

Configuration Manual

MSc Research Project Programme Name

Celine Moran Lee Student ID: 19175248

School of Computing National College of Ireland

Supervisor:

Dr. Paul Stynes, Dr. Pramod Pathek

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Celine Moran Lee														
Student ID:	19175248														
Programme:	MSCDAD-A	Year:	2020/2021												
Module:	Research Project														
Lecturer:	Dr. Paul Stynes & Dr. Pramod Pathak														
Date:	23 rd September 2021														
Project Title:	Configuration Manual														

Word Count: 2481 ... Page Count: 30

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:

Date: 16th August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Celine Moran Lee Student ID: 19175248

1 Introduction

This configuration manual is to replicate the research from the report "A Novel Framework for Automated External Defibrillator Deployment (FAEDD) in Identified High Risk Residential Areas". Within the document is a description of the hardware and software used for the research; the list of data sets used within the research; the processing of data and implementation of the experiments. Where appropriate screenshots of code and output are included.

2 Hardware and Software

The hardware which all experiments were implemented on is listed in Table 1 and all the software used for the experiments is in Table 2.

System	Specification
	Intel(R) Core (TM) i5-4210U CPU @ 1.70GHz
Processor	2.40 GHz
(RAM)	16.0 GB (15.9 GB usable)
	64-bit Windows Operating System, x64-based
System type	processor

Table 1: Hardware used for experiments

Software	Library	Version
SPSS	NA	27
GeoDa	NA	1.18
Microsoft Office	Excel, Word, Powerpoint	2107
R Studio	Tmap Spdep Maptools	2.3-1 1.1-8 0 9-8
	Leaflet Rgdal	2.0.4.1 1.4-7
	Rgeos Raster	0.5-2 3.0-7
	Htmltools Ggplot2	0.4.0
	Tidyverse	1.3.0

 Table 2: Software Used with corresponding libraries

SpatialEpi	1.2.3
Car	3.0-6
Ape	5.5
CARBayes	5.2.3
Shapefiles	0.7
Sp	1.3-1
SĪ	0.8-0
Purrr	0.3-4
Matrixcalc	1.0-5
INLA	21.02.23
INLABMA	0.1-11
Geosphere	1.5-10
Reshape2	1.4.3
Maxcovr*	0.1.3.9200
GGally	1.5.0
RColorBrewer	1.1-2
Lattice	0.20-38
SemiPar	1.0-4.2
Mapview	2.10.0
Mapedit	0.6.0
Ggmap	3.0.0
Magrittr	1.5
GISTools	0.7-4
Shp2graph	0-5

Datasets

The data needed to rerun this experiment is zipped together within a folder and numbered in order of use. All the files within this folder must be kept together to run the experiments, see Figure 1. Where appropriate within the code where a CSV file is saved and used in another piece of software e.g., R Studio to SPSS, the output of SPSS will be saved within the folder.

📙 🕑 📙 🗕 Configu	ration Manual Data				
File Home Sha	re View				
Pin to Quick Copy Paster access	Cut Copy path Paste shortcut	New item	ss • Properties	Copen - Select a Edit Select n History Invert se	ll Ione election
Clipboa	rd Organise	New	Op	en Seleo	t
$\leftarrow \rightarrow \checkmark \land \square \diamond$	This PC > Desktop > Masters of Science in Data A	Analytics > Research Project	: > Configuration	n Manual Data	
Ouick access	Name	Date	e modified	Туре	Size
Downloads	8 5.1SIR_Calculation	15/0	8/2021 20:32	R File	2 KB
	6.2Principal_Component_Analysis	13/0	8/2021 20:24	R File	4 KB
Documents 🖈	8 5.3Queens_Matrix	15/0	8/2021 20:57	R File	5 KB
📰 Pictures 🖈	8 5.4BayesianCarModels	15/0	8/2021 21:10	R File	36 KB
📃 Desktop 🛛 🖈	R 5.5MCLP	15/0	8/2021 21:12	R File	352 KB
📙 AED Related Jou	R c99096be-cff8-4729-b967-ebd104afdb0120	020328-1-nubkfi.o4ctb 29/0	07/2021 09:22	CPG File	1 KB
Configuration M	c99096be-cff8-4729-b967-ebd104afdb0120	020328-1-nubkfi.o4ctb 29/0	07/2021 09:23	DBF File	2,672 KB
Experiment 2	c99096be-cff8-4729-b967-ebd104afdb0120	020328-1-nubkfi.o4ctb 23/0	07/2021 13:44	GAL File	161 KB
Research Project	c99096be-cff8-4729-b967-ebd104afdb0120	020328-1-nubkfi.o4ctb 29/0	07/2021 09:23	GeoDa Project File	5 KB
	c99096be-cff8-4729-b967-ebd104afdb0120	020328-1-nubkfi.o4c 29/0	07/2021 09:22	PRJ File	1 KB
OneDrive	c99096be-cft8-4/29-b96/-ebd104afdb0120	020328-1-nubkfi.o4c 29/0	07/2021 09:23	SHP File	6,744 KB
💻 This PC	CAB = 4-44	J20328-1-nubkfi.o4c 29/0	7/2021 09:23	SHX File	27 KB
3D Objects	CAR.04Ctb	29/0	7/2021 10:29	DPE File	076 VP
Desktop	CAR.04Clb	29/0	17/2021 10:29	DBF File	1 KB
Documents	CAR.o4ctb.shp	29/0	7/2021 10:29	SHP File	6 744 KB
- Downloads	CAR.o4ctb.shx	29/0	7/2021 10:29	SHX File	27 KB
Musia	EDITEDOSI Queen 3409.gal	20/0	7/2021 16:00	Text Document	158 KB
	R gis_osm_roads_free_1	01/0	8/2021 14:20	CPG File	1 KB
Pictures	gis_osm_roads_free_1	01/0	8/2021 14:20	DBF File	157,018 KB
Videos	gis_osm_roads_free_1.prj	01/0	8/2021 14:20	PRJ File	1 KB
🏪 Local Disk (C:)	gis_osm_roads_free_1.shp	01/0	8/2021 14:20	SHP File	183,604 KB
🖆 Recovery (D:)	gis_osm_roads_free_1.shx	01/0	8/2021 14:20	SHX File	6,941 KB

Figure 1: Image illustrating project files to run this code. Ensure these files are saved to directory.

4 Pre-processing Data

Upon downloading the data, the data was cleaned and organised either manually by saving into a CSV or through programming R. A description of each dataset is described below with specific actions to pre-process the data.

4.1 AED Data

Within the zipped data folder there are two datasets 1) the raw data as received by the HSE entitled "RAWAED CSO Small Areas Jan2021_SMORAN30MAR2021" see Figure 2 and 2) the structured labelled data entitled "AED_CFR_GRoup_Final.csv" see Figure 3. The original dataset has four columns with ID, Small Area Code, CSO Code and CSO Ed Name. This data had to be manually checked against the CSO GeoHive website https://census2016.geohive.ie/datasets/electoral-divisions-cso-generalised-

<u>20m/explore?location=53.082175%2C-6.355948%2C9.97&showTable=true</u> to code each of the AEDs to the relevant electoral division. The new coded data was saved to the second file where the GUID, GEOGID and GEOGDESC codes for the electoral division were included.

B 1	1363	•	\times	~	f _x	217086	5001/217	7117001	
	А			В			с	D	E
1	ID	Small A	rea			- †	CSO 🔻	CSO ED Name 💌	
2	SA1				1	7008003	1017	BORRIS	
3	SA2				1	7008004	1017	BORRIS	
4	SA3				1	7010042	1019	CARLOW RURAL (PT.)	
5	SA4				1	7011010	1001	CARLOW URBAN	
6	SA5				1	7011011	1001	CARLOW URBAN	
7	SA6				1	7017004	1023	CRANEMORE	
8	SA7				1	7034011	1034	MUINEBEAG URBAN	
9	SA8				1	7036002	1036	NURNEY	
10	SA9				1	7051002	1048	TULLOW URBAN	
11	SA10				1	7051004	1048	TULLOW URBAN	
12	SA11				1	7051005	1048	TULLOW URBAN	
13	SA12				1	7051008	1048	TULLOW URBAN	
14	SA13				1	7054003	1002	GRAIGUE URBAN	
15	SA14				2	7082003	32071	LARAH SOUTH	
16	SA15				2	7083003	32026	SWANLINBAR	
17	SA16				3	7010001	16066	BALLYNACALLY	
18	SA17				3	7012001	16049	BALLYSTEEN	
19	SA18				3	7016001	16140	CAHER	
20	SA19				3	7026005	16026	CLAREABBEY (PART IN R.D.)	
21	SA20				3	7027001	16027	CLENAGH	
22	SA21				3	7027002	16027	CLENAGH	
23	SA22				3	7042005	16019	CORROFIN	
24	SA23				3	7045003	16028	CRUSHEEN	
25	SA24				3	7051001	16010	DRUMCREEHY	
26	SA25				3	7051003	16010	DRUMCREEHY	
27	SA26				3	7057027	16032	ENNIS RURAL (PART IN R.D.)	
28	SA27				3	7057036	16032	ENNIS RURAL (PART IN R.D.)	
29	SA28				3	7057052	16032	ENNIS RURAL (PART IN R.D.)	
30	SA29				3	7057056	16032	ENNIS RURAL (PART IN R.D.)	
31	SA30				3	7057068	16032	ENNIS RURAL (PART IN R.D.)	
32	SA31				3	7058006	16002	ENNIS URBAN NO. 2	
33	SA32				3	7059013	16054	ENNISTIMON	
34	SA33				3	7077007	16088	KILKEE	
35	SA34				3	7077009	16088	KILKEE	
36	SA35				3	7079004	16071	KILLADYSERT	
37	SA36				3	7080003	16134	KILLALOE	
_	4								

Figure 2: Raw data of AED locations to small area code.

