~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Shubham Rajabhau Maske
Student ID: x19232551

School of Computing
National College of Ireland

Supervisor: ~ Dr. Hicham Rifai

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Shubham Rajabhau Maske
Student ID: x19232551
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Dr. Hicham Rifai
Submission Due Date: 16,/08/2021
Project Title: Configuration Manual
Word Count: 757
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shubham Rajabhau Maske

Date: 15th August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Shubham Rajabhau Maske
x19232551

1 Introduction

The configuration manual document outlines the steps that were taken throughout the
project’s coding phase. Hardware and software configurations are specified to enable
future replication of this study. This section details the programming and deployment
stages necessary for efficient code execution, as well as the procedures necessary to run
the code.

2 System Configuration

2.1 Hardware Configuration

Figure 2] shows the hardware specifications of the system on which the research study is
being conducted.

Windows edition

Windows 10 Home Single Language -- -

@ Microsoft Corporation. All rights reserved. .. WI n d OWS 1 O
System

Processor: AMD Ryzen 5 4600H with Radeon Graphics 3.00 GHz Support Information

Installed memory (RAM): 16.0 GB (15.4 GB usable)
System type: 64-bit Operating System, x64-based processor

Pen and Touch: No Pen or Touch Input is available for this Display

Figure 1: System Configuration

2.2 Software Configuration

The software and its specifications are presented in this section.

2.2.1 Google Colab

The research is conducted on Google’s cloud infrastructure called as Google Colab. For
executing the model, older tensorflow version is required. Below code is used to make the
environment use older version of tensorflow.

The dataset is locate don google drive and to mount this drive into colab below code
is used.

%tensorflow version 1.x
import tensorflow as tf

Figure 2: Tensorflow Version

from google.colab import drive
drive.mount('/content/drive")

Mounted at /content/drive

Figure 3: Google Drive Mount

When this code is executed it provides a link where we have to authorise our google
drive login. Once we authorise it, an authorization code is provided which we have to

copy and pastes it in the textbox in colab.
Keras version 2.2.5 is needed to execute the Mask R-CNN model. This is achieved by

executing following code in google colab.

Ipip install keras==2.2.5

Figure 4: Keras Version

Google colab pro version is used in this research as it provides more RAM, disk space
and high processing GPUs. To set the environment to run in GPU mode below option is

selected.

Notebook settings

Hardware accelerator

GPU v @

To get the most out of Colab Pro, avoid

using a GPU unless you need one. Learn

more

Runtime shape
(High-RAM]

[J omit code cell output when saving this notebook

Cancel Save

Figure 5: Setting GPU environment for colab notebook

2.2.2 Texstudio

Texstudio is used for project report documentation as shown in below figure.

L]
HEHO

Structure

configManual.tex
systemconfig.tex

EREEEEEEED

AE D PEA™ W v wm o - ow [EEESEEY 22

pastes it in the textbox in colab. Figure 4: Keras Version
E Keras version 2.2.5 is needed to execute the Mask R-CNN

1 model. This is achieved by executing

Ul google colab. B8 Avout TeXstudio ? X fersion is used in this research as it provides more RAM, disk space
- PUs. To set the environment to run in GPU mode below option is

\begin{figure}[h]
> \begin{center}
\includegraphics[width =
0.3\textwidth]{keras_version}

Notebook settings

o \caption{Keras Version}
\label{fig:Keras Version}
bt \end{center} Hardware accelerator
g \end{figure} 3
o
g Google colab pro version is used in thi [N
i provides more RAM, disk space and high
F | set the environment to run in GPU mode| M
W selected. Runtime shape

O omitcode cell output when saving this notebook

“| \begin{figure}[!h]
\begin{center} TeXstudio 3.1.2 (git3.1.2) ~
\includegraphics[width = Using Qt Version 5.15.2, compiled with Qt 5.15.2 R
0.5\textwidth]{gpu_settings.
\ 1{egpu_ s} Copyright (c) Cancel Save

\caption{Setting GPU environmel | i so; gento van der zander, Jan Sundermeyer, Daniel Braun, Tim Hoffmann
\label{fig:Setting GPU environf |reymaker: Pascal Brachet

notebook} QCodekdit: Luc Bruant g 5: Setting GPU environment for colab notebook
\end{center} htm conversion: Joel Amblard
\end{figure} TeXstudio contains code from Hunspell (GPL), QtCreator (GPL, Copyright (C)

Nokia), KILE (GPL) and SyncTex (by Jerome Laurens).

Texstudio uses the PDF viewer of TeXworks.

Line: 66 _ Column: 0 INSERT Texstudio uses the DSingleApplication class (Author: Dima Fedorov Levit -
Copyright (C) Biolmage Informatics - Licence: GPL).

