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1 Introduction

The goal of this paper is to provide a quick overview of the processes required in putting
this project into action. The main objective of this research was to test the efficiency of
the proposed approach of using CT-GAN for the data augmentation method to handle
class imbalance issues in credit card fraud prediction tasks. We have implemented the
proposed architecture with help of 3 different classifiers and tested the performance of
the same for both unbalanced and with balanced data. The subsequent sections of this
handbook discuss the tools and strategies that were utilized to achieve the defined goals.

2 System Specification

The system configuration on which research work has been carried out is mentioned
below.

Operating System: Windows 10 Home

System Type: 64 bit

Installed Memory (RAM): 16 GB
Hard Drive: 500 GB SSD

Processor: Intel® Core™ i5-9300H CPU @ 2.40GHz
GPU: GeForce GTX 1650 - 4GB

3 Tools and Technologies

The Python programming language was utilized to complete this project, with Google
Colaboratory serving as the coding platform for developing and processing our code.
Google Colaboratory is a free cloud platform provided by Google. It is free for usage and
provides free access to GPU/TPU for python coding.

e Python 3.7.11



4 Environmental Setup

As mentioned above, we have used Google Colaboratory for the development of this
research, which does not require any environmental set-up on a local machine. The
following steps could be followed to configure and run the coding files associated with
this research. Step 2 and 3 are alternatives to each other, and either one should be
followed. After Initialization of the session, the runtime type should be changes to GPU
for faster processing. [

Google google colab x|s a

hitpsiclab research. google.com

Google Colab

Figure 3: Step 3: Upload an existing Jupyter notebook from the local system.

'https://colab.research.google.com/notebooks/intro.ipynb?utm_source=scs-index#
recent=true


https://colab.research.google.com/notebooks/intro.ipynb?utm_source=scs-index##recent=true
https://colab.research.google.com/notebooks/intro.ipynb?utm_source=scs-index##recent=true

5 Data Selection and Collection

The dataset utilized in this research has been fetched from the open-source dataset plat-
form Kaggle which is a public repository. The source URL of the data is given below.
Also, the features of the selected dataset are discussed below ]

© oatsen

| Credit Card Fraud Detection
Anonymized credit card transactions Jabeled s fraudulent ongenuine,

B o5 i oo UL oty 5 Orsn)
R ———— e ive) (S

@ usability &5 License Database: Open Database, Contents: Databsse & Tags,

Context

Content

Update (03/05/2021)

Figure 4: kaggle Dataset

ataFrame'>
geIndex: @ @ to 284806
Data colum
Column Dtype
Time 8 non-null floatesd
non-null floate4
non-null float64
non-null floaté4
non-null floatesd
non-null floate4
non-null float64
non-null floaté4
non-null floatesd
non-null floate4
non-null float64
non-null floaté4
non-null floate4
non-null floate4
non-null float64
non-null floaté4
non-null floates
on-null floate4
non-null float64
non-null floaté4
on-null floates
non-null floate4
non-null float64
non-null floaté4
non-null floates
non-null floate4
non-null float64
non-null floatesd
non-null floates
non-null floate4
non-null int64

Figure 5: Data Description

The selected dataset has 31 columns, out of which 28 columns are resulting com-
ponents of PCA transformation. PCA transformation is carried out for hiding sensitive
customer information. Time and amount are only non-transformed features present in
data. We have a binary target variable-"Class’.

Zhttps://www.kaggle.com/mlg-ulb/creditcardfraud


 https://www.kaggle.com/mlg-ulb/creditcardfraud

6 Implementation

6.1 Installing and Importing Required Packages

In this section of code, we have installed all the required packages for this research. All
the packages are installed and imported in the coding environment using 'pip’. Figure:-
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Table of contents
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DATA AUGMETATION USING CT-GAN
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XGBOOST MODEL + CFGAN Requirement already pandas in /usr/local/lib/python3.7/dist-packages (1.1.5)
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05 comoleted at 10:58

Figure 6: Installing required packages
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Figure 7: Importing installed packages



6.2 Importing selected Data from Kaggle

For getting our data, we have used kaggle API to remove the dependency of uploading
the data into code each time. The code for the same is as given below.
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We are getting our data from kaggle using kaggle API. All the required api tokens are included in this section. We
are saving the downloaded csv data into pandas dataframe.
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Figure 8: Importing dataset from kaggle

