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Abstract 

Frequent pattern mining (FPM) has long been a data science technique with 

applications in tendency analysis and association rules. Technological evolutions have 

meant that data is no available within streams and expectations exist for near real-time 

processing as opposed to the batch processing of static datasets from the past. This 

introduces complexity in how existing algorithms may maintain accurate results of 

frequent patterns as new transactions arrive to the stream and older ones become less 

important. Usually there is a trade-off between the accuracy of the results and the amount 

of processing and memory required to achieve those results. This paper investigates the 

FIMoTS algorithm for FPM on data streams and determines how the accuracy of the 

frequent patterns identified by it is impacted by the introduction of a parameter which 

reduces the amount of computation required. Depending on the datasets used, it has been 

found that a large reduction in the amount and time spent in computation can be achieved 

with no loss of precision and a minor (<1%) reduction in recall. 
 

1 Introduction 
 

With recent advances in technology such as social media, IoT and sensor technology the 

amount of valuable data which is now available for data mining is ever increasing. The volume 

of data being generated is so large that in many circumstances the storage requirements are so 

large that batch analysis may be impractical [1]. Also, in certain areas – such as economic and 

social media analysis – the expectation is for immediate or near real-time updates [2]. These 

requirements are shifting the trends for analysis to the incoming data streams in real-time 

instead of the classic approach of writing updates to a database and performing a batch process 

during and end of day window. 

Frequent pattern mining is a technique commonly used to determine items occurring together 

most frequently within a database of transactions first introduced within [3]. The problem is 

defined thus: let D be the set of transactions (T) and I = { 𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑚} the set of all uniquely 

occurring items within D. Each transaction T consists of a set of items such that T ⊆ 𝑰. Frequent 

pattern mining is concerned with finding collections of items (itemsets) which occur with a 

frequency greater than the support s, where s is usually a fixed percentage of |D|. An itemset 

with k items is called a k-itemset. Clearly for k > 1 items are said to occur frequently together 

and from this associations may be identified (for example, the probability of purchasing item 

A if item B is purchased). 
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Figure 1: Example Support Calculation 

The example from Figure 1 shows a support calculation for a list of grocery transactions. For 

a minimum support 40% (5 ∗  40% =  2), milk, apple, eggs and biscuits are frequent items. 

Within retail situations it is very effective at determining links between products often sold 

together and so advising on advertising or product placements to available of customers pre-

dispositions to purchase certain items. The first step in this process is the identification of the 

commonly occurring itemsets within a transaction set. There has been much investigation in 

this area for static datasets – where all transactions are available within a database and 

algorithms seek to determine all itemsets above a defined support value with maximal 

efficiency. Some of the common algorithms include: Apriori [4] and FP-Tree [5]. 

Apriori was the initial algorithm proposed which is based on an iterative process of determining 

frequent k-itemsets, from these construct candidate N+1 itemsets and scanning the transaction 

database to identify which are frequent. FP-Tree is generally considered to out-perform the 

others in terms of computational efficiency as the algorithm avoids the expensive candidate 

generation step of Apriori by building a tree structure of all transactions in the database which 

may be mined to determine the frequency of itemsets. 

The general understanding when these algorithms were introduced was that the datasets were 

static and so optimizations in terms of numbers of database scans and candidate generation 

were favoured. With frequent pattern mining on streams of data, the focus must extend to 

ensuring the state of the frequency can be incrementally updated efficiently, ideally without 

requiring the full sets of data to be retained within memory [6].  

Figure 2 illustrates the problem when attempting to determine frequent itemsets within a stream 

of data. As the dataset moves from W1 to W2 and W3, new transactions enter the dataset (e.g., 

in Period 6) and others leave (Period 1). The difficulty is updating the running list of frequent 

itemsets which is very different in nature to efficiently calculating this information from a static 

dataset. The Lossy Count[7] algorithm is an early example of an approximate method for 

calculating frequent itemsets within data streams where the amount of memory is limited. Thus, 

the pruning which does occur introduces the possibilities of errors which are managed within 

an error tolerance. Mining may result in false positives existing between the minimum 

frequency and an accepted error threshold. There are many similar algorithms which utilize 

approximates when managing resources whilst calculating frequent patterns within streams 

such as FP-Streams, estDec, SWP-Tree, CP-Tree. 
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Figure 2: Support Calculation within Sliding Window 

The FIMoTS algorithm [8] takes a novel approach of calculating exact frequent itemsets by 

only computing supports for itemsets which may have a frequency change as transactions 

change within the datastream. For example, if an itemset has a high support within the 

transactions of a data stream the arrival of a relatively small number of new transactions cannot 

change the itemset to infrequent and so it is unnecessary to calculate its support again. Clearly 

this approach implies that the stream of data must be recorded within memory scans over the 

entire active stream and to improve performance a Spark implementation has been proposed 

within [9]. 

The research question posed within this document is whether an element of approximation can 

be added to this algorithm to further improve the performance at the cost of recall or precision. 

This algorithm uses transforming bounds to determine when an itemset may start becoming 

frequent from infrequent and vice versa which are conservative (e.g., if all new items from the 

stream include this itemset could it start becoming frequent). Statistically this is very unlike to 

happen and incurs many redundant support checks. The aim of this analysis is to determine 

whether the transforming bounds may be parameterised to reduce the number of checks which 

are performed and while doing so what is the reduction in accuracy. 

This paper is arranged as follows: Section 2 discusses related work in this topic and highlights 

why this is an area of interest, Section 3 introduces the datasets upon which the analysis is 

performed and how the results will be evaluated, Section 4 details the FIMOTS algorithm and 

the parameterisation implemented for these tests, Section 5 details the implementation of the 

algorithm and what changes we applied from the original, Section 6 presents the test results 

and analysis and finally Section 7 provides a summary of the work and what future work could 

be undertaken. 