Texstudio uses TexTablet (MIT License, Copyright (c) 2012 Steven Lovegrove). 2
vco| | TEXstudio uses Quazip (LGPL, Copyright (C) 2005-2012 Sergey A. Tachenovand v

pdfiatex: major issue: So far, you have ot checked for MKTeX updates
Process exted normally

X configManualtex X kel systemconfig.tex X ‘ Bam e @l o = -

A4 ragesatosars %, |©

LT ence, UTFe. Resty mvomac W B B

@

Figure 6: Texstudio

3 Data Preparation

3.1 Load Dataset

The dataset used in this research is downloaded from the github El which was created by
the authors in (Zheng et al.; 2021)).

Below function is used to load the dataset. This function is used to define classes and
for defining the images. To define classes, add_class function from mrcenn library is used
where class_id and class_name are defined. To define objects, add_image from mrcnn
library is used where source of the data, class id and path to the images are defined.

def

self.add class("dataset”, 1, "microuav™)
images dir = dataset dir + path
annot_dir = dataset dir + 'Annotations/’

for filename in listdir(images_dir):

load_dataset(self, dataset_dir, path):

image_id = filename[:-4] #extract filename as image id

img file path = images dir + filename

ann_file path = annot dir + image id + '.xml’

self.add _image('dataset', image id=image id, path=img_file path, annotation=ann_file path)

Figure 7: Function to load dataset

'https://github.com/Jake-WU/Det-Fly

https://github.com/Jake-WU/Det-Fly

3.2 Extract Bounding Boxes

Each images in the dataset have its respective XML file which contains bounding box
information. Below function is used ot extract the bounding boxes from the XML files.
This function returns bounding box details along with width and height of the image.

def extract boxes(self, filename):

tree = ElementTree.parse(filename)

root = tree.getroot()

boxes = 1list()

for box in root.findall('.//bndbox"'):
xmin = int(box.find('xmin"').text)
ymin = int(box.find(ymin").text)
xmax = int(box.find(xmax"').text)
ymax = int(box.find('ymax').text)
coor = [xmin, ymin, xmax, ymax]
boxes.append(coor)

width = int(root.find(".//size/width").text)
height = int(root.find('.//size/height").text)

return boxes, width, height

Figure 8: Function to extract bounding box

3.3 Adding mask

With the help of bounding box of the image, mask can be applied within that box. Below
function will be used to this process.

def load_mask(self, image_id):
info = self.image info[image id]
path = info['annotation’]

boxes, w, h = self.extract_boxes(path)
masks = zeros([h, w, len(boxes)], dtype='uints8")

class_ids = list()
for i in range(len(boxes)):
box = boxes[i]
row s, row e = box[1], box[3]
col_s, col_e = box[e], box[2]
masks[row_s:row_e, col s:col e, i] =1
class_ids.append(self.class_names.index('microUav'))

return masks, asarray(class_ids, dtype="int32")

Figure 9: Function to add mask to image

4 Model Implementation

The Mask R-CNN library is first installed in the colab notebook, so that its functions
and classes can be utilized. The library is available on github E[This library is cloned
using below command.

lgit clone https://github.com/matterport/Mask RCHNN.git

Figure 10: Installing MRCNN library

To utilize the functions from this library, below python file need to be executed from
this library.

Ipython setup.py install

Figure 11: Setting up mrcnn library

Below libraries will be required to implement several functionalities.

from os import listdir

from xml.etree import ElementTree

from numpy import zeros

from numpy import asarray

from mrcnn.utils import Dataset

from matplotlib import pyplot

from mrcnn.visualize import display instances
from mrenn.utils import extract bboxes
from mrcnn.config import Config

from mrcnn.model import MaskRCHN

from mrcnn.utils import compute ap

from mrcnn.model import load image gt
from mrcnn.model import mold image

from mrcnn import visualize

from numpy import expand dims

from numpy import mean

import pandas as pd

from matplotlib.patches import Rectangle
import mrcnn.model as modellib

import random

Figure 12: Importing libraries

4.1 Configuration for training model

Below code is used to define the configuration class for training the model.

Zhttps://github.com/matterport/Mask RCNN

https://github.com/matterport/Mask_RCNN

define configuration for training the model
class microUAvConftig(Contig):

Naming the configuration
NAME="microUAV_cfg"

Define number of classes (background + microUAV)
NUM_CLASSES = 1 + 1

Number of training steps per epoch; steps per epoch = Number of training images / Batch Size (9696/2 = 4848)
STEPS_PER_EPOCH = 4848

Figure 13: Configuration class for training model

The training and test set objects are created as well as the configuration object is also
created as shown below.

train set = microUavDataset()

train_set.load dataset(root _dir,train_dir)
train_set.prepare()

print('Train: %d' % len(train_set.image ids))

test set = microUavDataset()

test_set.load dataset(root_dir,valid dir)
test_set.prepare()

print('validation: %d' % len(test set.image ids))

prepare config
config = microuAvConfig()
config.display()

Figure 14: Object Creation

4.2 Loading MS COCO weights

Below line of code is used to load the weights of MS COCO dataset that are generated
using Mask R-CNN.