6.3 Exploratory Data Analysis

It is important to understand the patterns and nature of data before going ahead with
any pre-processing step. We have done exploratory data analysis using visualizations in
this section. The code for the same is as following. Figure:- [J]
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Figure 9:

Understanding Features in dataset



To understand the distribution of the target variable, we have used a bar graph
from Matplotlib package. The following code snippet gets the plot of target variable

distribution. Figure:-
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Figure 11: distribution of target feature

To understand the correlation between features of data, we are using correlation mat-
rix. We have also plotted correlation matrix for subsample of original data to understand
the correlations between feature more accurately. Figure:-

To understand the distribution and nature of all the features, we have used the data-
prep package from Pandas to get an automatic report for our data. Figure:-
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6.4 Data Cleaning and Preprocessing

Data cleaning is one of the most important stages in the data analysis process. We are
checking for any missing or duplicate values in our data and removing the same from the
data. Also, we are scaling our Time and Amount features to keep them at the same scale
as other variables. Figure:-
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Figure 16: Data cleaning and preprocessing

6.5 Feature Selection

To get rid out non-required features from our data, we are using Select KBest feature
selection technique from Scikit-learn package for getting most relevant features for our
further analysis. Below, given code explains the steps involved for getting the top 14 best
features from our dataset. Figure:-[I7] [1§]

To verify our selection of features, we are getting correlation between remaining fea-
tures. Figure:-
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Figure 18: feature selection: scores and features
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Figure 19: Reduced dataframe after removal of redundant features
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Figure 20: Correlation between reduced dataframe

6.6 Data Split: Train, validation and Test

Once our data is ready for application of machine learning models, we are devising our
data into train, validation and test subsets for further usage. Figure:-
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Figure 21: Splitting data into train, validation and test set

6.7 Case Study 1: Training Models on Unbalanced Data

Modelling is the most crucial part of our research work. For testing our proposed meth-
odology, we are training our selected models on unbalanced data and verifying their
performance using a validation dataset.
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6.7.1 Training Logistic Regression
In this section, we have trained our Logistic regression model on unbalanced data.

~ LOGISTIC REGRESSION

ation_report(target validation,log

ST
tion Report of
pre

8.7950063261551484

Figure 22: Training of logistic regression model on unbalanced data

6.7.2 Training Random Forest
In this section, we have trained our Random forest model on unbalanced data.

~ RANDOM FOREST

fication_report(target_validation,rfc_pred))

“,metrics. confusion_matrix(target_validation, rfc_pred))

recall

1.00
8.77

0.89
1.00

unbalanced data:

est on unbalanced data: @.885

AUC score for Random For

Figure 23: Training of Random forest model on unbalanced data

6.7.3 Training XGBoost Model
In this section, we have trained our XGBoost model on unbalanced data.

11



~ XGBOOST MODEL
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Classification Report of X8 classification model on unbalanced data
precision  recall fl-score support

[} 1.00 1.00 1.0 39661
1 0.92 0.77 0.84

accuracy

macro avg
weighted avg

B
on matrix for XGB model on unbalanced data:

[ 14 a7]]
B
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Figure 24: Training of XGBoost model on unbalanced data

6.8 Data Augmentation and Balancing Using CT-GAN

Data augmentation using CT-GAN is the most crucial part of our research project. We
are using CTGAN package to generate synthetic samples of data and use for to balance
our training data set. The code used for implementation of CT-GAN is explained in this
section. Figure:- 7?7 7777

~ DATA AUGMETATION USING CT-GAN

We are using CT-GAN to model the minority class samples for balancing our data. We would be using minory class
samples from our training data to augment the new samples.

DF_FOR_AUG = pd.concat([feature_train, tal

df= DF_FOR_AUG[DF_FOR_AUG[
df
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Figure 25: Isolation of minority class samples from data for data augmentation
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ctgan = CTGANSynth ()
ctgan.fit(minority_class_df, column_names, |

concat_df=[minori E = df,augmented_df]
minority class_augmented df=pd.concat(concat_df)
i+=1

[W,minority class augmented df]
f_GAN=pd.concat(concat_df)

Figure 26: Using CT-GAN for generation of synthetic minority class samples and merging
them to original data