 

2 Related Work 
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2.1 Frequent Pattern Mining Algorithms 

While the algorithms mentioned earlier focus on the topic of frequent pattern mining on a 

static set of transactions, within modern applications the need for flexibility to provide real-

time response to changes in the dataset require a change in focus in the approach. Constraints 

exist such as: 

• Storage capacity to retain the amount of data 

• Processing capacity to be able to calculate results as new data arrives 

• Expectation on response times for queries 

This section introduces more modern algorithms which aim to tackle this problem taking 

different approaches – providing approximate or exact results.  

2.1.1 Approximate Algorithms 

One of the earliest proposals to treat this challenge was proposed in [10] which introduced 

the Lossy Count algorithm. This approach accepts that the memory required to track all items 

which may become frequent in the future is too large and uses a parameter to define the error 

threshold of results. There are no false negatives reported however false positives between 

the error threshold and the minimum support can exist, which correspond to items which 

were not tracked previously due to their low support possibly becoming frequent later. To 

maintain efficient storage of patterns a tree structure is used as in [4].  

Another approximate method, estDec was introduced in [11] which once more seeks to 

provide a best case scenario for frequent patterns. As in LossyCount, an error parameter is 

introduced which to eject existing non-frequent items from the monitoring memory, and 

another for when to start inserting non-frequent but possibly frequent in the future items. 

Assumptions on the max occurrence of new items are taken (e.g., support of n-itemset cannot 

be greater than supports of it is n-1 ancestor itemsets) to reduce the amount of error from this 

approach.  

The FP Stream algorithm [12] is an application of FP-Tree aimed towards handling 

information within data streams. This approach takes a time-tilted windowing to compress 

information further back in time. As with other techniques in this section, it uses an error 

factor to determine when to prune non-frequent items which may become frequent in the 

future. As this method is very closely linked to FP-Tree which builds a frequent pattern tree 

based on the frequent patterns in the original data, it can suffer from inefficiencies if the 

content of the stream changes substantially over time. Also, as it creates an FP-Tree and FP-

Stream structure its memory requirements are increased. 

The GFCP method [13] constructs a pattern summarization tree (PS-Tree) to summarise the 

exists patterns within the stream efficiently without holding all transactional data. Frequency 

changing points and support estimation methods are used to determine historical support for 

newly frequent itemsets which were not previously monitored. Afterwards an FP-Growth-like 

algorithm is run to retrieve frequent itemsets from the PS-Tree structure. Despite efficiencies 

in maintaining the PS-Tree via a single scan for new transactions, the memory costs are still 

large and the support estimation methods result in reduced precision.   

All approaches discussed thus far in the section are approximate algorithms which allow false 

positives. In [14], the authors argue the rationale for such an approach and favour of false-
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negatives. A statistical approach is taken to determining the size of the infrequent items to 

keep given a supplied reliability parameter. This approach does rely on an assumption on the 

independence of the input data which may not be valid at all and so could limit its 

applications. 

The approach in [15] allows either a false-positive or false-negative approach but keeping 

running totals of actual counts and possible counts of all potentially frequent itemsets. Any 

itemset which becomes potentially frequent may have counts from earlier in the stream which 

are not recorded which impact the possible count. This paper also introduces a merging 

operation to maintain memory size in its potential frequent itemset structure by merging 

similar itemsets. The impact of these techniques can reduce considerably the accuracy of 

results. 

SWP Tree [16] is another approximate algorithm which introduces a decay factor to reduce 

the frequency of older items in the data stream and thus achieve a sliding window approach 

without necessarily needing to remove the counts of older transactions. The decay factor may 

be parameterised to achieve 100% recall. Like DSTree and CPSTree a FP-like structure is 

used which requires frequent pruning for itemsets becoming infrequent. Like FP-Tree an 

algorithm is needed when building the list of frequent itemsets as the raw data is not readily 

available within the SWP-Tree. A very similar approach to this is taken within [17] in the 

WMFP-SW-Tree algorithm although with the caveat of operating over weighted frequent 

patterns. 

Within [18], a CP-Tree (compressible prefix tree) is introduced to address the memory issues 

concerns from the estDec method. The algorithm seeks to merge similar itemsets together to 

reduce the size of the tree structure, while maintaining a high degree of accuracy. A merging 

threshold is introduced to allow control over the degree of differences between items when 

merging occurs, which in turn impacts memory usage. Sizable memory reductions from 

estDec are attained for a moderate reduction in accuracy.  

2.1.2 Exact Algorithms 

Unlike the above, an exact algorithm (SWF) was introduced in [19] which uses an Apriori-

based approach for candidate generation after iteratively determining the 2-itemsets frequent 

patterns. Each period in a sliding window is partitioned and processed separately. When a 

partition is too old to be including in the window the running counts of the 2-itemsets are 

updated and similar for new items in the most recent window. As with Apriori the candidate 

generation and evaluation for n > 2  itemsets can have a prohibitively large impact on 

performance for large datasets.   

Another exact algorithm is DSTree [20], which constructs a data stream tree which includes 

all possible combinations within the data stream. The structure of the tree can be more 

concise than an FP-Tree however as there is no pruning due to minimum support the overall 

size can be very large. A key assumption being made is that with increases in size of memory 

available fitting the tree in main memory should not be prohibitive. The main technique 

applied is to maintain a list of counts over different time periods within the tree and as a 

sliding window is used, the first in the list can be removed as a new period is added. Unlike 

the FP-Tree, there is no arrangement of the tree according to which is most frequent so 
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another inefficiency can be in sparser tree structures. CPSTree [21], was introduced to 

improve upon some of the limitations of DSTree. In an effort to construct a denser tree 

structure, the CPSTree enforces a re-structuring after every new window which places the 

most frequent nodes at the top of the tree. While this operation can be time-consuming, this 

approach leads to less memory usage and improved processing time to the DSTree.  

