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Abstract 
An Automated External Defibrillator (AED) are portable devices deployed in high 

footfall areas that are used to resuscitate a person from Cardiac Arrest.  The challenge is to 

identify high risk areas in need of an AED and the most optimal placement of an AED.  Current 

research indicates this challenge is highest in residential areas which are at most risk of an Out 

of Hospital Cardiac Arrest (OHCA) however most public and private resources has implemented 

AEDs in high traffic public areas such as workplaces, train stations, airports, and shopping areas.     

This research proposes a framework by applying various Bayesian CAR models using 

Poisson, Gaussian distributions to identify the most high-risk areas using variables related to 

health and material deprivation from the Irish census 2016.  The AED deployment framework 

uses MCLP and programming to identify potential AED locations specifically targeting 

residential areas.  The main findings from this research indicates that using various Bayesian 

models, when compared identifies an overlap in several areas classed as high-risk.  In terms of 

AED deployment, the proposed MCLP model used within this paper accounts for the entire 

spatial area of 400 metres between potential AED locations in every direction to the boundary.  

This allowed for coverage of every hypothetical OHCA on every residential road.  

The significance of this framework to public bodies and medical resource deployment 

services, is a robust, conclusive Bayesian CAR model to indicate highest risk areas and a scale 

for residential AED deployment based on distance and number of AEDs using MCLP.  The key 

to application of this research is communication of resources available and if AEDs are deployed, 
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awareness of AED location and mode of transport for retrieval with the occupants of each 

residential unit to ensure a clear understanding of time and distance to retrieve.   

 

Introduction 
The survival rate of Out-of-hospital cardiac arrest (OHCA) is less than 10% globally 

(Ringh et al, 2018) which Ireland is aligned to (OHCAR, 2019).  In Ireland approximately 54 

of every 100,000 people will experience an OHCA with two thirds occurring in a residential 

area and one third in a public space (e.g. train station, shopping area).  Residential OHCA have 

an 18% chance of survival when compared to OHCA in public places at 42% (OHCAR, 2019).  

The causes of OHCA vary from heart disease, trauma to the heart, asphyxiation and can often 

be a by-product of poor health factors (OHCAR, 2019).  An OHCA can happen with little 

warning and every minute without intervention (CPR/AED/EMS) can result in a 10% decrease 

in survival (Weaver et al 1987; Perkins et al, 2015; Masterson et al, 2016) resulting in imminent 

death in 10 minutes (OHCAR, 2019).  Use of an Automated External Defibrillator (AED) 

within a few minutes of collapse can result in an increase of survival by 50%-70% (Masterson 

et al, 2018; Ringh et al, 2018; Perkins et al, 2015; Olasveengen et al, 2021).   

Currently, there is no national coordinated implementation strategy of AED 

deployment within residential areas in Ireland and there is no public optimization strategy to 

guide voluntary organisations on placement of AEDs in residential areas.  Thus, a gap exists 

for a model that can determine high risk poor health areas in need of imminent AED 

deployment with a framework to guide the deployment of AEDs within a high-risk residential 

community.  

The aim of this research is to investigate a suitable framework from public resources to 

identify poor areas of health and develop a suitable framework for the most optimal AED 

deployment in residential areas within the most at-risk areas.  The research question is “Can 

publicly accessible data help define a framework that identifies high-risk health electoral 

divisions using Bayesian methods and using an optimisation method can the optimal coverage 

be determined within residential areas?”.  To address the research question, the following 

specific sets of research objectives were derived: 

1. Investigate the state of the art in relation to AED deployment and identification 

of OHCA high risk areas using socio-economic factors. 

2. Design a framework that will identify the most at-risk areas. 

3. Design and implement a model for optimal placement of AEDs in residential 

areas using MCLP. 

4. Evaluate the model using evaluation techniques. 

This project will address each of the research objectives using data of current registered 

AED deployment within Ireland, the novel use of census 2016 socio-economic data, current 

registered AEDs from the EMS and the residential road network for Ireland.   

The major contribution of this research is a novel approach to identify high-risk OHCA 

using the census 2016 socio-economic data; and a framework to identify optimisation 
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deployment of AEDs in residential areas, a first attempt in academia in terms of an Irish 

context.  This project is expected to benefit communities in need of greater resources; a 

reduction in cost related to lengthy and expensive treatment of OHCA due to lack of AEDs; 

and this research is expected to contribute to a HSE strategy of community OHCA resources 

and a reduction of costs to the HSE. 

The structure of this paper discusses related further related work split between the 

proposed framework sections of ‘OHCA Area Risk Identification’ and ‘AED Deployment 

Strategies’ which discuss the statistics related to OHCA and Survival; strategies for 

identification of high-risk OHCA; and optimisation strategies for AED deployment.  This is 

followed by a design overview of the framework and design specification for this project.  This 

is the proceeded by the Results section where all results are presented together with a 

Discussion and Conclusion section discussing the key aspects of the results and implications 

for the framework.  

 

OHCA Area Risk Identification 
The identification of OHCA risk and where to deploy an AED is an unresolved definitive 

problem.  Currently the recommendation by the AHA and the ERC is to place an AED in an 

area where an OHCA is likely to be witnessed, movement of people (Kronick et al, 2015) 

and/or in an area where an OHCA has occurred in the past 5 years (Perkins et al, 2015; 

Olasveengen et al, 2021).  This approach has been used in various studies where historical 

OHCA registry has been used to identify area risk (Al-Drury et al, 2020; Auricchio et al, 2020; 

Lin et al, 2016; Sun et al, 2016; Sun, 2020; Tierney et al, 2019; Tsai et al, 2012).  The challenge 

with using only historical data, is that there is no prediction for the rest of the population to a 

likelihood of an OHCA occurring.  Demographic variables such as age, location and socio-

economic variables have been identified from historical OHCA data (Al-Dury et al, 2020) as 

factors that can be used to identify population clusters of poor health (Masterson et al, 2018; 

Xia et al, 2020). 

Lorenzo et al (2020) used a geographic risk function with data related to AED locations 

and OHCA historical data.  The risk function also accounted for the total population of the city 

of Milan and not just the historical coverage.  This method indicated that 40% of the overall 

population of Milan was covered with a suggested focus for future models to concentrate on 

residential deployment of AEDs to cover a wider population and reduce the risk of 

inaccessibility to an AED (Lorenzo et al, 2020).   

 Masterson et al (2018) used Bayesian Conditional Autoregressive (CAR) method with 

a Poisson assumption, fitted with MCMC and tested for spatial autocorrelation with Moran’s I 

statistic.  The variables within the Bayesian CAR method included historical data of OHCA 

between at home and not at home, which were compared against characteristics of the wider 

population with variables from the 2011 census.  The selected variables from the census 

included a self-assessed health variable, age and Principal Component Analysis was applied to 

variables that indicate high material deprivation which have been linked to poorer health.  

Within the research it was found higher incidences of OHCA intervention in the form of CFR 
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and AED bystander use increased with rurality and an OHCA was most likely to occur at home 

(Masterson et al, 2018).   

