA are enhanced and the pitfalls, such as pre-mature convergence, are avoided.
Aside from configuration of the stages of GA, heuristics can be used to incorporate expert
and industry knowledge into the optimisation process. This allows for a non-näıve and
more efficient search of the solution space. A convolutional neural network was construc-
ted for medical image denoising. Initialising the population of the hyperparameter tuning
GA with parameters that had been successful in the literature, such as the ADAM optim-
iser, accelerated optimisation and reduced incidence of pre-mature convergence (Liu and
Liu; 2019). Similarly, incorporation of train scheduling best practices into the population
initialisation of a scheduling optimisation problem improved total efficiency, as measured
by time required to complete the schedule (Vlašić et al.; 2019). Recent advances in GA
architecture have included the dynamic variation of crossover and mutation rates. In-
creasing the crossover and mutation rates when diversity tends to stagnate is a means by
which additional genetic variability can be introduced into the population. While this
may increase risk of losing the best performing solutions, it reduces risk of pre-mature
convergence. Dynamically varying the mutation rate substantially reduced the number of
generations required to optimise the travelling salesman problem (Xu et al.; 2018), while
dynamically altering crossover rates was similarly successful (Hussain et al.; 2017). In-
terestingly, varying crossover rates across populations, in a multi-population ga improved
total diversity and resulted in improved algorithmic efficiency. This indicates that accel-
erating the key genetic exchange process of GA improves algorithmic efficiency (Wang
et al.; 2018).

2.3 Review of the United States Housing Market and House
Price Prediction

In the United States, 5.7 million homes were sold via Zillow in the year 2020, constitut-
ing a 5.9% growth year-on-year. This growth is projected to increase to 22% (7 million
homes) in 2021 (Zillow Research; 2020). As the value and number of homes being sold
increases year on year, the value in predicting property prices consequently increases.
Understanding the factors that drive prices is key to leveraging this market. Given that
price reflects what people value, the phenomenon is difficult and complex to model. The
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current industry practice is the hedonic model, in which prices are determined by the
structural characteristics of and amenities local to the property (Owusu-Ansah; 2013).
However, this view is limited, and does not make use of more complex and nuanced
data available to real estate agents and would-be modellers. Data describing social en-
vironment factors such as human mobility patterns, and aesthetic factors such as the
local landscape and property architecture may dictate price (Du et al.; 2018; Kang et al.;
2020).

2.3.1 Critique of Techniques Used for House Price Prediction

Given the value and profit derived from an accurate understanding of the real estate
market and property valuation, researchers have tackled the problem for decades. Relev-
ance Vector Machines, Linear Regression (LR), Bayesian Linear Regression and Gaussian
Probabilistic Regression were applied to a London property price dataset. Of these stat-
istical techniques, Gaussian Regression was superior. Success was attributed to the flex-
ibility and non-linearity of the model (Ng; 2015). Accuracies superior to those achieved
by statistical methods in the London sample above, were achieved by tree-based methods
in a Chinese sample. DT, Random Forest (RF) and Gradient Boosted Trees (GBT) were
compared, and it was found that the RF performed best (Truong et al.; 2020). However,
RF was outperformed by a stacked ensemble of RF and GBT. However, as these machine
learning techniques were used on a separate sample, they may not be directly comparable
to the London study above. More modern machine learning techniques such as Neural
Networks have potential to vastly improve upon the accuracies achieved by simpler meth-
ods, due to their increased complexity and ability to integrate novel data types. A deep
neural network that incorporated street view images of the properties in question, and
thereby introducing aesthetic to the pricing model, achieved supreme accuracy RMSE
< 0.1 in a US Dataset (Kang et al.; 2020). However, this dataset consisted of 60,000
properties in a relatively restricted location. The computational expense may prohibit
such a protocol for larger datasets comprised of millions of properties across disparate
geographies.

GA have also been used to optimise house price prediction, to achieve accuracies
greater than what would be achieved through complex machine learning models alone.
A GA optimised a Log-periodic power model that predicted turning point in house price
trends in a Chinese sample (Dong et al.; 2020). The efficient performance of the model
was attributed to the evolution of solutions across multiple populations. A GA was also
used to optimise a Long Short-Term Memory (LSTM) neural network, that achieved a
Mean Absolute Percentage Error of 6% in a Unites States sample of x properties. The
error achieved by LSTM alone was twice this error (12%) (Liu and Liu; 2019). Finally,
in a study of automated property appraisals, a GA performed two key functions. It first
acted to optimise the features selected for the optimal model performance, reducing the
feature set from 65 to 8 key features. It also performed a multi-objective optimisation of
the diversity and accuracy achieved by the Gradient Boosted Regression model, used to
predict house prices. This optimised model achieved an R2 of 0.9, compared to the unop-
timized model’s top R2 of 0.87. Although this difference is marginal, it was achieved using
fewer features, and is therefore more generalisable and less computationally expensive (Su
et al.; 2021).
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2.4 Summary of Findings, Identified Gaps and Conclusion

This literature review found that the most effective machine learning algorithms for the
prediction of house prices, across multiple geographies, were deep neural networks and
other ensemble classifiers such as RF and GBT. The predictive power of these models
were improved through optimisation of feature selection. The findings of this literature
review are summarised in Table 2. However, no study of house price prediction was
identified to have used either the Multi-Chromosomal Genetic Algorithm (MCGA) or
Gene Co-Location Genetic Algorithm (CLGA) methodologies. Moreover, when research-
ing the state-of-the-art and novel GA methodologies across domains, still no study was
found to use these techniques. Therefore, the design and implementation of these novel
methodologies may rectify a significant gap in the literature, with the potential for ap-
plications across industries and research domains. Additionally, this literature review did
not identify any house price prediction studies using the Zillow Zestimate dataset, used
in this analysis. Therefore, this investigation may also be the first of its kind in that
regard.

