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The Prediction and Optimisation of Smart Energy
Usage through Machine Learning Recommendations

Mark McGrane
x19140606

Abstract

Even though renewable energy does not have the same limited supply as fossil
fuels, it is still a commodity that needs efficient management to maintain an unin-
terrupted supply. The development of the Colour Code My Energy (CCME) Re-
commder algorithm provides personalised recommendations to users on how their
current usage compares to an optimum value. Armed with this knowledge, the
premise occupants can make instant adjustments and recalibrations of their habits
when needed. Applying a Deep Neural Network(DNN), outcome predictions of the
algorithm were retrospectively applied to the Hourly Usage Energy (HUE) dataset
and demonstrated how the algorithm builds a knowledge base of best behaviours
over time, with improvements on the quality of recommendations as it learns. Over
time, the algorithm substantially increased its knowledgeable recommendations.
Beginning with the ability to recommend 20% of reads, this increased to 80% by
the end of the 3rd year. The DNN attained a peak accuracy of 0.98. Also explored
within the project was the prediction of daily energy usage for a premise through
multiple regression algorithms with Root Mean Squared Error (RMSE) scores of
under 0.05 achieved in two out of the three models. Results of this nature facilitate
energy efficiency at the consumer and supply level.

1 Introduction

Smart Technology has facilitated and enhanced day-to-day activities by extracting,
transforming, integrating, and storing digitalised data. As the data collected is up to
the present minute, our knowledge base now allows for increased and improved decision-
making abilities in real-time. The development of data capture points within society,
combined with high-speed networks, enables this rapid transportation and archiving of
large data volumes, allowing the analysis of output from our actions on a more granular
level than ever before. However, collection and storage are only the first steps to make
the best use of the harvested data. Sophisticated data mining techniques are required
to establish patterns, trends, and outliers, leading to a constructive analysis of past and
present data diagnostics. Once the ascertaining of data history and standings is complete,
it allows for future developments and the modelling of likely probabilities. Ultimately
this means practical actions taken now can lead to tangible benefits later in time.

Smart Energy has provided the end-user with vast data concerning their historical
consumption and likely future needs. Such information was previously only available
when a monthly or bi-monthly bill would arrive. Even at that point, the bill would



concentrate on aggregated consumption over a block period. As a result, there was no
facility to isolate individual room and appliance usage at specific points of the day or
week. However, there is now the potential to store and scrutinise this information to
establish financially beneficial behaviours concerning energy usage.

With information and knowledge derived, the fundamental goal of the analysis is
to optimise energy consumption within buildings without impacting the lifestyle of its
inhabitants. For this reason, users must retain control over the system, and the im-
plementation of any recommendations must be done manually as opposed to executed
automatically. The efficiency of the present energy consumption level against the op-
timum value for the same set of circumstances is classified through the custom-developed
recommender algorithm Colour Code My Energy (CCME). First, the CCME algorithm
compares the optimum read (already on file for this scenario). Then, it assigns a colour
coded ranking reflecting the status of the present read. The composition of a scenario is
based on a myriad of inputs such as the building type, features combined with weather
and time characteristics. Whilst there is a plethora of data available for the end-user
to research, participation is more likely if the recommendations are straightforward and
easy to access. The intention will be to activate one of seven colour-coded lights on a
display panel. The colour of the light will symbolise how the building’s present energy
consumption level is, in comparison to what is on file as the ideal value in that specific
scenario. Therefore the user is always aware of how their present behaviour compares to
the optimum consumption level and has the opportunity to make instant adjustments if
necessary.

Optimising the outputs will identify areas of potential energy waste and unnecessary
financial loss due to excess usage and inefficient habits. In addition, continual and gradual
adjusting of the recommendations over time to align present consumption closer to a
baseline peak value is likely to encourage long term sustainable behaviour from the end
consumer. The goal is not necessarily to reach that optimum target but rather to move
in its direction. If the user is aware of poor consumption habits and can instantly adjust
their behaviour, the establishment of savings and better traditions will inevitably follow.

1.1 Research Question, Project Objectives and Contributions

The research project is concerned with predicting and reaching optimum energy con-
sumption levels for a diverse range of users based on their specific individual behaviours,
characteristics and environments. While most of the research will concentrate on snap-
shots of how efficient the energy usage is within the present moment, there is also interest
in predicting the cascading effect of how the daily usage will look based on one hours
worth of consumption. Therefore the research question and sub research questions are as
follows.

RQ; "How can energy usage recommendations be established according to weather
patterns, building characteristics, and the previous consumption history of a premise to
optimise both comfort levels and energy demand?”

Sub RQ 1; ”Upon establishing recommendations, to what extent can predictions be
made from deep learning techniques, so the end-user fully understands their consumption
efficiency?”



Sub RQ) 2; "How accurately can a day’s worth of consumption be predicted for a
premise based on an hourly read through machine learning regression techniques to enable
the efficient management of supply?”

The project objectives are outlined in Table

Table 1: Project Objectives

existing external models.

NoJ Objective Methods Evaluation Metrics
Critically evaluate and analyse lit-
1 erature of forecasting, recommender
systems and optimisation techniques
within energy consumption.
Identify, download and merge datasets
2 | of energy, weather usage and other rel-
evant data.
) L Ti ies T
Create data visualisations and explor- Hme Se?les rends
. . Correlation Plots
atory analysis. Enhance data by deriv- . .
3 . .. Descriptive Statistics
ing supplementary values from origin-
Heatmaps
als fields. .
Histograms
Design and implement an external re- Referential Integrity
4 | lational database model to serve as a | PostgreSQL Read Data From
structured backup. Write Data To
Deve?op multiple regression mgchlne Random Forest Regressor MAPE
learning models to predict the daily en- .. MAE
) i Decision Tree Regressor
ergy consumption of a house from an KNN Reeressor MSE
hourly energy read. & RMSE
Develop the CCME recommender al-
gorithm, which benchmarks a present
6 | read against a previously stored op-
timum value for the same circum-
stances.
Accuracy
F1
Create a neural network that can pre- PreSi(;?(l;i
7 | dict the recommendations of the al- | DNN
orithm Recall
& ' ROC
AUC
8 | Analyse outputs and results.
9 Compare and contrast results against

This project solves the research question and sub research questions by creating a
diverse range of past and present descriptive and diagnostic visualisations. The estab-
lishment of recommendations derived from the CCME algorithm and accurate forecasts
from the machine and deep learning models form the fundamental basis of the imple-
mented solution. Enhanced and effective energy management through these predictions,




recommendations, and optimisation reduces the financial cost to the end consumer, leads
to more efficient management of energy for the supply grid and is more beneficial to
the environment as a whole. A major contribution has been delivered that provides a
unique approach of predicting and optimising energy through up to the minute recom-
mendations, which keep the end-user in total control. A minor contribution has also been
delivered, which provides a restructured relational data model of the dataset used in this
study. These project contributions will supplement the existing body of knowledge in
this area.