 A Bayesian CAR method was also used to determine spatial clusters of Tuberculosis 

(TB) in China.  This method used historical data of TB cases and socio-economic variables 

related to employment, demographic characteristics, population density and health resources 

from public database sources.  These variables were standardized and fitted with INLA using 

univariate and multivariate models.  Spatial autocorrelation was tested using Moran’s I index.  

The research found those of a lower socio-economic status and age increased the likelihood of 

spatial clusters for TB (Xia et al, 2020). 

 Bayesian CAR methods with spatial smoothing are indicated to be a useful tool to 

indicate likelihood of area risk as the spatial smoothing considers neighbouring regions to 

determine spatial clusters. 

 

AED Deployment Strategies 
AED residential deployment has been identified as an important area to increase 

survival rates (Folke et al, 2010; Lorenzo et al, 2020; Masterson et al, 2018; Rao et al, 2019; 

Ringh et al, 2018).  It is recommended within a residential deployment strategy to consider 

AEDs linked to EMS; availability to an AED 24 hours a day 7 days a week; placement outside 

of the home, not in the home; the use of statistical models to determine the optimal location of 

AEDs for residential access; and that the AED has a protective case to prevent theft (Ringh et 

al, 2018).  Thus, a gap exists where AEDs are generally not accessible on residential public 

roads nationally.   

Within Ireland voluntary CFR groups have fulfilled the role of providing an AED 

within the community by bringing the AED to an OHCA location.  This can take longer than 

3-minutes, the optimal time for defibrillation (Ringh et al, 2018).  As there is no national 

strategic guidance or an obligation to register the AED with the EMS, a gap exists where AEDs 

are generally not accessible on residential public roads nationally and an over reliance for a 

CFR member to bring an AED to an OHCA location.   

The most common deployment strategy for AEDs is based on mathematical 

optimization models such as Maximal Coverage Location Problem (MCLP) to determine area 

coverage or Geographic Information Systems (GIS) to calculate walking route distance of an 

AED.  The general guidance is to place an AED within high-footfall areas in public spaces.  

Within the domain, distances for AED placement have been analysed from 100 meters and 400 

meters (Bonnet et al, 2015; Folke et al, 2010; Huang and Wen, 2014; Tsai et al, 2012) to a 

potential OHCA and/or a 3-minute round trip of retrieval (Ringh et al, 2018). 

Spatial-temporal optimization strategies have been used for deployment of AEDs 

where placement is in a time sensitive location with limited access by time of day (Sun et al, 

2017).  The spatial distance is calculated within the area to previous OHCA, and the temporal 

coverage is based on time of day.  This model is useful when AEDs are not placed on publicly 

accessible roads.   
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Sun et al (2020) used an optimization strategy to calculate AED deployment of 100-

meter distance against a guideline approach which led to a reduced number of AEDs. This was 

based on historical OHCA data, however there was no accountability for residential coverage 

within the model.   

  Rao et al (2019) uses a multi-objective optimization strategy to deploy AEDs within a 

specific area using a walking route-based criteria for collection of AEDs to an OHCA location.  

This method was applied in an urban area with no allowance for residential access. 

Tierney et al (2020) used a combination of Bayesian CAR fitted with INLA and a 

catchment area approach to determine coverage of AEDs and risk within Ticino in Switzerland.  

The deployment of AEDs was measured against the relative risk of the area and a comparison 

to current resources within the area.  This approach accounted for the financial resources of the 

area but no allowance for residential deployment.  

 One of the most common methods to determine a framework coverage of a population 

(historical or total population) is the use of MCLP.  Based on various criteria for coverage 

MCLP aims to achieve the maximal coverage of a particular area.  This method was used by 

Bonnet et al (2014) to reposition AEDs with an interactive mapping tool and measuring success 

based on MCLP to determine the coverage.  This method was also used by Metrot et al (2019) 

to determine the maximal coverage of the population based on random deployment of AEDs 

against hypothetical OHCA locations within Beirut city (Metrot et al, 2019).   

The key findings from the literature indicate the focus of past research have been to 

explain historical OHCA and implications for AED deployment.  There is a lack of focus on 

accessible methods to the public focusing on identifying high risk areas from public data and 

developing a framework to deploy AEDs.  The aim of this research is to investigate a suitable 

framework from public resources to identify poor areas of health and develop a suitable 

framework for the most optimal AED deployment in residential areas within the most at-risk 

areas.  The research question is “Can publicly accessible data help define a framework that 

identifies high-risk health electoral divisions using Bayesian methods and using an 

optimisation method can the optimal coverage be determined within residential areas?”.   

The current identified gap within the domain is a deployment framework for residential 

areas and identification of high-risk areas using the methods of Bayesian CAR and Moran’s I 

statistic methods to identify spatial clusters is the most optimal method to identify high-risk 

areas in Ireland.  Of those high-risk areas, MCLP is a good framework to determine AED 

deployment within residential communities provided each residential unit are aware of the 

distance to the nearest AED and mode of transport for retrieval.  

 

Materials and Methods 
For illustration of this framework, data related to the Republic of Ireland will be used as 

proof of concept of framework.  The 2016 census of the Republic of Ireland indicates a total 

population of 4.7million spread across a total of 3,409 Electoral Divisions (EDs) and 70,273 
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square kilometres.  There are 28 counties in the Republic of Ireland, with a quarter of the 

population residing within Dublin city and county, with the rest of the population spread across 

the other 27 counties in cities, towns, villages, and rural areas.   

The EMS team in Ireland is the sole provider of emergency response care to respond to 

OHCA with the Irish National Ambulance Service responding across all areas except for 

Dublin where there is an added resource of the Dublin Fire Brigade.  When a call related to an 

OHCA is placed to the EMS team, the dispatcher deploys the relevant emergency response 

vehicle and checks the database to determine if there is a local CFR group and/or publicly 

accessible AED registered with the EMS (OHCAR, 2019). 

 

Data   
The National Ambulance Service (NAS) shared data related to AEDs registered with the 

EMS team as of January 2021 which was approved by the Irish Health Executive Board (HSE).  

A total of 2,143 registered AEDs that were geo coded to a total of 1,372 CSO Small Area.  This 

data was then transferred from CSO Small Area to Electoral Division.  The automated external 

defibrillator (AED) location data used by NAS is provided by the owners of the AED and that 

– in the event of an emergency – NAS have no way of or responsibility for checking that the 

AED is present, accessible and/or operational.  

The NAS shared registered CFR group location data with approval from the HSE with a 

total of 163 observations with three variables relating to CFR ID, town name and county were 

shared.  Each observation was manually tagged to each Electoral Division code using the CSO 

Geo Hive Data.  The CFR group data was coded to the specific town and if a town had more 

than one ED, then all EDs related to the town were tagged with a 1 to indicate CFR coverage.  

An example is Bray in Wicklow which has seven EDs therefore all seven were labelled with a 

1 to indicate coverage.  This resulted in a total of 233 Electoral Divisions with CFR coverage.  