This literature review comprised completion of Objective 1 (See Section 1.1, Table 1).

Table 2 - Comparison of Techniques Use
Citation Location Sample Period Techniques Optimisation
(Ng, 2015) London 2.4 million 1995-2013 Relevance Vector Machines, Linear

Regression, Bayesian Linear Regres-
sion, Gaussian Probabilistic Regres-
sion

None

(Truong et
al., 2020)

China 300,000 2009-2018 Decision Tree, Random Forest,
Gradient Boosted Trees, Stacked En-
semble (Random Forest + Gradient
Boosted Trees)

None

(Kang et
al., 2020)

USA 22,000 2014-2019 Deep Neural Network, Support
Vector Machine, Long Short-Term
Memory

None

(Dong et
al., 2020)

China 30,000 2017 Log Periodic Power Model Genetic
Algorithm

(Liu & Liu,
2019)

China 664 2011-2017 Long Short-Term Memory, Support
Vector Machine, Artificial Neural
Network

Genetic
Algorithm

(Su et al.,
2021)

China 19,000 2000-2017 Genetic Algorithm + Gradient Boos-
ted Tree, Gradient Boosted Tree

Genetic
Algorithm

This
Analysis

USA 2 million 2017-2018 Gradient Boosted Tree, Random
Forest, Linear Regression, Decision
Tree

Multiple
Novel Genetic
Algorithms
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3 Multi-Chromosomal and Co-Location Genetic Al-

gorithm Methodology

The methodology used for this investigation is termed the Multi-Chromosomal and Co-
Location Genetic Algorithm Methodology. This has been adapted from the popular
Knowledge Discovery in Databases methodology, to meet the specific objectives of the
analysis. In this section, the preparatory methodological steps will be described briefly.
The Implementation will include descriptions of the steps that follow the pre-processing
and Transformation stage, in greater detail.

Figure 1: Summary of the Multi-Chromosomal and Co-location Genetic Algorithm Meth-
odology, adapted from the Knowledge Discovery in Databases methodology.

3.1 Data Acquisition

The data used in this analysis was sourced from a Zillow database, published to Kaggle as
part of a competition (Kaggle; 2018). This data was composed of 4 tables: 2 describing
property listings and 2 describing transactions. Properties 2016 and Properties 2017 each
consisted of 2,985,217 property listings described by 55 variables, aggregating to a total of
5,970,434 records (full table available in configuration manual). Transactions 16 consisted
of 90,275 transaction records and Transactions 17 comprised an additional 77,613 sales
transactions (167,838 sales total), corresponding to the Properties tables. Sale prices were
not available for each transaction, instead, and for the sake of privacy and security, log
errors produced by Zillow’s house price prediction model accompanied each transaction.
This log-error value is a proxy for house price, as it can be back-translated to discrete
price values using the Zillow ‘Zestimate’ model.

3.2 Pre-Processing and Transformation

Data was uploaded to a personal Google Drive mounted in a Google Colab environment.
This allowed for importing of CSV data and use of Google’s cloud platform for storage
and GPU-assisted analytics. Properties and Transactions were merged via parcel id such
that variables describing the properties were associated with transaction prices and log
errors. This yielded an analysis dataframe comprised of 167,838 sales 60 associated vari-
ables.

Categorical variables coded using numbers were converted to categorical types so as to
avoid incorrect treating coded variables as numeric data. Variables stored as Int64 and
Float64 were converted to int16 and float 16 respectively, so as to reduce computational
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speed and expense. These variables were not sufficiently granular to require memory-
intensive data types. Categorical variables with especially large number of classes were
removed due to computational constraints. For example, the census and census raw vari-
ables had an excessively large number of classes within, such that dummy encoding turned
the dataframe from a 190-column matrix, to a matrix with 40,000 columns. This yielded
prohibitive computational costs. However, the removal of these variables were justified
by analysing model performance with and without these variables included no significant
impact of removal was found.

Variables were investigated for missing values. “NaN” values for variables such as “garden
perimeter” were interpreted as the apartment lacking a garden, rather than the data being
missing. In instances where “build date” and “assessment date” were NaN, the median
was imputed. Other variables missing large proportions of values were not imputed for
and were not removed. This was because the exercise of the GA in this analysis is to
determine which features deliver the most value through inclusion; the GA might find
that inclusion of a variable missing in 90

3.3 Feature Selection and Engineering

Feature Selection for this analysis was minimal, because the key aim of this investigation
was to uncover novel methods of automated feature selection, through the use of GA.
However, some features were removed before any optimisation was performed, due to
their being identical and redundant with other features. For example, Variables such as
Zones, Zipcodes, hood and city were removed due to their containing redundant data.

This section comprised completion of Objective 2 (See Section 1.1, Table 1).

4 Design Specification

The design of this investigation is comprised of a three-tier system (Figure 2), in which
the inputs, outputs and process flow of the analysis are presented. The Data Layer in-
cludes the processes by which data are sourced and the locations in which they are stored
(Google Drive and Excel in this instance). The Processing layer describes the process
flow through which the data traverses and is deferentially transformed, analysed, and
presented depending on the analysis component. As can be seen from the Processing
Layer, the construction of the novel biologically-inspired GA variants are sequential and
modular; this will be expounded in the Implementation section. The Exploratory Ana-
lysis, Modelling & Machine Learning and Visualisation processes in the processing are
the sources of the investigation’s outputs. These outputs are represented in the Output
Layer, and include novel insights which may inform future analyses, as well as predictive
and optimization models ready for application to new datasets.