	Спрроа	ra	12	1		Font			121	
Δ 1	1			~		GUI				
A	L			· · · · · ·	Jx	GOIL				
	Α	В		С	0	b	Е		F	G
1	GUID_	GEOGID	0	GEOGDES	CFR_	Grou	AED_Co	unt		
2	2AE196291	ED3409_0	0: 0	Carlow Ur		0		2		
3	2AE196291	ED3409_0	0: 0	Graigue U		0		1		
4	2AE196291	ED3409_0	0: 0	Clonmore		0		0		
5	2AE196291	ED3409_0	D: H	Hacketsto		0		0		
6	2AE196291	ED3409_0	D: H	Haroldsto		0		0		
7	2AE196291	ED3409_0	D1 K	Kineagh		0		0		
8	2AE196291	ED3409_0): F	Rahill		0		0		
9	2AE196291	ED3409_0): F	Rathvilly		0		0		
10	2AE196291	ED3409_0	D: T	Fiknock		0		0		
11	2AE196291	ED3409_0	D: \	Villiamst		0		0		
12	2AE196291	ED3409_0): A	Agha		0		0		
13	2AE196291	ED3409_0): E	Ballinacar		0		0		
14	2AE196291	ED3409_0	D1 E	Ballintem		0		0		
15	2AE196291	ED3409_0): E	Ballon		0		0		
16	2AE196291	ED3409_0): E	Ballyellin		0		0		
17	2AE196291	ED3409_0): E	Ballymoor		0		0		
18	2AE196291	ED3409_0): E	Borris		0		2		
19	2AE196291	ED3409_0): E	Burton Ha		0		0		
20	2AE196291	ED3409_0	0: 0	Carlow Ru		0		1		
21	2AE196291	ED3409_0	0: 0	Clogrenan		0		0		
22	2AE196291	ED3409_0	0: 0	Clonegall		0		0		
23	2AE196291	ED3409_0	0: 0	Corries		0		0		
24	2AE196291	ED3409_0	0: 0	Cranemor		0		1		
25	2AE196291	ED3409_0): F	- ennagh		0		0		
26	2AE196291	ED3409_0	0: 0	Garryhill		0		0		
27	2AE196291	ED3409_0	0: 0	Grangefor		0		0		
28	2AE196291	ED3409_0): J	ohnstowi		0		0		
29	2AE196291	ED3409_0	D: K	Cellistown		0		0		
30	2AE196291	ED3409_0	D: K	Kilbride		0		0		
31	2AE196291	ED3409_0	D: K	Killedmor		0		0		
32	2AE196291	ED3409_0	D: K	Killerrig		0		0		
33	2AE196291	ED3409_0): L	eighlinbr		0		0		
34	2AE196291	ED3409 (D: N	- Nuinebea		0		0		
35	2AE196291	ED3409 (D: N	Muinebea		0		1		
36	2AE196291	ED3409 (): N	Myshall		0		0		
37	2AE196291	ED3409 (): r	Nurney		0		1		
38	2AE196291	ED3409 (0:0	Oldleighli		0		0		

Figure 3: Manually tagged data to electoral division

4.2 CFR Data

Within the zipped data folder there are two datasets 1) the raw data as received by the HSE entitled "RAWCopy of CFRs JAN 2021" see Figure 4 and 2) the structured labelled data entitled "AED_CFR_GRoup_Final.csv" see Figure 3. This had to be manually checked against the CSO GeoHive website to code every electoral division to the correct AED location. This dataset required attention to detail as there was no corresponding CSO code to the census, so each name had to be checked manually against the GeoHive website.

	Α	В	C
L		Kilcogy 🔹	Cavan 💌
2		Ballyjamesduff	Cavan
3		Cavan	Cavan
4		Shercock	Cavan
5		Kildysart	Clare
5		Rathcormac	Cork
7		Carrigtwohill	Cork
3		Duhallow	Cork
)		Liscarroll	Cork
0		Charleville	Cork
1		Buttevant	Cork
2		Doneraile	Cork
3	ID	Mallow	Cork
4	CFR1	Blarney	Cork
5	CFR2	Ballincollig	Cork
6	CFR3	Ballygarvan	Cork
7	CFR4	Carrigaline	Cork
8	CFR5	Crosshaven	Cork
9	CFR6	Whitegate	Cork
0	CFR7	Passage West	Cork
1	CFR8	Glanmire	Cork
2	CFR9	Castlemartyr	Cork
3	CFR10	Youghal	Cork
4	CFR11	Fermoy	Cork
5	CFR12	Falcarragh	Donegal
6	CFR13	Gweedore	Donegal
7	CFR14	Ballyshannon	Donegal
8	CFR15	Bundoran	Donegal
9	CFR16	Creevy	Donegal
0	CFR17	Ardara	Donegal
1	CFR18	Mountcharles	Donegal
2	CFR19	Milford	Donegal
3	CER20	Tory Island	Donegal

Figure 4: Raw CFR dataset with no census codes.

4.3 Census 2016 & OSI Data

Both files were downloaded directly from the CSO website using the 20m version. The raw census 2016 data is in an excel entitled "RAWCENSUS_SAPS2016_ED3409" see Figure 5.

A1	· ·	×	fx GUID																									
A []	В	С	D	E	F	G	н	1.1	J I	ĸ	L	M	N	0	P	Q	R	S	т	U	V	W	X	Y	Z	AA	AB	AC
1 GUID	GEOGID	GEOGDES(1	T1_1AGE0 T	1_1AGE1 T1	1AGE2 T	1_1AGE3 T1	L_1AGE4 T1	_1AGE5 T1	_1AGE6 T1	_1AGE7 T	1_1AGE8 T	1_1AGE9 T1	1AGE1 T	1_1AGE1 T1	_1AGE1 T	1_1AGE1 T	1_1AGE1 T1	_1AGE2 T	1_1AGE2 T	L_1AGE3 T	1_1AGE3 T	1_1AGE4 T	1_1AGE4 7					
2 2AE196	529: ED3409_	0: Carlow Ur	21	27	16	24	35	25	30	16	21	14	13	23	23	17	29	20	25	14	31	39	259	245	212	175	167	145
3 2AE196	529: ED3409_	0: Graigue U	6	5	9	9	7	10	7	10	9	3	9	7	14	9	7	6	7	8	6	10	40	111	69	36	38	36
4 2AE196	529: ED3409_	0:Clonmore	2	1	2	3	2	2	4	3	8	7	4	1	2	5	6	6	1	3	3	4	19	15	15	14	20	16
5 2AE190	529: ED3409_	0:Hacketsto	9	15	8	4	15	6	10	11	13	7	12	10	12	9	11	10	10	8	6	5	34	31	39	41	45	28
6 2AE190	529: ED3409_	0:Haroldsto	2	1	2	2	3	2	0	1	2	1	4	2	1	1	1	3	6	3	4	1	4	7	6	5	13	13
7 2AE196	529: ED3409	0:Kineagh	0	3	3	1	3	1	0	1	1	0	1	1	2	3	1	2	1	3	3	2	11	7	11	9	15	11
8 2AE196	529: ED3409_	0:Rahill	4	5	8	4	6	9	7	4	4	4	6	7	3	5	5	6	4	3	3	6	11	20	24	25	30	35
9 2AE196	529: ED3409_	0:Rathvilly	8	8	15	8	6	6	5	7	5	9	3	11	5	2	9	9	9	6	6	11	26	19	26	25	35	24
10 2AE190	529: ED3409	0: Tiknock	3	1	2	1	4	3	3	3	2	2	3	4	2	5	2	5	6	2	2	1	8	3	9	14	19	11
11 2AE190	529: ED3409	0: Williamste	4	1	1	3	1	4	2	3	1	2	4	2	5	3	2	0	2	2	2	3	4	6	10	10	11	11
12 2AE196	529: ED3409	0:Agha	4	0	2	2	1	5	7	5	7	4	4	4	1	3	4	1	3	2	2	2	11	13	11	17	18	18
13 2AE196	529: ED3409_	0:Ballinacar	9	6	6	7	6	6	7	4	6	7	6	7	4	9	4	6	16	8	8	3	17	25	28	38	34	35
14 2AE196	529: ED3409	0:Ballintem	4	4	4	6	3	1	4	7	4	2	6	3	6	5	5	3	3	1	4	3	18	9	12	19	22	22
15 2AE190	529: ED3409	0:Ballon	2	7	10	8	7	8	9	6	8	8	4	8	8	5	2	5	3	6	2	4	8	13	21	41	22	35
16 2AE190	529: ED3409	0:Ballyellin	2	1	3	2	2	6	3	3	3	0	1	6	3	2	1	1	1	5	5	3	7	8	13	15	13	15
17 2AE196	529: ED3409	0:Ballymoor	1	5	2	3	1	6	3	4	3	6	3	1	2	0	2	3	5	2	1	2	10	5	8	15	13	19
18 2AE196	529: ED3409	0: Borris	5	6	5	7	5	5	11	6	6	5	6	4	6	6	6	4	7	6	6	3	27	17	32	23	38	37
19 2AE196	529: ED3409_	0: Burton Ha	7	8	3	5	2	4	6	5	7	6	10	4	5	2	4	8	4	2	3	4	10	9	15	21	25	17
20 2AE190	529: ED3409	0: Carlow Ru	94	122	129	115	135	121	138	128	111	116	121	115	99	105	97	101	105	107	107	138	545	380	562	630	543	480
21 2AE190	529: ED3409	0: Clogrenan	3	8	7	9	9	10	6	8	9	10	8	9	9	13	10	8	7	11	8	9	29	20	25	43	43	39
2 2AE196	529: ED3409	0:Clonegall	3	14	2	11	4	14	13	8	6	7	6	7	1	4	3	7	6	6	9	2	23	15	43	41	35	30
23 2AE196	529: ED3409_	0:Corries	6	5	1	6	2	5	4	7	3	8	3	6	3	3	8	3	3	4	3	0	12	13	20	18	25	19
24 2AE196	529: ED3409	0: Cranemor	11	12	11	10	18	21	6	10	7	15	8	15	6	6	10	5	4	4	6	7	24	24	43	58	35	26
25 2AE190	529: ED3409	0:Fennagh	5	11	6	10	8	5	4	7	11	5	6	8	6	4	5	8	5	4	0	2	20	14	26	41	30	42
26 2AE190	529: ED3409	0:Garryhill	4	3	2	5	2	5	5	4	7	8	4	9	2	7	3	4	1	4	5	2	20	10	20	14	20	17
27 2AE196	529: ED3409	0:Grangefor	2	3	1	6	2	0	4	5	6	4	6	2	4	2	2	2	1	3	3	0	14	10	17	28	27	10
28 2AE196	529: ED3409	0: Johnstowi	3	2	3	5	4	5	2	7	3	5	7	2	6	3	4	6	3	3	5	2	12	9	9	17	30	21
29 2AE196	529; ED3409	0: Kellistowr	5	1	1	3	6	4	7	8	10	4	12	4	7	13	9	6	7	7	9	11	30	21	28	28	33	39
30 2AE190	529: ED3409	0:Kilbride	4	3	7	1	4	4	3	6	3	4	2	5	4	3	2	2	1	5	3	2	9	14	6	16	19	13
31 2AE196	529: ED3409	0:Killedmor	4	1	2	1	3	6	0	1	8	2	0	8	1	5	4	5	4	7	1	2	11	6	16	20	16	16
32 2AE196	529: ED3409	0:Killerrig	1	8	1	1	6	4	1	2	3	0	2	3	2	2	6	3	2	2	2	6	14	7	11	7	14	18
33 2AE196	529: ED3409	0:Leighlinbr	6	13	9	14	13	8	9	9	15	8	11	15	10	11	13	11	13	13	6	14	35	63	53	56	81	70
34 2AE196	529: ED3409	0:Muinebea	2	2	3	4	5	5	3	6	4	3	3	3	2	8	8	4	11	4	5	4	25	14	16	20	19	24
35 2AE190	529: ED3409	0:Muinebea	17	22	11	19	24	21	27	26	32	6	19	18	21	19	20	18	19	19	19	15	76	95	84	122	94	74
36 2AE190	529: ED3409	0: Myshall	3	3	5	9	3	3	5	7	7	7	6	4	7	5	9	4	3	3	1	0	16	12	17	26	16	29
37 2AE196	529: ED3409	0:Numey	7	6	4	5	2	7	4	4	6	9	4	2	8	10	15	8	11	9	10	7	32	27	15	17	29	42
38 2AE196	529: ED3409	0:Oldleighli	6	6	5	1	3	7	5	5	5	10	5	6	9	3	4	5	5	5	7	2	7	13	14	26	19	30