This list includes only community-based CFR schemes that are linked to the NAS i.e. they 

could be activated by NAS ambulance control in the event of a cardiac arrest call.  It does not 

include other first responders such as Garda, county fire service personnel or NAS off-duty 

responders.  

The 2016 Census has a total of 802 variables within the census describing various aspects 

of the population relating to age, gender, housing, education, material ownership and socio-

economic status.  Each observation within the dataset is related to the 3,409 ED.  This was 

merged with the OSI spatial data related to Ireland.   

A database related to the road network was sourced from Geofabrik (2021) an open-source 

company that creates spatial data from OpenStreetMap.  Geofabrik (2021) have created a road 

network with 26 types of roads including residential.  The dataset was downloaded into a 

Spatial Lines Data Frame and filtered to the residential road network to identify residential 

clusters in Ireland. 
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Overview of Framework Method 
Fig 1 indicates the framework method for this research indicating each stage starting with pre-

processing the data, exploring the data to understand each component, model simulation 

applying Bayesian CAR models and MCLP and evaluation of the models. 

 

Fig 1. Framework Method.  Visual of Framework method through each model stage. 

 

Data Preparation & Analysis 
Within the 2016 census there are two levels that indicate poor health ‘very bad health’ and 

‘bad health’; these were summed together, and indirect standardisation based on population 

per electoral division was applied to determine the expected rates of poor health per electoral 

division using ‘SpatialEpi’ library in R studio to produce the SIR ratio.   

The age of the population per electoral division were standardised and split between 0-49 

and 50 years, with an additional variable of age 50+ per percentage of the population to account 

for a 75% risk of OHCA which is of normal distribution (OHCAR, 2019), see Table 1.   

Table 1.  Summary Statistics Population of Engineered Variables from Census Dataset 

Variable Mean Median Min Max 

     

Bad Health 22.42 8 0 395 
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Age 0-49 372.5 409 34 32788 

     

Age 50+ 424.3 214 22 6106 

     

Pop Total 1397 630 66 38894 

 

A material deprivation covariate was calculated using variables from the 2016 census 

related to housing, employment, social status, and material ownership where each variable was 

standardised and applied to Principal Component Analysis (PCA).  The selection of these 

variables was guided by the research of Masterson et al (2018) and Xia et al (2020). 

The centroid coordinates were prepped of each electoral division were converted into 

latitude and longitude coordinates, and each 400m point was calculated in the direction of 

north, south, east, and west to the boundary border to simulate possible AED deployment 

locations.  These points were then combined with the residential road network, and a point was 

mapped to represent every residential road within the electoral division boundary area to 

simulate OHCA data.   

 

Spatial Smoothing 

Bayesian Conditional Autoregression is a method to spatially smooth the data where EDs can 

borrow strength from neighbours and reduce randomness in variation.  The use of MCMC can 

be computationally intensive and the use of INLA has been considered an alternative approach 

using Gaussian distribution (De Smedt et al, 2015).  For the purposes of building a robust high 

risk area identification framework, a variety of models using two types of random effects 

Besag, York and Mollie (BYM) and ‘IID’ random effect model using MCMC (Masterson et 

al, 2018), INLA (Lin et al, 2016; Tierney et al, 2019), Poisson and Gaussian assumptions.   All 

models had a burn in run of 10,000 iterations and 40,000 iterations retained (Masterson et al, 

2018) using R Studio libraries ‘INLA’, and ‘CARBayes.  The SIR variable in each of these 

models was smoothed using a neighbourhood matrix using the Queen’s method within 

‘GeoDA’ software (Masterson et al, 2018).   

 The variables used within the model is the Y ~ 1 + offset(log(E)) where Y is the 

Observed and E is the expected poor health.  This is a common method to model disease rates 

using Bayesian BYM (Duncan et al, 2019).  For consistency across all models, the same log 

function was applied.  The independent variables used were 0-49 and 50+ age, the percentage 

of 50+ aged population per ED and the High Deprivation variable derived from PCA.  A total 

of 8 models were created using 5 different types of Bayesian CAR methods which totalled 40 

models.  The criteria for model selection are based on the lowest deviance information criterion 

(DIC). 



11 
 

 

Geographic Analysis 
The self-assessed health variable was tested for spatial autocorrelation using the Global 

Moran’s I statistic which was applied to all variables used within the Bayesian CAR methods.  

The hypothesis is: 

 H0:   if the spatial data is randomly disbursed. 

 Ha1: a positive Z score meaning the data is spatially clustered. 

 Ha2: a negative Z score meaning the data is clustered in competitive way. 

 Geographic analysis was applied using a framework for AED deployment against 

hypothetical AED deployment using a 400-metre points to the boundary.  This geographic 

spread of AEDs was measured against the residential road network, with the optimal coverage 

of AEDs to an OHCA on each residential road.  This method ignores financial constraints to 

AED deployment and instead a framework for the optimal placement of AEDs using MCLP 

optimization method from Church and ReVelle (1974) in R Studio library ‘Maxcovr’. (Tierney, 

2019).   

 

Design Specification 
The Design Specification for this research is split into two parts within the framework 1) the 

identification of high-risk health areas and 2) a framework for AED deployment that can be 

applied to any area (Fig 2). 
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Fig 2. Design Specification.  Visual of Design Specification indicating software and data flow. 

 

The design implementation for high-risk health areas uses Bayesian CAR methods with a 

Poisson or Gaussian assumption, and MCMC or INLA.  A total of 8 models will be tested 

against each type of 5 types of Bayesian CAR method, resulting in 40 models.  The data will 

be further prepped for implementation and applied with the same burn in and run-in rates as 

Masterson et al (2018).  Evaluation will be dependent on the most common high-risk areas 

which will be assessed by the lowest DIC and WAIC for each model type. 

 The framework for AED deployment will be calculated using the centroid as the current 

AED placement, with potential sites at every 400-metre point to the board in every compass 

direction.  The potential OHCA cases will represent each residential road within the electoral 

division.  This data will be overlayed using MCLP to calculate the distance and optimal number 

of AEDs per radius distance to OHCA point on a residential road.  Evaluation will depend on 

the highest level of coverage (Metrot et al, 2019).    

 



13 
 

Results 
 

Health Risk Identification Area 
A total of 1.6% of the population classify their health as bad across a total of 3,328 

Electoral Divisions.  The age variable was split in Excel between 0-49 and 50+ with a total of 

3.3 million and 1.4 million, respectively.  This allows for the estimation of 75% of OHCA risk 

which is between 54 to 79 interquartile range.  The percentage of 50+ per electoral division 

was also estimated to indicate levels of OHCA risk with a percentage ranging from 8% to 61%.  

This resulted in 70 electoral divisions with a 50+ population percentage of 50% or more. 