Two novel biologically-inspired Genetic Algorithm methodologies were investigated in
this analysis. These are the Co-Location Genetic Algorithm, and the Multi-Chromosomal
Genetic Algorithm.
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Figure 2: Design Specification for the Multi-Chromosomal and Co-location Genetic Al-
gorithm investigation.

Co-Location Genetic Algorithm:
The Co-location Genetic Algorithm (CLGA) will require two preliminary steps. A cor-
relation analysis will assess the relatedness of features, which can then be converted into
network graph. Minimising the route through this graph is a Travelling Salesman Prob-
lem (TSP), which can be solved using a Genetic Algorithm with a partial-map crossover
operator (Hussain et al.; 2017). The optimal route determines the order of genes on the
chromosome (Figure 3). This models natural biology, in which related and co-operative
genes associate beside one another on chromosomes. Following the optimised ordering of
genes on the chromosome, the CLGA follows the same process as the SGA.

Multi-Chromosomal Genetic Algorithm:
The Multi-Chromosomal Genetic Algorithm (MCGA) follows a similar rubric to the
CLGA, with additional pre-processing. Following the co-location of genes, the network is
translated onto a 2D plane, to facilitate K Means Clustering. Plots comparing the inter-
cluster distance and K, will assist in identifying an appropriate K. Each cluster specifies
a sub-chromosome, onto which component genes are assigned. These sub-chromosomes
crossover with their sub-chromosomal pair, and sub-chromosomes are recombined as one
chromosome during the modelling phase (Figure 4). This allows each sub-chromosome to
evolve at different rates, which will allow the GA to speed up resolution of more difficult
components of the problem, without jeopardising solved components.
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Figure 3: Conceptualisation and rationale of Co-Location Genetic Algorithm

Figure 4: Conceptualisation and rationale of Multi-Chromosomal Genetic Algorithm.

5 Implementation, Results and Evaluation

In this section, each of 6 primary experiments comprising this study are separated into
subsections. Within each experiment are sub-experiments. The implementation of each
sub-experiment is given first, followed by a presentation of the numeric and graphical
results. Based on the results, actionable interpretations and recommendations are given
in the evaluation components.

5.1 Exploratory Analysis

An exploratory analysis was performed to better understand the data being worked with
in this investigation. This analysis was aimed at providing insights into the dataset, and
prediction of property prices, that would be useful for improving future data collection
and price prediction activities.
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5.1.1 Descriptive Analysis of Target Variable

Implementation:
To better understand how the target variable (predictor error) is distributed, descriptive
statistics (Table 3) and histograms of the target variable were created (Figure 5). Due
to the especially wide range, and high kurtosis, additional histograms were generated to
zoom into those values that fell within the interquartile range.

Results:
As can be seen from the histograms (Figure 5) and descriptive statistics (Table 3), the
distribution of errors are especially tight around the median (approximately 0). The high
kurtosis is exemplified by the high range (9.918), and especially low interquartile range
(0.065) and standard deviations (0.166). There is a slight positive skew, as indicated by
the mean being slightly larger than the median.

Table 3 - Summary Statistics
Count Mean Standard

Deviation
Min Max 25th

Percentile
Median 75th

Percentile
Interquartile
Range

Range

167,888 0.014 0.166 -4.656 5.263 -0.025 0.006 0.039 0.065 9.918

Figure 5: Total distribution (left) of all prediction errors across both 2016 and 2017. This
shows an extremely high kurtosis, with almost all values falling near 0. Distribution of
prediction errors that fall within the interquartile range (right). These appear closer to a
normal distribution, but still exhibit high kurtosis.

Evaluation:
Given that the majority of values tend very closely toward 0, this experiment demon-
strates that the Zestimate predictive model is highly accurate. When the observations
within the interquartile range are examined, it can be seen that the values approach
normality around a median of 0.006. However, the slight disparity between median and
mean indicates that this distribution has a slight bias toward the positive tail, indicating
that the model is more likely to overestimate price predictions than underestimate; this
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is a key insight that could improve the prediction model. Finally, although the model
is typically accurate, the extreme disparity between range and interquartile range high-
lights that the Zestimate model can be extremely wrong in some instances. Together,
these insights would motivate further inspection of those outlier errors on the fringe. It
may be that these errors are caused by missing values in key features.

5.1.2 Univariate Correlations and Associations with Target Variable

Implementation:
To better understand how each feature in the dataset associates or is correlated with the
target variable, correlation and/or analysis of variance tests were performed. Before these
statistical tests were performed however, the normality of the target variable needed to
be tested. A Kolmogorov-Smirnov test compared the distribution of the logerror variable
to a standard normal distribution. This found the distribution of the target variable to
be significantly different to the normal distribution (KS = 0.4, p < 0.001). This required
that subsequent statistical tests use non-parametric alternatives to the parametric tests
that assume normality.

For correlation of numeric features and binary categorical variables to the target variable,
Spearman’s Rho was used.

To understand the association of categorical variables with multiple factors with the
target variable, the Kruskal Wallis test was performed. Where significant differences were
found between the factors, post-hoc Dunn tests were performed. Bonferroni correction
was used to account for the effect of multiple comparisons on statistical significance.

Results:
Due to there being 52 predictive variables, it is not appropriate to include all visualisations
and statistical tests here. Instead, those correlation analyses that yielded the strongest
associations are included. Also, those Kruskal Wallis tests that achieved significance and
demonstrated associations with the target variable were included (Figure 6).

A significant correlation was found between the total living area of the property and
the error of the prediction, however, the low positive Rho (0.067, p < 0.001) indicates
that there is only a small positive association.