Figure 5: Raw Census 2016 data from the CSO website

The census data was edited in Excel and resaved as a CSV. The age columns for Male, Female and Total were summed by years 0-49 and 50+. There was a new variable created called Age50percent which accounts for the total percentage population of each electoral division above the age of 50. This CSV was entitled "Data_Ex2B_CSO_Variables.csv" Figure 6.

AutoSave 🧿	•	9 • (°	~ \$	Data_E>	:2B_CSO_Var	riables 👻	م ا) Search							celinemo	ran@gmail	.cor
File Hon	ne Inser	t Draw	/ Page	Layout	Formulas	Data	Review	View	Help	Power Piv	ot						
Paste V	Calibri B I L	⊔ - ⊞	• 11 • <i>F</i> • <u>&</u> •	A~ A~ ≡ A ~ ≡		≫~~ <u>+=</u> <u>+=</u>	란 Wrap Tex 토 Merge &	t Center ~	General	6 9 50	~ _00 Co →0 For	nditional F	ormat as	Cell	Insert ∽ Delete ∽ Format∽	∑ ~ A ↓ ~ Z ↓ ~ Si ↓ ~ Fi	7 ort 8 lter
Clipboard 5		Font		5		Alignme	nt	12	N	umber	5	St	yles		Cells	E	ditir
M1	• : [x		fr T1	1AGE Dor(°o50+								,				
		· · · · ·		IAOL_FER	.2301												
A	В	С	D	E	F	G	н	1	J	К	L	M	N	0	P	Q	
1 GUID	GEOGID C	GEOGDES	T1_1AGE0	T1_1AGE5	T1_1AGET	T1_1AGEG	T1_1AGEG	T1_1AGET	Populatio	T1_1AGE0	T1_1AGE5	T1_1AGE_	T12_3_BV	T12_3_BVI	T12_3_BVE	<u>ι</u> π	
2 2AE19629:	ED3409_010	Carlow Ur	1666	699	2365	1472	723	2195	4560	3138	1422	0.311842	55	73	128		-
3 2AE19629:	ED3409_010	Graigue U	488	223	/11	446	248	694	1405	934	4/1	0.335231	15	18	33		-
4 2AE19629:	ED3409_0:0	Clonmore	168	90	258	176	92	268	526	344	182	0.346008	3	2	5		
5 2AE19629:	ED3409_01F	Hacketsto	409	183	592	354	171	525	1117	763	354	0.31692	11	11	22		-
6 2AE19629:	ED3409_01F	Haroldsto	90	49	139	110	4/	157	296	200	96	0.324324	3	2	5		-
7 ZAE19629.	ED3409_0.K	kineagn	96	04	160	124	59	183	343	220	123	0.358601	3	5	8		
8 2AE196291	ED3409_01F	kanili	248	101	349	263	11/	380	/29	511	218	0.29904	3	9	12		
9 2AE19629.	ED3409_0.F	Rathvilly	303	122	425	329	121	450	875	632	243	0.2///14	4	13	1/		
10 2AE19629.	ED3409_0.1	IKNOCK	120	59	1/9	102	51	153	332	222	110	0.331325	3	3	0		-
11 2AE196291	ED3409_0:V	Williamste	99	4/	146	92	45	137	283	191	92	0.325088	2	1	3		
12 2AE19629.	ED3409_0.4	Agna	151	55	206	140	49	189	395	291	104	0.263291	2	4	6		-
13 2AE19629:	ED3409_01E	Ballinacar	312	1/9	491	344	190	534	1025	656	369	0.36	5	6	11		
14 2AE19629:	ED3409_01E	Ballintem	180	99	279	189	94	283	562	369	193	0.343416	1	8	9		
15 2AE19629:	ED3409_01E	Ballon	260	105	365	259	93	352	717	519	198	0.276151	11	6	17		-
16 2AE19629:	ED3409_01E	Ballyellin	124	83	207	146	/2	218	425	2/0	155	0.364706	0	2	2		-
17 2AE19629:	ED3409_0: E	Ballymoor	125	54	179	111	54	165	344	236	108	0.313953	1	3	4		-
18 2AE19629:	ED3409_01E	Borris	289	211	500	315	236	551	1051	604	447	0.425309	10	23	33		
19 2AE19629:	ED3409_01E	Burton Ha	196	69	265	197	63	260	525	393	132	0.251429	3	0	3		-
20 2AE19629:	ED3409_010	Carlow Ru	5444	1689	7133	5495	1918	7413	14546	10939	3607	0.247972	101	132	233		-
21 2AE19629:	ED3409_010	Clogrenan	370	156	526	377	135	512	1038	747	291	0.280347	4	6	10		
22 2AE19629:	ED3409_010	Clonegall	320	155	475	348	178	526	1001	668	333	0.332667	1	6	7		_
22 24 510 5201	ED3400_01/		100	00	270	100		250	507	200	100	0 00000	-	2			

Figure 6: CSO edited data in excel

4.4 Irish Road Network

This downloaded shapefile directly website was as а from the http://download.geofabrik.de/europe/ireland-and-northern-ireland.html entitled and "gis osm roads free 1". Figure 7-9 illustrates the road network derived from the code described in section 5.5. This dataset crashed the computer several times due to computational issues. Ensure there is enough memory to run the code before loading in the road network data. See R Code entitled "MemoryCode.r" to increase memory limit.

Figure 7: Various Road network levels in Dublin County and city

Figure 8: Dublin residential road network against electoral divisions.

Figure 9: Electoral Divisions against residential road network in County Offaly

5 Experiment Implementation

5.1 SIR Calculation

The Standardised Incidence Ratio (SIR) was calculated in R Studio using the CSV file "Data_Ex2B_CSO_Variables.csv" and was saved to the data frame "Data_SIR" with two files saved to CSV 1) "SIR_ABOVE1_Exp2B.csv" and 2) "Data_SIR_healthNoFair.csv". The variable Age50plus was also created within this code and the summary function was used to apply the statistics to table 1 in the report Figure 10.