FIMoTS – the subject of this research paper – was introduced in [8] with the aim of reducing 

the number of queries required on sliding window data by determining which frequent 

patterns could become infrequent and vice-versa. Only itemsets which may change in nature 

are checked and then may trigger a cascade effect of pruning or candidate generation 

depending on whether they are determined to be frequent or infrequent. This approach 

assumes that full window data can exist within memory as unlike other approaches scans of 

all data in the sliding window are performed. To efficiently manage this data an extended FP 

tree maintains a timestamped version of the stream data, although little detail is given on how 

to efficiently delete expired transactions from this tree. Also, worth noting that while the 

accuracy of the itemsets declared frequent is exact, the support of each itemset while the 

algorithm is running is not as only mandatory itemsets have their supports re-calculated.  

Based on the Eclat approach from [22], SWEclat follows a similar approach of constructing a 

vertical database structure and performing mining based on this. To do this, conditional 

vertical databases are constructed and distributed across a Spark grid. The content of these 

conditional databases is based on the frequently occurring items and it benefits from a high 

degree of parallelization. However, it is not clear how infrequent 1-itemsets can become 

frequent from the proposed algorithm as the vertical database only includes frequent items, 

not potentially frequent ones.  

2.2 Windowing for Streaming Data 

Some thought must be put into the windowing system which is adopted for treating incoming 

data to the data stream. Generally, the following are used: 

• Landmark window 

o All data is taken from a fixed time point onwards. 

• Decayed window 

o Earlier occurrences of itemsets have their weights reduced as the stream 

progresses, thereby favouring more recent trends. 

• Sliding window 

o The start and end points of the window move together over time. Usually they 

are either time oriented (e.g., a window of 1 hour) or data oriented (e.g. 1000 

transactions). 

The type of window used is closely linked to the approach of the algorithm being adopted as 

often the methods of reducing memory or processing requirements are linked with the data is 

being maintained.  

Landmark windows are used in Lossy Count [10] and  [14] wherein it is considered that all 

data within a stream is of equal importance. These approaches can be more simplistic as they 

do not require the management of older data however can have functional limitations in 

applications where determine new frequent trends are required. The Landmark window was 
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the initial approach to these problems but is less common in more modern algorithms. A 

minor divergence to the Landmark window is the Time-tilted window introduced in [12] 

which keeps all past date but has a compression phase which merges earlier time periods 

together (for example 24 hours being managed as distinct time points becoming 1 day). 

Decayed (or dampened) windows can be used to reduce the support counts for older items 

and thus prioritising itemsets which are new in the stream. Usually a dampening factor (<1) is 

applied to existing supports every time a new batch of transactions are received which 

implies eventually older occurrences of itemsets provide little benefit to support calculations. 

Approaches using this structure include [11], [16], [18], [23] and [24]. 

The most common approach is the usage of sliding windows where each subsequent time 

period or batch of transactions causes the oldest to be removed. Usually sliding windows 

using fixed time periods are preferred over those where the window is based on a number of 

transactions as this can lead to delays in new trends being raised when frequencies of arrivals 

are low. Sliding windows are used in all [15], [8], [17], [19], [20] and [21] and generally each 

new batch must include an update and a delete phase to manage both transaction inserted to 

the stream and those leaving.  

2.3 Management of Stream Data 

As indicated in [6], the expectation for modern algorithms is to have only one pass over 

streaming data without incurring preventative storage and/or processing difficulties. Older 

techniques on static datasets can run multiple iterations however in all cases here the 

assumption is that the raw data from which frequent itemsets are derived can be stored at 

once. Modern algorithms on streams must perform a trade-off between storing all data 

necessary for being exact and being able to process changes quickly.  

Broadly there are the following approaches: 

• Store all data within a tree structure 

o Generally exact algorithms follow this pattern [8], [20] and [21] 

o There can be divergences between storing all combinations (as in [20] and 

[21]) and all data as in [8] 

o The understanding that a tree structure is the most efficient method of storing 

the required information which is always necessary in case an infrequent 

pattern becomes frequent in the future 

o Can require extra work or structure to determine frequent itemsets from 

maintained data 

• Store all frequent and some non-frequent patterns within a tree structure 

o Favoured by approximate algorithms - [10], [11], [12], [14] and [13] 

o Do not store the raw data in the stream, but rather immediately record it on a 

tree of patterns and use this tree as a running total of frequency 

o Issues can arise in how non-frequent itemsets can become frequent and often 

assumptions on the occurrences of itemsets before they started becoming 

monitored 

o Difficulties to ensure trees are well structured as frequent itemsets change over 

time 
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2.4 Summary 

The choice of algorithm when performing frequent itemset mining on a data streaming should 

be closely linked to the business drivers for running this analysis. Most approaches accept an 

element of uncertain in exchange for efficiencies in their data storage. A large amount of 

effort is required in maintaining structure in memory which can provide frequent itemsets and 

be able to react quickly to new items arriving to the data stream. 

The analysis conducted within this paper is inspired by most techniques in this space which 

consider approximate results acceptable and so taking an exact algorithm (FIMoTS) and 

parameterise the conditions for performing infrequent pattern checks so less effort is required 

when determining is an itemset may become frequent. The resulting approach is expected to 

provide a high degree of scalability as the necessary support checks may be performed across 

a spark cluster and ideally not diverge substantially for the exact nature of the FIMoTS 

approach. 

 

3 Research Methodology 

3.1 Datasets 

In this analysis I will examine the impact of altering the FIMoTS algorithm across seven datasets. 

Five of these datasets are very standard in this area and are used in a variety of recent FPM 

studies [9-21], to which a Twitter and an online retail dataset have been added. 