A Kruskal Wallis test found that there was a significant interaction between the type
of aircon system and the propensity for incorrect prediction of house price (KW = 39.1,
p < 0.001). Post-hoc Dunn tests found that the differences existed between Aircon sys-
tem 1 and Aircon System 13 (p < 0.001) and Aircon System 1 and nan (p < 0.001) (data
was missing) and Aircon system 13 and nan (p < 0.001). These associations survived
Bonferroni correction. Significant interactions between the FIPS (area) (KW = 76.3,
p < 0.001) and county (KW = 76.3, p < 0.001) codes of the property and the propensity
for incorrect prediction of house price were also found. Post-hoc Dunn tests found that
the differences existed between FIPS code 6037 and 6059 (p < 0.001), 6037 and 6111
(p < 0.001), and county codes 3101 and 1286 (p < 0.001), and 3101 and 2016 (p < 0.001).
These associations survived Bonferroni correction.
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Figure 6: Kruskal Wallis tests demonstrating significant associations between aircon sys-
tem (A), FIPS code (C) and County (D) with price prediction error. Spearman’s Rho
correlation found there to be a weak positive correlation between prediction error and the
total living area in the property (B).

Evaluation:
The significant associations between the living area with the log error target variable was
weak but positive. This would suggest that properties with larger living areas are more
difficult to price. Although the associations in the aircon system analysis found there to
be significant differences between each category, the differences were minimal. However,
a significant finding of this test was the significant difference between the missing and
non-missing factors. This indicates that missing data in this column has a significant
effect on prediction accuracy, as compared to other factors. If the values were missing at
random, they would not throw significant differences. Although the associations between
the FIPS and count codes with the prediction error are also slight but significant, this
test revealed that the variance of prediction error differs substantially between FIPS and
county codes. This indicates that it is more difficult to predict property prices in some
FIPS code and county areas, compared to others.
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5.1.3 Analysis of Prediction Error as a Function of Time

Implementation:
To investigate whether there is a relationship between the time of transaction and the
error of price prediction, the monthly median error of transaction price was plotted against
time. To further investigate whether error was impacted by the sample of available
properties, the number of transactions occurring per month was plotted against time.

Results:

Figure 7: A graph of median house price prediction error and count of property transac-
tions.

Evaluation:
This visualisation (Figure 7) indicated that house prices appear to follow a seasonal trend,
with the spring months of each year associating with higher price prediction errors. The
median error appears to negatively correlate with the number of properties on the market.
This might be due to the lesser availability of transactions on which to train the model,
leading to greater error. However, there are points at which the trend lines intercept,
such as in 2016-09, when the number of transactions was high, yet the error was also high.
One possible explanation for this is the dynamics of supply and demand, which is not
captured directly in the dataset. That is, during the “flatter” periods of the graph, the
predictive model focuses on the qualities and characteristics of the property. However,
as the number of properties on the market decreases, demand for properties increases
relative to supply, and drives up the price. This effect of supply and demand are not
captured in the characteristics of the house and may therefore not be incorporated into
the Zestimate’s predictions, leading to increased error. This would motivate incorporation
of an additional feature that summarized the trend in number of properties on the market.

5.1.4 Analysis of Geographic Location’s on Prediction Error

Implementation:
To understand how price prediction error differs with geography, each transaction was
mapped using the latitude and longitude values. This was superimposed on a map of Los
Angeles. Error values determined the dot colour; larger areas were darker shades of blue.
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Results:

Figure 8: Display of the geographic distribution of property price predictions. Although
price prediction errors can be found throughout Los Angeles, a higher density of errors
occur near Laguna and Huntington (Circled Red)

Evaluation:
This visualisation (Figure 8) demonstrated that prediction errors occur across the total
geography. However, there is an area in which prediction errors are apparently denser.
The area between Laguna Beach and Huntington Beach (circled in red), appears to have
a greater density of transactions with substantial price prediction errors, as indicated
by the deep blue dots. This suggests that these areas contain properties that are less
amenable to prediction. Possibly due to the unique characteristics of properties in that
area. Alternatively, data collection and/or real estate practices might mean that partic-
ular features are not collected as faithfully in this location.

Together, this exploratory analysis consisting of 4 sub-experiments, comprised completion
of Objective 3 (See Section 1.1, Table 1).

5.2 Unoptimized Modelling

Implementation:
Data mining methods that have found success in previous analyses of price prediction
were assessed
The XGBoost (XGB) model, Linear Regression (LR), Decision Tree Regression (DT),
Random Forest Regressor (RF) and four variants of Support Vector Regression (SVR)
(Linear, Polynomial, Radial Basis Function, Sigmoid) were analysed.
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K-Fold Cross-Validation was used to reduce the incidence of overfitting to training data.
This process involves the splitting of the dataset to produce different train and test splits
for each iteration. A K of 5 was chosen for this study, based on the relatively large num-
ber of models being assessed, and the expected computational cost of analysing a large
dataset. A K of 5 meant that each model was analysed 5 times, using a different 80%
of the data to train the model and a different 20% for testing and validation each iteration.

These unoptimized models were primarily compared to one another using the Mean Ab-
solute Error metric. This metric computes the average difference between the prediction
and the actual value, calculated as a percentage of the actual value; an MAE of 0.1
indicates a 10% difference between the prediction and the actual value. they were also
evaluated based on the time requirement, because models that required too much time
would not be amenable to GA optimisation, due to the inherent iterative nature of the
optimisation method.

Results:
After an initial trial, it was apparent that the SVR variants took a prohibitive length of
time (over 1 hour each). They were therefore excluded from the results and subsequent
analyses, as it was not feasible to wait for their completion.

Figure 9: Graph of results of prediction of house price prediction error by machine learning
models not optimized by any genetic algorithm method. A: Best MAE achieved, B: Time
required to complete modelling, C: Time required to complete modelling with Random
Forest Excluded.

