ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc Data Analytics

Sushaant Kanakaraj
Student ID: 19216360

School of Computing
National College of Ireland

Supervisor: Mr. Hicham Rifai

‘-—
National College of Ireland \ National

MSc Project Submission Sheet
School of Computing
Student Sushaant Kanakaraj
Name:

Student ID: X19216360

Programme: MSc in Data Analytics Year: 2020- 2021
Module: Research Project
Lecturer: Mr. Hicham Rifai

Submission
Due Date: 16 August 2021

Project Title: Real-time Motorcyclists Helmet Detection and Vehicle License Plate
Extraction using Deep Learning Techniques

Word Count: 1028 Page Count: 13

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sushaant Kanakaraj

Date: 16 August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Collegeof
Ireland

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Sushaant Kanakaraj
Student ID: x19216360

1 Introduction
This Configuration manual contains the step-by-step information regarding the Storage,
Setup, Software and Hardware requirements that are needed to implement the project “Real-

time Motorcyclists Helmet Detection and Vehicle License Plate Extraction using Deep
Learning Techniques”

2 Hardware and Software Specification

In this section we will discuss Hardware and Software specifications that are used while
implementing this project

2.1 Local machine Hardware Specification

The local machine with the below specification is only used to run Jupyter notebook
(Anaconda 3) for annotation purposes. Rest of the research is carried out in Google Colab.

Table 1: Hardware Specification

Hardware Specification

Local machine Dell Inspiron 5593
RAM 7.77 GB user available
SSD 256GB
CPU Intel(R) Core (TM) i5-1035G1 CPU @
1.00GHz 1.19 GHz
GPU Nvidia GeForce MX230

Device specifications

Windows specification:

Edition

Experience Experience Pack 120.22 530.0
Figure 1: Harware specification of local machine

1

2.2 Google Colab Hardware Specification

Table 2: Google Colab Hardware Specification

Hardware Specification

RAM

12.69GB

GPU (allocated based on runtime)

Tesla K80 / Tesla T4 (11.4GB)

Disk

107.72GB

2.3 Software Specification

Table 3: Software Hardware Specification

Software Specification

0S

Windows 10 Home (64-bit)

Programming Language

Python 3.8

IDE

Google Colab, Jupyter Notebook

ML Libraries

PyTorch, TensorFlow, Darknet (NN
framework)

Annotation tool

Labellmg

CUDA

11

CuDNN

7.6.5

Open CV

3.2

TensorFlow

2

Other tools

XmltoTxt converter

3 Data Pre-processing and Transformation

The opensource Labellmg is used for annotation of the images in .xml format.

Opening Labellimg

In [16]: !pip install --upgrade pyqt5 lxml
Requirement already satisfied: pyqt5 in c:\users\sushaant\anaconda3\lib\site-packages (5.15.4)
Requirement already satisfied: Ixml in c:\users\sushaant\anaconda3\lib\site-packages (4.6.3)
Requirement already satisfied: PyQt5-sip<13,>=12.8 in c:\users\sushaant\anaconda3\lib\site-packages (from pyqt5) (12.9.8)
Requirement already satisfied: PyQts5-Qt5>=5.15 in c:\users\sushaant\anaconda3\lib\site-packages (from pyqts) (5.15.2)
WARNING: You are using pip version 21.1.2; however, version 21.2.4 is available.
You should consider upgrading via the 'c:\users\sushaant\anaconda3\python.exe -m pip install --upgrade pip‘ command.

In [29]: lpip list

In [11]: LABELIMG_PATH = os.path.join('Tensorflow', 'labelimg')

In [12]: if not os.path.exists(LABELIMG_PATH):
Imkdir {LABELIMG_PATH}
lgit clone https://github.com/tzutalin/labelImg {LABELIMG_PATH}

In [13]: lcd {LABELIMG_PATH} && pyrcc5 -o libs/resources.py resources.grc

In [*]: Tcd {LABELIMG_PATH} && python labellImg.
| Py 8- Py

Figure 2: Using Labellmg tool

The Labellmg tool is opened and the directory in which the images present are chosen.