In below table provide a summary of the key aspects of the datasets being studied, similar to 

what was performed in [8] and [22]: 

 

Dataset # 
Transactions  

#Distinct 
Items 

# Total 
Items 

# Average 
Transaction Length 

Expected 
Frequency 

T40I10D100K 100,000 942 3,960,507 39.6 23.8 

Twitter 26,838 47,875 203,494 7.6 6314.0 

Online Retail 25,900 4,070 541,909 20.5 198.4 

Table 1: Dataset Analysis 

The columns show: 

• Transactions: total number of transactions in the dataset (across the full-time horizon) 

• Distinct Items: number of distinct items within all the transactions 

• Total Items: sum of items across all transactions 

• Average Transaction Length: average number of items in a transaction 

• Expected Frequency: given the number of distinct items and the average transaction 

length a measure of how frequently it is expected for an item to appear  

 

Datasets with a high expected frequency are less dense and unlikely to have results for a high 

value of a minimum support. It is also more unlikely that large itemsets will be present within 

sparser datasets, rather it is expected than the majority will be 1-itemsets. As 1-itemsets do not 

benefit from the tree structure of the algorithm it is interesting to analyse how datasets with 

less or greater level of depth in their datasets are impacted differently by the altered algorithm. 
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Twitter 

FPM can be used on streams of Twitter data for determining trending topics [25] and so a 

Twitter dataset is used within this analysis. The Spritzer1 version of data for a period in the 

morning of 01/01/2021 from Archive.org2 is used. The pre-processing on this data consists of: 

• Filtering on English language tweets 

o Part of the twitter schema provide the language of each tweet 

o To reduce the complexity in processing with different languages and different 

character encoding, only items in English are used 

• Removal of special characters and emojis 

o While emojis and emoticons are standard within twitter communications their 

encoding makes them difficult to parse and so have been omitted with the rest 

of the special characters from this analysis 

• Stopword removal 

o Using the standard Pyspark ML implementation3  

o Additionally, removing technical text appearing frequently (http, https, re, co) 

As can be identified from Table 1, this dataset has the lowest average length and the highest 

expected frequency per item. It follows that we expect to require a low minimum support to 

get a large set of frequent itemsets.  

 

T40I10D100K 

Synthetic data generated by the IBM Almaden Quest research group4 which is a common 

dataset among FPM projects such as [9] and [26]. No time dimension was provided within 

this dataset so 2 approaches have been taken during this project to determine the impact of 

variance within the time structure on the efficacy of the approach. The initial tests are 

performed with a uniform number of transactions per time period and a subsequent test is 

performed with a randomization of the number of transactions per time period, although with 

the same number of expected transactions in each period. 

Figure 3, shows the number of transactions within the time randomised T40 dataset. In 

contrast, the uniform dataset has a constant number of 100 transactions per time period. As 

one of the attributes of the FIMoTS algorithm is its capacity to handle different number of 

transactions within different time periods in a data stream it is of interest to determine the 

difference in efficiency of the algorithm across both these cases.  

 

 
1 https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data 
2 https://archive.org/details/twitterstream 
3 https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.Stop 

WordsRemover.html 
4 http://fimi.uantwerpen.be/data/ 
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Figure 3: Occurrences per Period for T40 Random Approach 

 

Online Retail 

Transnational dataset which contains all the transactions occurring between 01/12/2010 and 

09/12/2011 for an online retailer.5 

3.2 Trends in Datasets 

FP Stream was run on the dataset in order to discover trends which existed prior to running 

tests on the altered FIMoTS algorithm. This consisted of running the Spark ML 

implementation of FP Stream recursively over the sliding windows in the datasets to 

determine baseline results for frequent itemsets and thus also point to notable attributes 

within the data. This section presents the results of this analysis across the 3 datasets used in 

this study. 

3.2.1 Twitter Dataset 

Figure 4 shows the variation in the number of frequent patterns over time. The tests within 

this project were completed using a period length of 30 seconds and a sliding window length 

of 10 minutes (thus 20 periods per window). The support value was 2.5%, over which it was 

difficult to get meaningful results. As can be determined from Figure 4, there is a clear 

decrease in this number after the first quarter for the streaming period. A similar decrease can 

be observed in Figure 5, which indicates the maximum length of a frequent pattern within 

each time period. As may be intuitive the maximum size reduces in a similar fashion to the 

reduction in the number of frequent itemsets. 

Figure 6 indicates the frequency with which certain itemsets appear. Certain itemsets can 

appear within all time periods and so little work may need to be performed in calculating 

these during each movement of the sliding window. From the above it is noticeable at 10%-

15% of itemsets are frequent in every time period but the majority are frequent for < 30% of 

time periods. This indicates a high degree of movement between itemsets becoming frequent 

and then infrequent again. 

 

 
5 https://archive.ics.uci.edu/ml/datasets/online+retail 
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Figure 4: No. Frequent Patterns 

 

Figure 5: Size of Frequent Patterns 

 

Figure 6: Frequency of Frequent 

Patterns 

 

3.2.2 Online Retail Dataset 

The Online Retail Dataset displays a slight increasing trend in the number of frequent 

patterns appearing over times as in the figure on the below left. For this dataset, the sliding 

window length is 28 days with the period being 1 day. The frequency of patterns again is low 

so a support value of 5% was used (similar to that used for this same dataset within [22]). 

Unlike the Twitter dataset this displays very little correlation between frequent patterns and 

so the maximum length of an itemset is 2. 

 

 

Figure 7: No. Frequent Patterns 

 

Figure 8: Size of Frequent Patterns 

 

Figure 9: Frequency of Frequent Patterns 

 

The frequent histogram indicates that a large proportion of itemsets are present in less than 

10% of time periods. 

 

3.2.3 T40I10D100K Dataset 

As outlined, there are 2 approaches taken in this study for this dataset – one keeping each 

time period with a uniform number of transactions and another using a random number of 

transactions. In both approaches the sequence of transactions is maintained and so the trend 

characteristics are similar. The tests are performed using a sliding window of 10 periods and 

with a minimum support of 10%. 
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Figure 10: No. Frequent Patterns for Uniform Data 
 

Figure 11: No. Frequent Patterns for Randomised Data 

 

Across both approach the degree of correlation between items was small which led to no > 1-

itemset frequent pattern. Notable in the below figures is the high degree of consistency in the 

frequent itemsets. Greater than 50% of itemsets are present in each period. 