From the analysis of the XGB, RF, LR and DT models, it was found that the DT was
the worst performer, achieving an MAE of 0.115, whereas LR was the best performer,
achieving the lowest MAE of 0.0696 (Figure 9 A). RF was found to outperform the XGB
Model in terms of MAE (0.0745 vs 0.0767), but as can be seen in Figure 9 B, the RF
took far longer than any other model (55 minutes). Figure 9 C shows the comparison of
times required for each model without RF included.
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Evaluation:
The necessity to exclude SVR variants may have been due to the number of columns
involved in this analysis. Following creation of dummy columns, the total feature set can
extend to over 4000 columns. Given that SVR are sensitive to dimensionality, they were
unable to complete the modelling task in a reasonable length of time.

These results show that the model best able to predict errors in the Zestimate model
is LR. The time requirements also inform on how feasible GA optimization each model
is. Figure 9 B shows that RF would be impossible to optimize using GA, as each gener-
ation would require 55 minutes to run. Conversely, the time requirements indicate that
the XGB and LR models are most amenable to optimization by GA. Given that XGB
requires roughly half the time as LR, XGB could theoretically achieve twice as many
generations of evolution in the same time as LR. Therefore, both are worthwhile for fur-
ther investigation. Because DTs had been found to be successful in past analyses, and
because the time requirement was not prohibitive, the model was also optimized via GA
in later experiments.

Together, this subsection comprised completion of Objective 4 (See Section 1.1, Table
1).

5.3 Standard Genetic Algorithm Optimisation of Modelling

Implementation:
Chromosome Structure
The chromosome was composed of an array of 0’s and 1’s of length equal to the number
of features in the dataset (52). Each position in this array mapped back to the features
such that a 0 or a 1 corresponded to exclusion or inclusion of a feature, respectively, for
that iteration of modelling.
Fitness Function
Fitness for each chromosome was evaluated using three metrics. Chromosomes were
primarily evaluated based on their MAE (MAE1) score. However, to reward chromo-
somes that required fewer features, a second MAE metric (MAE2) was used. MAE2

equalled MAE1 rounded to 2 decimal places. When two chromosomes were equal in
MAE2, the chromosome that required fewer features was ranked higher. Conversely,
if two chromosomes achieved equal MAE2, and used an equal number of features, the
chromosome with higher MAE1 was superior.
Initialisation
To initialise the population, 20 arrays were generated such that each element had a 50:50
chance of being 1 or 0.
Selection
Following each generation, selection probabilities (Ps) were assigned to each chromosome.
This was calculated based on the MAE achieved by the chromosome when that set of
features was applied to the modelling task. This made it more likely that the best per-
forming chromosomes were selected for reproduction.
Mutation Recombination
Two chromosomes were selected based on their selection probability, described above.
Each bit of each chromosome had an equal probability of mutating (flipping from 0 to
1 or 1 to 0). Following this round of mutation, chromosomes were crossed over at ran-
dom points. This was to allow the best genes of parent chromosomes to combine and
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persist in the population, and the worst genes to be removed. Following recombination,
both parents and both children were returned to the population. The worst performer
of the population was removed each generation. This elitism method ensured the best
chromosomes survived through each generation and that the worst genes were removed.

Results:

Figure 10: Chart of best MAE achieved (left) and fewest features required (right) by each
model following 250 generations of feature selection optimisation by Standard Genetic
Algorithm

Figure 11: Chart of the progressive improvement in MAE and reduction in number of
features required by each model through the course of 250 generations of Standard Genetic
Algorithm optimisation.

There was no substantial improvement in the Best MAE achieved by each model fol-
lowing optimisation of feature selection by an SGA, except for in the DT, which exhibited
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a 10% improvement from 0.115 to 0.109 MAE (Figure 10, left)). XGB and LR improved
from 0.0761 and 0.0696 to 0.073 and 0.069 respectively.

Fewer features were required to achieve better results in the XGB (16) and LR (18)
models compared to the DT (25) (Figure 10, right).

Model error was not improved for the XGB and LR models over the course of evol-
ution, but the DT exhibited some improvement (Figure 11, left), that plateaued after
100 generations. For XGB and LR, the number of features required to maintain their
performance reduced with each generation, from 22 and 19, to 17 and 15 respectively
(Figure 11, right).

Evaluation:
Although there was no substantial movement in the MAE for the better performing XGB
and LR models, the SGA optimised the modelling process such that fewer features were
required to achieve the same performance. This means that future analyses will not need
to include as many erroneous features that contribute no predictive power but may cause
overfitting of data.

This subsection comprised completion of Objective 5 (See Section 1.1, Table 1).

5.4 Construction and Deployment of Co-Location Genetic Al-
gorithm

In order to construct the CLGA, in which genes are ordered on the chromosomes such that
the most related genes are close to one another, two steps were required. A network graph
was first constructed based on correlation values. The optimal route through this network
was then used to determine the optimal order of genes on the chromosome. Following
gene order optimisation, the new gene order was applied using the SGA method.

5.4.1 Network Construction and Travelling Salesman Genetic Algorithm

Implementation:
Binary class categorical variables were represented as 0s and 1s and were combined with
the numeric variables. Multi-class categorical variables were included as dummy variables.
The dataframe was then used to compute a correlation matrix. This was converted to a
distance graph by subtracting each of the correlation values from 1. Each distance was
used to calculate the relative position of each variable in a fully connected network.

The shortest route through the network would yield the order of genes which minim-
ised distance between related genes on the chromosome. This is a Travelling Salesman
Problem (TSP), which finds the shortest route through a network. An SGA, was deployed
to this effect, but each element represents a point/stop in the route rather than represent-
ing inclusion/exclusion of a feature. Fitness depended on the shortest route length (sum
of distances from each gene in the chromosome to the next). Finally, the partial map
crossover operation was used to ensure no two nodes on the graph could appear twice
following recombination. This method is most effective in Travelling Salesman Genetic
Algorithms (Hussain et al.; 2017).