Console Terminal × Jobs ×
-/ #
> #inspect_dataframe
GUID GEOGID GEOGDESC T1_1AGE0.49M T1_1AGE50M T1_1AGEC0.49F T1_1AGEGE_0.49F
Length:3409 Length:3409 Length:3409 Min. : 14 Min. : 12.0 Min. : 30.0 Min. : 12.0 Min. : 10.0 Class :character Class :character Class :character 1st0u:: 113 lst0u:: 65.0 lst0u:: 178.0 lst0u:: 10.0 lst0u:: 61.0
Mode :character Mode :character Mode :character Median : 206 Median : 109.0 Median : 320.0 Median : 201.0 Median : 106.0
mean : +aco mean : ∠u+.o mean : osu./ mean : +aco.s mean : ∠1 3rd Qu.: 465 3rd Qu.: 223.0 3rd Qu.: 766.0 3rd Qu.: 471.0 3rd Qu.: 231.0
Max. :16279 Max. :2916.0 Max. :19195.0 Max. :16509.0 Max. :3190.0
TL_1AGETF PopulationTotal TL_1AGE0.49TT TL_1AGE50.TT TL_1AGE_PerCe50. TL2_3_BV8_M TL2_3_BV8_F TL2_3_BV8_TT Age50plus
איזה. : אורט איזה. : 65 איזה. : 54.0 איזה. : 22.0 איזה. : 22.0 איזה. : 20.000 איזה. : 20.00 איזה. : 20.00 איזה ובל 20.1 ובל 20.1 באר 1.5 איזה
Median : 311.0 Median : 630 Median : 409.0 Median :214.0 Median :0.34876 Median : 4.00 Median : 4.00 Median : 8.00 [2-3]):724 Mean • 706 2 Mean • 1397 • 977 5 Mean • 424 3 Mean • 0.3478 Mean • 10.71 Mean • 11 77 Mean • 27 42 [3-4]1855
3rd Qu.: 730.0 3rd Qu.: 1443 3rd Qu.: 937.0 3rd Qu.: 458.0 3rd Qu.: 0.39286 3rd Qu.: 10.00 3rd Qu.: 12.00 3rd Qu.: 22.00 [4-5]: 673
Max. :19699.0 Max. :38894 Max. :32788.0 Max. :6106.0 Max. :0.61147 Max. :190.00 Max. :216.00 Max. :395.00 [5-6]: 67 [6-7]: 3
> > > > > > > > > > > > > > > > > > >
<pre>> d <- aggregate(x = Exp28\$T12_3_BV8_TT, by = list(GUID = Exp28\$GUID),</pre>
+ FUN = sum) > names(d) <- c("GUID", "\")
> Tibrary(SpatialEpi)
> popuration <= Expositopriationotat > selfbadhealth <= ExpOsito_23E3112_3_EVE_TT
> n.strata <- 7 > Ex285E <- expected(population, selfbadhealth, n.strata)
> Data_SIX <= mrsg (ctapiz), (gy, z = 00tr); (gy, z = 00tr); > Data_SIX SIR_TIBH <= Data_SIX S/VData_SIX SE
> summary(Data_SIR) GUID GEOGID GEOGDESC T1_1AGE0.49M T1_1AGE50M T1_1AGEGE.49F T1_1AGEGE_50.F
Length:3409 Length:3409 Length:3409 Min. : 14 Min. : 12.0 Min. : 30.0 Min. : 12.0 Min. : 10.0
Crass it haracter Crass it haracter Crass it haracter ist contracter ist contracter ist contracter Node it haracter Node it h
Mean : 486 Mean : 204.6 Mean : 690.7 Mean : 486.5 Mean : 219.7 3nd Ou.: 465 3nd Ou.: 223.0 3nd Ou.: 706.0 3nd Ou.: 471.0 3nd Ou.: 231.0
Max. :16279 Max. :2916.0 Max. :19195.0 Max. :16509.0 Max. :3190.0
T1_1AGETF PopulationTotal T1_1AGE0.49TT T1_1AGE50.TT T1_1AGE_PerCe50. T12_3_8V8_M T12_3_8V8_F <u>T12_3_8V8_F</u> Age50plus
Min. : 31.0 Min. : 66 Min. : 34.0 Min. : 22.0 Min. :0.08443 Min. :0.00 Min. :0.00 Min. :0.00 Min. :0.00 [0-1]; 2 1st0u::168.0 1st0u:349 1st0u: 221.0 1st0u:126.0 1st0u:0330 1st0u:2.00 1st0u:2.00 1st0u:4.00 [1-2]; 85
Median : 311.0 Median : 630 Median : 409.0 Median : 214.0 Median : 0.34876 Median : 4.00 Median : 4.00 Median : 8.00 [2-3]: 724 Norme : 276 J More : 1307 More : 1373 Median : 214.0 Median : 0.37876 More : 10.71 More : 11.72 More : 1373 Cont
Metani : 700.2 metani : 1377 Metani : 572.3 metani : 424.3 Metani : 0.34785 Metani : 10.10 Metani : 11.72 Metani : 22.42 [3-4]18553 3rd Qui: 7.20.2 metani : 3rd Qui: 23.3 metani : 424.3 Metani : 0.34786 3rd Qui: 12.0.0 3rd Qui: 12.00 3rd Qui: 2
Max. :19699.0 Max. :38894 Max. :32788.0 Max. :6106.0 Max. :0.61147 Max. :190.00 Max. :216.00 Max. :395.00 [5-6]: 67 [6-7]: 3
E Y SERTER
http:// 21.13 http:// 1000 http://00108
Median : 90.33 Median : 8.00 Median :0.08682 Mean : 156.95 Mean : 22.42 Mean : 0.26874
3rd Qu.: 182.86 3rd Qu.: 22.00 3rd Qu.: 0.24123
Max. :1220.29 Max. :395.00 Max. :8./3161

Figure 10: SIR Code results and creation of Age50plus variable

5.2 Principal Component Analysis

The columns were selected from the census excel and saved into a CSV entitled "MaterialDeprivation_ResearchProject.csv" to upload to R Studio to apply standardisation and to clean the data to remove punctuation. Standardization was applied using the base package in R. Once the data was standardised a CSV was created entitled "MatDep standardize2.csv" to upload to SPSS Figure 11.

T8_1_OTHT T9_2_PA T9_2_PB	T9_2_PC T9_2_PI	
1 1.29318369 0.3429503 0.1716460	0.4438990 1.210134	\$ 1.0
2 0.30590487 -0.2817226 -0.3001936 -	0.3459051 0.039842	0.1
3 -0.08900666 -0.3474776 -0.4019629 -	0.4079146 -0.344030	-0.2
4 -0.15482524 -0.1455157 -0.3325747 -	0.3295869 -0.250655	3 -0.0
5 -0.28646242 -0.4343682 -0.3834594 -	0.4601330 -0.3834550	0 -0.4
6 -0.22064383 -0.4108842 -0.4019629 -	0.42/4965 -0.433254	-0.3
1 1 8730500 0 3135510 0 00807016	115_1_GE4C 115_4	<u> </u>
1 1.8/30390 0.3135319 0.0980/916	0.06/31309 1.40642	22 4
	0.36029360 -0.045184	132 0
	0.31744034 -0.33133	222 0
	0.49207032 -0.19720	25 0
5 -0.4045854 -0.4555550 -0.45716213 -	0.33633142 -0.47733	152 -0
6 -0.4589017 -0.4513451 -0.25989585 -	0.31744034 -0.441460	975 -U
> Matuep_standard1ze2 <- Matuep_stand	ardize	
> #add first three columns from Srand	isePCA to MatDep_sta	andard
> Mattep_standard12e230010 <- Standar	ISEFCAST. GOID	
> MatDep_standardize25GE0GDE5C <= Stand	artserCASGEUGID	
> Mattep_standardize23dcodbcst <- sta	nuar iser CA3dE0dDE5C	
TC 2 ON D TC 2 OOD		77
16_5_0MLF 16_5_00F		
Min. :-0.52106 Min. :-0.75444	1-t 0: : 0 3035	M10.
Ist Qu.:=0.30661 Ist Qu.:=0.31484	IST QU.:-0.3625	ISC Q
Median :-0.27585 Median :-0.32315	Meet an :-0.3420	Meura
Mean : 0.00000 Mean : 0.00000	neari : 0.0000	mean and o
Sra Qu.: -0.02085 Sra Qu.: 0.07565	Srd Qu.:-0.1398	sra y
TO 1 ULCIDIT TO 1 CT	T0 1 LAUET	max. To
		w: 1
Min. :-0.33611 Min. :-0.3412	1-1-0.04073	1-+ 0
Madian +-0.24917 Madian +-0.2191	Modian 1-0 22626	Mada
Mean + 0.00000 Nean + 0.0000	Mean . 0.00000	Mean
2rd Ou +=0.02797 2rd Ou +=0.0274	2nd Ou + 0.02025	2nd C
Max 12 94259 Max 14 2499	Max +14 72956	Max
TO 2 DC TO 2 DD	TO 2 PE	max.
Min :=0 52541 Min :=0 51210	Min :-0 60684	Min
1 st 00 1=0 41771 1 st 00 1=0 42080	1ct 0u :=0.44580	1+
Modian 1-0 21227 Modian 1-0 22159	Madian :-0.29997	Mod
Mean + 0.00000 Mean + 0.00000	Mean + 0.00000	Mean
3rd Ou 1=0.03586 3rd Ou 1=0.04108	3rd 0u + 0.01837	3nd
May 14 92778 May 17 52991	May 19 02496	Max
T9 2 P7 T15 1 NC	T15 1 1C	T
Min :=0.53702 Min :=0.4748	Min :-0 564124	Min
1st 0u.:-0.44662 1st 0u.:-0.4371	1st 0u.:-0.456058	1st
Median :-0.35370 Median :-0.3931	Median :-0.362211	Medi
Mean : 0.00000 Mean : 0.0000	Mean : 0.000000	Mear
3rd 0u +=0.03227 3rd 0u +=0.1417	3rd Ou +=0.001041	3rd
Max. :13.91742 Max. : 9.7237	Max. :14.306391	Max-
T15 3 R T15 3 0TH	T15 3 N	G
Min. :-0.53423 Min. :-0.9408	Min. :-0.79764	Lengt
1st 0u :-0 44314 1st 0u :-0 5511	1st 0u +-0 53718	Class
Median :-0.34587 Median :-0.2832	Median :-0.34857	Mode
Mean : 0.00000 Mean : 0.0000	Mean : 0.00000	
3rd 0u.:-0.01857 3rd 0u.: 0.1552	3rd Ou.: 0.09152	
Max, :15.54684 Max, :11.5536	Max. :11.31825	
>		
S SATDANCEED DATA TO COCC TO DIN DCA	/r	

Figure 11: SIR Code results and creation of Age50plus variable

Within SPSS PCA was applied to the data relying on the Eigenvalues to determine the components and then rerun a second time specifying two components. The method relying on the Eigenvalues was used for the report. See SPSS files entitled "MatDep_Experiment2blatest.sav.spv" and MatDep_Experiment2B.sav[DataSet1]. See screenshot in Figure 12 and 13. The output of PCA was saved into a CSV and entitled "SPSS_MatDepOutputforR" Figure 14.

