~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Rutvik Mendjoge
Student 1D: 20127855

School of Computing
National College of Ireland

Supervisor: Dr. Catherine Mulwa

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Rutvik Mendjoge
Student ID: 20127855
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Dr. Catherine Mulwa
Submission Due Date: 16,/08/2021
Project Title: Configuration Manual
Word Count: 928
Page Count: [13

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Rutvik Mendjoge
20127855

16/08,/2021

1 Introduction

The configuration manual is a step-by-step guide for the project 'Synthetic Defocus Gen-
eration Using Deep Learning’ given in the technical report’s creation, installation, im-
plementation, and deployment. The purpose of this report is to support and guide you
through each stage of the process so that you may get the required output and results,
which are given in a technical report. Multiple technologies, libraries, hardware, and
software combinations are used to complete the project.

1.1 Project Overview

The aim of the project is to generate Synthetic Defocus Images using Deep Learning.
The algorithms used are DeepLab, Mask-RCNN and Xception. PSNR, SSIM and MSE
are the evaluaion metrics used to compare and analyse the performance of the models.
DeepLab and Mask-RCNN performed well and gave high PSNR and SSIM values.

1.2 Prerequisites
1.2.1 Hardware Used
Device Name - Dell 7000 Gaming 7567

e Processor - Intel i7-7th Generation

RAM - 16 GB

GPU - NVIDIA GeForce GTX 1050 ti

ROM - 4 GB

OS - Windows

1.2.2 Software Used
e Programming Language - Python

e Development Tools - Notepad ++, CMD

2 Python Virtual Environment Creation

2.1 Anaconda Installation

A Python Virtual Environment is created by using Anaconda. CMD and Notepad were
used for development. Local GPU of the system is used and installed all the software
and packages on the local system itself. The latest version of Anaconda which is used.
(2020.11)

Q

Individual Edition

YO u r d ata SC I e n Ce Anaconda Individual Edition
toolkit

With over 25 million users worldwide, the open-source Individual For Windows

Edition (Distribution) is the easiest way to perform Python/R data Python 5.8« G4 Blt GrapnicalInstalier « 477 MB
science and machine learning on a single machine. Developed for
solo practitioners, it is the toolkit that equips you to work with Get Additional Installers

thousands of open-source packages and libraries. == | .’ | é

Figure 1: Anaconda Installation

Figure [1) shows the steps needed to download Anaconda. Also, link for the software
is included in the Foot Notes.

2.2 Environment Setup

As shown in Figure [2| open the Anaconda Command Prompt from Windows Search
function. (RUN AS ADMINISTRATOR)

Activate the anaconda virtual environment (thesis) by using the command shown in
the Figure

2.3 Python Libraries, Packages and Frameworks

The main libraries, packages and frameworks are listed in the Table

A

Thttps://www.anaconda.com /products/individualwindows
https://www.tensorflow.org/install

Best match

n Anaconda Prompt (Anaconda) n
App

Apps
Anaconda Prompt (Anaconda)

<) Anaconda Navigator (Anaconda) > App
— Jupyter Notebook (Anaconda) >
Spyder (Anaconda) > 7 Open
B Anaconda Powershell Prompt 5 0 Run as administrator

Laiizigelie) I Open file location

Reset Spyder Settings (Anaconda) > <3 Pin to Start
Search work and web <3 pin to taskbar
/O anaco - See work and web results > @ Uninstall

£ anacd

Figure 2: Anaconda Command Prompt

3 Data set Pre-processing

Not much Data Pre-Processing is required because, model specific pre-processing is done
in the implementation process. We are using the data set called as EBB which is publicly
available on the ETH Zurich website. The Data set is included in the code artifact zip
folder.

Bl

4 Implementation

Total 3 Deep Learning models were used DeepLab, Mask-RCNN and Xception.

4.1 DeepLab Model

Figure [] depicts the necessary libraries and packages which are to be imported. predict-
depth.py includes all the parameters which are necessary to pass to the model. Those
will be passed as an argument in monodepth-model.py. Hence, importing both of them
is necessary.