The remainder of this report is structured as Section will provide a thorough
critical review of literature already published in the area of smart energy predictions,
recommendations and optimisations. Section [3| will provide a methodology design at a
high level of how the project will be implemented. Section H| will document the steps
taken throughout the implementation as well as the challenges faced. Section will
provide a platform for discussion of results from the implementation, with comparisons
made to other existing work in this area. Finally, [7] offers some suggestions for future
improvements and concludes the project.

2 Related Work

The development of a solid methodology will begin following critical analysis of re-
lated work. This related work will concentrate on areas of research that have covered
energy forecasting (both short and long term), energy-efficient recommender systems, the
optimisation of energy consumption and the exploration of digital energy theft. These re-
spective subgenres should provide the best learning insights, providing solid foundations
for project development.

2.1 Short Term Energy Forecasting

Various studies have researched short-term forecasting with different approaches and
various timelines used for the target prediction. Oprea and Bara| (2019) forecasts the
consumption of electric energy for the following 24 hours while |[Khan et al.| (2020)) focuses
on several different periods in the near future for a multitude of energy types. Short term
forecasting can generally expect to attain a high level of accuracy as predictions are likely
to mirror present trends. [Khan et al.| (2020) focuses on the forecasting of power through
a fusion of 3 different machine learning approaches. As noted within the report, ” Com-
binations of prediction methods are receiving increasing attention”. Therefore ensemble
learning is joining multiple different models to get a more robust learning outcome. This
study presents a combination of CatBoost with both Support Vector Regressor(SVR)
and Multilayer Perception(MLP). Each model is trained independently, with the results
concatenated for a final forecasting figure. |(Oprea and Bara/ (2019) incorporates a NoSQL
database (Mongo DB) to merge energy consumption data from a residential building con-
taining smart meters with weather patterns of the same timeframe. The study looks at
implementing a feed-forward Artificial Neural Network(ANN), with the option of bench-
marking against numerous other pre-existing algorithms. During the initial analysis of
the data, the factors that influence consumption, such as weather characteristics, day of
the week, and time of the year, are given a ranking number representing how significant
they are in the amount of energy used within the building. Next, the application of



K means clustering partitions, customers into groups where the consumption levels are
similar. Finally, the aggregation of data into 24-hour values means that the consumption
for the building as a whole for the next 24 hours can be predicted.

It is interesting to note that whilst Oprea and Bara| (2019) analyses the building
as a whole, Shapi et al. (2021) splits the study between 2 separate commercial type
customers and also drills down into the data as opposed to aggregating it. Predicting
energy consumption within a smart building begins with analysing the data collected
from Internet of Things(IoT) meter sensors attached to electrical sockets. The data can
then be stored and examined on a granular minute by minute level. The combination
of K Nearest Neighbour(KNN), Support Vector Machine(SVM), and an ANN within the
methodology allows the prediction of maximum demand based on electricity statistics,
measuring the spread of the distribution, and making forecasts based on predictions on
patterns mined within the data. The dataset is for a minimal amount of time and only
encompasses from June 2018 until December 2018 (for two different tenants). Again this
is in contrast to |Oprea and Bara (2019) whose study has a much more comprehensive
dataset containing over 6 million rows of data for 114 New England based apartments
with consumption readings also recorded on a minute per-minute basis.

Even allowing for a drill down to a specific 60-second timeframe, knowledge of season-
ality trends and if the specific consumption is in keeping or out of sync with long term
trends is not available to us in [Shapi et al.| (2021). Nevertheless, not all studies factor in
characteristics (i.e. weather and building) and instead focus on a data-driven approach
only as it argues that the embodiment of these features are already encapsulated within
the smart meter data. One such research is Eneyew et al.| (2020)), which seek to fore-
cast the next hour’s consumption value through a DNN that comprises convolutional
features and a wavelet transform. One of the methodology segments involves deploying a
one-dimensional convolution model with max-pooling operations to isolate and identify
features from the dataset provided. After fitting the model, the output layer will generate
predictions of the consumption. Six years’ worth of hourly energy reads is used within the
study across ten different houses. Whilst some differences exist between the houses, there
does not seem to be any extreme outliers. The study uses the Mean Absolute Percentage
Error(MAPE) as a barometer of success through 3 interconnected evolutionary experi-
ments. A 1-dimensional dense model established preliminary results. The application of
stationary wavelet transformation within a Long Short-Term Memory(LSTM) convolu-
tional model subsequently improved these results. |Goyal et al. (2020) specialises their
study in the impact systems such as heating, ventilation, and air conditioning (HVAC)
have on the overall energy usage of a building and how the obligation to ensure there
is adequate supply can place extreme pressure on the supply grid. For this reason, high
accuracy forecasting is vital for the management of resources on an efficient level.