The CART algorithm was applied to understand the relationship between High Material 

Deprivation, AEDs, and CFR groups (Fig 3).  It was found in Root 1 – 1,570 EDs have low 

levels of High Material Deprivation, have no CFR group and no AED with 60.3% of EDs with 

a population of 30-40% aged 50+; Root 2 – 333 EDs have low levels of High Material 

Deprivation, no CFR group, but have an AED with 56.2% of EDs with a population of 30-40% 

aged 50+; Root 3 – 46 EDs have low levels of High Material Deprivation, have a CFR group, 

no AED with 37% of EDs with a population of 30-40% aged 50+; Root 4 – 62 EDs have low 

levels of High Material Deprivation, have a CFR group and have an AED with 50% of EDs 

with a population of 20-30% aged 50+; Root 5 – 1,035 EDs have high levels of High Material 

Deprivation, have no AED and no CFR group with 46.8% of EDs with a population of 30-40% 

aged 50+; Root 6 – 363 EDs have high levels of High Material Deprivation, have an AED and 

no CFR group with 53.2% of EDs with a population of 30-40% aged 50+. 

 

Fig 3. CART Algorithm.  Illustration of relationship between material deprivation, AED, CFR 

groups and Age. 
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The unsmoothed SIR rate for the self-assessed health variable ranged from 0 to 8.73161 

with a total of 206 areas with an incidence rate of 1 and above which is considered high levels 

of poor health per electoral division (Fig 4). 

 

Fig 4. Unsmoothed SIR.  SIR rate applied to poor health variable. 

 

The standardised 35 variables were applied to PCA in SPSS V27 with a covariance 

matrix based on Eigenvalue greater than 1, with a varimax rotation and maximum iterations 

for convergence at 25.  The test result of KMO 0.804 and Bartlett’s test <0.05, indicating the 

dataset is a good fit for PCA.  The PCA output were three components accounting for 86.91% 

of the variance: Component 1 Low Levels of Material Deprivation; Component 2 High Levels 

of Material Deprivation; and Component 3 relating to Agriculture.  Component 2 was the 

covariate used in the CAR model which included 1) Housing: rented from local 

authority/voluntary/co-op housing; 2) Principal Status:  looking for first job, unemployed and 

disability; 3) Social Status & Socio-Economic Group: semi-skilled, unskilled, and employed 

but unknown; 4) Ownership: no car, no pc, no broadband, and no internet.  The newly created 

variable was merged in GeoDa with the spatial shapefiles from the OSI using the merge 

function and the GUID variable. 

Univariate Moran’s I statistic (Fig 5) was applied to the variables and covariates for the 

Bayesian CAR model with 999 permutations.  All the variables had a score >0.05 both before 

and after the 999 permutations with a mean of -0.0003 to 0.0004, SD± 0.0101 – 0.0109 and a 

Z value ranging from 26.5580 to 43.8495.  The results indicate a rejection of the null hypothesis 

in favour of Ha1 meaning the data is spatially clustered. 
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Fig 5. Moran’s I Statistic.  Illustration of application of Moran’s I Statistic to High Material 

Deprivation variable created from PCA.  The most significant areas for autocorrelation are the dark 

red on the left and dark green on the right. 

 

The Queen’s matrix was applied with 100 neighbours manually tagged with symmetry 

applied to ensure two-way neighbours (Fig 6).  The islands were tagged to electoral divisions 

within the same county e.g., Arran Islands tagged to nearest Galway electoral divisions. 

 

Fig 6. Queen’s Matrix.  Illustration of Queen’s Matrix with a map of Ireland indication the 

relationship between each Electoral Divisions, and a histogram indicating the number of neighbours 

ranging from 1-13 with 6 as the median. 

 

All the variables were applied to the Bayesian CAR models with various combinations 

resulting in 8 different model types (Table 2).  There was about 600 DIC in the difference 

between the Poisson models with a larger difference in the Gaussian models.  Table 4 illustrates 

the DIC per each Bayesian Autoregressive model for the observed self-assessed health variable.  

Of the 5 type of models applied the best fit are INLA Gaussian Random Effects with the single 

variable of % age of 50+ (Model 7) with a DIC of -10563.86 and a WAIC of -1709.59; the 

INLA Gaussian BYM model had a best fit with the single variable High Material Deprivation 

(Model 6) with a DIC of 13799.73 and WAIC of 13080.75; the INLA Poisson Random Effects 

model had the age variables (0-49 and 50+) as the best fit (Model 2) with DIC 20824.54 and 

WAIC of 20788.40; the INLA Poisson BYM model had the best fit of the age variables (0-49 

and 50+) (Model 2) with a DIC of 20771.88 and WAIC of 20669.99; and the MCMC Poisson 

BYM model had the best fit of both age variables (0-49 & 50+) and the percentage of 50+ age 

of population (Model 4) with a DIC of 20088.855 and WAIC of 19561.413 (Table 2).  
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Table 2.  Results table of the 40 models of Bayesian CAR with variation of Poisson, Gaussian, 

MCMC and INLA. 

Models  

(CI 95) 

INLA Base 

Model 

Gaussian 

Random 

Effects 

INLA BYM 

– Gaussian 

INLA Base 

Model 

Poisson 

Random 

Effects 

INLA BYM 

- Poisson 

MCMC 

BYM - 

Poisson 

Model 1:   

Y ~ 1 + 

offset(log(E)) 

DIC:  -

8661.06 

WAIC:  -

791.63 

β:  17.727 

(mean) 

DIC:  

34357.21 

WAIC:  

34338.35 

β:  17.727 

(mean) 

DIC:  

20980.38 

WAIC:  

21293.05 

β:  -7.183 

(mean) 

DIC:  

20901.35 

WAIC:  

21013.02 

β:  -7.185 

(mean) 

DIC:  

20365.91 

WAIC:  

19575.078   

β:  -2.4355 

(median) 

Model 2:  

Model 1 + 

log(Age) 

DIC:  

9819.63 

WAIC:  

10640.45 

β:  -148.315 

(mean) 

DIC:  31475 

WAIC:  

31532.02 

β:  -148.234 

(mean) 

DIC:  

20824.54 

WAIC:  

20788.40 

β:  -14.641 

(mean) 

DIC:  

20771.88 

WAIC:  

20669.99 

β:  -14.644 

(mean) 

DIC:  

20089.408 

WAIC:  

19559.361 

β:  -7.4881 

(median) 

Model 3:  

Model 2 + 

High Mat 

Dep  

DIC:  -

555.59 

WAIC:  

5938.89 

β:  -81.168 

(mean) 

DIC:  

16565.46 

WAIC:  

15832.58 

β:  -81.160 

(mean) 

DIC:  

20825.63 

WAIC:  

20789.53 

β:  -14.391 

(mean) 

DIC:  

20772.91 

WAIC:  

20671.53 

β:  -14.509 

(mean) 

DIC:  

20089.929 

WAIC:  

19562.274 

β:  -9.1418 

(median) 

Model 4: 

Model 2 + 

%50+  

DIC:  

7575.87 

WAIC:  

9036.62 

β:  -203.967 

(mean) 

DIC:  