.groupby (
in D

print(”

print(’ ---", round(balanced_df_ GAN ]-value_counts()[@]/len(balanced_df GAN) * 1e@,2
print( " Fr :1 ----', round(balanced_df_GAN[ .value_counts()[1]/len(balanced_df_GAN) * 108,2),
print("”
print("*
print("”

pd.value counts(balanced df GAN[
.plot(kind = r')

Count for each class in Data:- Cla
e 283253

1 27e746

Name: Class, dtype: inte4

% of the dataset
of the dataset

*

Figure 27: Balanced training data after merging augmented data

13



6.9 Case Study 2: Training Models on balanced Data

To verify the efficiency of our proposed approach to sole class imbalance using CT-GAN
we would be training another set of classifiers on balanced test data and validating their
performances on a validation dataset. The code used for training our models on balanced

data is as follows. Figure:-

Creating feature and target sets for training our models.

~ CASE STUDY:- 2

APPLYING MACHINE LERANING MODELS:- TRAINED ON BALANCED DATA

We are training our classifiers on newly balanced dataframe and validating their performance on validation set.
Validation set is used to fine tune the performance of models.

X_train balanced df_GAN : 1. inplace=
y_train = balanced df_6

Figure 28: Creating feature and target set for training

6.9.1 Training Logistic Regression + CT-GAN

In this section, we have trained our Logistic regression model on balanced data.

~ LOGISTIC REGRESSION + CT-GAN

>

alancing.pred (feature_validation)
log_accur tric racy_score(target_validation, logistic_pred))*1@e
Model acc |

arget_validation, logistic_pred))

n", classification_report(target validation,logistic_pred))

ic_pred[:])
g: ",auc_scorel)

regression model after balancing:

T e
ification Report of Logistic re ion model after balancing:
precision recall fl-score  support

[:] 1. 1.
1 5 a.

accuracy
macro avg a. 8.91
weighted avg 1. 1.e8

e s

AUC score for Logistic Regression after balancing: ©.9896469629288547

Figure 29: Training of logistic regression model on balanced data
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6.9.2 Training Random Forest + CT-GAN

In this section, we have trained our Random Forest model on balanced data.

~ RANDOM FOREST + CT-GAN

print(
print(

, Classification Report of Random fores:
recall £
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Q 1.00
1 1.0

1.60
1.60

accuracy
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weighted avg

1.8

1.0
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KRR E KRR R RN AR RS

: \n", classification r

ort(target_validation,rfc_pred))

on_matrix(target_validation, rfc_pred))

cation model after balancing:

on matrix for Random Forest model after balancing:

1 o]

AR R R R RN AR RS

AUC score for Random Forest after balancing: 1.0

Figure 30: Training of Random Forest model on balanced data

6.9.3 Training XGBoost Model + CT-GAN

In this section, we have trained our XGBoost Model on balanced data.

~ XGBOOST MODEL + CT-GAN

Classification Report of XG
precision

e 1.00
1 0.76

1.0
0.84

accuracy
macro avg
weighted avg

0.22
1.00

0.92
1.0

1.0
0.89

1.60
0.98
1.0

P P PRSP

on matrix for XGB model after balancing:

5 16]

51]]
ERR R R R R R R

e_validation)

sion_matrix(target validation,

after balancing:
support

39661
61

AUC score for XGBoost after balancing: ©.917831:

target_validation,XGl

XGB_pred))

Figure 31: Training of XGBoost Model on balanced data

6.10 Testing Performance of All Models on Test Dataset

Once we have obtained both set of models: Trained on unbalanced data, trained on
balanced data, we are testing their performance on test set of data. We have collected the
performance parameters into a single dataframe for further visualization and summarized

results.
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~ TESTING PERFORMANCES OF MODELS USING TESTING

MODEL_PERFOROMANCE_DF = pd.DataFrame

(-]

get_model_performance_parameters(targe set, pred variable,model name,model abb):

MODEL_PERFOROM
FP_RATE, TP_RATI
ISION- pre

RECALL=recal
GH-math.sqrt

MODEL_CASE= model_name
MODEL_ABB=model abb

MODEL_PERFOROMANCE_DF =MODEL_PERFOROMANCE_DF .append({ CORE ' : F1_SCORE,

print(model_name +"

Figure 32: Defining function and dataframe to collect the performance parameters for all
models

6.10.1 Testing Logistic Regression

In this section, we are testing our Logistic regression model using a test dataset.