Using nonlinear regression and fuzzy c-means clustering, Chen et al.| (2020) also seeks
to predict the subsequent day’s energy consumption whilst factoring in the trends which
exist within the time-based characteristics. The study looks at how features diversify
and which factors influence this. Whilst the hypothesis that a consistent energy pattern
can play a crucial role in increasing the accuracy levels of predictions is stated clearly
from the outset; it is unclear whether any new learnings are gained from this other
than the applicable techniques themselves. As expected, incorporating weather statistics
improves the extrapolations. Prediction windows are predetermined and cover what is



described as "different typical seasons respectively”. Revisiting the use of data-driven
techniques seen in [Eneyew et al. (2020), Yiyi et al| (2020) looks at predicting the daily
usage of electricity in a residential dwelling for 17 months from 2013 to 2015. The
homes involved have indoor sensors to record environmental settings to predict daily
consumption through a 1-Dimensional Convoluted Neural Network(CNN) and an LSTM
recurrent solution. Outliers were removed from the dataset with a Principal Component
Analysis(PCA), reducing the number of independent variables used in the study to 16.
By splitting the parameters between external weather variables and those belonging to
the internal building, the study focuses on areas of particular interest. For example, the
experiment selects only one house, and within that one house, certain rooms are excluded
due to low occupancy throughout the days. Root Mean Square Error (RMSE) scores are
impressive, but the study hones in on very niche scenarios such as "only bedrooms” and
"data without bathroom inputs”.

2.2 Energy Efficient Consumption Recommender Systems

Recommendations to adjust and reduce energy consumption will have different philo-
sophical views regarding residential and commercial buildings. Whilst the comfort level
is of paramount importance to the occupant of a residential building, the same is not
necessarily true of a commercial premise. The goal of the recEnergy recommender sys-
tem in research by |Wei et al.| (2020) is to sufficiently optimise energy consumption but
retain human decision making within the process through deep level reinforcement learn-
ing. While the focus of the design and implementation is to reduce energy consumption
in commercial buildings, actions that can achieve savings of high energy if implemented
are recommended to end-users who then have the option to deploy or reject. Imple-
mentation of changes will not occur automatically. Instead, the hope is to mould human
behaviour in the direction of more frugal habits. Slightly contrasting is the view that re-
commendations are likely to have a higher implementation success rate if they result from
knowledge attained through learning and analysis of individual user behaviour defined
within historical data. Mishra et al. (2020) develops a pattern mining algorithm that
is specific to individual user behaviours intending to offer alternative recommendations.
The establishment of these actions is from patterns found in newly created events against
a suitable alternative. Statistical binning is incorporated to define single activities as
granular level incidents combined into one ”transaction” containing a sequence of many
activities. Results of this type of experiment are fuzzy by nature, but 3 of the top 4
questions achieved a +80% acceptance when surveying 120 sample users over 15 days.
The wording of some questions tends to lean towards a specific response, with terms such
as "relevant”, "fair”, and ”similar” all somewhat ambiguous by their nature.

Furthermore, a substantial breakdown of actions and adjusted recommendations does
not accompany this paper. However, there is no doubting that both |Wei et al. (2020))
and Mishra et al.| (2020) openly challenge the perception that the achieving of proper
optimisation within energy is possible without altering the behaviour of its occupants as
they are primarily responsible for a large portion of same. In turn, altered behaviour
might not translate into savings if consumption is simply directed elsewhere or are not a
realistic option.

Both |Schweizer et al. (2015) and |Alsalemi et al.| (2021 focus their study over a
short period of 4 weeks and achieved similar results with savings of approximately 7%



in energy usage. Schweizer et al. (2015 explores how a buildings energy usage history
and individual needs can be analysed. The study does not include training and testing
of data as part of this research. Instead, predictions are relayed personally to users, who
rate how practical and informative those recommendations are. In order to accurately
provide recommendations of the next best action to users, knowledge of historical power
consumption is not enough by itself. Obtaining data is also vital so that explorations and
discoveries can be made in terms of the order of events. [Schweizer et al.| (2015)) designs and
implements the Window Sliding with De-Duplication (WSDD) algorithm for the efficient
mining of patterns within the user home, combined with equivalent energy consumption.
Main comparisons with algorithms such as BIDE+ and PrefixSpan are limited to technical
aspects such as run times and internal memory consumption. Benchmarking to other
recommender systems is not done within this study. Instead, the report focuses on a
recalibration of the suggestions but yielded no improvement on the rules, resulting in
recommendations (23 accepted in phase 1, 17 accepted in phase 2). |Alsalemi et al.
(2021) encompasses a ”Micro-Moment” type event, which is used to track individual
activities at the appliance level. Once established and grouped, multiple micro-moments
can predict usage patterns and hence attempt to forecast individual energy requirements.
Sensors record not only energy consumption but also particular weather characteristics.
Whilst predicting energy consumption is the primary area of research, a follow-up analysis
explores how the information gathered can be of tangible use in changing attitudes and
reducing overall consumption. A rule-based recommender system marries information
gathered about user data and the physical environmental snapshot at that moment in
time. Subsequently, it then factors in details such as whether or not a room is occupied.
Though deep learning achieves an accuracy of 99.95%, the timeframe of 4 weeks and the
number of users does not provide a deep dive into the model long term. From an ethical
point of view, There is acknowledgement within the current limitations of the project that
the connection and transfer of data to the server are not secure. The lack of security puts
the data in jeopardy and potentially highlights patterns in which the home is unoccupied
to unauthorised individuals.

The non-linearity of relationships and how they factor in terms of statistical applic-
ations are addressed by Wang et al.| (2020). The study explores those which specifically
attempt to predict energy consumption. The information identified can allow users to
save on their electricity consumption. From a dataset of 14 residential houses in Hong
Kong over one year (2018-2019), the study seeks to marry the users’ current and his-
torical consumption profiles and rank their potential savings against others who are also
taking part in the survey. As with Schweizer et al. (2015) and Alsalemi et al. (2021)),
a final average saving of a little over 7% is achieved, but extreme outliers exist at both
ends of the scale, meaning whilst some houses see huge savings, others achieve minimal
(if any) reductions in their consumption habits. The figure is not very surprising in many
ways as over 40% of the households surveyed did not have children. Concurrently half
started the study immediately, whilst half delayed their commencement in the scheme.
Once pre-processed and standardised, the data has an SVR model applied. Results are
positive, with the algorithm outperforming random forest and different types of neural
networks. The family size of the household and whether or not children were present
seemed to be the deciding factors on how the model performed overall.