15062.96 

WAIC:  

15418.95 

β:  -203.475 

(mean) 

DIC:  

20825.14 

WAIC:  

20788.94 

β:  -18.332 

(mean) 

DIC:  

20772.61 

WAIC:  

20670.66 

β:  -15.817 

(mean) 

DIC:  

20088.855 

WAIC:  

19561.413 

β:  -12.4709 

(median) 

Model 5:  

Model 4 + 

High Mat 

Dep 

DIC:  

22744.84 

WAIC:  

24184.90 

DIC:  

15319.27 

WAIC:  

14443.90 

DIC:   

20826 

WAIC:  

20789.81 

DIC:  

20773.06 

WAIC:  

20672.01 

DIC:  

20094.840 

WAIC:  

19561.632 

β:  -10.9628 
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β:  -86.863 

(mean) 

β:  -86.784 

(mean 

β:  -17.442 

(mean) 

β:  -15.425 

(mean) 

(median) 

Model 6:  

Model 1+ 

High Mat 

Dep 

DIC:  -

7603.38 

WAIC:  

119.44 

β:  17.727 

(mean) 

DIC:  

13779.73 

WAIC:  

13080.75 

β:  17.727 

(mean) 

DIC:  

20951.23 

WAIC:  

21162.47 

β:  -7.187 

(mean) 

DIC:  

20885.02 

WAIC:  

20949.07 

β:  -7.186 

(mean) 

DIC:  

20343.345 

WAIC:  

19626.606 

β:  -2.4304 

(median) 

Model 7:  

Model 1 + 

%50+ 

DIC:  -

10563.86 

WAIC:  -

1709.59 

β:  68.167 

(mean) 

DIC:  

32628.72 

WAIC:  

32760.58 

β:  52.616 

(mean) 

DIC:  

20971.78 

WAIC:  

21265.32 

β:  -5.304 

(mean) 

DIC:  

20897.13 

WAIC:  

20998.16 

β:  -5.783 

(mean) 

DIC:  

20361.803 

WAIC:  

19585.880 

β:  -1.1192 

(median) 

Model 8:  

Model 7 + 

High Mat 

Dep 

DIC:  

30918.60 

WAIC:  

30939.48 

β:  28.602 

(mean) 

DIC:  

17192.38 

WAIC:  

16855.25 

β:  28.602 

(mean) 

DIC:  

20948.45 

WAIC:  

21155.84 

β:  -6.324 

(mean) 

DIC:  

20883.41 

WAIC:  

20944.67 

β:  -6.479 

(mean) 

DIC:  

203440.144 

WAIC:  

19623.057 

β:  -1.8288 

(median) 

 

The posteriors were calculated for each of the electoral divisions within the models and 

new variables were created to categorise the electoral divisions as high or low from the selected 

models.  The high level was indicated by the 3rd quantile in the posteriors and anything below 

was classed as low (Fig 7).  Table 3 indicates the difference in the number of High vs Low 

electoral divisions and the minimum and maximum posterior results per each model.  

Interestingly, in terms of Electoral Divisions that were high, the INLA models with the same 

assumption of Poisson or Gaussian, had a small difference in identified number of Electoral 

divisions considered high risk. 
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Fig 7. Posterior Means.  Map illustration of each model with posteriors transformed using high and 

low with high in the 3rd quantile in red. 

 

Table 3.  Overall number of electoral divisions classed as high risk versus low risk 

Models 

(CI 95) 

SIR - 

Health 

INLA Base 

Model 

Gaussian 

Random 

Effects 

INLA 

BYM – 

Gaussian 

INLA Base 

Model 

Poisson 

Random 

Effects 

INLA 

BYM - 

Poisson 

MCMC 

BYM - 

Poisson 

Posterior 

High/Low 

(results) 

High 206 

Low 3203 

(0/8.73) 

High 66  

Low 3343 

(0.02/394.32) 

High 65  

Low 3344  

(-0.001/ 

394) 

High 154   

Low 3255 

(0.002/8.73

) 

High 156 

Low 3253  

(0.002/8.7

3) 

High 198 

Low 3211 

(0.32/396.

12) 

 

Each of the selected models, were filtered to the category ‘high’ which resulted in a 

total of 56 electoral divisions classed equally as high risk (Table 4).  Of the selected electoral 

divisions 22 have no registered AED with the EMS and no CFR group within the electoral 

division, these are considered the highest risk; followed by 19 areas with an AED but no CFR 

and 15 areas with a CFR group but no registered EMS AED.    

Table 4.  56 common electoral divisions across all types of Bayesian CAR models 

Common High Risk 

Electoral Divisions 

County AED 

Count 

CFR Group Age % 50+ High Material 

Dep 

Population 

Total 

Total ED:  56 Total 

County:  

18 

EDs with 

AED:  31 

Yes:  15 

No:  41 

Min:  16% 

Max:  45% 

Yes:  30 

No:  26 

Total Pop 56 

EDs:  616,671 

Cavan Urban Cavan 0 Yes 28% Yes 3770 

Ennis Rural Clare 5 No 28% No 17709 

Clenagh Clare 2 No 28% Yes 10299 

Ballyglass Clare 0 No 31% No 5994 

Ballincollig Cork 0 Yes 29% No 18621 

Rathcooney Cork 4 Yes 27% No 8574 

Bishoptown C Cork 0 No 45% No 4925 

Letterkenny Rural Donegal 1 No 26% Yes 11398 

Ballymun C Dublin 0 No 25% Yes 6112 

Balbriggan Rural Dublin 0 No 14% Yes 16495 

Airport Dublin 0 No 18% Yes 5018 

Glencullen Dublin 0 No 19% No 19773 

Kinsaley Dublin 2 No 18% No 9621 
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Swords-Forrest Dublin 2 Yes 21% No 15153 

North Dock B Dublin 0 No 17% Yes 7695 

Balbriggan Dublin 0 No 27% Yes 8116 

Tallaght-Springfield Dublin 1 No 24% Yes 11012 

Rush Dublin 5 No 26% No 9921 

Blanchardstown-Coolmine Dublin 0 No 23% Yes 11320 

Mountjoy A Dublin 0 No 17% Yes 5389 

Blanchardstown-

Abbotstown 

Dublin 0 No 17% No 6195 

Blanchardstown - 

Blackestown 

Dublin 0 No 16% No 38894 

Howth Dublin 1 No 44% No 8294 

Beaumont B Dublin 0 No 40% No 4962 

Firhouse Village Dublin 0 No 21% No 12214 

Pembroke East D Dublin 0 No 40% No 5263 

Clondalkin-Dunawley Dublin 0 No 22% Yes 11323 

Castleknock-

Knockmaroon 

Dublin 0 No 25% No 19027 

Tuan Urban Galway 1 No 35% Yes 3511 

Kilarney Urban Kerry 5 Yes 38% Yes 10826 

Leixlip Kildare 1 No 31% No 15576 

Droichead Nua Urban Kildare 5 No 30% Yes 7762 

Naas Urban Kildare 3 Yes 27% No 21597 

Kilcock Kildare 0 No 19% No 6930 

Celbridge Kildare 2 No 26% No 15653 

Morristownbiller Kildare 1 No 22% No 14781 

Kildare Kildare 0 No 24% Yes 9874 

Portlaoighise Rural Laois 5 No 21% Yes 16105 

Ballysimon Limerick 1 No 20% No 13590 

Ballycummin Limerick 0 No 23% No 18388 

Longford Rural Longford 3 Yes 28% Yes 5704 

Fair Gate Louth 11 Yes 35% Yes 10424 

Dundalk Rural Louth 13 Yes 25% Yes 19265 

Castlebar Urban Mayo 0 No 37% Yes 6163 

Ballina Urban Mayo 4 Yes 37% Yes 4144 

Ratoath Meath 5 Yes 20% No 11082 

Julianstown Meath 2 Yes 26% No 10176 
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Navan Rural Meath 0 Yes 21% No 28117 