@ tabeiimg
Box Labels
[e

(] use defautt el

g

infinin:

:
i
ivy

& :

Verify ¥nage

b File List L)

Figure 2: Labellmg tool window

Figure 3: Opening directory in Labellmg tool

The Rectangular box is drawn to mark the area of interest and the class name is saved along
with the annotation

Widt: 103, Height: 225 / X 713: : 904

Figure 4: Drawing bounding boxes in Labellmg tool

The Resultant .xml file which contains the coordinates of the bounding boxes

<?xml version="1.0"?>
<annotation>
<folder>Realworld_Final</folder>
<filename>1 (3).jpg</filename>
<path>D:\SEM 3\RIC\DATA\Realworld_Final\1 (3).jpg</path>
- <source>
<database>Unknown</database>
</source>
- <size>
<width>4360</width>
<height>2372</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
- <object>
<name>With Helmet</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
- <bndbox>
<xmin>894</xmin>>
<ymin>870</ymin>
<xmax>1128</xmax>
<ymax:>1460</ymax>
</bndbox>
</object>
- <object>
<name>Without Helmet</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
- <bndbox>
<xmMin>1197 </xmin >
<ymin>454</ymin>
<xmax>1453</xmax>
<ymax>1123</ymax>
</bndbox>
</object>
- <object>

'Figure'S: Annotated XML file

The .xml files are converted to .txt files using the opensource XmIToTxt converter

In [8]: # clone the repository of xmlToTxt convertor
Tgit clone https://github.com/Isabek/XmlToTxt.git

Cloning into 'XmlToTxt'...
In [6]: # Check if New path exists
if os.path.exists("F:/Research/Tensorflow Object Detection/TFODCourse™) :
Change the current working Directory
os.chdir("F:/Research/Tensorflow Object Detection/TFODCourse™)

else:
print(“"Can't change the Current Working Directory™)

In [7]: cwd = os.getcwd()
cwd
out[7]: 'F:\\Research\\Tensorflow Object Detection\\TFODCourse"
In [9]: # Enter to the directory XmlToTxt
%cd XmlToTxt/
F:\Research\Tensorflow Object Detection\TFODCourse\XmlToTxt
In [10]: # Install the requirements of XmlToTxt convertor
Ipip install declxml==0.9.1
Requirement already satisfied: declxml==8.9.1 in c:\users\sushaant\anaconda3\lib\site-packages (@.9.1)

WARNING: You are using pip version 21.1.2; however, version 21.1.3 is available.
You should consider upgrading via the 'c:\users\sushaant\anaconda3\python.exe -m pip install --upgrade pip' command.

In [13]: !python xmltotxt.py -xml xml -out out

Figure 6: Using XML to TXT conversion tool

4

The resultant .txt files containing corrordinates of the bounding boxes.

b @.757339 0.190135 0.050917 ©,218381
© ©.436239 ©0.,219857 ©.8616009 ©.153879
© ©.266399 0.301433 ©.856651 ©.299325
© 0.185665 ©.225759 ©.661697 0.266020
1 6.747936 0.478067 ©.863761 0.222597
© 0.811468 ©.498524 ©.858716 ©8.195194
© 9.940482 ©.633642 ©.061697 ©0.198988

Figure 7: Annotated TXT file

Google Colab runtime is changed to support GPU Hardware Acceleration

Notebook settings

Hardware accelerator
GPU v

[] omit code cell output when saving this notebook

Cancel

Figure 8: GPU harware acceleration in Google Colab

4 Implementation

4.1 YoloV4-Darknet

The Google drive is mounted to Google Colab. The drive path is optimized and the YoloV4-
Darknet model is cloned. The GPU, OpenCV are enabled to take full advantage of GPU
Hardware acceleration in Google Colab and the Darknet model building is initiated. The Files
are copied from the darknet the Yolov4 folder.

om google.colab im
drive.mount en

Mounted at /content/gdrive
IIn -s /content/gdrive/My\ Drive/ /mydrive
%cd /mydrive/yolova

/content/gdrive/My Drive/yolova

lgit clone https://github.com/AlexeyAB/darknet

fatal: destination path ‘darknet® already exists and is not an empty directory.