2.3 Optimisation of Energy Consumption

Optimally adjusting consumer behaviour when factoring in extra fuzzy parameters,
such as the external environment, is a significant challenge in making recommendations
to lower consumption levels. Kontogiannis et al.| (2021 explores the mechanisms in which
this can be derived and presented to the end consumer. The study expands on previous
research to generate rules through decision tree linearisation. It is interesting to note
how the study picks up on a subtle issue not explored in many other pieces of literature.
Implementing a model based solely on mathematics and logic excludes the specialised
knowledge that only humans can attach to the input data and the interpretation of
outputs.

For this reason, there is a requirement for a degree of fuzziness, which can handle the
inconsistencies and flexibility of real-world scenarios. Ambiguity also arises when indi-
viduals describe an input in linguistic terms instead of statistical figures (e.g. cold/hot
as opposed to the specific temperature)—establishing a rule base to allow for ”fuzzifica-
tion” of inputs and acts as a translator within the decision-making unit. The principals
within this are a series of IF-THEN rules that establish a feature importance grade from
the specific input. Each attribute will have linguistic terms attached to the variable as
opposed to numeric values. The approach by [Kontogiannis et al.| (2021) is in contrast to
Nazeriye et al.| (2020) who seek to optimise energy usage by identifying specific appliances
which are driving up consumption and can be adjusted. The paper demonstrates trends
and patterns before applying a decisions trees model; the k means algorithm, and the
differences after application. In conjunction with altering user behaviour, critical stra-
tegic decisions (of which can be argued would have a more significant impact) such as
effectively insulating the property, regular service of boilers and the installation of cavity
walls are also carried out within each of the homes. As the study is across many houses
in England and Wales, the consumption data is normalised relative to the floor size of
the property. Houses with patterns comparable to others are clustered together, with
each group then being analysed in isolation. Once clustering is applied, the decision tree
algorithm will assess the results of the different models.

While the most common techniques regarding the optimisation of energy primarily
encapsulate appliance usage and central heating features, Raval et al.| (2021)) extends the
level of analysis by exploring how the efficiency of power sockets and sensors themselves
can be improved. Part of the hypothesis is that sensing features that traffic the data
usurp and monopolise a vast amount of energy. The paper develops a suite of energy
management features for the various IoT devices present within the building using a
genetic algorithm to select the most efficient parameters, with MATLAB Simulink and
OpenModelica used to simulate the results of the various scenarios. Through incorporat-
ing a feedback mechanism and reinforcement learning, phase 3 of the tests demonstrate
impressive results in improving optimisation time, operating efficiency and consumption
used. [Pawar and Vittal (2017) also uses a specialised management system to monitor
and optimise the power of a building. Once again, hardware is the aim of the study, with
the smart technology concept expanded to encompass power sockets to estimate how
similar /different the usage of specific appliances are. ZigBee acts as a digital mediator to
determine whether sufficient power is available (in real-time) to approve a request when
a user physically activates a socket. The study briefly mentions a ”power negotiation
algorithm”, but the details of what steps are taken if the request is denied is absent from



the methodology brief.

2.4 Long Term Energy Forecasting

The development of the Smart Energy infrastructure has allowed better recording and
tracking of energy usage than ever before. Concurrently, there is now the potential for
future simulations with greater accuracy due to the highly granular level of detail we now
have. However, like all forecasting, accuracy decreases as the timespan into the future
increases that the predictions are made. Nabavi et al. (2020) identify the need to predict
residential and commercial energy demands for Iran by 2040. One of the drawbacks of
long-term forecasting is the inability to accurately factor in a significant change within
the social behaviour of society, such as the work from home shift during the COVID
19 pandemic and its subsequent instant impact on the energy supply grid. While the
study encompasses input points such as population figures, gas/electricity price, and
Gross Domestic Production(GDP), there is challenging to reproduce past circumstances
into the future. The training/testing split is unusual, with 47 years between 1967 to
2014 used to train the model, but only the most recent years of 2015, 2016 and 2017
used to test the predictions. [Nystrup et al.| (2021) supplements the notion that present
methods will not suffice in the area of long term forecasting and that an unsupervised
learning approach using wavelet transform is used to develop eight unique and diverse
load profiles. These profiles can then be analysed for the robustness and elasticity needed
for long term forecasting through min-max scaling.

2.5 Digital Energy Theft

Throughout recent times, energy grids have developed their techniques to improve
all aspects from production to power delivery. While there has been an enhancement in
reliability and security, there are still issues to address in terms of cyber energy theft.
Digitalisation has allowed the development of more sophisticated techniques to address
inconsistent energy patterns. [Syed et al. (2020)) focuses on developing a DNN/LSTM
which will identify anomalies within the electricity network. While the paper approaches
this purely from the point of view of tracking theft of power through suspicious usage pat-
terns, erroneous readings can also be something that can identify more benign issues such
as a damaged meter sensor or software fault. A Chinese smart grid company provides the
dataset used for this study. 8.5% of the customer base has been identified as committing
energy theft from January 2014 to September 2016. The missing values make up 25%
of the actual data. The results can identify significantly different trends and patterns
between thieving and non-thieving customers with an accuracy level of 92%. The model
itself is simple in its application as only consumption history is analysed through the data-
driven approach. External datasets which are present in other studies, such as weather
characteristics, are not factored in. While the study yields impressive results, it does not
elaborate on how a customer who drastically reduces energy consumption for genuine
reasons, such as when the house is vacant, is dealt with. |Jindal et al.| (2020]) highlights
the struggle of developing nations and their attempt to tackle this issue; much like |Syed
et al. (2020), this study also focuses on using data-driven techniques to detect theft of
energy. Although the study mainly analyses central grid infrastructures, the application
of such methods can easily be transferred to individual premises. One of the scenarios
in the study takes a dataset with no record of energy theft and simulates abnormalities



into the data to reduce consumption on critical appliances. As similar consumers can be
grouped onto one profile based on similar historical patterns of usage, a sudden change
of one portion of the data would indicate possible theft.