 

Figure 12: Frequency of Patterns for Uniform Data 
 

Figure 13: Frequency of Patterns for Randomised Data 

 

3.3 Evaluation of Results 

The success of the algorithm will be measured as the correct frequent patterns (as retrieved 

via the static FP Stream implementation). For analyses on approximate algorithms, usually 

Precision and Recall are measured as in [16] and [8]. As will be discussed further in Section 

4.2, Precision is always 100% for the approximate algorithm used in this study and thus only 

the Recall will be measured for different values of the multiplier parameter. 

 

4 Design Specification 
 

As explained earlier, an altered version of the FIMoTS algorithm [8] is being used in this 

analysis. In this section, we shall introduce this algorithm and briefly discuss the points of 

interest in the approach before moving to the novel aspects of how we wish to change it to 

become more efficient. 
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4.1 FIMoTS Algorithm 

The FIMoTS algorithm [8] was created with the consideration of reducing the number of times 

which the raw transactions are checked as items change within a data stream. For example, 

take an item which has an occurrence rate of 1% in a data stream where the minimum support 

is 10%. If a time increment only changes the content of the stream by 2% (some items leaving, 

some items entering) then there is no likelihood that this item can become frequent after this 

single period and no calculations should be performed for it. Analogously there could exist an 

itemset with 20% support which cannot become infrequent due to the 2% change and so should 

be omitted from consideration.  

The concept of type transforming bounds have been introduced to determine if a change in the 

frequency of an itemset may occur as the time period of the data stream shifts.  

 

Type Transforming Upper Bound: For an itemset 𝐼, when adding 𝑢𝑏 transactions to the 

stream may change 𝐼 from frequent to infrequent (or vice versa) but adding 𝑢𝑏 − 1 transactions 

may not, 𝑢𝑏 is the type transforming upper bound of 𝐼, denoted 𝑢𝑏(𝐼). 

Type Transforming Lower Bound: For an itemset 𝐼, when removing 𝑙𝑏 transactions from the 

stream may change 𝐼 from frequent to infrequent (or vice versa) but removing 𝑙𝑏 − 1 

transactions may not, 𝑙𝑏 is the type transforming lower bound of 𝐼, denoted 𝑙𝑏(𝐼). 

 

The procedure for the FIMoTS algorithm is not to record exactly the support for each itemset 

at all times, but instead to perform the minimum effort to ensure that itemsets determined to be 

greater than the minimum support are correct. As per the above definitions, only when the 

number of transactions arriving to and leaving the dataset exceed the transforming bounds for 

an itemset should a support calculation be performed.  

 

 

Figure 14: FIMoTS Algorithm 
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A graphical summary of the operations of the algorithm are provided in Figure 14.  

4.1.1 Initial Step 

Construct an enumeration tree where each node in the tree represents an itemset. Therefore, 

each parent node is a subset of a child node and two child sibling n-itemsets each have 𝑛 − 1 

items in common. All infrequent items will be leaf nodes as by definition no child itemset of 

an infrequent itemset can be frequent. By default, items are sorted in lexicographical order 

and child nodes must always be greater than their parents to avoid duplication of itemsets. 

The below is an example of this tree generation for the 3 transactions where minimum 

support is 50% (itemsets with blue backgrounds are frequent): 

 

 

Figure 15: Construction of Enumeration Tree 

In the above note: 

• Apple, Book, Milk is an itemset which exists in the dataset however as its only viable 

parent is “Apple, Book” which is infrequent this is not generated 

• Apply, Milk is a frequent leaf node. We do not seek to generate “Apple, Milk, Book” 

from it as Book > Milk 

• Milk is a frequent root node but as it has the highest order there are no possible child 

nodes 

In this tree structure it is straightforward to determine as items become frequent and also to 

generate potentially frequent child nodes. For example, if another transaction arrived to the 

stream containing “Apple, Book” then this node would become frequent   

4.1.2 Creation and Update of Transforming Bounds 

The transforming bounds are an indication of how close an itemset is to changing its 

frequency. Initially an infrequent itemsets I will have transforming bounds as: 

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑(𝐼) =  
|𝐷| ∗ 𝑠 − 𝑐𝑜𝑢𝑛𝑡(𝐼)

𝑠
+ 1 

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑(𝐼) =  
|𝐷| ∗ 𝑠 − 𝑐𝑜𝑢𝑛𝑡(𝐼)

1 − 𝑠
+ 1 

And a frequent itemset will have transforming bounds: 

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑(𝐼) =  
𝑐𝑜𝑢𝑛𝑡(𝐼) − |𝐷| ∗ 𝑠

1 − 𝑠
+ 1 

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑(𝐼) =  
𝑐𝑜𝑢𝑛𝑡(𝐼)

𝑠
− |𝐷| + 1 

As new transactions (nt) arrive to the stream and old transactions (ot) leave the stream the 

transforming bounds must be updated. For infrequent itemsets, the assumption is that all 

transactions leaving the dataset do not have the itemset and all transaction arriving may have 

it which provides these formulae: 
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𝐼𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑(𝐼) = 𝐼𝐹𝐿𝐵(𝐼) − 𝑜𝑡 − 𝑛𝑡 ∗  
1 − 𝑠

𝑠
 

𝐼𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑(𝐼) =  𝐼𝐹𝑈𝐵(𝐼) − 𝑜𝑡 ∗  
𝑠

1 − 𝑠
− 𝑛𝑡 

For frequent itemsets the assumption is that all transactions leaving the dataset contain the 

itemset and none of those arriving to the dataset contain it. Once again this is worst case 

scenario to have full certainty there is no chance an item may incorrect be determined still 

frequent. This logic provides the follow for updates for frequent bounds: 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑(𝐼) = 𝐹𝐿𝐵(𝐼) − 𝑜𝑡 − 𝑛𝑡 ∗  
𝑠

1 − 𝑠
 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑(𝐼) =  𝐹𝑈𝐵(𝐼) − 𝑜𝑡 ∗  
1 − 𝑠

𝑠
− 𝑛𝑡 

As new transactions reach the stream, the algorithm only requires the number of new 

transaction (the number being removed should already be known) to perform this calculation 

to determine which itemsets result in a negative transforming bound. Those with a negative 

transforming bound must have their supports re-evaluated as they may have become 

frequent/infrequent.   