Tullamore Urban Offaly 18 No 31% Yes 11437 

Edenderry Urban Offaly 5 Yes 22% Yes 7001 

Sligo North Sligo 0 No 29% Yes 5222 

Nenagh West Urban Tipperary 1 No 30% Yes 5481 

Carrick-on-Suir Urban Tipperary 2 No 35% Yes 4398 

Roscrea Tipperary 12 Yes 31% Yes 6305 

Wexford No. 2 Urban Wexford 1 No 39% Yes 4087 

Enniscorthy Rural Wexford 6 No 29% Yes 9985 

 

Residential AED Deployment 
An electoral division was selected that had a high SIR rate which was selected prior to the 

completion of the 40 models in the previous section.  The purpose was to illustrate proof of 

framework in an electoral division that could easily be deployed to each high-risk area to 

determine the most optimal AED deployment.  The selected Electoral Division was Birr in 

County Offaly (Fig 8). 

 

Fig 8. Birr, Offaly.  Left image indicates the position of Birr and the residential road network 

overlayed by electoral divisions.  The right image illustrates the points selected from the centroid to 

the boundary by every 400 metres. 

 

Fig 3 illustrates each data point for distribution of potential location of AEDs with a 

radius of 200 metres (green), the ‘current’ AED with a 200-metre radius (orange) and 

hypothetical OHCA with a marker placed on each residential road (small blue dots).  MCLP 

was implemented using the ‘Maxcovr’ package in R testing the distance of 100 metres to 400 

metres for AED.  A minimum of 95.61 metres was the nearest OHCA to the centroid.  The 

furthest distance was 1.47 kilometre.  With 1 AED placed at the centroid of the Electoral 

Division there is a total of 1 OHCA covered, and 55 points not covered or 98% not covered 

with an average distance of 731 metres for each OHCA with a SD of 312. 
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Fig 9. AED Potential Locations.  Illustration of the selected OHCA events (blue), potential AED 

Locations with radius (green) and the centroid as the current AED placement (orange). 

 

Table 5 indicates the results from each of the runs ranging from 100 metres to 400 metres.  

Model selection (*) is based on the % of OHCA covered with the least number of AEDs. 

 

Table 5.  MCLP results of potential AED coverage across residential OHCA 

AEDs Added # OHCA 

Covered 

# OHCA 

Not 

Covered 

% 

Covered 

Mean 

Distance 

SD  

Distance 

Distance:  100 metres 

5 8 48 14.3% 320 193 

10 13 43 23.2% 273 205 

15* 15 41 26.8% 195 124 

20 15 41 26.8% 184 106 
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25 15 41 26.8% 166 83.1 

30 15 41 26.8% 166 83.1 

Distance:  150 metres 

5 13 43 23.2% 468 371 

10 18 38 32.1% 227 135 

15* 23 33 41.1% 176 99.4 

20 23 33 41.1% 173 98.6 

25 23 33 41.1% 162 79.6 

30 23 33 41.1% 162 79.6 

Distance:  200 metres 

5 19 37 33.9% 377 261 

10 31 25 55.4% 236 162 

15 40 16 71.4% 192 142 

20* 45 11 80.4% 148 62.7 

25 45 11 80.4% 148 62.7 

30 45 11 80.4% 148 62.7 

Distance:  300 metres 

5 32 24 57.1% 305 180 

10 47 9 83.9% 214 119 

15 54 2 96.4% 174 90.3 

20* 56 0 100% 160 73.1 

25 56 0 100% 157 71.4 

30 56 0 100% 151 65.3 

Distance:  400 metres 

5 45 11 80.4% 309 145 

10* 56 0 100% 230 100 

15 56 0 100% 196 93 

20 56 0 100% 254 98.9 

25 56 0 100% 221 99.8 

30 56 0 100% 212 99.7 
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Discussion and Conclusion  

Identification of High Risk OHCA Areas Model Result Discussion 
The variety of models presented in this paper illustrate how the type of Bayesian CAR model 

can influence results when the same variety of variables are applied.  It appears that in terms 

of this data the basic ‘IID’ model with a Gaussian assumption performs best when comparing 

DIC and WAIC results to the BYM models and Poisson assumption.  The BYM and Poisson 

assumption models have a DIC of >10000 with the random effects with Gaussian assumption 

with the lowest DIC.   However, the choice of Bayesian model illustrates the various fit of 

models which resulted in 7, 6, 2 and 4.  When comparing the DIC and WAIC it appears the 

Poisson models had similar results, while the Gaussian random effects and BYM model had a 

greater difference.  Of the best fit models, two had a covariate each relating to Material 

Deprivation (model 6) which indicates similar findings of deprivation to Masterson et al (2018) 

and Xia et al (2020).  

 

Comparative Bayesian Risk Analysis 
This framework illustrates how a combination of Bayesian spatial smoothing models can 

identify a subset of the highest at-risk areas for AED deployment.  The novel use of 

comparative models between Gaussian and Poisson assumptions, and MCMC and INLA, 

allows a more robust indication of the highest at-risk areas.  Other research has compared 

MCMC and INLA, finding that INLA is a good alternative to MCMC (Smedt et al, 2015), a 

finding also within this research were the DIC and WAIC between INLA and MCMC models 

are similar. 

From this research it appears that when considering risk using Bayesian spatial 

smoothing regression models, it appears that the choice of model can impact on risk assessment 

and when the risk reflects the well being of the population or the model has a direct impact on 

well-being, a robust comparative framework using more than one Bayesian model is a good 

method to compare the smoothing of areas.  The comparison of Bayesian models within this 

paper demonstrated 56 electoral divisions as the highest risk, of these 22 have no AED and no 

CFR group thus indicating a comparative robust framework for risk analysis.  