🔚 MatDep_Experiment2Blatest.sav.spv	[Document4] - IBM SPSS S	Statistics View	wer				
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> rans	form <u>I</u> nsert F <u>o</u> rma	it <u>A</u> nalyz	e <u>G</u> raph	s <u>U</u> tilitie:	s E <u>x</u> tensio	ns <u>W</u> in	dow <u>H</u> elp
i 📁 🖩 🖨 🗟 🤌					2		<u> </u>
Cutput	T9_2_PC	.886	.428	014	.886	.428	014
Factor Analysis	T9_2_PD	.745	.638	.047	.745	.638	.047
Title	T9_2_PE	.652	.649	.221	.652	.649	.221
Notes	T9_2_PF	.584	.735	.179	.584	.735	.179
Active Dataset	T9_2_PG	.459	.837	.099	.459	.837	.099
Correlation Matrix	Т9_2_РН	.832	.460	.142	.832	.460	.142
\mu Inverse of Covaria	T9_2_PI	.024	197	.846	.024	197	.846
KMO and Bartlett's	T9_2_PJ	.149	.303	.682	.149	.303	.682
Total Variance Exr	T9_2_PZ	.503	.832	.008	.503	.832	.008
Scree Plot	T15_1_NC	.232	.855	208	.232	.855	208
Component Matrix	T15_1_1C	.716	.678	.039	.716	.678	.039
Rotated Compone	T15_1_2C	.906	.368	.152	.906	.368	.152
Component Plot o	T15 1 3C	.928	.248	.160	.928	.248	.160
E Log	T15_1_GE4C	.885	.160	.231	.885	.160	.231
E Factor Analysis	T15_2_Y	.837	.540	.019	.837	.540	.019
Notes	T15_2_N	.495	.848	.105	.495	.848	.105
Descriptive Statist	T15_3_B	.818	.568	.002	.818	.568	.002
Correlation Matrix	T15_3_OTH	.515	.663	.284	.515	.663	.284
MO and Bartlett's	T15_3_N	.363	.845	.172	.363	.845	.172
Communalities	Extraction Method: Pr Rotation Method: Va	incipal Com rimax with K	iponent Ana aiser Norma	lysis. alization. ^a			
	a. Rotation conve	rged in 4 ite	rations.				
Component Trans	Component T	ransform	ation Mat	rix			
🗓 Log	Component 1	:	2	3			
Log	1	737	.671	.084			
	2	650	740	120			

Figure 12: Output of PCA in SPSS

View Data Transform A	Analyze Graphs Utilities E	Extensions Window Help			
🔒 🛄 🖛 🛥		M 📰 👬 💊	• <mark>•</mark> Q		
					Visible: 43 of
🖋 T15_1_2C	🖋 T15_1_3C	T15_1_GE4C	T15_2_Y	🛷 T15_2_N	🖋 T15_3_B
.31355193824808600	.09807915924389850	.08731509022432960	1.408427928303410000	2.79497082635111000	1.39408004940993E+0
29883935249409700	45716218652045900	56029359636743400	045184324810012300	.44768306434061000	4.58680862509982E-0
27735193878384500	19161197767663600	31744033889552300	391933193649055000	36637630844175600	-4.23068333260897E-0
10545262910182900	.02565637501376490	.49207051934418200	197207227897080000	.10807547324121800	-2.36258686444271E-0
45999495532098800	45716218652045900	39839142471949300	477339318978868000	51620318686795800	-4.61665367727143E-0
43134507037398500	23989383383005800	31744033889552300	441468746340347000	52619164542970500	-4.27699977396847E-0
20572722641633900	.07393823116718730	47934251054346400	275780863200509000	34140516203738900	-2.56329144366718E-0
25228328945521800	16747104959992500	39839142471949300	263824005654335000	08669946871284500	-2.06924940249924E-0
40269518542698200	48130311459717000	07458708142361140	455133726393117000	51620318686795800	-4.44682672561995E-0
44208877722911100	48130311459717000	47934251054346400	461966216419502000	56115125039581900	-4.49314316697944E-0
38837024295348100	16747104959992500	56029359636743400	415846908741403000	56614547967669300	-4.15348926367648E-0
03024668111594680	.04979730309047610	.08731509022432960	113509225073863000	34639939131826200	-1.42081922346632E-0
27377070316547000	31231661806019200	.33016834769624100	361186988530322000	39134745484612300	-3.47418145707057E-0
24153958260009200	16747104959992500	15553816724758200	311651435839030000	37137053772262900	-2.91838416075664E-0
36330159362485400	36059847421361400	31744033889552300	420971276261192000	44128974765485700	-3.90646824309252E-0
39911394980860700	31231661806019200	07458708142361140	438052501327154000	54117433327232500	-4.36963265668746E-0
17349610585096000	21575290575334700	.16826617604830000	176709757817925000	14663022008332600	-1.71415668540979E-0
24153958260009200	48130311459717000	23648925307155200	369727601063303000	50122049902533800	-3.42786501571107E-0
5.11957013810779000	3.55023187421360000	3.73011395230300000	5.451553901416780000	6.68547543615150000	5.54866483935657E+0
05531533044457420	.33948844001101000	07458708142361140	219412820482832000	09169369799371840	-2.16188228521823E-0
01950297426082080	.02565637501376490	.08731509022432960	186958492857503000	14663022008332600	-1.83766719570177E-0
33823294429622600	07090733729307980	07458708142361140	379976336102881000	38635322556525000	-3.72120247765454E-0
00517803178731941	.12222008732061000	.16826617604830000	139131062672807000	14663022008332600	-1.71415668540979E-0
<u> </u>					

Figure 13: Output of R of standardized data

	Clipboa	rd	L7	Font	t	L7		Alignme
A	1	•	× ✓	f _x GU	ID			
	A	В	с	D	E	F	G	н
1	GUID	GEOGID	GEOGDES	LowMatDe	HighMatD	Agri		
2	2AE196293	ED3409_0): Carlow Ur	-0.83329	3.78761	-0.82871		
3	2AE196293	ED3409_0): Graigue U	-0.49259	0.76338	-0.83849		
4	2AE196293	ED3409_0	Clonmore	-0.28236	-0.32612	0.43929		
5	2AE196293	ED3409_0	0: Hacketsto	-0.28091	0.12753	0.9226		
6	2AE196293	ED3409_0): Haroldsto	-0.33416	-0.30817	-0.66746		
7	2AE196293	ED3409_0	01 Kineagh	-0.27832	-0.37646	-0.05618		
8	2AE196293	ED3409_0	D: Rahill	-0.23071	-0.22503	0.45319		
9	2AE196293	ED3409_0): Rathvilly	-0.46651	0.21785	0.11902		
10	2AE196293	ED3409_0	0: Tiknock	-0.31008	-0.33712	-0.21614		
11	2AE196293	ED3409_0): Williamst	-0.34821	-0.31163	-0.47637		
12	2AE196293	ED3409_0	01 Agha	-0.23664	-0.41745	-0.34643		
13	2AE196293	ED3409_0): Ballinacar	0.1231	-0.35779	-0.10367		
14	2AE196293	ED3409_0	0: Ballintem	-0.18952	-0.43287	0.71695		
15	2AE196293	ED3409_0	D: Ballon	-0.2153	-0.22885	-0.0356		
16	2AE196293	ED3409_0): Ballyellin	-0.27998	-0.34474	-0.2216		
17	2AE196293	ED3409_0): Ballymoor	-0.21562	-0.44106	-0.37351		
18	2AE196293	ED3409_0	0: Borris	-0.21292	0.04789	0.13382		
19	2AE196293	ED3409_(): Burton Ha	-0.14095	-0.39245	-0.85461		
20	2AE196293	ED3409_0	Carlow Ru	2.04839	6.63126	2.6915		
21	2AE196293	ED3409_(Clogrenan	-0.03413	-0.15711	0.00101		
22	2AE196293	ED3409_0	Clonegall	-0.09624	-0.26474	1.19071		
23	2AE196293	ED3409_0	0: Corries	-0.21422	-0.37008	0.57054		
24	2AE196293	ED3409_0	Cranemor	-0.01189	-0.30284	0.98918		
25	2AE196293	ED3409_(01 Fennagh	-0.24341	-0.157	0.56392		
26	2AE196293	ED3409_0):Garryhill	-0.23652	-0.3297	0.43513		
27	2AE196293	ED3409_(): Grangefor	-0.24044	-0.31352	-0.05924		
28	2AE196293	ED3409_0): Johnstowi	-0.0741	-0.41101	-0.40257		
29	2AE196293	ED3409_(): Kellistowr	-0.0313	-0.1713	-0.05727		
30	2AE196293	ED3409_0): Kilbride	-0.20161	-0.40441	-0.18543		
31	2AE196293	ED3409_0): Killedmor	-0.22533	-0.3821	-0.36155		
32	2AE196293	ED3409_0	0:Killerrig	-0.23667	-0.42216	-0.30961		
33	2AE196293	ED3409_():Leighlinbr	-0.02682	0.09569	2.08877		
34	2AE196293	ED3409_0): Muinebea	-0.11139	-0.35782	-0.07786		
35	2AE196293	ED3409_0	0: Muinebea	-0.49573	1.83281	-0.09689		
36	2AE196293	ED3409_0	0: Myshall	-0.31482	-0.19787	-0.03052		
37	2AE196293	ED3409_0	0: Nurney	-0.13051	-0.33152	1.41545		
38	2AE196293	ED3409_0): Oldleighli	-0.34158	-0.25842	1.09683		
	<	SPSS	MatDepOut	putforR	+			

Figure 14: Material Deprivation Scores from SPSS in CSV to upload to R

5.3 Queen's Matrix

R code was created to apply the Queen's Matrix however some islands and electoral divisions were omitted totalling 100. These had to be manually connected in GeoDa by importing the shapefiles ("c99096be-cff8-4729-b967-ebd104afdb012020328-1-nubkfi.o4ctb") for the electoral divisions and the data created in R ("TotalCARData.csv") to merge in Geoda and output as a shapefile Figure 15.

Figure 15: Merged data in GeoDa including creation of Queen's Matrix

The Queen's matrix was created with this information and the EDOSI codes were manually tagged to all 100 missing electoral divisions. The first row represents the electoral division to be manually tagged to a neighbour, the second number is the number of neighbours and the next line is the codes for each neighbour Figure 16 & 16a. This text file (EDIEDOSI_Queen3409.gal) was then uploaded to GeoDa and symmetry applied to connect the neighbours together. This was saved as a Gal file named "TestSummetric27" Figure 14. The data was then all saved together as a shapefile under the same name. NB the current files in the ZIP folder has the GeoDa data saved onto the file. However, Geoda is very simple to use, it is recommended to download the software.

Figure 16: Raw CSO codes for Queen's matrix

Figure 16a: Queen's matrix neighbour connections on map of Ireland

Within Geoda each of the variables intended for use in the Bayesian CAR models were tested for Auto Spatial Correlation using the Moran's I univariate statistic. The results are illustrated in figure 17. The final dataset in Geoda was saved to as a shapefile under the name "c99096be-cff8-4729-b967-ebd104afdb012020328-1-nubkfi.o4ctb" and imported into R.