2.6 Gaps for Development and Conclusion

Present gaps from the literature reviewed would indicate scope exists to expand the
types of recommendations provided to users. Keeping the user in total control and
modelling recommendations based on the behaviour specific to that individual building
is a cornerstone to be retained within this project; there needs to be a mechanism where
the user gets constant information about the next best action. This message needs to be
relayed clearly and unambiguously. One criticism of present systems is that most studies
focus their communications on ad hoc transmissions or develop a structure where the user
has to search for the information. Many of the projects reviewed seem to choose between
combining external characteristics to the data or concentrating solely on a data-driven
approach. It would be interesting to analyse, establish and verify if a hybrid of the two
approaches is possible and successful. Short term predictions of the next day’s energy
are also somewhat flawed, considering there is the potential for the next day to have a
different set of conditions to the present day. This is demonstrated twice every seven day
period where today is a weekday and tomorrow is a weekend or vice versa. Therefore, it
makes more sense to develop predictions based on the present day. has now
been fully achieved.

3 Smart Energy Usage Methodology Approach and
Design Specifications

3.1 Overview

The designing of a structured methodology enabled the production of tangible results
and analysis upon the project’s conclusion. A methodology was developed (See Figure |1
based loosely on both the CRoss Industry Standard Process for Data Mining (CRISP-
DM) and Knowledge Discovery in Databases (KDD). The identification and collection of
data led to the combining of multiple sources into a solitary primary dataset. This then
allowed for the development of initial explorations and visualisations. Following this,
machine learning models were created to attain high-quality predictions with the CCME
recommender algorithm also established.

10
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Figure 1: Smart Energy Usage Methodoloy

3.2 Smart Energy Usage Data Pre-Procesing

Whilst section [2| of this project explored some pieces of research that concentrated
on a small number of properties over a limited period, these studies can be susceptible
to one-off events that can distort the regular patterns and trends. For this reason, there
was the need for data to encompass multiple years and be combined from various sources
to give the necessary inputs to attain solid learnings and conclusions.

The Hourly Usage Energy (HUE) dataset Makonin| (2018) not only matched the re-
quirements of the project but has also been proven beneficial in several other research as-
signments investigating and seeking to prove an array of null hypotheses Makonin! (2019)).
Combining energy and weather statistics for seven years within the Canadian province of
British Columbia, the data is of the most recent variety considering the oldest reads on
file are no earlier than 2013. The individual household’s privacy is fully protected with
the removal of all personally identifiable data, but the dataset retains useful abstract in-
formation regarding the house type, facing direction, and HVAC appliances. In addition,
individual households each retrieved their personal historical usage from their encrypted
online portal, allowing for the donation of their energy usage. Overall the HUE dataset
contains hourly readings for 28 houses and separate files for hourly weather statistics,
bank holiday dates and details of the houses involved. All files (apart from the house
characteristics) are in the format of Comma Separated Value(CSV) files.

Section 4.1 expands on the mechanisms and structure for combining the data frames
and dealing with missing/bad data.

11



3.3 Smart Energy Usage Data Mining

Now that the data is combined, exploration could begin to discover trends and pat-
terns. Establishing which visuals give the best insights into the learning of information is
vital at this juncture. Histograms show the distribution of energy, temperature, humidity
and pressure. Horizontal bar charts demonstrate a timeline of what period each house has
documented data. Timelines of energy consumption individual to each house and each
type of house compare and contrast outlines over time. Scatter plots demonstrate how
each of the weather characteristics specifically influences energy usage. 3D and 4D plots
allow for the impact of more than one independent variable. Other miscellaneous charts
such as treemaps, heatmaps and pie charts display energy usage over various categorical
values. Concerning each house, comparisons were made relating to their total, average
and range of energy. This analysis established the first indication of which houses are
operating efficiently and those that need improvement.

Date and timestamp fields often prove cumbersome values for the learning phase of
machine models. Therefore, separating these into additional categories such as week-
day/weekend, time of the day, and time of the year improves learning efficiency. Creating
these additional categories also adds quality and depth to the dataset. The grouping of
these extra data into categories yields more valuable information for visual demonstra-
tions and machine learning. A field to record the daily usage is also introduced for each
house. This field serves as the dependant variable for the machine learning regression
models in the next phase.

3.4 Smart Energy Usage Prediction Models

The machine learning phase of the project was involved in establishing the findings
concerning the research question and sub research questions. This included developing
multiple regression models to see how accurately a house’s daily energy can be predicted
from knowing an hours’ worth of consumption. This phase also establishes the CCME
recommender algorithm, categorising the value of the present hour’s energy read based
on previous knowledge about the user. Finally, the creation of a deep neural network
seeks to predict these recommendations accurately.

Regression analysis is a machine learning technique that involves predicting a con-
tinuous numeric value from multiple independent variables that will be either numerical
or categorical. For this section of the project, the target is the prediction of the daily
energy of a specific house from one hour’s worth of consumption. The project will use
the regression algorithms displayed in Figure [2 to ascertain which model gives the best
result. Decision Trees Regressor constructs the model based on a tree structure in
which the dataset is reduced continually into smaller subsections. Random Forrest Re-
gressorconstructs multiple individual decision trees on many subsets of the data. The
algorithm uses averaging to improve the accuracy and reduce the risk of overfitting. K
Nearest Neighbour Regressor works on the assumption that data points which exist
in close vicinity are similar.
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Figure 2: Regression Models

The final step of the methodology is developing and implementing a DNN so that
predictions can be made of what the recommendations should be from the algorithm. As
seen in Figure 3] the model has many hidden layers between inputs and outputs. Unlike
the regression models to predict daily energy consumption, the DNN is categorical and
will use the CCME Recommender algorithm colours as predictions for what it believes
the energy reads should be.
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Figure 3: Deep Neural Network

A DNN is configured at this point as opposed to a regular machine learning classific-
ation model due to the ability of the DNN in its effectiveness to make decisions and not
simply learn from the data.

4 Implementation of Prediction and Optimization of
Smart Energy Usage

This implementation phase puts into practice the steps discussed and outlined in the
section Consolidation of the data was done in the pre-processing element, which
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allowed informative visualisations to represent the combined dataset. The transfer of
the data to a PostgreSQL database provides a new viewpoint of the datasets whilst
retaining the amalgamations of the pre-processing phase. Predictions of daily energy
were established through multiple regression models. The CCME algorithm and DNN
allow for the creation of recommendations for the end-user whilst also creating a roadmap
to optimisation of energy and reductions regarding inefficiencies.