4.1.3 Evaluation of Supports 

The update of the transforming bounds steps results in a list of: 

• Previously frequent itemsets which may now be infrequent 

• Previously infrequent itemsets which may be frequent 

Scans are performed over the full dataset which is stored in memory to retrieve exact values of 

the support for each of these itemsets. It is worth noting that only ever after this step does the 

algorithm provide an exact value of the support of an itemset, the efficiencies lie in the 

reduction of the itemsets to require this step. 

4.1.4 Extending and Pruning the Enumeration Tree 

As the frequencies of itemsets are changing, the structure of the enumeration tree must change as 

well. As mentioned in section 4.1.1, child nodes of infrequent itemsets are not stored in the 

enumeration tree so once this occurs a pruning operation is required to remove nodes which are no 

longer necessary from the tree. Clearly these nodes cannot be frequent and must already have been 

declared so by the support update step. Each time a former frequent itemset becomes infrequent 

and child nodes are pruned from the enumeration tree and transforming bounds for them will no 

longer be calculated. 

Itemsets moving in the opposite direction i.e., from infrequent to frequent require slightly more 

attention as they can create child nodes which have so far not been tracked and so may be frequent.  

 

Itemsets becoming frequent follow the below steps: 

1. For each frequent right sibling (𝐽) of 𝐼 

a. Create a child of 𝐼 as  𝐾 = 𝐼 ∪ 𝐽  

b. Check if 𝐾 is frequent 

2. Repeat step 1 with all new frequent nodes generated in this way 
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These recursive procedure for generating new itemsets from newly frequent ones is why in Figure 

14 there is a loop between the prune and extend step and the support evaluation. These two 

processes can repeat until no new frequent itemsets are found.  

4.2 Approximate FIMoTS Algorithm 

The purpose of this analysis is to determine if and when the FIMoTS algorithm can be altered 

to reduce the number of candidates to be sent to the support calculation step, as this is the 

most computationally intensive phase [9]. Remember that when calculating the transforming 

bounds for infrequent itemsets, the algorithm assumes that all new transactions will contain 

the itemset and none of those leaving. If the minimum support used for FPM is low (for 

example 5%) this means that every time there is a 5% change in the dataset a support check is 

required. Usually if the support query is this low it indicates a sparse dataset which clearly 

would not have 100% of transactions containing a formerly infrequent itemset [8].  

Therefore, the premise of the analysis is to introduce a dampening factor to reduce the extent 

to which the transforming bounds are changed every time period and so avoid redundant 

support calculations. The analysis will only focus on the infrequent transforming bounds as 

the number of frequent bound calculations are usually minor relative to the infrequent 

calculations and it is considerably more likely for a frequent itemset to missing from all new 

transactions than an infrequent itemsets to be present in all new transactions. 

The formulae for this approach are changed to: 

𝐼𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑(𝐼) = 𝐼𝐹𝐿𝐵(𝐼) − (𝑜𝑡 + 𝑛𝑡 ∗  
1 − 𝑠

𝑠
) ∗ 𝑚 

𝐼𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑(𝐼) =  𝐼𝐹𝑈𝐵(𝐼) − (𝑜𝑡 ∗  
𝑠

1 − 𝑠
+ 𝑛𝑡) ∗ 𝑚 

Where 𝑚 is the dampening factor. The analysis seeks to answer: 

• How the accuracy (recall) of the results differ with changing values of 𝑚 

• Relationship between 𝑠 and 𝑚 

• The changing impact of different values of 𝑚 on different datasets 

In this instance the analysis need only focus on the recall and not the precision of the results. 

As the Frequent Bounds are not subject to the dampening factor there is certainty any 

frequent item approaching infrequency will be verified. Uncertainty may only exist on 

whether sufficient itemsets are being verified for changing from infrequent to frequent. 

Therefore, regardless of the value for 𝑚 the precision will be 100% and thus it will not be 

discussed further in the Evaluation section. 

 

5 Implementation 
 

This project has been implemented in Python using PySpark to perform the more 

computationally intensive operations. The implementation largely follows the approach from 

[9] however there are differences in the technical implementation due to difficulties 

encountered using Spark Streaming in this manner.  
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From the research performed there is no freely available implementation of FPM on streaming 

datasets. There is an FP-Growth implementation in the Spark ML library6 however this is for 

static datasets only. In order to perform a comparison of the results between the generic 

FIMoTS algorithm and the approximate version proposed in this study, it was mandatory to 

first implement this algorithm and afterwards update to apply the dampening factors. Spark 

Streaming is still a recent technology with its feature set still expanding however the limitation 

on multiple aggregation within streaming data not being supported7 resulted in complications 

within this approach which were considered beyond the scope of this project. 

Instead, a simulated process is adopted wherein each dataset is read in full to a Spark dataframe, 

this is divided into periods and a sliding window procedure performed on these periods. The 

code iterations over the windows in the dataset as if it were receiving a new set of data at each 

iteration. In this manner the implementation benefits from the application of Spark and does 

not suffer from any of the limitations of Spark Streaming.  

5.1 Building Enumeration Tree 

The enumeration tree is structured to represent all possible patterns from the transactions 

present within the initial window of the data stream [8]. It may become very broad and long if 

all possibilities are initially built before the count phase to determine which are within the 

minimum support threshold. Particularly if the length of transactions in the stream are large 

(𝑁) then the creation of the tree will be 𝑂(𝑁)!. The approach taken is therefore to perform 2 

initial passes of the data to count the frequent items and frequent 2-itemsets and just extend 

the tree when a pair is frequent.  