Results:
Given that each predictor in the network graph (Figure 12) has a correlation and there-
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fore a distance relationship with every other predictor, this network is fully connected.
Larger distances indicated smaller correlations.

Figure 12: Network representing correlations (grey lines) between each feature (nodes).

Figure 13: Minimisation of the total network route distance.

Following 100,000 generations, the Travelling Salesman Genetic Algorithm (TSGA) re-
duced the total distance required to traverse the network by 68% (Figure 13).

Evaluation:
Although the network graph was generated as a precursor to the TSGA, some insights
may be garnered from the visualisation. Because nodes that are close on the graph are
those most correlated with one another, it can be understood from the graph that the
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total area of the property (area tot), the number of bedrooms (beds), the number of units
(units) and the base area (area base) of the property are strongly correlated (bottom 4
nodes). This is unsurprising, as larger properties would have larger areas and rooms.
However, among others, there are interesting correlations between the air conditioning
system (aircon sys), architecture (arch style) and building quality (build qual). This
correlation in the centre of the network may suggest that particular architectural styles
are each supported by typical/standard air conditioning systems, and that some styles
are of lower quality than others.

For the TSGA optimization, it appears as though the majority of the improvement
achieved through evolution occurs within the first 10,000 generations. Over this span,
the total distance improves from 2.1 to 0.8 (62%). Considering that the following 90,000
generations only yield an additional 6% improvement compared to the baseline, this ex-
ercise demonstrates clear diminishing returns. For more demanding TSGA experiments,
fewer generations may be more efficient.

5.4.2 Co-Location Genetic Algorithm Optimisation of Modelling

Implementation:
Once the optimal order of genes on the chromosome was derived from the TSGA, the
analysis dataset was re-indexed such that it matched this optimal order. This co-location
dataset was then fed through the SGA methodology as before.

Results:

Figure 14: Chart of best MAE achieved (left) and fewest features required (right) by each
model following 250 generations of feature selection optimisation by Co-Location Genetic
Algorithm

There was no significant improvement in the Best MAE achieved by the LR and XGB
models compared to the SGA; best MAEs remained as 0.073 for XGB and 0.069 for LR.
However, the DT showed an additional improvement from 0.109 to 0.087 (Figure 14, left).

Again, fewer features were required for each model, with XGB achieving a new min-
imum of 15 features, LR achieving 16, and DT achieving 18 (Figure 14, right).
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Figure 15: Chart of the progressive improvement in MAE and reduction in number of
features required by each model through the course of 250 generations of Co-Location
Genetic Algorithm optimisation.

Model error was not improved for the XGB and LR models over the course of evolution,
but the DT exhibited a sharp improvement after the 25th generation (Figure 15, left).
The evolutionary reduction of features required for XGB and LR was more gradual and
maintain (Figure 14, right).

Evaluation:
From these results it would be suggested that the Co-location processing step improves the
rate at which each model evolves in terms of features required. The steeper drops toward
fewer features indicates that the algorithm is more quickly able to eliminate valueless
features from the set.

Again, the generations were not accompanied with improvements in the XGB and
LR models, but the DT appears to be more amenable to significant improvement. The
plateau in the DT, in terms of both MAE and Features required may indicate that the
algorithm fell into a local minimum and was unable to escape. A larger mutation rate
may help avoid this scenario in future investigations.

5.5 Construction and Deployment of Multi-Chromosomal Ge-
netic Algorithm

As with the CLGA, construction of the Multi-Chromosomal algorithm required a pre-
step. The network created during the co-location process was then translated onto a 2D
plane such that K Means clustering was possible. Genes separated into clusters were later
separated into sub-chromosomes during the multi-chromosomal algorithm optimisation
stage.

In this section, the correlation analysis and construction of the Network Graph com-
pleted sub-objective 6a, the implementation of a Travelling Salesman Genetic Algorithm
completed sub-objective 6b, and the implementation and evaluation of the Co-Location
Genetic Algorithm-mediated optimisation of machine learning completed sub-objective
6c. Together, these steps comprise completion of Objective 6 (See Section 1.1, Table 1).
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5.5.1 K Means Clustering for Generation of Multi-Chromosomes

Implementation:
The Co-Location and MCGA comprised an additional step on top of the CLGA process.
Namely, the nodes in the graph were clustered using K Means Clustering. This required
translation of the distances onto a 2D plan.

The suitable value for K was derived from visual inspection of the network, and with
the support of an elbow chart describing the total sum squared distances between clusters
with variable K.

Results:

Figure 16: Elbow plot of Total Sum Squared distance achieved by varying K (A). Trans-
lation of Distance Network onto 2D plane, allowing for K Means clustering (B), each
predictor is represented by a point. Predictors are clustered into groups (colour coded),
that will partition onto separate sub-chromosomes during the Multi-Chromosomal Genetic
Algorithm rubric (C).

Evaluation:
An elbow plot showing reductions in Total Sum Squared Error/Distance between nodes
on the plane was used to determine the optimal value for K (Figure 16, A). This plot
indicated that 5 clusters may be most beneficial, as the reductions in error were reducing
significantly after K=5. As can be seen from Figures 14 B and C, each node is sequestered
into clusters that will allow for separation across sub-chromosomes.
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5.6 Multi-Chromosomal Genetic Algorithm Optimisation of Mod-
elling

Implementation: Once the genes were separated across chromosomes, the method
followed the same rubric as with the SGA. The difference was that instead of each parent
crossing over at a single point, the parent was split into its component chromosomes and
each sub-chromosome was crossed with the corresponding sub-chromosome of the other
parent.