4.1 Data Pre-Procesing

After downloading the multitude of CSV files externally for the (HUE) dataset|Makonin
(2018)), there was the need to combine these into a single shared data source for struc-
tured analysis to occur. R Studio is a dedicated Integration Development Environment
(IDE) that allows direct data manipulation through the R language. In the pre-processing
phase, R Studio was responsible for importing each user history consumption file. Each
house file (House Number 1 — Number 28) has three columns detailing the date, hour and
energy (kWh). In addition, an identifier was attached to each reading to ensure it was
possible to trace it back to a specific house once merged. The conclusion of this phase

resulted in an output of 1 solitary CSV file. has now been fully achieved.

House number 7 and number 15 were removed from the dataset and will not be
considered part of the analysis. This is because House number 7 lacks details about its
characteristics, while house 15 is from a different region to the other houses, so that it
may be susceptible to different energy demands. This leaves 26 houses for investigation
within the project.

The text file containing details about each house, such as facing direction, energy
appliances, house type, and other information, was manually inputted into a separate
data frame within R Studio. This data frame only contained 28 rows and needed specific
customisations regarding details of the energy systems. In addition, the weather statistics
were imported into a separate data frame with no alternations needed.

The quality of the data is very good overall. Details of how the limited number of
missing values from the CSV files that were addressed are as follows

e Missing Energy Values - Any missing energy values were populated by grouping
the combined dataset by house, then by date ascending. Once grouped, the missing
value was filled by taking the next hourly read available. The belief was that energy
consumption does not alter drastically from hour to hour.

e Missing House Chars - House 7 was the only house that didn’t have descriptive
details, and as such, the house and its read history were removed from the project.

e Missing Weather Reading Values - The weather file was missing 40 individual
hours worth of data between 01-Jan-2012 and 13-May-2020. As this was minuscule,
40 shell rows were added to the file with NA values. Next, the NAs were updated
similarly to the missing energy values (Taking the following data available after
sorting the data frame from oldest to newest).

e Missing Weather Descriptions - The weather file is missing almost 45% of
weather descriptions. Whilst not removed, the field was not used in any form of
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analysis or learning as the volume of missing data, and the loose category of the
labels present within the field (i.e. Clear, Cloudy, Mainly Clear, Mostly Cloudy)
was unlikely to make for accurate interpretations.

As a final step of the pre-processing phase, the three data frames are joined on common
keys and outputted as one single CSV file to begin the next stage of the implementation.

4.2 Data Visualisation

Jupyter notebooks are used for the interrogation and visualisation of the data. This
implementation stage involved putting structure to transform raw data into meaningful
information to draw constructive conclusions. The open-source python language offers
various libraries such as numpy, pandas, seaborn and matplotlib. After importing the
amalgamated CSV file, updates are made to the data types to ensure numeric and cat-
egorical values are appropriately assigned.

Energy and the three weather categories (Pressure, Humidity and Temperature) are
the primary continuous figures within the dataset, and a crucial first piece of exploratory
analysis is to investigate the distribution trends of each. As can be seen in Figure [4]
the distribution of energy is positively skewed; humidity is negatively skewed, with both
temperature and pressure generally following a normal distribution trend.
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Figure 4: Distributions of Weather and Energy

This project seeks to derive learnings from energy concerning its distribution, pre-
diction and optimisation. Hence, the next set of data visualisations investigate how the
weather and HVAC appliances impact energy usage. From Figure [5] we see a negative
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correlation of energy concerning each of the three weather attributes. As any one of the
weather values decreases, energy is predicted to rise. A similar pattern exists concerning
the HVAC appliances, which would be expected.

Heat Map Showing How HVAC Systems

Heat Map Showing How Weather Influence Energy Consumption
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Figure 5: How Weather Attributes and HVAC Systems Influence Energy Consumption

Figure [6] explores energy trends and the effect one of the weather characteristics
(temperature) has on a group of houses that are all labelled as of type ”character”.
Whilst trends are primarily similar; the temperature does not negatively impact house
eight as much compared to the other 3. Maximum energy does not go above 35 kWh vs
50-60kWh in the other houses. The regression line is also not as steep compared to houses
4 and 20, indicating less energy is consumed either by efficient behaviour or infrastructure

within the home. has now been fully achieved.
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Figure 6: Energy Usage and Temperature Influence for Character Houses
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4.3 Data Transfer

The data is now ready to pass to the machine learning element of the project. With
no more fields likely to be created, this is the logical time to back up the data and make it
available to external sources by transferring it to a PostgreSQL relational database. For
the transfer, the data is divided into several separate entities. The four tables established
are not dissimilar from the final data frames in R Studio before the merging. Although
the data is segmented once more, the crucial difference is that the relational model re-
tains the link to the amalgamated data frame through its primary and foreign keys to
maintain referential integrity. This is displayed inFigure [7] below. Further interrogation
of the data in Structured Query Language (SQL) queries will now be available to any
number of authorised individuals. Psycopg was installed within the python environment
to implement the database Application Programming Interface (API). Once installed,
the ability to connect to PostgreSQL and store and retrieve data was possible.
has now been fully achieved.
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Figure 7: Relational Back Up

4.4 Implementation of Colour Code My Energy (CCME) Re-
commender Algorithm

The primary aim of the CCME Recommender algorithm will be to judge the present
consumption read vs the optimum consumption read, which falls under the same scenario.
The generation of a scenario accompanies the creation of every new energy read. A
scenario comprises the house identifier, the weather characteristics, timeslot of the day
and time of the year upon which the read is created. The algorithm then checks the
present scenarios on file to see if this scenario already has an optimum value. Figure
outlines the workflow of the CCME Recommender algorithm.

If the algorithm does not find a match for this scenario, then no optimum value
exists. Therefore, the present energy read will serve as the baseline recommendation for
this scenario and is added to the recommendation table. This read will be categorised
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as a "White”, indicating no previous ideal value existed before this read. However, if
a match is found, the recommender algorithm compares the stored optimum value to
the present read to classify the read. If the present read is lower than the read on the
recommender table, the (now formally) optimum read will be deleted and replaced with
the present read as the new optimum, leading to the categorisation of the as ” Green”.