3https://developer.nvidia.com/cuda-11.0-download-archive

Figure 3: Activate the 'thesis’ environment

Table 1: Evaluation Metrics

Libraries | Version
TensorFlow 24.1
torch 1.8.0
Python 3.8.5
NumPy 1.19.5
CUDA 11.0
CuDNN 8.2.1
CV2 4.5.3

For this project, EBB data set is used. It takes a lot of memory to generate the
results. Sometimes it demands more memory to process such huge files. Windows will
allocate limited GPU usage for each process. We have to manually increase the GPU
memory allocation, otherwise it will throw an not enough memory error. For that, the
above code which is mentioned in the Figure [5]is used. That will allow automatic GPU
memory allocation according to the requirement. This code solved the issue of GPU
memory allocation.

After that for testing the model is any image, the path of the image has to be changed.
(image-path)

In the above Figure [6] an image will be resized, converted to RGB format and sent
to the predict depth function to calculate the depth of the image.

Figure 7] shows that how segmentation mask is created and applied by using Gaussian
Blur function. Hence, the output files will be saved in the output directory.

Figure [§ and Figure [9 depicts the calculation of Evluation Metrics like PSNR, MSE
and SSIM.

4.2 Mask-RCNN Model

Figure [10| shows the imports which we need to import. PyTorch will be used as a Deep
Learning Framework.

Figure[11|shows the calculation of IoU. Later, an IoU Mask will be calculated and merged
together to get the segmentation mask.

Gaussian Blur is applied with OpenCV to blur an image. Gamma value chosen is
0.25. It is shown in Figure [12]

PSNR, MSE and SSIM is calculated using the same code which is used to calculate
the scores for DeepLab. Only input image and compressed image path will be changed.

import matplotlib.pyplot as plt

import numpy as np

import os

import cv2

import predict_deptd

from deeplab model import DeeplabModel
from math impeort logl0, sgrt

import cvZ

import numpy as np

import argparse

from skimage.metrics impert structural similarity as ssim
import tensorflow as tf

Figure 4: imports

config = tf.compat.vl.ConfigProtol()
config.gpu options.allow growth = True
sess= tf.compat.vl.Session(config=confiqg)

Figure 5: GPU Memory Allocation

orig img = cv2.imread(image path)

orig img = cvZ.cvtColor(orig img, cv2.COLOR BGR2RGB)

H, W, C = orig_img.shape

resize ratio = 1.0 * MAX INPUT SIZE / max(H, W)

H, W = int(resize ratio * H), int(resize ratio * W)
orig _img = cvZ.resize(orig img, (W, H), cv2.INTER ARER)

disp pp predict depth.predict(pretrained monodepth path, orig img)
disp_pp cvZ.resize(disp pp.squeeze(), (W, H))
disp_pp = disp pp / disp_pp.max()

model = DeeplLabModel {pretrained_deeplabvB_path}|

Figure 6: Predict the depth map

result = orig_img.copy()
mask viz = np.ones like(obj mask, dtype=np.float32)
threshs = [0.8, 0.5, 0.3]
kernels = [5, 9, 111
fg masks = [disp pp < thresh for thresh in threshs]
for i, fg mask in enumerate(fg masks):

kernel size = kernels[i]

blurred = cv2.GaussianBlur(orig img, (kernel size, kernel size), 0)
result[fg mask] = blurred[fg mask]
mask viz[fg mask] = 1.0 - ((i + 1) / len(threshs))

result[oEj_mask] = orig imgl[ob]j mask]
merged mask = np.max([obj mask.astype(np.float32),
mask viz], axis=0)

putput_directory = os.path.dirname(image path)
output name = os.path.splitext(os.path.basename (image path)) [0]

plt.imsave (os.path.join(output directory, "{} disp.png".format(
output name)), disp pp, cmap='gray')

plt.imsave (os.path.join(output directory, "[} fo.png".format(
output _name)), mask viz, cmap='gray')

plt.imsave (os.path.join(output directory, "[]} segmap.png".format (
output _name)), obj mask, cmap='gray')

plt.imsave (os.path.join(output directory, "{} mask.png".format(

output name)), merged mask, cmap='g
plt.imsave (os.path.join(output directory,
plt.imsave (os5.path.join(output directory,
output name)), orig img)

l.png" .format (output name)), result)
png" . format (

Figure 7: Segmentation Mask

4.3 Xception Model

For the third and last model, TensorFlow, Gaussian Blur, CV2, Numpy are used to
generate Synthetic defocus images.