 

Local Smoothing Vs Global Smoothing 
There appears to be no Bayesian CAR models within the domain of identification of 

high-risk health areas using the localised smoothing method, such as Bayesian CAR 

dissimilarity model (Lee & Mitchell, 2012), as opposed to the methods used in this paper, 

global smoothing.  It is possible within the models in this paper that localised nuances of risk 

have been missed due to the global spatial smoothing function.  Global spatial smoothing 

models have been found to ‘over smooth’ data (Crumb et al, 2017).  It is possible that applying 

a localised spatial approach may yield different and more insightful results between the 

variables particularly the material deprivation variable. 
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Residential AED Deployment Result Discussion 
Due to limited computational issues, all 56 of the highest risk areas based on evaluation 

of in section 6.1, could not be implemented due to computational limitations.  Instead, a prior 

model created before all Bayesian Models were created is used as proof of concept for AED 

deployment framework using the electoral division of Birr in County Offaly.   

The model range of AEDs deployed is 10 – 20 depending on distance coverage for 

OHCA.  The most optimal is 20 AEDs at 300 metres with 100% coverage of all simulated 

OHCA points in the residential area, however this true number of AEDs could fall between 16-

20.  When the distance is expanded to 400 metres 100% coverage of the OHCA points is 

reached with 10 AEDs.   

This framework is a simple evaluation tool to determine the number of AEDs to cover 

a residential area based on optimal distance.  This tool is similar to Metrot et al (2019) were a 

random selected points of potential AEDs and random OHCA across the city of Beirut.  In 

contrast the model presented in this paper aimed to specifically generate coverage for 

residential areas within an electoral division and incorporating distance to travel to secure an 

AED.  The distance and residential coverage are missing from Metrot et al (2019).   

The maximum result achieved in Metrot et al (2019) was a coverage of 93.07% of the 

total population with an unknown distance metric for retrieval of AED.  It appears when 

considering residential against distance, this model can achieve 100% coverage.     

 

MCLP AED Deployment & Communication 
This framework is a simple evaluation tool to determine the number of AEDs to cover 

a residential area based on optimal distance.  This tool is similar to Metrot et al (2019) were a 

random selected points of potential AEDs and random OHCA across the city of Beirut.  In 

contrast the model presented in this paper aimed to specifically generate coverage for 

residential areas within an electoral division and incorporating distance to travel to secure an 

AED.  The distance and residential coverage are missing from Metrot et al (2019).   

However, applying MCLP within the framework an indication of the average coverage, 

but as indicated by Ringh et al (2019) the most important feature is the ability for an AED to 

reach an OHCA within a 3-minute round trip.  As mode of transport is unknown and geographic 

features (incline, obstacles etc.) within this model, the distance of 100metres to 400 metres, 

allows for the model to be altered based on specific residential features.  Therefore, in line with 

recommendations (Ringh et al 2018; Masterson et al 2018), the placement, distance, and 

preferred mode of transport to retrieve an AED must be communicated with each of the 

residents within the area for optimal coverage.  It is suggested that if this framework is 

implemented, communication methods are advised to be applied to encourage retrieval and 

knowledge of AED placement.  An example is a point-of-sale item such as a keyring or a fridge 

magnet that specifies the location of the nearest AED, distance, time to retrieve and optimal 

mode of transport on the item.    
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Conclusion 
This paper identified a novel framework for identification of high-risk health areas and an 

approach to AED deployment within a residential area, a recognised gap within the domain of 

AED deployment (Moran et al, 2015; Ringh et al, 2018).  Implementation of this approach 

could strengthen the chain of survival within each high-risk electoral division and can illustrate 

the level of coverage required to achieve 100% AED coverage within an area.   

It is recommended for future work to deploy this model on the entire residential 

database for Ireland and determine what the most optimal coverage of the highest risk electoral 

divisions are, and for other electoral divisions.  However, there were computational issues 

applying MCLP to a greater number of Electoral Divisions using the road network as a proxy.  

It is also suggested for future work to consider the model against historical OHCA data to 

determine if the 56 electoral divisions identified have had OHCA event in the past 5 years.  It 

is also a suggestion for future work to deploy this model to the public and allow residents to 

calculate the optimal placement for AED and the risk score for the area.  This is a model that 

could also highlight the benefits of having a registered EMS AED in the area and encourage 

the creation of a CFR group.  This is perhaps a consideration for the HSE to undertake to drive 

awareness with the public.   

 

Acknowledgements 
Acknowledgement to Dr. Siobhan Masterson and Neil Callanan from the HSE who shared the 

data for this project. 

 

References 
Al-Dury, N. et al. (2020) ‘Identifying the relative importance of predictors of survival in out 

of hospital cardiac arrest: a machine learning study’, Scandinavian journal of trauma, 

resuscitation and emergency medicine, 28(1), p. 60. doi: 10.1186/s13049-020-00742-9. 

 

Auricchio, A. et al (2020) ‘Spatio-temporal prediction model of out-of-hospital cardiac arrest: 

Designation of medical priorities and estimation of human resources requirement’. PLoS ONE, 

15(8 august). https://doi.org/10.1371/journal.pone.0238067. 

 

Bonnet, B., Gama Dessavre, D., Kraus, K. and Ramirez-Marquez, J.E., (2015) ‘Optimal 

placement of public-access AEDs in urban environments’. Computers and Industrial 

Engineering, 90, pp.269–280. https://doi.org/10.1016/j.cie.2015.09.012. 

 

Cramb SM, Duncan EW, Baade PD, Mengersen KL, 2017. Investigation of Bayesian Spatial 

Models. Brisbane: Cancer Council Queensland and Queensland University of Technology 

(QUT). 

 

https://doi.org/10.1016/j.cie.2015.09.012


26 
 

Church, R., and C. ReVelle. 1974. ‘‘The Maximal Covering Location Problem.’’ Papers of the 

Regional Science Association 32:101–18. 

 

de Smedt, T., Simons, K., van Nieuwenhuyse, A. and Molenberghs, G., 2015. Comparing 

MCMC and INLA for disease mapping with Bayesian hierarchical models. Archives of Public 

Health, 73(S1). https://doi.org/10.1186/2049-3258-73-s1-o2. 

 

Duncan, E. W., S. M. Cramb, P. D. Baade, K. L. Mengersen, T. Saunders, and J. F. Aitken. 

2019. Developing a Cancer Atlas using Bayesian Methods: A Practical Guide for Application 

and Interpretation. Brisbane: Queensland University of Technology (QUT) and Cancer 

Council Queensland. 

 

Folke, F. et al. (2010) ‘Differences between out-of-hospital cardiac arrest in residential and 

public locations and implications for public-access defibrillation’, Circulation, 122(6), pp. 

623–630. doi: 10.1161/CIRCULATIONAHA.109.924423. 

 

Geofabrik (2021) Download OpenStreetMap data for this region:  Ireland and Northern 

Ireland.  Available at:  http://download.geofabrik.de/europe/ireland-and-northern-ireland.html 

(Accessed:  1st August 2021) 

 

HIQUA (2014) Health technology assessment (HTA) of public access defibrillation 1 

December 2014.  Available at:  https://www.hiqa.ie/sites/default/files/2017-01/HTA-of-

Public-Access-Defibrillation.pdf [Accessed 22 February 2021]. 