If the present read has a higher energy consumption than the optimum read, the
algorithm will classify how far off the optimum read is from the present read and categorise
it accordingly as one of "Blue”, " Yellow”, ”Orange”, "Red” or "Black” depending on the
distance between the two energy values.
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Figure 8: CCME Recommender Algorithm

The algorithm is developed in python over two dedicated files, which retrospectively
fit recommendations based on the historical dataset. has now been fully

achieved.

4.5 Implementation of Prediction Models

The machine and deep learning models followed a specific route, which starts with
defining the dependent variables influencers and ends with producing results that may
or may not be deemed satisfactory. Figure [9 outlines the detailed steps involved in
this process. Both the machine and deep learnings models are attempting to predict a
variable. In the case of the machine learning regression models, the goal is to forecast a
numeric value as close as possible to a continuous figure. The deep learning model seeks
to attach a label (from a predefined list) to a presented scenario.
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As part of this, the respective datasets are split into one dependent variable (what
the model is trying to predict) and several independent variables (the features used to
predict this end value). For the regression models, the data is scaled (using the standard
scaler) to values between 0 and 1, allowing the measurement of how far the regression
line is from the data points.
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Figure 9: How a Model is Trained

Not all variables in the data frame, which are independent, directly influence the
behaviour of the dependent variable. This is particularly true for larger datasets where
irrelevant features can lead to the machine mistaking irrelevant and noisy data for patterns
if they are not removed.

As such, feature selection tools like Independent Component Analysis (ICA) and
Principal Component Analysis (PCA) can distil the independent features from a total
to an optimum value as part of the implementation phase. The use of PCA in reducing
the independent category down to 23 from 45 for the deep learning model as shown in
Figure It also reduced the independent variables to 23 from 40 in the KNN regression
model.
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Hyperparameters (and their tuning) govern the model, especially concerning minim-
ising loss whilst training. Choosing the hyperparameters is a specialised task and needed
an intensive grid search to measure the value of all permutations. Table [2| displays op-
timum values for each of the models

Table 2: Optimum Hyperparamters

Model

Optimum Hyperparamters

KNN Regression Model

K=3

Random Forrest
Regression Model

bootstrap=False, maxDepth=None, maxFeatures=sqrt,
minSamplesSplit=2, nEstimators=250

Decision Tree
Regression Model

max-depth=>5, max-features="auto’,
max-leaf-nodes=20, min-samples-leaf=2,
min-weight-fraction-leaf=0.1, splitter="best’

Deep Learning Model

batchSize=16, optimizer=Adam,
kernellnitializer=uniform, activation=relu,
biasInitializer=randomNormal,
dropoutLayer1=0, dropoutLayer2=0.6

The final step in training a model is to split the data into its training and testing
set. The training phase involves exposing the machine to 75% of the dataset in which
it learns how conclusions regarding the dependent variable are calculated. Then, the
remaining 25% of the dataset is partitioned and is used to test the accuracy of the
machine. The performance of predictions on this testing data is what verifies how well the
model performs. Several distinct metrics are generated from the testing data. Depending
on the performance, a retraining period from the point of data scaling onwards may be

necessary. (Objective 5| and [Objective 7| have now been fully achieved.
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5 Evaluation and Results of Developed Models

5.1 Regression Models for Smart Energy Predictions

Whilst the primary benefit of daily prediction is experienced by the consumer; there
is an additional advantage of the supply grid knowing how much energy is needed for the
remainder of the present 24 hour period. The following specific metrics will be used to
measure the performance of the regression models.

e Mean Squared Error (MSE) The MSE informs how close a line of regression is
to a particular set of points. It is calculated by squaring the differences between
the points and the line.

e Root Mean Squared Error (RMSE) The RMSE is the standard deviation of
the prediction errors of how far the data points are from the line of regression. It
represents how strong the concentration of data points is around the best fitting
line.

e Mean Absolute Error (MAE) The MAE is the most basic form of a regression
error metric. The residuals for each data point are calculated, but only the absolute
value is taken (i.e. the direction is not considered).

e Mean Absolute Percentage Error (MAPE) The MAPE is the average of
absolute percentage errors of predictions.

Random Forest and Decision Trees provided the best outputs, as can be seen with the
results in tableTable[3] A further breakdown of how the regression line is fitted between
the actual and predicted values is displayed in Figure It is noticeable how close the
incorrect values are to the line of best fit. No outliers (severely inaccurate predictions) are
present, making random forest and decision trees the most efficient regression models.
By contrast, KNN achieves poor results when measured across the four metrics, with
results depreciating as more neighbours are included in the model as shown in Figure [12]
has now been partially achieved. [Sub Research Question 2| has now been
fully solved.

Table 3: Regressor Results

Metric Random Forest Decision Tree
Regressor Results Regressor Results

MAPE 0.0046 0.0044

MAE 0.0007 0.0006

MSE 0.0019 0.0019

RMSE 0.0435 0.0436
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Figure 12: KNearest Neighbour Results over 50 Neighbours

5.2 Colour Code My Energy(CCME) Algorithm for Smart En-
ergy Optimisations

It can be seen from Figure [13| that the model will offer minimal insights or valuable
recommendations in the first 12 months as it is still building a learning base about the
user. The difference between what the algorithm views as new reads vs reads it can
match are converging but is still a considerable distance apart by the end of the first
year. Section [7] will address future ideas as to how this gap can be bridged. Between the
first and second years, we can see the knowledge and number of matched reads increase
to a 50/50 or 60/40 split for the majority of this time. The knowledge base drastically
improves in the 3rd year and reaches an 80/20 split towards the end of this period.
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Figure 13: Time to Find Recommendations