The process of building the enumeration tree is thus as follows: 

 

1. Attain all frequent items 

2. Attain all frequent 2-itemsets 

3. For each transaction 

a. Sort items 

b. Run Extend Procedure with (Root, transaction) 

4. Prune tree by removing nodes below infrequent itemsets 

 

Extend Procedure (node, transaction) 
1. If node has a parent of Root and is frequent 

a. Create child of node with first item from transaction 

i. If already exists increment count 

ii. Run Extend Procedure with (child, transaction from second item) 

b. Else Create node with item and stop 

i. If already exists increment count 

2. If node and first item in transaction are a frequent 2-itemset 

a. Create child of node with item 

i. If already exists increment count 

 

 
6 https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html 
7 https://spark.apache.org/docs/latest/structured-streaming-programming-

guide.html#unsupported-operations 
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ii. Run Extend Procedure with (child, transaction from second item) 

b. Else Create node with item and stop 

i. If already exists increment count 

3. Run Extend procedure with (node, transaction from second item) 

 

While this approach results in extra counts of the initial trade population to that in the FIMoTS 

Algorithm, it prevents a large redundancy in extending a broad and long tree and pruning it 

later. 

5.2 Growth of Tree for New Frequent Itemsets 

The enumeration tree should be extended as an itemset becomes frequent as this could imply 

child itemsets are frequent. In Figure 16, an example is provided for the enumeration tree as a 

new transaction arrives which makes the itemset [Apple, Eggs] frequent. According to the 

algorithm right siblings of a newly frequent itemset should be used to extend the enumeration 

tree, in which case [Apple, Eggs, Milk] is created as a child itemset which may be frequent 

(the green background implies a new check needs to be performed). As [Apple, Book] is a 

left itemset it is not considered for extension (as there cannot be [Apple, Eggs, Book], where 

the sorted order of Eggs > Book).  

 

 

Figure 16: Update to Enumeration Tree Growth 

However, [Apple, Book, Eggs] may be a frequent itemset and thus the altered FIMoTS 

algorithm used in this study both appends right frequent siblings to a newly frequent item but 

also appends the new item to its left frequent siblings. 

 

5.3 New Items within Stream 

The original FIMoTS does not make any allowances for items which arrive to the stream 

after the initial tree has been created. The focus is on updating the transforming bounds for 

the number of transactions leaving and entering the stream, not on how the contents of the 
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stream are changing. Using the standard approach, it was found that several inaccuracies 

between the baseline results were identified due to new items arriving to the stream. Unless 

the algorithm is always expected to operate over a closed set of items allowances should be 

made for new items entering the stream. In this study each new block of transactions entering 

the stream is queried for new items and those found are added to the infrequent bounds table 

and included for count computation within the current sliding window.  

5.4 Python and Spark Approach 

Taking these elements into account, the high-level implementation of the algorithm consists 

of: 

1. The initial dataset is read from source files into a Spark Dataframe 

2. This Dataframe broken down into a series of periods of equal durations 

3. Panda Dataframes are constructed for counts per periods and counts per sliding 

window (groups of sequential periods) 

4. Python is used to generate the initial tree from the first sliding window and pandas 

frequent and infrequent bounds are generated 

5. For Window #2 until end of stream 

a. Frequent and infrequent bounds are updated from values stored in Step 3 for 

current window. This is a basic calculation and so would not benefit from 

being sent to a Spark cluster. 

b. Itemsets which require evaluation are grouped and verified against the Spark 

Dataframe filtered on the current sliding window. 

c. Tree is extended or pruned according to frequencies. Extended trees can 

require further frequency validations against the Spark dataframe as in the 

example from Section 5.2. 

d. The frequent and infrequent bounds for itemsets which have been checked are 

updated for actual values. 

e. Frequent itemsets for window recorded. 

 

6 Evaluation 
 

The evaluation within this project consists of reporting on the efficiency of the 

implementation across both the recall of the results and the reduction in checks and timing 

improvements due to this. This section will provide these results across the different datasets 

identified and analyse the reasons for these findings. 

6.1 Twitter Dataset 

The number of frequencies of itemsets in this dataset was relatively low and so a 2.5% 

minimum support was used to ensure there were an acceptable number of items frequent at 

any one time. Given this low minimum support it is expected that the default algorithm had a 

large amount of redundancy as it is not very likely for an itemset represented in less than 

2.5% of transactions in one period to be present in a high percentage of new transactions. For 
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these tests, the multiplier has been varied from 1% to 100% (default) to determine the impact 

across number of checks and recall and precision. 

The below graphs (Figure 17 and Figure 18) are created using a 10-period moving average of 

the results. Moving averages are used in the display as there can be a lot of variation between 

different periods which makes it difficult to assess the trends in the results.  

 

 

Figure 17: Number of Checks for Twitter 

 

Figure 18: Time per Period for Evaluation 

 

As can be determined, both graphs display almost identical trends which indicates the strong 

correlation between number of checks to perform and the time for completion. All graphs 

display a slightly upward trends which is due to the new single itemsets arriving to the data 

stream. As new items are continuously arriving the number of checks which must be 

performed increases – clearly this raises questions about the sustainability of such an 

approach in a variable source of data like Twitter.  

A graph of the change in accuracy of results is displayed in Figure 19. It is expected that 

when using a multiplier less than the minimum support (e.g., 1%) the accuracy of the results 

is reduced however largely this does not appear to be the case. In all cases the precision is 

100% and the average recall is 98.8% even for the 1% multiplier.  