‘mudel.1uaa7weigms<'/content/drive/mwmve/micchAv,dataset/.,.-eighcfne/mask;cnn,cocu.hs‘, by_name=True, exclude=[“mrenn_class_logits”, “mrcnn_bbox_fc", “mrenn_bbox", “mrenn_mask”])

Figure 15: Load MS COCO weights

4.3 Training model

The model is trained using 6 epochs and is implemented as follows:

model.train(train_set, test_set, learning_rate-config.LEARNING_RATE, epochs=6, layers="heads")

Figure 16: Training model

4.4 FEvaluation

To plot the loss for each epoch, below code is used.

pyplot.figure(figsize=(17,5))

pyplot.subplot(131)

pyplot.plot(epochs, history["loss"], label="Train loss™)
pyplot.plot(epochs, history["val loss"], label="valid loss")
pyplot.legend()

pyplot.subplot(132)

pyplot.plot(epochs, history["mrcnn_class loss"], label="Train class ce")
pyplot.plot(epochs, history["val mrcnn _class loss"], label="valid class ce")
pyplot.legend()

pyplot.subplot(133)

pyplot.plot(epochs, history["mrcnn_bbox loss"], label="Train box loss")
pyplot.plot(epochs, history["val mrcnn_bbox loss"], label="valid box loss")
pyplot.legend()

pyplot.show()

Figure 17: Code to plot loss

To evaluate the model, we need to execute it in inference mode. A separate configur-
ation class is created for this and is implemented as below.

define the prediction configuration
class PredictionConfig(Config):
define the name of the configuration
NAME = "microUAv pred cfg”
number of classes (background + microUAV)
NUM_CLASSES = 1 + 1
simplify GPU config
GPU_COUNT = 1
IMAGES PER GPU = 1

Figure 18: Configuration class for inference mode

The model for inference mode is defined as follow.

define the inference model
model = MaskRCNN(mode="inference', model dir="/content/drive/MyDrive/microlav dataset/predicted model’, config=cfg)

Figure 19: Defining model for inference mode

The weights of the trained model is loaded using below code as shown in figure [20]

load model weights
model. load_weights('/content/drive/MyDrive/microUAV_dataset/microuav_cfg20210804T0858/mask_rcnn_microuav_cfg 8ee5.h5', by_name=True)

Figure 20: Loading wights from trained model

Once the mode is defined in inference mode, below function in figure is used to
calculate mean average precision (mAP). This function in turns calls the mrenn library
function compute_ap which returns the list of average precision.

calculate the mAP of the model
def evaluate model(dataset, model, cfg):
APs = list()
for image_id in dataset.image_ids:
load image, bounding boxes and masks for the image id
image, image_meta, gt_class_id, gt_bbox, gt_mask = load_image_gt(dataset, cfg, image_id, use_mini_mask=False)
convert pixel values
scaled_image = mold_image(image, cfg)
convert image into one sample
sample = expand_dims(scaled_image, @)
make prediction
yhat = model.detect(sample, verbose=8)
extract results for first sample
r = yhat[e]
calculate statistics, including AP
AP, _, _, _ = compute_ap(gt_bbox, gt_class_id, gt mask, r["rois"], r["class_ids"], r["scores”], r['masks'])
store
APs.append (AP)
calculate the mean AP across all images
mAP = mean(APs)
return mAp

Figure 21: Function to calculate mAP

To detect micro-UAV on random images using the trained model, below code is im-
plemented. Here the ground truth and the prediction are presented using below code.

Detect micro-UAV on random image

for i in range(2):

pick random image

image id = random.choice(test_set.image ids)

original_image, image_meta, gt_class_id, gt_bbox, gt_mask = modellib.load_image_gt(test set, cfg, image_id, use_mini_mask=False)
print("\n Ground Truth:")

visualize.display_instances(original_image, gt_bbox, gt_mask, gt_class_id, test_set.class_names, figsize=(10,10))

results = model.detect([original_image], verbose=1)

r = results[e]

print("\n Prediction:")

visualize.display_instances(original_image, r['rois’'], r['masks’], r['class_ids'],test_set.class_names, r['scores’'], figsize=(10,10))

Figure 22: Code for testing the model on random image

References

Zheng, Y., Chen, Z., Lv, D., Li, Z., Lan, Z. and Zhao, S. (2021). Air-to-air visual
detection of micro-uavs: An experimental evaluation of deep learning, IEEFE Robotics
and Automation Letters 6(2): 1020-1027.

	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration
	Google Colab
	Texstudio

	Data Preparation
	Load Dataset
	Extract Bounding Boxes
	Adding mask

	Model Implementation
	Configuration for training model
	Loading MS COCO weights
	Training model
	Evaluation