Almost similar packages are used here and imported them. All the imports necessary to
run Exception model are shown in Figure [13]

A Frozen inference graph is necessary to run this model and to load the necessary weights
to generate the synthetic defocus images. This file shown in Figure 14| should be saved
in the same folder as of code.

Segmentation Map with respect to the localized objects is generated as shown in

Figure [15]

After calculating the segmentation map, the input image will be classified in 0 and

255 based on the classes detected. Using Numpy Unique values are calculated and the
output image (Segmentation Map) will be resized to the original image shape.
After resizing the image, the unique values won’t be limited to 0, 255. Here, Otsu’s
Binarization comes into the picture. It puts a filter on the range of the values. The
output of the Otsu’s Binarization is an image which will have only 2 unique values.
Again, after applying the Gaussian Filter, the final Portrait image is stored in the same
output directory. Which is shown in Figure [16] and Figure [I7]

#PSNER

def PSNE(original, compressed):
mse = np.mean((original - compressed) ** 2)
if(mse == 0):

return 100
max pixel = 255.0
psnr = 20 * loglO(max pixel / sgrt(mse))
return psnr

Import images
original = cv2.imread(image path)
compressed = cv2.imread(os.path.join(output directory, "{} blurred.png".format (output name)))

Check for same size and ratio and report accordingly
ho, wo, = original.shape

hc, wc, = compressed.shape

ratio orig = ho/wo

ratio comp = hc/wc

dim = (wc, hc)

if round(ratio orig, 2) != round(ratio comp, 2):
print{"\nImages not of the same dimension. Check input.")
exit ()

Resize original if the compressed image is smaller
elif ho > hc and wo > wc:

print{"\nResizing original image for analysis...")
original = cv2.resize(original, dim)

elif ho < hc and wo < wc:
print ("\nCompressed image has a larger dimension than the original. Check input.")
exit ()

value = PSNR(original, compressed)
print{"‘\nPeak Signal-to-Noise Ratio (PSNR) value is"™, wvalue, "dB")

Figure 8: PSNR

FasIM

def mse (imagsk, imagsE):

$ the 'Mean Squared Error’ between the two images is the sum of the squared difference betwesn the two images
") — imageB.astypes ("£loat”)) ** 2)

mss_srror = np.sum((imagsR.astyps("£flo
mse_error /= float (imageX.shape[0] * imageld.shape[1])

f return the MSE. The lowsr the error, the more "similar" the two images are.
return mse_srror

def compare (imagsh, imageB):
f Calculate the MSE and SSIM
m = mse (imagek, imageB)

s = ssim(imagelk, imageB)

f Return the SSIM. The higher the value, the more "similar" the two lmages are.

return =

f Import images
imagel = cvl.imread(image path)

image2 = cv2.imread(os.path.join(output_directory, "{!_&E ".format (output_names)))

§ Convert the images to graysscals
grayl = cv2.cvtColor (imagel, cvZ.COLOR_BGRZGRAY)
gray2 = cv2.cvtColor(image2, cv2.CCOLOR BGRZGRAY)

Check for sams size and ratic and report accordingly

lho, wo, _ = imagel.shaps
lhe, we, _ = image2.shaps
ratio orig = ho/wo
ratio_comp = hcfwc

dim = (wc, hc)

if round(ratic_orig, 2) !'= round(ratio_comp, 2):

print ("\nIma same dimens

exit ()

f Resize first image if the second image is smaller
elif ho > hc and wo > wo:

fprint ("\nResizing original image for analysis...")
grayl = cv2.resize(grayl, dim)

elif ho < hc and wo < wc:

print ("\nCompressed image has a larger dimension than the original.
exit ()
if round(ratic_orig, 2) == round(ratio_comp, 2):
mse_value = mse(grayl, grayZ)
ssim values = compars (grayl, grayZ2)
print ("MSE:", mse_valus)
print ("S3IM:", ssim value)