Figure 17: Moran's I statistic for each variable.

At the end of the R script 5.3 Queens Matrix, the CART model was created. See image below of code and results Figure 18.

Figure 18: CART model indicating relationship between age, material deprivation, AED and CFR groups per electoral division.

5.4 Bayesian Car Models

The GeoDa dataset was imported into R and the name was converted to bvb.sp. In Figure 19 the import is illustrated as well as the import of the GAL file with the neighbour matrix and the libraries to run the Bayesian CAR models. The final line of code in Figure 19 is converting the longitude and latitude coordinates to Ireland.

Figure 19: Import of Geoda data, Queen's matrix and conversion to matrix, libraries for implementing Bayesian CAR models and conversion of longitude and latitude coordinates.

Within this code there were map related to SIR were created but weren't used in the report due to space Figure 20.

Figure 20: Code illustration of maps and some models that weren't used.

There was a total of 40 Bayesian models applied to the dataset. Figure 21 illustrates the breakdown of the variables for the model and the set up of code per type of mode. Each group of models is labelled, and seed set to replicate results. There is also a function for this MCMC Poisson model to calculate the posterior values and the risk probability.

(H) (All 💂 🖬 Source on Save I 🔍 🦯 * I 📷
114	library (66ally)
115	incrary(covarity) onparise(data = hyb.sn@data = columns = c(18:19 - 22:27))
116	33k-11 (111 - 11
117	#import queen's matrix manually linked in GeoDa
118	queen.nb <- read.gal("TestSymmetric27.gal", override.id = TRUE)
119	W.ed <- rb2mat(queen.rb, style = "B")
120	W.ed.rs <- nb2mat(queen.nb, style = "W")
121	And such a shall for any superior of the
122	###YY met Person and a 1 1991 Grupping likelihood modelwith an identify link function on Paisson likelihood model with a log link function
123	Est nameters first
125	M.burnin <- 10000
126	M <- 40000
127	bvb.sp@data\$logAGE0.49T <- log(bvb.sp@data\$AGE0.49T)
128	bvb.sp@data\$logAGE50.T <- log(bvb.sp@data\$AGE50.T)
129	
130	modelig <- Y ~ 1 + offset(log(E))
132	model2g <* f < 1 + offset(log(E)) + logAcc0.+31 + logAcc0.T + HighdE30.T + HighdE30.T
133	model $d_q < Y \sim 1$ + offset(log(E)) + logAGEO(+) + logAGESO(+) + ng(mac) - model $d_q < Y \sim 1$ + offset(log(E)) + logAGEO(+) + logAGESO(+) + AGECSO.
134	$model5q <- Y \sim 1 + offset(log(E)) + logAGE0.49T + logAGE50.T + HighMatDep + AGEpc50.$
135	<pre>model6g <- Y ~ 1 + offset(log(E)) + HighMatDep</pre>
136	model7g <- Y \sim 1 + offset(log(E)) + AGEpc50.
137	model8g <- Y ~ 1 + offset(log(E)) + HighMatDep + AGEpc50.
138	
140	nemula bim roussur cat cand(1324)
141	memehym modella <- S.CARbym(formula = modella, data=byb.sp@data, family = "poisson", W=W.ed. burnin = M.burnin, n.sample = M. verbose = FALSE)
142	mcmcbym_model2q <- S.CARbym(formula = model2q, data=bvb.sp@data, family = "poisson", W=W.ed, burnin = M.burnin, n.sample = M, verbose = FALSE)
143	mcmcbym_model3g <- S.CARbym(formula = model3g, data=bvb.sp@data, family = "poisson", W=W.ed, burnin = M.burnin, n.sample = M, verbose = FALSE)
144	mcmcbym_model4g <- S.CARbym(formula = model4g, data=bvb.sp@data, family = "poisson", W=W.ed, burnin = M.burnin, n.sample = M, verbose = FALSE)
145	mcmcbym_model5g <- S.CARbym(formula = model5g, data=bvb.sp@data, family = "poisson", W=W.ed, burnin = M.burnin, n.sample = M, verbose = FALSE)
146	momocbym_modellog <- S.CARbym(Tormula = modellog, data=bvb.speddata, Tamily = "poisson", w=w.ed, burnin = M.burnin, n.sample = M, verbose = FALSE/
148	memebym_modeling <= s.cAwdyme(formula = modeling, data=dvd,specdata, family = poisson, w=w.ed, durnin = w.burnin, n.sampre = w, verbose = FALSE) memebym modeling <= S.CABburn(formula = modeling, data=bub snädata family = "poisson", w=w.ed, burnin = M burnin = n sample = M, verbose = FALSE)
149	
150	summary(mcmcbym_model1g)
151	
152	bvb.spSmcmcbym_model4g_tit <- mcmcbym_model4g\$titted.values
153	bvo.spedata)
155	v cfit <- membrus modelansamplesSfitted
156	SIR $\leftarrow t(t(y,fit) / byb, sp@dataSE)$
157	
158	# Add summary statistics of the posterior SIR to map
159	byb.sp@data§mcmcbym_model4g_SIR.median <- apply(SIR, 2, median) #denotes the releative risk of smooth sin
160	min(ovo.specarta)mcmcbym_mode(4g_Str.median)
162	max(0v0.speuarasma.mcbym_mouer=g_six.meurar)
163	<pre>mcmcbym_model4g_SIR.025 <- apply(SIR, 2, quantile, 0.025)</pre>
164	mcmcbym_model4g_SIR.975 <- apply(SIR, 2, quantile, 0.975)
165	bvb.sp@dataSmcmcbym_model4g_PP <- apply(SIR, 2, function(x) length(which(x > 1))) / M #thiis is the posterior probability of the relative risk
166	min(bvb.sp@data3mcmcbym_mode14g_PP)
167	max(ovb.specatasmcmcoym_mode1+g_PP)
169	byb.so@dataSmcmcbym model4g PPCat <- ifelse(byb.so@dataSmcmcbym model4g PP > 0.5, "high", "low")
170	byb.sp@data\$mcmcbym_model4g_SIR.medianCat <- ifelse(byb.sp@data\$mcmcbym_model4g_SIR.median > 1, "high", "low")
171	
172	lihrsmu(lasflat) #rrasta man

Figure 21: Code illustrating set up for the models and BYM MCMC Poisson model.

> print(mcmcbym Me (Intercept) -1. AGEpc503. tau2 1. sigma2 0. > mcmcbym_model	n_model7g\$summar edian 2.5% .1192 -1.4416 -(.7833 -4.6445 -; .9828 1.6887 ; .8740 0.7874 (17g\$modelfit	ry.results) 97.5% n.sample 0.8210 30000 2.8576 30000 2.3383 30000 0.9641 30000	% accept n.e 32.4 32.4 100.0 100.0	ffective Gew 41.1 40.6 90.9 115.5	eke.diag 2.3 -2.2 3.7 -3.5	_
20361.803	2998.762	19585.880	1616.050	-11229.885	-7182.140	
> mcmcbym_model	17g					
######################################	### ted ### model - BYM CAF ation - Y ~ 1 + ing observations	og link function { offset(log(E)) s - 0	0) + AGEpc50.			

#### Results						
Posterior quant	tities and DTC					
quant						
Me	edian 2.5%	97.5% n.effecti	ve Geweke.di	ag		
(Intercept) -1.	.1192 -1.4416 -0	0.8210 41	.1 2	.3		
AGEpc503.	.7833 -4.6445 -	2.85/6 40	-2	.2		
sigma2 0.	.8740 0.7874 (0.9641 115	.5 -3	.5		
Jigman 01						
DIC = 20361.8 >	p.d = 29	998.762 LM	IPL = -11229	. 88		

Figure 22 illustrates the results from the MCMC BYM Poisson model.