 

 

Figure 19: Precision and Recall over Time for Twitter Dataset 

The below table summarise the accuracy results for this dataset as well as the reduction in 

number of checks required and total time to process. 
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 0.01 0.025 0.05 0.1 0.2 1 

Recall 98.8% 99.9% 100% 100% 100% 100% 

Checks (percentage of m = 1) 2% 4% 9% 18% 33% 100% 

Time (percentage of m = 1) 6% 8% 13% 22% 37% 100% 

Table 2: Twitter Results 

Note the aim of the project is to determine the impact of the reduction in the number of 

checks performed on the accuracy of the results. The timing results are here for indicative 

purposes only as the technical implementation of the algorithm could certainly be optimised. 

6.2 Online Retail Dataset 

The online retail dataset displays less favourable results for the approximate approach as 

show in the below table: 

 0.01 0.025 0.05 0.1 0.2 0.4 0.75 1 

Recall 60.1% 84.6% 95.9% 99.2% 99.7% 99.9% 100% 100% 

Checks  2% 4% 8% 15% 28% 50% 77% 100% 

Time 42% 47% 52% 53% 58% 68% 84% 100% 

Table 3: Online Retail Results 

The minimum support values used when running these tests was 5% and when running tests 

with this value of multiplier the recall is 95.9 (unlike Twitter which was 99.9% for multiplier 

equal to minimum support). This likely indicates itemsets becoming frequent quickly – in 

which case a high percentage of transactions appearing in new periods of the sliding window 

containing infrequent itemsets may not be checked by the algorithm.  

Also notable in the above is the reduction in time spent performing these checks. Unlike the 

Twitter example the maximum reduction was to 42% of the total time. This is likely because 

for this dataset the overall time for running the checking operation is not very large and each 

iteration there is time spent other places in that algorithm to what is optimized via the 

multiplier. Therefore, in this case the proportional speedup is not very high. 

6.3 T40 Datasets 

As explained previously, for the T40 dataset a synthetic time element was applied with a 

uniform approach and a randomised approach (where the number of transactions in a time 

period can vary). Given the underlying data is the same and it is just the grouping which 

differs it is expected to return similar results. 

 
 

0.025 0.05 0.1 0.2 0.4 0.75 1 

Recall 97.1% 99.3% 100% 100% 100% 100% 100% 

Checks  4% 7% 12% 23% 39% 59% 100% 

Time 20% 23% 27% 33% 44% 58% 100% 

Table 4: T40 Uniform Results 
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0.025 0.05 0.1 0.2 0.4 0.75 1 

Recall 95.6% 98.1% 99.2% 99.8% 100% 100% 100% 

Checks  6% 11% 20% 36% 63% 90% 100% 

Time 31% 35% 42% 52% 71% 90% 100% 

Table 5: T40 Random Results 

As can be seen, in all cases the results on the randomised set are worse than the uniform set. 

The multiplier required to receive 100% recall is 0.1 in the uniform set compared with 0.4 in 

the randomised set. When returning 100% recall the timing for the uniform results is 27% of 

basic algorithm whereas in the random test it is 71% which would indicate that the 

approximation is of more benefit when the number of transactions in each time period are 

consistent.   

6.4 Discussion 

The key findings from this study: 

• The initial FIMoTS algorithm proposed may be improved upon to deliver similar 

levels of accuracy with a large reduction in time and number of checks to be 

performed. 

• This is however an approximate approach in which false negatives can occur. The 

likelihood of this occurring is proportional to the extent of the approximation taken 

and the degree to which new itemsets become frequent in the dataset. 

The Twitter dataset displays the most impressive results with a large saving in time from 

applying low value multipliers which still returning strong results. This would indicate that 

for datasets like this, the build-up for itemsets to become frequent is gradual and taking the 

approximate approach is very worthwhile. However, the upward trend in the number of 

checks required would indicate that the algorithm lacks an ability to prune single items which 

no longer appear in the stream and so long term would not be suitable on a dataset which can 

have such a variety of items. 

The Online Retail dataset displays an opposite view wherein a high number for the multiplier 

is required to achieve confidence in 100% recall. This dataset is quite sparse and consists of 

few frequent itemsets which may not lend itself to benefit from an approach such as this.  

The T40 dataset analysis provides more insight into an aspect of the datasets which appear to 

impact the effectiveness of the approximate approach. Uniform numbers of transactions per 

period give better results than variable. It is worth noting that the Online Retail dataset also 

exhibited a high degree of variability in number of transactions per period which could have 

contributed to the relatively poor results for that test. 

 

7 Conclusion and Future Work 
 

In this study it has been demonstrated that the FIMoTS algorithm for determining frequent 

itemsets from streams of data could be approximated to operate with less effort when 

accepting a relatively minor reduction in accuracy. The approximation was tested on different 

dataset to judge the variation of effectiveness according to the underlying data. It has been 
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found to operate most effectively upon a Twitter dataset where the timings were reduced by 

96% for 100% precision and 99.9% recall. In all cases the number of checks required may be 

reduced by 80% with less than 1% reduction in recall. This reduction in recall compares 

favourably with other accuracy results for approximate algorithms for example in [16] and 

[8]. More testing could be run on the datasets varying parameters such as minimum support 

and sliding window length to determine their impact on appropriate multipliers to use and 

their effectiveness. 

The appropriate multiplier to use is directly related to the speed within which new trends 

emerge within the dataset so it may be impractical to determine a multiplier in advance or one 

which can operate long term over a datastream. Further investigation may be performed to 

seek to determine a self-adjusting multiplier which could interpret the extent to which data 

within the stream is changing and varying the multiplier appropriately. As apparent from the 

Twitter tests the upward trend in number of checks required would lead to poor performances 

and so the algorithm could be improved to remove single items which have no occurrences in 

the stream anymore.  

Furthermore, the technical implementation of the algorithm would ideally be improved upon 

to leverage directly off Spark Streaming instead of looping method implemented here. It 

would likely yield much performance optimizations so thus impact level of time reductions 

from these tests. It would have been preferable to have other implementations of FPM on data 

streams available for comparisons of results from these tests. As these are made available in 

the future it would be of interest to understand how they comparison against the algorithm 

proposed here both in terms of time to run and accuracy of results. 
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