Figure 9: MSE and SSIM

import os

import numpy as np
import torch

import torch.nn as nn
import torch.utils.data
from PIL import Image
import cva

import torchvision
import argparse

from tvping import List
import keras

import tensorflow as tCL
from math impeort logll,

sqgrt

from skimage.metrics import structural similarity as ssim
import matplotlib.pyplot as plt

Figure 10: Mask-RCNN Imports

def ToU(prediction, idl, id2):

L = .
LR e 1te .

= A] 1 (=3 5 T e

A1lnc I IRl Ges are 1dl and 1d.s.

Eirﬁ% extract the bounding Boxeﬁ for sach mask.
bboxl = prediction['boxes"][idl]

bbox2 = prediction['boxzes
device = bboxl.device

Compute U.

'1[1d2]

xmin = min(bboxl1[0], bbox2[0])

ymin
XMax

min(bboxl1[1], bboxZ[1])
max (bboxl1[2], bboxZ[Z])

ymax = max(bboxl[3], bboxZ[3])
u = (xmax - xmin) * (ymax - ymin)
union bbox = torch.FloatTensor([xmin, ymin, xmax, ymax]) .to(device)

Compute I.

xmin = max(bboxl[0], bbox2Z[0])

ymin

max (bboxl1[1l], bbox2[1l])

¥max = min(bboxl[Z2], bboxZ[Z])

ymax

min(bboxl[3], bboxZ[3])

i = (xmax = xmin) * (ymax - ymin)
inter bbox = torch.FloatTensor ([xmin, ymin, =max, ymax]).to(device)

return i/u, inter bbox, union bbox

Figure 11: Calculate IoU

def zpply blur(image, prediction, thres, degree=1/30, gamma=0.25):

LU L | P I - 3 +1m I g .
- B9 N B Kb T BRI Lillalg= w.l Lll S = =

[
h, w = image.shape[0:2]
kzsize = int(min(h, w) * degree)
if ksize % 2 ==

kzsize += 1

mask = get_mask(prediction, thres=thres) .detach () .cpu() . numpy ()
mask[mask >» thres] = 1.0
mask[mask < thres] = 0.0

mask = cv2.erode (mask, np.ones((ksize//4, ksize//4), dtype=np.uint8))
closing = cv2.morphologyEx (
mask, cv2.MORPH CLOSE, np.ones((ksize, ksize), dtype=np.uints8))
mask = cv2.GaussianBlur (mask, (ksize, ksize), 0)
mask dilated = cvZ.dilate(mask, np.ones((ksize, ksize),
dtype=np.uint8)
)
mask dilated = cvZ.GaussianBlur(mask dilated, (ksize, ksize), 0)

mask dilated = np.expand dims (mask dilated, 2)

¥ Bokeh effect on the whole image
kernel = disc shaped kernel(ksize)

$¥ Get image gamma-corrected and apply disc-shape blur to get an

image with kgksh effect

gamma correction = ((image / 255.0) ** (1 / gamma)) * 255

bokeh = cv2.filter2D(gamma correcticn.astype(np.uint8), 3, kernel)
bokeh = (((bokeh / 255.0) ** gamma) * 255).astype(np.uint?s)

Eeep only pixels with high wvalue from hgkeh image

blurred = cv2.GaussianBlur (image, (ksize, ksize), 0)

bokeh = bokeh * (1.0 - mask dilated)

bokeh = cv2.max (bokeh.astype (np.uint8), blurred)

¥ Blend
mask = np.expand dims (mask, 2)
image = image * mask + bokeh * (1 - mask)

return image.astype(np.uints)