Results:

Figure 17: Chart of best MAE achieved (left) and fewest features required (right) by each
model following 250 generations of feature selection optimisation by Multi-Chromosomal
Genetic Algorithm

Figure 18: Chart of the progressive improvement in MAE and reduction in number of fea-
tures required by each model through the course of 250 generations of Multi-Chromosomal
Genetic Algorithm optimisation.

In terms of MAE, MCGA did not confer any advantage as compared to CLGA,

25



achieving the exact same values for each model (XGB: 0.073, LR: 0.069) except for DT,
in which performance reverted to that achieved by SGA (0.109) (Figure 17, left). The
DT MAE did not improve past the 25th generation (Figure 18, left).

Features required by XGB achieved the low of 11, after 100 generations of MCGA.
The minimum features required by LR and DT bottomed and plateaued at 17 features,
after 25 and 50 generations respectively (Figure 18, right).

Evaluation:
These results suggest that the MCGA optimisation method is least capable of improving
MAE but may be most effective in optimising features. There were no improvements to
the XGB and LR model MAE, indicating that MCGA is not more capable of improving
the predictive power of these models. However, the improvement in the number of features
required by XGB is stark. A new minimum number of features required to maintain
peak performance was achieved through MCGA. For the other models, in both MAE and
Feature evolution, MCGA appeared more prone to early plateau and lack of progress.
This may indicate that MCGA is more likely to fall into local minima from which the
algorithms are unable to escape. MCGA may be less likely to fall into these local minima
if accompanied by more aggressive methods of ensuring diversity and genetic variation,
such as through additional injection of new genetic material, or dynamic increases in the
mutation rate.

In this section, the Translation of the Network Graph onto a 2D plane and subsequent
K Means clustering of genes onto sub-chromosomes comprised completion of sub-objective
7a. The implementation and evaluation of the Multi-Chromosomal Genetic Algorithm-
mediated optimisation of machine learning completed sub-objective 7b. Together, these
steps comprise completion of Objective 7 (See Section 1.1, Table 1).

5.7 Benchmarking of Genetic Algorithm Optimization Methods

Implementation:
To benchmark all GA based on their ability to optimize feature selection, the best MAE
achieved, and the minimum features required by each model were grouped and compared
by optimization method (unoptimized, and the three types of GA). This allowed for
comparison of the absolute best performances achieved by each model and GA.

The speed and efficiency with which each GA optimized both prediction of price pre-
diction error, and with which feature requirements were minimised. In this comparison,
GA that helped their models achieve maximal performances with fewer generations were
deemed superior.

Results: Although all GA optimized models outperformed unoptimized versions in
terms of MAE, no GA method showed superiority in improving the predictions by XGB
or LR. However, the DT was best optimised by the CLGA (0.087) as compared to the
SGA (0.109) and MCGA (0.109) (Figure 19, left).
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Figure 19: Comparison of the best MAE achieved (left) and minimum features required
to achieve optimal results (right) by each model, per optimisation method.

Figure 20: Comparison of the evolution of MAE and minimum features required for
the XGBoost, Linear Regression and Decision Tree models, for each genetic algorithm
methodology.
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In terms of optimisation of the minimum features required, the CLGA and MCGA
displayed superiority over the SGA, for the XGB (SGA: 16, CLGA :15, MCGA: 11) and
DT models (SGA: 24, CLGA :16, MCGA: 15). However, CLGA reduced the feature
requirement of LR, from 16 for SGA and MCGA to 15 (Figure 19, right).

No GA produced improvement of the MAE achieved by XGB and LR, these plateaued
at MAEs of 0.073 and 0.069 respectively (Figure 20, A, C). DT MAE was improved by
each GA methodology, achieving the lowest MAE after 25 generations of CLGA evolution.
MCGA and SGA achieved equal MAE, but MCGA achieved this after 25 generations,
whereas SGA achieved maximum performance after 100 generations (Figure 20 E).

Each GA methodology gradually reduced features required (Figure 20 B, D, F), except
for SGA for DT optimisation, which reduced the features required from 25 to 17, but
back to 25 when a superior MAE was achieved (Figure 20, F). MCGA achieved the
lowest feature requirements for both the XGB and DT algorithms (Figure 20, B, F).
CLGA achieved the lowest feature requirement for LR (Figure 20, D).

Evaluation:
This benchmarking analysis found no GA methodology to significantly improve the MAE
achieved by the best performing XGB and LR models. This may be due to automatic
feature selection built-in to these models, overriding the feature selection performed by
the GA. This may indicate that few powerful variables are dominating and dictating
predictions and the resulting MAE. Interestingly, the DT models were gradually improved
by each GA, both in terms of MAE and the minimum features required. This may be
due to the natural incorporation of more variables into the branching pattern of DT, and
thereby a greater sensitivity to the variables included in tree construction.

The analysis of the progressive evolution of each model in terms of MAE and feature
minimisation (Figure 20, A:F) demonstrated that the MCGA and CLGA models achieved
the best MAE and feature requirements for each model, and faster than the SGA. MCGA
appeared to achieve the lowest number of features required for each model faster than
any other GA, except for when minimising the features required by LR (Figure 20 D); in
this instance, CLGA achieved the lowest requirement on the second last generation, but
MCGA achieved the second lowest feature requirement (17) 175 generations before CLGA
did. This indicates that for optimization of more computationally expensive processes,
MCGA may help achieve near-optimal results in a fraction of the time as CLGA, and
even faster than an SGA.

Together, this implementation, results and evaluation of this benchmarking section
comprised completion of Objective 8 (See Section 1.1, Table 1).