 

Huang, C.Y. and Wen, T.H., (2014). ‘Optimal installation locations for automated external 

defibrillators in Taipei 7-eleven stores: Using GIS and a genetic algorithm with a new stirring 

operator’. Computational and Mathematical Methods in Medicine, 2014. 

https://doi.org/10.1155/2014/241435. 

 

Kronick, S.L. (2015) ‘Part 4: Systems of care and continuous quality improvement: 2015 

American Heart Association guidelines update for cardiopulmonary resuscitation and 

emergency cardiovascular care.’ Circulation, 132(18), pp.S397–S413. 

https://doi.org/10.1161/CIR.0000000000000258. 

 

Lee D, Mitchell R (2012). “Boundary Detection in Disease Mapping Studies.” Biostatistics, 

13, 415–426. 

 

Lin, B.C. (2016) ‘Spatial decision on allocating automated external defibrillators (AED) in 

communities by multi-criterion two-step floating catchment area (MC2SFCA).’ International 

Journal of Health Geographics, 15(1). https://doi.org/10.1186/s12942-016-0046-8. 

https://doi.org/10.1186/2049-3258-73-s1-o2
http://download.geofabrik.de/europe/ireland-and-northern-ireland.html
https://doi.org/10.1161/CIR.0000000000000258
https://doi.org/10.1186/s12942-016-0046-8


27 
 

 

Lorenzo, G. (2020) ‘Development of a novel framework to propose new strategies for 

automated external defibrillators deployment targeting residential out-of-hospital cardiac 

arrests: Application to the city of Milan’. ISPRS International Journal of Geo-Information, 

9(8). https://doi.org/10.3390/ijgi9080491. 

 

Masterson et al. (2018) ‘Out-of-hospital cardiac arrest in the home: Can area characteristics 

identify at-risk communities in the Republic of Ireland?’, International Journal of Health 

Geographics, 17(1), pp. 1–11. doi: 10.1186/s12942-018-0126-z. 

 

Masterson, S., Cullinan, J., Teljeur, C. and Vellinga, A. (2016) ‘The Spatial Distribution of 

Out-of-Hospital Cardiac Arrest and the Chain of Survival in Ireland: A Multi-Class Urban-

Rural Analysis’. Irish Geography, 49(2), 1-27, DOI: 10.2014/igj.v49i2.1232 

 

Metrot, C. et al. (2019) ‘Dynamic AED Allocation and Reallocation for SCA Rescue Using 

Modified MCLP’, 2019 IEEE International Smart Cities Conference (ISC2), Smart Cities 

Conference (ISC2), 2019 IEEE International, pp. 310–316. doi: 

10.1109/ISC246665.2019.9071791. 

 

Moran, P.S. et al (2015) ‘Cost-effectiveness of a national public access defibrillation 

programme.’ Resuscitation, 91, pp.48–55. https://doi.org/10.1016/j.resuscitation.2015.03.017. 

 

OHCAR (2019) Out-of-Hospital Cardiac Arrest Register At the heart of evidence Annual 

Report 2019.  Available at:  http://www.nationalambulanceservice.ie/Publications/OHCAR-

Annual-Report-2019.pdf [Accessed 22 February 2021] 

 

Olasveengen, T.M. (2021) ‘European Resuscitation Council Guidelines 2021: Basic Life 

Support.’ Resuscitation, [online] 161, pp.98–114. 

https://doi.org/10.1016/j.resuscitation.2021.02.009. 

Oving, I. et al. (2021) ‘European first responder systems and differences in return of 

spontaneous circulation and survival after out-of-hospital cardiac arrest: A study of registry 

cohorts’, The Lancet Regional Health - Europe, 1. doi: 10.1016/j.lanepe.2020.100004. 

 

Perkins. et al. (2015) ‘European Resuscitation Council Guidelines for Resuscitation 2015: 

Section 2. Adult basic life support and automated external defibrillation’, Resuscitation, 95, 

pp. 81–99. doi: 10.1016/j.resuscitation.2015.07.015. 

 

Rao, G. et al. (2019) ‘Identifying and Allocating Resources during Out of Hospital Cardiac 

Arrest’, 2019 International Conference on Internet of Things (iThings) and IEEE Green 

Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social 

https://doi.org/10.1016/j.resuscitation.2015.03.017


28 
 

Computing (CPSCom) and IEEE Smart Data (SmartData), Internet of Things (iThings) and 

IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and 

Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2019 International 

Conference on, pp. 959–966. doi: 

10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00169. 

 

Ringh, M. et al. (2018) ‘The challenges and possibilities of public access 

defibrillation’, Journal of Internal Medicine, 283(3), p. 238. doi: 10.1111/joim.12730. 

 

Sun, C. L. F. et al. (2016) ‘Overcoming Spatial and Temporal Barriers to Public Access 

Defibrillators Via Optimization’, Journal of the American College of Cardiology, 68(8), pp. 

836–845. doi: 10.1016/j.jacc.2016.03.609. 

 

Sun, C.L.F., Brooks, S.C., Morrison, L.J. and Chan, T.C.Y., (2017) ‘Ranking businesses and 

municipal locations by spatiotemporal cardiac arrest risk to guide public defibrillator 

placement’. Circulation, 135(12), pp.1104–1119. 

https://doi.org/10.1161/CIRCULATIONAHA.116.025349. 

 

Sun, C.L.F. (2020) ‘Effect of Optimized Versus Guidelines-Based Automated External 

Defibrillator Placement on Out-of-Hospital Cardiac Arrest Coverage: An In Silico Trial’. 

Journal of the American Heart Association, 9(17), p.e016701. 

https://doi.org/10.1161/JAHA.120.016701. 

 

Tierney, N. J. et al. (2019) ‘Evaluating health facility access using Bayesian spatial models and 

location analysis methods’, PLoS ONE, 14(8), pp. 1–18. doi: 10.1371/journal.pone.0218310. 

 

Tsai, Y.-S. et al. (2012) ‘Optimizing locations for the installation of automated external 

defibrillators (AEDs) in urban public streets through the use of spatial and temporal weighting 

schemes’, Applied Geography, 35(1–2), pp. 394–404. doi: 10.1016/j.apgeog.2012.09.002. 

 

Weaver, W. D. et al. (1987) ‘Automatic external defibrillators: Importance of field testing to 

evaluate performance’, Journal of the American College of Cardiology, 10(6), pp. 1259–1264. 

Available at: 

http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,cookie,shib&db=edo&AN

=ejs39671565&site=eds-live&scope=site (Accessed: 17 March 2021). 

 

Xia, L. et al. (2020). Spatio-temporal analysis of socio-economic characteristics for pulmonary 

tuberculosis in Sichuan province of China, 2006-2015. BMC Infectious Diseases, 20(1). 

https://doi.org/10.1186/s12879-020-05150-z. 

 

https://doi.org/10.1161/CIRCULATIONAHA.116.025349
https://doi.org/10.1161/JAHA.120.016701