B RStudio	
File Edit Code View Plots Session Build Debug Profile Tools Help	
🛀 • 🐑 💣 • 🗮 🗐 🥌 🍌 Go to file/function 🛛 🗮 • Addins •	
Differential and CAPT and Captor and Capto	Coverele Terminal × John ×
Loo map in successful state state	loaAGE50.T 0.7893 0.7002 0.9038 30000 47.4 5.6 -2.5
189 100 ENCLE DAM CAUSETAN - describ work - describbing and it should work with family envering by	HighMatDep 0.1021 0.0617 0.1421 30000 47.4 21.7 1.8
191 #mcmcbvm.modelsia	tau2 0.6257 0.5046 0.7556 30000 100.0 102.2 1.3
192 #mcmcbym_model2g <- S.CARbym(formula = model2g, data=bvb.sp@data, family = "gaussian", W=W.ed	> ignaz 0.13564 0.1157 0.3011 30000 100.0 247.2 -2.1
193 #mcmcbym_model3g <- S.CARbym(formula = model3g, data=bvb.sp@data, family = "gaussian", W=W.ed	DIC p.d WAIC p.w LMPL loglikelihood
197 #mcmcbymcmodelfg <- S.C. Kabym(formula = modelfg, data-byb.spedata, family = 'gaussian', w=w.ed imcmcbymcmodelfg <- S.C. Kabym(formula = modelfg, data-byb.spedata, family = 'gaussian', w=W.ed	20089.929 2690.101 19562.274 1582.175 -10983.244 -7354.863
196 #mcmcbym_model6g <- S.CARbym(formula = model6g, data=bvb.sp@data, family = "gaussian", W=W.ed	Median 2.5% 97.5% n.sample % accept n.effective Geweke.diag
197 #mcmcbym_model7g <- S.CARbym(formula = model7g, data=bvb.sp@data, family = "gaussian", W=W.ed 198 #mcmcbym_model7g <- S.CARbym(formula = model8g, data=bvb.sp@data, family = "gaussian", W=W.ed	(Intercept) -12.4709 -13.0920 -11.7635 30000 45.9 18.0 5.5
199 File inclusion of the state	logAGE0.49T 1.6814 1.4915 1.8567 30000 45.9 2.3 -7.2
<pre>200 print(mcmcbym_model1g\$summary.results)</pre>	AGE050. 6.1051 4.9357 7.1558 30000 45.9 11.8 -11.2
201 mcmcbym_modellg5modelfit	tau2 0.6397 0.5170 0.8096 30000 100.0 74.2 1.8
203 SIR4 <- t(t(y4.fit) / E)	sigma2 0.4584 0.4121 0.5017 30000 100.0 197.8 -1.5
204	DIC p.d WAIC p.w LMPL loglikelihood
205 print(mcmcbym_model2g\$summary.results) 206 mcmcbym_model2g\$modelfit	20088.855 2690.584 19561.413 1582.591 -10973.733 -7353.844
207 mcmcbym_model2g.fit <- mcmcbym_model2g\$samples\$fitted	> print(mcmcbym_model5g\$summary.results) Median 2.5% 97.5% n.sample % accent n effective Geweke dian
208 SIR4 <- t(t(y4.fit) / E)	(Intercept) -10.9628 -11.5504 -10.4999 30000 43.7 15.2 -0.2
209 210 print(memehym model3a5summary.results)	logAGE0.49T 1.1955 1.1087 1.3150 30000 43.7 3.7 4.0
211 mcmcbym_model3g\$modelfit	logAGES0.T -0.0493 -0.1620 0.0501 30000 43.7 4.9 -6.6 HighWathen 0.0942 0.0435 0.1346 30000 43.7 13.2 -2.5
212 mcmcbym_model3g.fit <- mcmcbym_model3g\$samples\$fitted	AGEpc50. 3.9658 3.4668 4.7399 30000 43.7 19.1 1.3
213 SIR4 (* C(C(4.11C) / E) 214	tau2 0.5985 0.4831 0.7406 30000 100.0 78.8 0.5
<pre>215 print(mcmcbym_model4g\$summary.results)</pre>	s1gm1a2 0.4532 0.4210 0.5082 30000 100.0 245.4 -1.1 > mcmchym model]5a5model]fit
216 mcmcbym_model4g\$modelfit	DIC p.d WAIC p.w LMPL loglikelihood
218 SIR4 <- t(t(y4.fit) / E)	20094.840 2695.203 19561.632 1581.750 -11003.432 -7352.217
219	<pre>> print(mtmtcbym_mode rogssummary.results) Median 2.5% 97.5% n.sample % accept n.effective Geweke.diag</pre>
220 print(mcmcbym_model5g)summary.results) 221 mcmchwy modelScanadalfri	(Intercept) -2.4304 -2.4436 -2.4186 30000 34 824.8 -0.1
222 mcmcbym_model5g.fit <- mcmcbym_model5g\$samples\$fitted	HighWatDep 0.5762 0.5133 0.6489 30000 34 16.5 0.4 +==-2 1 3670 1 1255 1 6306 30000 100 78 2 1 0
223 SIR4 <- t(t(y4.fit) / E)	sigma2 0.7884 0.7182 0.8640 30000 100 194.5 -0.9
225 print(memebym model6a\$summary.results)	> mcmcbym_model6g\$modelfit
226 mcmcbym_model6g\$modelfit	DIC p.d WAIC p.w LMPL loginkeinhood 20343,345 2949,706 19626,606 1624,353 -11236,468 -7221,966
227 mcmcbym_model6g.fit <- mcmcbym_model6g\$samples\$fitted	> print(mcmcbym_model7g\$summary.results)
229	Median 2.5% 97.5% n.sample % accept n.effective Geweke.diag
230 print(mcmcbym_model7g\$summary.results)	AGEpc503.7833 -4.6445 -2.8576 30000 32.4 40.6 -2.2
231 mcmcbym_model/g\$modeltit 232 mcmcbym_model7a_fit <- mcmchym_model7a\$samples\$fitted	tau2 1.9828 1.6887 2.3383 30000 100.0 90.9 3.7
233 SIR4 <- t(t(y4.fit) / E)	sigma2 0.8740 0.7874 0.9641 30000 100.0 115.5 -3.5
234	DIC p.d WAIC p.w LMPL loglikelihood
235 print(mcmcbym_modelsg≱summary.results) 236 mcmcbym model8a\$modelfit	20361.803 2998.762 19585.880 1616.050 -11229.885 -7182.140
237 mcmcbym_model8g.fit <- mcmcbym_model7g\$samples\$fitted	> print(mcmcbym_mode18g}summary.results) Median 2.5% 97.5% n.sample % accept n.effective Geweke.dian
238 SIR4 <- t(t(y4.fit) / E)	(Intercept) -1.8288 -2.2028 -1.5979 30000 44.8 17.2 -0.3
240 #####APPLY INLA	HighMatDep 0.5600 0.5075 0.6073 30000 44.8 20.0 0.0
241 library(INLA)	tau2 1.3384 1.0854 1.6075 30000 100.0 69.1 1.1
242 Inbrary(INLABMA) 243 Ebttns://www.r-bloggers.com/2019/11/spatial-data-apalysis-with-ipla/	sigma2 0.7923 0.7146 0.8698 30000 100.0 158.5 -1.2
244	> mcmcbym_model8g§model†1t DTC p.w IMPI]aa]ika]ibood
245 bvb.sp\$0SIED_3441 <- 1:length(bvb.sp)	20340.144 2947.781 19623.057 1622.869 -11223.423 -7222.290
246 Set.Seta(1234) 247 ETNIA TTD Gauccian	
248	Eller Blote Decksoner Malo Visuar
	The total there were then the total

Figure 23: Code and summary results of MCMC BYM Poisson model.

Post MCMC BYM Poisson model, the INLA models were implemented. See figure 24 for code of IID model and BYM model with gaussian. There is also code to create a map of the posterior values.

Figure 24: Code to implement INLA IID and BYM Gaussian models

Concole Terminal / Jobs /
-/#
Name Model OSIED_3441 BYM model
Model hyperparameters:
mean sd 0.025quant 0.35quant 0.35quant 0.975quant 0.975quant mode Precision for the Gaussian observations Inf NaW 0.000 0.000 Inf NaW Precision for OSIB_3441 (shid component) 0.003 0.000 0.003 0.003 0.003 0.003 Precision for OSIB_3441 (spatial component) Inf NaW 0.000 0.000 Inf NaW
Expected number of effective parameters(stdev): 3386.00(2.53) Number of equivalent replicates : 1.01
Deviance Information Criterion (DIC): 15319.27 Deviance Information Criterion (DIC, saturated): 6519.94 Effective under of parameters
Watanabe-Akaike information criterion (WAIC): 14443.90 Effective number of parameters
Marginal log-Likelihood: -13984.91 CPO and PIT are computed
Posterior marginals for the linear predictor and the fitted values are computed
> summary(inlabym_model6g)
Call: c("inla(formula = update(model6g, . ~ . + f(0SIED_3441, model = \"bym\", ", " graph = W.ed)), family = \"gaussian\", data = as.data.frame(bvb.sp@data), ", " E = E, control.compute = list(dic = TRUE, waic = TRUE, coo = TRUE), ", " control.predictor = list(compute = TRUE))") Time used: Proe = 1.25 Running = 20 Past = 0.633 Total = 21.9
Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld (Intercept J.7.727 0.387 16.967 J.7.727 18.466 17.727 0 HighWatDep 30.612 0.387 29.852 30.612 31.371 30.612 0
Random effects: Name Model OSID_2441 BYM model
Model hyperparameters:
mean sd 0.025quart 0.5quart 0.3quart 0.
Expected number of effective parameters(stdev): 3339.51(4.50) Number of equivalent replicates : 1.00
Deviance Information Criterion (DIC): 13779.73 Deviance Information Criterion (DIC, saturated): 6404.20 Effective under of parameters
Watanabe-Akaike information criterion (WAIC): 13080.75 Effective number of parameters
Marginal log-Likelihood: -14917.35 CPO and PIT are computed
Posterior marginals for the linear predictor and the fitted values are computed
> summary(fillabym_model7g)
Call: _///////////////////////////////////

Figure 25: Output of models specifically INLA BYM models 7g and 6g

The next models created were the IID and BYM Poisson models which follows the same pattern of code as the previous models. See figure 26 and 27.

Figure 26: INLA BYM and IID Poisson Models

Figure 27: Sample of results from INLA BYM and IID Poisson models

Post model creation, the fitted values were applied to the map of Ireland for each of the 5 models. Figure 28 shows the code in action and Figure 29 the final map. This was not included in the final report due to space.

Figure 28: Code for 5 maps being created that illustrate the distribution of Posterior values of models

Figure 29: Final maps of electoral division with posterior values of each optimal model.

The relevant data related to cateogrical data that was used to create the maps of the posterior values were saved to the csv file "finalmodels.csv". This information was used to construct table 3 in the document illustrating the 56 common electoral divisions from the models.

5.5 MCLP

A clean shapefile of electoral divisions and the road network was imported into R. Both files were filtered to Offaly with the correct coordinates attached to both. The road network, a spatial lines file, was filtered to the residential road network for Offaly Figure 9 & 30.

Figure 30: Code for road network filter for Offaly with plot for road network and coordinates for North, South, East and West.

The coordinates for potential AED locations were sought using <u>https://gis.stackexchange.com/questions/407535/calculate-distance-from-centroid-to-border-of-spatial-polygon-in-r</u> Figure 31.

Figure 31: Code for coordinates to the border of every electoral division.

A function was created to determine the points from the coordinates to the boundary north, south, east and west. These points were then allocated per boundary in a list with point file for each 3409 boundaries. The points were then converted to longitude and latitude coordinates. The ID number (1768) was referenced to the original shapefile to find Birr, the area to test the AED framework. The list was converted to a matrix and the correct names of the variables added (long/lat) with an ID list Figure 31 & 32.

Figure 32: Code for coordinates to the border of every electoral division and filtering to Birr

In Figure 33 the road network and electoral divisions were overlaid to find the coordinates on the residential road network which is in highlighted in orange.