A snapshot of how the algorithms developing knowledge is best demonstrated by ana-
lysing a specific house. Figure compares an early month (month number 2) to an
advanced month (month number 33) for house 9. The number of reads found scenario
has increased from a little under 100 to almost five times this amount. The quality of
the recommendations has also dramatically increased within this timespan as the CCME
recommender has moved from labelling the majority of the reads labelled in the ”white”
category (symbolising new /previously unrecorded scenarios) to providing critical recom-
mendations as to how much excess energy is consumed whilst also updating the optimum
values for any reads classified as ”"green”. This visual also demonstrates that recom-
mendations are not necessarily about hitting the optimum value. Allowing for a certain
percentage of ”"orange” reads to be upgraded to ”yellow” and subsequently ”yellow” read

to be improved to "blue”, overall efficiency improves without increasing the number of
"green” reads.
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Figure 14: House 9 Statistics
Even though house number 9 achieves a high percentage of ”green” reads, there is
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much potential within months 14,15 and 16 and 26,27 and 28 to reduce consumption and

move closer to the recommended level, as can be seen in Figure
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Figure 15: House 9 Statistics

As acknowledged, the CCME recommender will take over two years before it begins
making real-time recommendations by classifying scenarios accurately. Nevertheless, as
a starting point, Figure [L6| demonstrates how there is the facility to enter historical data
and apply the algorithm retrospectively so that users can be aware of instant areas to
target concerning excess consumption. Once again focussing on house number 9, it can
be seen that despite the number of green reads it attains, there is substantial work to be
done to reduce wastage in season 2 (summertime) and, to a lesser extent, daily timeslot

4. has now been partially achieved. [The Research Question| has now been
partially solved.
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Figure 16: House 9 Retrospective Statistics
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5.3 Deep Learning Model for Smart Energy Recommendations

The deep learning neural network seeks to predict what category should be attached to
an energy read based on the testing set after a training period. The main metrics in which
to measure success are the model accuracy and loss. Accuracy is the most basic metric
within the classification set of evaluations and represents how many predictions the model
got right as a percentage over the model’s total predictions. The loss number represents
the bad predictions and indicates how poorly the model predicts a single example. An
epoch is an entire iteration of the training set. The batch size determines the number
of records accessed. The batch size was set to 512, which resulted in 889 records used
for validation during each epoch. Setting the number of epochs to be executed to 5000
with a proviso of early stopping was deemed the most suitable strategy as attempting to
prescribe a definitive epoch quantity is a delicate matter. The model terminated at 180
epochs. As can be seen in Figure the model achieved accuracy levels of just over 0.98
and a loss of 0.07 as its peak results.
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Figure 17: DNN Accuracy vs Loss

Moving onto a class by class analysis, the confusion matrix in figurename (18| to spe-
cifically track how the numbers between the prediction values and their actual values. It
is a useful visual for honing in on where the incorrect predictions were classified. Whilst
the frequency of incorrect predictions is on the low level, the 1550 cases where ”green” is
predicted when the reads were ”"white” might indicate a small level of retraining might
be necessary. Precision calculates the amount of correct positive predictions the model
has made and is defined as the predicted positive examples / the total number of positive
examples predicted. The recall metric calculates the ratio of positive samples correctly
classified as positive to the total number of positive samples. Thus, it is a measure of how
well the model predicts positive samples. The F1 Score is a balance between precision and
recall and needs to be considered concerning both of these metrics. Precision statistics
were high, with the lowest number of 0.96 recorded in the "yellow” class, whilst Recall
documented a slightly lower figure of 0.91 in the ”green” category. has now
been fully achieved. [Sub Research Question 1| has now been fully solved. [The Researc

has now been fully solved.
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6 Discussion and Comparison

Comparing the CCME recommender to other literature pieces did not find anything
remotely comparable. |[Nazeriye et al.| (2020) who has the intention of optimising through
analysis of specific appliances which are increasing consumption. Whilst this is interesting
to see trends at a level as low as appliances, there is little room to optimise, other than
not using the particular device. Both Raval et al. (2021) and [Pawar and Vittal (2017)
focus more on optimisation of hardware and infrastructure. It is interesting to note that
whilst the papers looked at various aspects in isolation; no one piece sought to marry
prediction, recommendations and optimisation within one body of work. It is difficult to
imagine the three areas not interlinked, and as such, one or both of the alternative areas
is counterproductive.

Whilst 7% is a figure of savings reached in studies of [Wang et al.| (2020)), Schweizer|
et al| (2015) and |Alsalemi et al| (2021)), the CCME algorithm has not achieved higher,
it must be countered that this was not a study in which the houses were aware of and
provided updates of recommendations throughout their readings.

Oprea and Bara| (2019), Shapi et al.| (2021)) and |Oprea and Bara) (2019)) focus on short
term predictions, but none of the three studies focuses on the present-day or achieves
MAPE, MAE, RMSE or MSE scores in the region of the decision tree and random forest
regressors developed within this study.

With these comparisons, has now been fully achieved.

7 Future Work and Conclusion

Although significant discoveries were made as part of the research in this project, some
avenues can be explored concerning future work. For example, the machine learning re-
gression algorithms generally yielded impressive figures. Still, KNN could be re-examined,
perhaps as part of an ensemble learning technique in which multiple models are looked
at together instead of in isolation.
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Considering its infancy, there is scope for further developing the CCME recommender
algorithm and extending it to make more realistic predictions and attain true optimisa-
tion. For example, the facility could connect to a recommender table for identical house
types within a certain radius when installing into new homes. Using a median/mode value
of like for like properties in the same scenario as its baseline recommendation instead of
spending the first number of months or years establishing patterns for the new user would
enable a quicker learning curve. The trade-off for this would be that recommendations
will be made at a global/area level instead of that of the localised individual. Still, the
amount of “white” coloured reads in the early months will be drastically reduced.

A subsequent and perhaps more challenging area for future development is realigning
one off optimisations that serve as an unrealistic baseline figure. For example, imagining a
situation where a house is unoccupied for some time, energy consumption will be at a bare
minimum. It will be entered as the new recommended value for the scenarios encountered
within this timespan. However, it is impracticable to retain this figure as the target to
aim for and grade any reads from this point on as in the higher usage category when more
normalised circumstances resume. Likewise, there needs to be an option to recalibrate
what “normal” circumstances are when changes to what is normal occur. Examples are
not limited to but include, during the school holidays or if an individual increases the
number of days they work from home. In these circumstances, the energy consumption
environment change meaning recommendations need a level of recalibration.
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