Figure 12: Apply Blur

10

—*— coding: ytf-8 —*-

import os

from ic import BytesIO

import tarfile

import tempfile

import cva

from six.moves import urllib

from copy import deepcopy

from PIL import Imagd

from math import loglO, sgrt

from skimage.metrics import structural similarity as ssim
from copy import deepcopy

from matplotlib impert gridspec

from matplotlib impeort pyplot as plt
import numpy as np

from IPython.display impert Image as IMG
import tensorflow as tf

Figure 13: Imports for Xception

imagenet-vgg-ve
rydeep-19.mat

Figure 14: Frozen Inference Graph

11

def vis segmentation(image, seg map):

— 1+ nttatian mar and overlayw wliew wWen
1O IMNdap 4alld ovelld LW

plt.figure (figsize=(15, 5))
grid spec = gridspec.GridSpec(l, 4, width ratios=[&, €, ©, 11)

plt.subplot(grid specl0])
plt.imshow (image)
plt.axis('off")
plt.title('input image')

plt.subplot (grid spec[l])

seg_image = label to color image (seg_map) .astype (np.uints)
plt.imshow (seg_image)

plt.axis("off")

plt.title('segmentation map')

plt.subplot (grid spec[2])
plt.imshow (image)

plt.imshow(seg image, alpha=0.7)
plt.axis('off")
plt.title('segmentation overlay')

unigque labels = np.unique (seg_map)
ax = plt.subplot(grid_spec[3])
plt.imshow (
FULL COLOR MAP[unique labels].astype(np.uint8), interpolation='nearest')
ax.yaxis.tick right()
plt.yticks (range (len(unique labels)), LABEL NAMES[unique labelsl)
plt.xticks ([1, [1)
ax.tick params (width=0.0)
plt.grid("off")
plt.show()

LABEL NAMES = np.asarray([
'"background',

"car', 'cat',

"bird', 'boat', 'bottle', 'bus',
ningtable’, ", 'horse', "motorbike',
' F "ttt

'person', 'pottedplant

1)

Figure 15: Segmentation Map and the Label Names

person not person mapping = deepcopy (numpy image)
person not person mapping[seg map '= 15] = 0
person_not person mapping[seg map == 15] = 255

plt.imshow(person not person mapping)
np.unique (person not person mapping)
orig imginal = Image.open (IMAGE NAME)
orig imginal = np.array{orig_imginal”
orig imginal.shape

Figure 16: Calculating Unique Values

12

imapping resized = cvZ.resize(person not person mapping,

i (orig imginal.shape[l],

- orig imginal.shape[0]),
Image.ANTIALIAS)

plt.imshow(mapping resized)
np.unique (mapping resized)

gray = cvZ.cvtColor(mapping resized, cv2.COLOR BGRZGRAY)

blurred = cv2.GaussianBlur (gray, (15,15),0)

ret3,thresholded img = cvZ.threshold(blurred,0,255,cv2.THRESH BINARY+cvZ.THRESH OTSU)
plt.imshow(thresholded img, cmap="gray")

thresholded img.ndim

mapping = cvZ.cvtColor (thresholded img, cvZ.COLOR GRAYZRGB)

plt.imshow (mapping)

np.unique (mapping)

ilblurred original image = cvZ.GaussianBlur (orig imginal,
(251,251),
0)

plt.imshow(blurred original image)

llayered image = np.where(mapping '= (0,0,0),
orig imginal,

blurred original image)

plt.imshow{layeredﬁimage”
im _rgb = cvZ.cvtColor(layered image, cvZ.COLOR_BGRZRGB)
cvZ.imwrite ("Potrait Image.jpg", im rgb)

IMG("Potrait Image.jpg")

Figure 17: Otsu’s Binarization and Final Output

13

	Introduction
	Project Overview
	Prerequisites
	Hardware Used
	Software Used

	Python Virtual Environment Creation
	Anaconda Installation
	Environment Setup
	Python Libraries, Packages and Frameworks

	Data set Pre-processing
	Implementation
	DeepLab Model
	Mask-RCNN Model
	Xception Model