170	
171	library(mapview)
172	library(mapedit)
173	what_we_created <- mapview() %>%
174	editMap()
175	
176	mapynew(what_we_created)finished)
170	40 TOD
170	#BINK ONLY
120	$D_{\text{tractised}} d = 0$, $d_{\text{transfer}} d $
1.81	Jihran stellar a data mane (mach stellar stella
182	birratrisked df <- birratrisked df %>% rename(long = X1, lat = X2)
183	birratrisked_df <- birratrisked_df[c(2, 1)]
184	<pre>birratrisked_df <- st_as_sf(birratrisked_df, coords = c("long", "lat"), crs = "+proj=longlat +datum=WGS84 +no_defs")</pre>
185	birratrisked_df <- st_transform(birratrisked_df, crs = "+proj=longlat +datum=WGS84 +no_defs")
186	
187	
188	NEWSDirr <- st_as_stc(birratrisked_dt)
189	plot(birratrisked_dr)
191	test of star stellefalumery)
192	latitat)
193	
194	test2 <- st_as_sfc(0ffaly)
195	plot(test2)
196	
197	test3 <- leaflet(test2) %>%
198	addTiles() %>%
199	addrolylines(data = test) %>%
200	addrolygons(data = test2, color = '#OFE')
202	
203	
204	
205	test3 <- mapview(test) %>%
206	editMap()
207	
208	test4 <- mapview(test2) %>%
209	editMap()
210	many/igw(tast2ffinishad)
212	mapyiew(tests)finished)
213	as, data, frame(test5)
214	print(test5)
215	write.csv(test5, "test5.csv")
216	class(test5)
217	
218	testo <- maporew(inst(test, test2), layer.name = c("roads", "ed")) %>% editMap()
219	mapylew(tests);imismed) test? <= manufactionet(tests) <= manufactionet(tests) <> > = dit(tests) <= manufactionet(tests) <= man
220	test/ <- mapview(tests) +> mapview(tests) >>> eol(map()
222	AED user long <- c(-7.91372, -7.90494, -7.89343, -7.89890, -7.91596, -7.91675, -7.91372, -7.91273, -7.91110, -7.90809
223	-7.90582, -7.90432, -7.89951, -7.90260, -7.89951, -7.90260, -7.90274, -7.90719, -7.90585, -7.91162,
224	-7.91428, -7.91200, -7.91063, -7.90147, -7.90216, -7.90332, -7.89748, -7.90718, -7.91345, -7.91212,
225	-7.91431, -7.90941, -7.90173, -7.90336, -7.90658, -7.91277, -7.91105, -7.90774, -7.91053, -7.91315,
226	-7.91551, -7.90998, -7.91144, -7.90212, -7.89954, -7.89988, -7.90023, -7.89766, -7.897971,
227	-7.90366, -7.90568, -7.90676, -7.89769, -7.90018, -7.90125, -7.90396)
228	AED_user_lat <- c(33.10603, 53.10452, 53.10648, 53.10125, 53.10331, 53.10249, 53.10285, 53.10213, 53.10226, 53.10187,
229	53.10718, 53.10136, 53.09960, 53.10058, 53.00965, 53.10022, 53.10084, 53.09971, 53.09873, 53.09996, 52.00077, 52.00873, 52.00772, 52.00804, 52.00604, 52.00604, 52.00652, 52.00674,
230	33,03927, 53,039015, 53,039015, 53,03901, 53,039610, 53,039610, 53,039610, 53,03651, 53,03646, 53,03612, 52,04309 13,04310 52,04328 12,06314 53,04301 12,04374 13,04108 52,0404 13,04061 52,0404
232	53,08355, 53,08374, 53,08547, 53,09100, 53,09104, 53,08747, 53,05104, 53,0874, 53,08504
233	53.08748, 53.08748, 53.08637, 53.10466, 53.10304, 53.08299, 53.08454)
234	
235	AED_user <- cbind(AED_user_lat, AED_user_long)
236	
237	

Figure 33: Code to select coordinates for OHCA location in the residential area

The next step (Figure 34) is to create points in every direction to the border based on the number of 400 metre points to the border from Figure 31.

```
252
253
     b <- 2/0
d <- 400
254
255
     a <- 6378137
f <- 1/298.257223563
r <- 6378137
256
257
258
      Birr_PotentialAEDs$West <- destPoint(p, b, d, a, f)</pre>
259
260
      plot(birratrisked_df)
261
      numberOfIterations = 3 #Change That as needed
262 westOutput = list()
263 westOutput[[1]] = destPoint(p[1,],b[1],d[1],a,f)
264 · for(i in 2:numberOfIterations)
265
         westOutput[[i]] = destPoint(westOutput[[i-1]],b[1],d[1])
266
267
268 birrwest <- matrix(unlist(westOutput), ncol = 2, byrow = TRUE)</pre>
269
270
271
      #first point west, then north
p <- cbind(c(-7.912423), c(53.09579))</pre>
272 b <- 36
273 number0
      numberOfIterations = 3 #Change That as needed
274 n10utput = list()
275 n10utput[[1]] = destPoint(p[1,],b[1],d[1],a,f)
276 v for(i in 2:numberOfIterations) {
277
278
        n1Output[[i]] = destPoint(n1Output[[i-1]],b[1],d[1])
279
280
281
      birrn1 <- matrix(unlist(n1Output), ncol = 2, byrow = TRUE)</pre>
282
283
      #second point west, then north
p <- cbind(c(-7.918394), c(53.09579))</pre>
284
285
286
      numberOfIterations = 3 #Change That as needed
      n2Output = list()
287 n2Output[[1]] = destPoint(p[1,],b[1],d[1],a,f)
288* for(i in 2:numberOfIterations) {
289
290
291
        n2Output[[i]] = destPoint(n2Output[[i-1]],b[1],d[1])
292
293
      birrn2 <- matrix(unlist(n2Output), ncol = 2, byrow = TRUE)</pre>
294
295
296
     #third point west, then north
p <- cbind(c(-7.924365), c(53.09579))</pre>
      .
b. ≺-
297
298
      numberOfIterations = 3 #Change That as needed
     n3Output = list()
n3Output[[1]] = destPoint(p[1,],b[1],d[1],a,f)
299
300 · for(i in 2:numberOfIterations) {
301
        n3Output[[i]] = destPoint(n3Output[[i-1]],b[1],d[1])
302
303
304
      birrn3 <- matrix(unlist(n3Output), ncol = 2, byrow = TRUE)</pre>
305
306
      #first point west, then south
p <- cbind(c(-7.912423), c(53.09579))</pre>
      b <- 18
308
309
      numberOfIterations = 3 #Change That as needed
      s10utput = list()
s10utput[[1]] = destPoint(p[1,],b[1],d[1],a,f)
310
311
312 · for(i in 2:numberOfIterations)
313
314
         s1Output[[i]] = destPoint(s1Output[[i-1]],b[1],d[1])
315
316
      birrs1 <- matrix(unlist(s1Output), ncol = 2, byrow = TRUE)</pre>
318
319
     #second point west, then south
p <- cbind(c(-7.918394), c(53.09579))</pre>
320
321
      b <- 18
      numberOfIterations = 3 #Change That as needed
322
      s2Output = list()
323
```

Figure 34: Code to select coordinates for potential AED location to boundary.

The final coordinates were saved as a list with do.call code to identify the longitude and latitude coordinates.

Figure 35: Do.call function to combine all the created coordinate lists in various directions.

The maxcovr package is not on cran in R and will need to be downloaded using the following code from Figure 36. Within this figure is also the distance calculation for the matrix for MCLP,

Figure 36: Code to install maxcovr library which is not on cran for MCLP

The final part is the application of MCLP which is illustrated in Figure 37 for each of the distances of 100 metres to 400 metres.

```
662
   library(purrr)
n_add_vec <- c(5, 10, 15, 20, 25, 30)
663
664
665
   666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
    map_cov_results <- bind_rows(map_mc_model$model_coverage)</pre>
     system.time(
682
683
684
685
   map_cov_results15 <- bind_rows(map_mc_model15$model_coverage)
summary(map_mc_model15)</pre>
686
687
688
689
690
     system.time(
691
692
693
694
695
696
697
698
699
   map_cov_results2 <- bind_rows(map_mc_model2$model_coverage)</pre>
   700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
    map_cov_results3 <- bind_rows(map_mc_model3$model_coverage)</pre>
   720
721
    map_cov_results4 <- bind_rows(map_mc_model4$model_coverage)</pre>
722
723
   725
726
```

Figure 37: Code to apply MCLP to the datasets created for potential aed locations

County Transit of Late of									
<pre>> man cnu masults3 <- hind nows(man mc modal30modal cnuerama)</pre>									
> map_cov_resurtss < brind_rows(map_mc_moders)moder_coverage/									
> system.time(
+ map_mc_model4 <- map_df(.x = n_add_vec,									
+ proposed_facility = birr_aed_potential_df,									
+ user = AED_user_df,									
+ distance_cutott = 400,									
+)									
user system elapsed									
0.67 0.02 0.72									
> > man cov results4 <- bind rows(man mc model4\$model coverage)									
> map_cov_results3									
# A tibble: 6 x 8									
n_added_distance_within n_cov_pct_cov_n_not_cov_pct_not_cov_dist_avg_dist_sd									
1 5 300 32 0.571 24 0.429 305. 180.									
2 10 300 47 0.839 9 0.161 214. 119.									
3 15 300 54 0.964 2 0.035 <u>7</u> 174. 90.3									
5 25 300 56 1 0 0 157. 71.4									
6 30 300 56 1 0 0 151. 65.3									
Warning message:									
is not empty.									
We detected these problematic arguments:									
* `needs_dots`									
These dots only exist to allow future extensions and should be empty.									
Did you misspecify an argument?									
> map_cov_results4									
π A TIDDIE: 6 X 8 n added distance within n cov pct cov n not cov pct not cov dist ava dist sd									
<db1> <db1> <int> <db1> <int> <db1> <int> <db1> <db1> <db1></db1></db1></db1></int></db1></int></db1></int></db1></db1>									
1 5 400 45 0.804 11 0.196 309. 145.									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
4 20 400 56 1 0 0 254. 98.9									
5 25 400 56 1 0 0 221. 99.8									
6 30 400 56 1 0 0 212. 99.1									
· is not empty.									
We detected these problematic arguments:									
Teeus_auts									
These dots only exist to allow future extensions and should be empty.									
Did you misspecify an argument?									
>									

Figure 38: Results of MCLP