~ LOGISTIC REGRESSION

print(
print(
unbalat

print(
print(”
print(

onfusion matri e t, unbalanced logisti

print(
print(
print("

cation_report(target_test,unbalanced logistic pred test))

get_model_performance_parameters(target_test,unbalanced_logistic_pred_t

Fkkkkkdk ogistic Regression performance on tes data after trained on Unbalanced data.**#+*

Confusion matrix for Logistic regression model trained on unbalanced data:
[[8a967  12]
[ 68 79]]

T e————

Classification Report of Log ssion model trained on unbalanced data:
precision  recall ore  support

1.80 84979
accuracy
macro avg [}
weighted avg .00 1.0

B

LOGISTIC_REGRESSION parameters recorded

Figure 33: Testing logistic regression model on test data.

6.10.2 Testing Logistic Regression + CT-GAN

In this section, we are testing our Logistic regression + CT-GAN model using a test
dataset.
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~ LOGISTIC REGRESSION + CT-GAN

© rrint(
print("\n")
balanced logistic_pred_te:

print("C test, balanced logistic_pred t
b

print

print("c rt(target_test,balanced_logist
b

prine(-

get_model_performance_parameters(target_test, balanced logistic_|

RO c Regression performance on testing data after trained on balanced data.*Frerrrrrres

confusion matrix for Logistic regression model trained on balanced data:
[[84952  27]
[ 26 113]]

R —
Classification Report of Logist: e, ssion model trained on balanced data:
precision  recall fl-score support

84979

139

racy 85118

macro avg 8.9 8.01 8.98 85118
weighted avg 1.0 1.e0 1.88 85118

R R R R R R TR

LOGISTIC REGRESSION + CT-GAN parameters recorded

Figure 34: Testing logistic regression + CT-GAN model on test data.

6.10.3 Testing Random Forest

In this section, we are testing our Random Forest model using a test dataset.

~ RANDOM FOREST

O rrint(

print(

print( , unbalanced_rfc_pi
print(
print(
print( n c n model t d on U c a c ication_report(target_test,unbalanced_rfc_pred))
print(
print(

get_model_performance_parameters(target_test,unbalanced_rc_p

*kxskx**Random Forest model performance on testing data after trained on Unbalanced data.*®#%**

Confusion matrix for Random Forest model trained on Unbalanced data:
[[84977 2]

[ 36 103
R R R R R RR TR AR T

Classification Report of Random forest sification model trained on Unbalanced data:
precision  recall fl-score support

] 1.8 1.88 1.88
1 .98 8.74 .84

.88 85118
92 85118
.ee 85118

accuracy
macro avg
weighted avg

e

RANDOM_FOREST parameters recorded

Figure 35: Testing Random Forest model on test data.

6.10.4 Testing Random Forest + CT-GAN

In this section, we are testing our Random Forest + CT-GAN model using a test dataset.
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~ RANDOM FOREST + CT-GAN

print(”
print("\n")
balanced rfc pred=g 1

print(
print(
print(

", metrics.confusion_matrix(target_test, balanced_rfc_pred))

print(
print(
print(

", classification_report(target_test,balanced

get_model_performance_parameters(target test,balanced rfc_pred,

#4kewes*Random Forest model performance on testing data after trained on balanced data.***%**

Confusion matrix for Random Forest model trained on balanced data:
[[84979 e]
[ e 139]]

K R TR KT KR KRR TN ERAR
Classification Report of Random forest classification model trained on balanced data:
precision  recall fi-score support
1.00 1.80 8497

1.ee

accuracy 0 85118
macro avg . .6 0 85118
weighted avg . .0 .6 85118

FER AR R TR SRR R KRR R R

RANDOM_FOREST +

Figure 36: Testing Random Forest + CT-GAN model on test data.

6.10.5 Testing XGBoost Model
In this section, we are testing our XGBoost model using a test dataset.

~ XGBOOST MODEL

© rrin(

print

UNBALANCED_XGB_pred-XGB_before

print(
print(
print(
print(
print(
print(

. UNBALANCED_XGB_pred))

ification report(target test,UNBALANCED XGB_pri

get_model_performance_parameters(target_t

*kdkikddddiyGBoost model performance on testing data after trained on unbalanced data.®**#ididids

Confusion matrix for XGBoost model trained on unbalanced data:
[[84972
[ 39
R AR R R R R R R

Classification Report of XGBoost classification model trained on unbalanced dat
precision  recall fl-score support
1.00
08.93

accuracy . 85118
macro avg K ! . 85118
weighted avg . .0 : 85118

Aok ok ok ok ok ok ok ko ok
XGBOOST parameters recorded

Figure 37: Testing XGBoost model on test data.