5.8 Discussion

In this study, 160,000 transactions were analysed and modelled by XGB, LR and DT
regression models. These models were then optimized through GA-mediated feature
selection. Specifically, the accuracy with which these models could detect errors in the
Zillow Zestimate model, and while using the fewest numbers of features, was evaluated.
Three alternative GA methodologies, including two novel GA, were trialled. The result
of this analysis was the identification of two novel GA methodologies that outperformed
the SGA both in terms of best MAE achieved, minimum features required, and in terms
of speed of evolution (that is, they achieved optimal results with fewer generations and
less evolution time required).
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Despite these encouraging results, this study was limited by a number of factors.
First, computational constraints prevented the analysis and optimisation of SVR. These
models may have outperformed the alternatives, based on their ability to predict house
prices in the literature. However, as these models are sensitive to highly dimensional data,
they may never have been suitable candidates for this specific analysis. Computational
constraints also limited the extent to which each evolutionary algorithm could act on
each model. Performing thousands of generations of optimisation may have substantially
improved results (as can be seen from the TSGA, which minimised the objective function
by 68% after 100,000 generations). However, it should be noted that one purpose of
conceiving novel GA was to compensate for computational costs associated with the
SGA rubric. This objective was achieved through the CLGA and MCGA methodologies,
which each achieved better prediction results, and required fewer features, while also
achieving optimal results faster than the SGA. Therefore, this analysis was successful in
its aim of proposing novel evolutionary algorithms.

This analysis also successfully delivered an exploratory analysis of the price prediction
errors across Los Angeles. Although the findings that missing data in the air conditioner
system field affects effective price prediction, and that there is greater prediction error
with the size and number of rooms in a house, this exploratory analysis identified two ac-
tionable insights through which price prediction practices in Los Angeles can be improved.
First, a crux of incorrect property price predictions in the Laguna and Huntington areas
(Figure 8, circled red) indicates that this are likely displays unique characteristics that
render it difficult to model. Further, the analysis of prediction error as a function of time
(Figure 7) indicates that not only are there periods of the year when prediction errors
are more frequent, but that there may be external factors acting on property prices, not
accounted for in the dataset. That is, that there are periods of the year when more
properties are purchased, which drives up prices through supply/demand dynamics.

As this analysis centred around the modelling and analysis of Zillow’s private Zestim-
ate model, it is difficult to compare the performance of this analysis to that of others in
the literature. A search of the literature revealed no similar analyses of this particular
dataset or model. However, the results achieved here fall between those achieved by the
leaders of the private and public leader boards on the Kaggle competition page. In addi-
tion to the difficulty in comparing the performance of machine learning model predictions
to similar results in the literature, it is not possible to compare the results of the CLGA
and MCGA to others in the literature. As these GA are novel and this analysis is the
first investigation of their utility, there are no examples in the literature to which these
results may compared. However, given that the SGA is the industry standard, compar-
ison of the CLGA and MCGA results to the SGA methodology is a valid benchmark,
and a good indicator of the potential utility of these novel methods in additional domains.

Table 4 - Comparison of Performance
Source Models Optimisation Method MAE Features
dset/aichoo.ai Unknown Unknown 0.0632 Unknown
dset/aichoo.ai Unknown Unknown 0.0632 Unknown
This Analysis Linear Regression Co-Location

Genetic Algorithm
0.069 15

This Analysis XGBoost Multi-Chromosomal
Genetic Algorithm

0.073 11
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6 Conclusion and Future Work

The question answered by this investigation was: To what extent does combining ad-
ditional biologically inspired GA enhancements with current best practices improve al-
gorithmic efficiency, in a United States house price prediction application? This invest-
igation found that by incorporating the biological (genetic) phenomena of gene cluster-
ing (co-location) and the distribution of genetic material across multiple chromosomes,
substantially improved GA optimization. Specifically, these novel algorithms results in
models that performed better than those optimized by SGA, and also achieved optimal
results faster than SGA. This finding is significant for any fields in which GA are deployed
for optimization of feature selection and may have impacts in those experiments where
GA are deployed for optimization of other objectives, such as hyperparameter tuning.
This investigation also has implications for those optimization tasks that involve compu-
tationally expensive components; the finding that MCGA and CLGA algorithms achieve
optimal results faster than standard methods means that fewer generations and fewer
iterations may be required for optimization, meaning reduced computational cost.

Although this analysis focused on property price prediction, the analysis dataset was
restricted to Los Angeles in the United States of America. Therefore, the insights garnered
from this investigation may not apply to geographies with different property price dy-
namics.

Further, this analysis compared the performance of various GA methodologies, but
only using a single dataset and application. To fully understand whether the novel meth-
odologies presented in this analysis are superior to standard methods, experimentation
using multiple datasets and data sources would be advised.

Computational constraints also limited the depth of exploration in this study. It was
due to the computational cost and time required, that models that may have potentially
outperformed LR and XGB, were not analysed here. Similarly, this computational con-
straint also limited the number of generations each GA could run for. The impact of
this is emphasised by the finding in Figure 18 D, that the CLGA achieved a substantial
improvement in the second last (249th) generation.

Future analyses should aim to investigate the utility of these novel GA across a range
of house price prediction datasets. Encouraging results in that exercise would then mo-
tivate investigations of datasets and data sources outside the domain of property price
prediction, as in theory, these GA methodologies should be applicable to all feature se-
lection problems, across domains.

Similarly, these GA should be applied to optimization of hyperparameter tuning. As
this analysis found no GA to substantially improve predictions of the XGB and LR models
through optimisation of feature selection, optimization of the hyperparameters may have
yielded superior results.

Finally, and based off the findings of the exploratory analysis: an investigation into
the unique characteristics of the Laguna and Huntington Beach areas of Los Angeles is
motivated. A better understanding of that local property market may yield improved
price predictions.
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