6.10.6 Testing XGBoost Model + CT-GAN

In this section, we are testing our XGBoost + CT-GAN model using a test dataset.
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~ XGBOOST MODEL + CT-GAN

o print("*

print("\n")

BALANCED_XGB_pred after_balancing.predict(feature_test)

print( ta: \n sion_matrix(target_test, BALANCED XGB pr

print(

print(”

print( o m o ssification_report(target_test,BALANCED_XGB_pred))
print(

I (585 B Kb KB AR KKK R KRR )

get_model_performance_parameters(target_test,BALANCED_XGB_pred

= *&x3XGBoost model performance on testing data after trained on balanced data.***

Confusion matrix for XGBoost model trained on balanced data:

tion model trained on balanced data:
support

accuracy -8 85118
macro avg -9 g 2 85118
weighted avg 5 .8 .0 85118

Figure 38: Testing XGBoost + CT-GAN model on test data.

6.11 Evaluation Using Visualization

In this section, we have summarized the various evaluation metrics calculated for each
mode after testing on the test dataset. Figure:- shows the summarised metrics in a
single dataframe.

~ EVALUATION BASED ON ROC CURVE AND VARIOUS METRICS FOR EACH MODEL

[ ] MODEL_PERFOROMANCE_DF

MODEL_CASE MODEL_ABB  PRECISION RECALL F1_SCORE AUC_SCORE GM FP_RATE TP_RATE

LOGISTIC_REGRESSION 36.81° 34532 6 6 78410206 70242344 [0.0, 0.00014121135810023653, 1.0] [0.0, 0.5683453237410072, 1.

LOGISTIC_REGRESSION + CT-GAN  LR+CT-GAN 4964 003 90.631596  81.004105 [O. 57255322, 1.0] [0.0. 29496402877698, 1.

RANDOM_FOREST RF 98095238 74100719 84.426 87.049183 85258007 0.0, 2 5 942e-05,1.0] [0.0, 0.7410071942446043, 1.1
RANDOM_FOREST + CT-GAN RF+CT-GAN 100.000000 100.000000 100.000000 10 0000 100.000000 [0.0,00,10] [0.0,1.0, 1.
XGBOOST XGB 5794 71.942446 81300813 B85.967104 81997519  [0.0, 8.237329222513797e-05, 1.0] [0.0, 0.7194244604316546, 1.

XGBOOST + CT-GAN XGB+CT-GAN 83571429 84172662 83870968 92072798 83871506 [0.0, 0.000270¢ 45337,1.0] [0.0, 0.841726618705036, 1.

Figure 39: Summarized performance parameters

By using all the performance parameter collected into single dataframe we have used
bar graph to carry out comparative analysis. The code for bar plot is as Figure:- [40]
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EVALUATION METRICS FOR CLASSIFIERS

- PRECISION
100 | mmm RECALL
W ) SCORE
AUC_SCORE
™

SCORE VALUES [0-100]

RF+CT-GAN
XGB+CT-GAN

CLASSIFIERS

Figure 40: Code for plotting bar graph using values for all models.

By using all the TP and FP parameters collected into dataframe we have plotted a
AUC-ROC curve for further comparative analysis. The code for AUC-ROC is as Figure:-

AT} B2

MODEL_PERFOROMANCE_DF . set_index(
fig = plt.figure(figsize=(15,8))
for i in MODEL_PERFOROMANCE_DF.index:
plt.plot(MODEL_PERFOROMANCE_DF.loc[i]["
MODEL PERFOROMANCE DF.loc[i][" E'lL

" _format(i, MODEL_PERFOROMANCE_DF.loc[i]["AU

t.plot([@,1], [@,1], color="0 I’ linestyle="--")

t.legend(prop={

t.show()

Figure 41: AUC-ROC curve graph for all models.
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AUC-ROC Curve Analysis
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Figure 42: AUC-ROC curve

7 Conclusion

The whole implementation procedure of this project has been outlined in a succinct,
thorough, and sequential way using the information presented in the preceding parts.
The needed packages have been indicated wherever they were used. All the codes are
commented and divided into sections for better readability.
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