%cd darknet/

Ised -i * /" Makefile

Ised -i * U /' Makefile

Ised -1 0 y lakefile

Ised -i * § C F=1/" Makefile
Ised -i 's/ 3 Makefile

%cd data/
Ifind -maxdepth 1 -type f -exec rm -rf {} \;
%ed ..

/content/gdrive/My Drive/yolov4/darknet/data
/content/gdrive/My Drive/yolov4/darknet

lunzip /mydrive/yolova/obj.zip -d data/

Figure 10: Extracting data

List of the names of the test and training data are created as .txt files. The YoloV4 weights
are downloaded and the training of the model is initiated.

I1s data/

labels obj obj.data obj.names test.txt train.txt

lwget https://github.com/AlexeyAB/darknet/releases/download/darknet yolo v3 optimal/yolova.conv.137

I./darknet detector train data/obj.data cfg/yolov4-custom.cfg yolov4.conv.137 -dont_show -map

I./darknet detector map data/obj.data cfg/yolova-custom.cfg /mydrive/yolov4/training/yolov4-custom last.weights -points @

Figure 11: Training YoloV4-darknet

The Graph is generated which shows the Mean Average Precision and the loss. The model is
then tested with an input video.

imshow(path):
t cv2
t matplotlib.pyplot as plt
#matplotlib inline
image = cv2.imread(path)
height, width = image.shape[:2]
resized image = cv2.resize(image, (3*width, 3*height), interpolation = cv2.INTER CUBIC)
fig = plt.gcf()
fig.set si inches(18, 10)
plt.axis()
plt.imshow(cv2.cvtColor(resized image, cv2.COLOR_BGR2RGB))
plt.show()

[1 imShow('chart.png")

I'./darknet detector demo data/obj.data cfg/yolov4-custom.cfg /mydrive/yolov4/training/yolov4-custom best.weights

- o —

-dont_show /mydrive/yolov4/11276118.mp4 -thresh @.1 -i @ -out_filename /mydrive/yolov4/11276118 latest.avi

Figure 12: Plotting metrics

4.2 YoloV5s

The Google is Drive is mounted to the Google Colab. The paths are navigated to the YoloV5
directory and the model is cloned from the repository.

google.colab i
drive.mount(

Mounted at /content/gdrive

%cd /content/gdrive/MyDrive

/content/gdrive/MyDrive
fcontent/gdrive/MyDrive

Igit clone https://github.com/ultralytics/yolovs
%cd yolovs
lgit reset --hard 886f1ce3d839575afecbes9accft74296fad395b6

fatal: destination path 'yolovs' already exists and is not an empty directory.
/content/gdrive/MyDrive/yolovs

Checking out files: 1ee% (75/75), done.

HEAD is now at 886f1ce DDP after autoanchor reorder (#2421)

Figure 13: Setting up requirements for YoloV5s

The dependencies that are needed for running the model are installed and the Input data is
extracted to be placed in the test/train and validation folders repectively.

7 Ipip install -gr requirements.txt
import torch

from IPython.display im mage, clear_output
from utils.google utils ~t gdrive_download

print(*Se % (torch.__version__, torch.cuda.get device properties(®) if torch.cuda.is_available() else 'CPU"))

| 636 kB 5.3 MB/s
Setup complete. Using torch 1.9.6+cul82 CPU

%cd /content/gdrive/MyDrive/yolovs
! pwd
pw

/content/gdrive/MyDrive/yolovs
/content/gdrive/MyDrive/yolovs

lunzip /content/gdrive/MyDrive/obj new.zip

Figure 14: Installing dependencies and extracting data

The training data with annotations are showcased and later the model is trained with the
trianing data.

print("Traini
Image(filename=" SU in_pb , width=9ae)

ime
/content/gdrive/MyDrive/yolovs
I pwd
Ipython train.py --img 416 --batch 16 --epochs 3000 --data *./data.yaml' --cfg ./models/custom yolov5s.yaml --weights " --name yolov5s_results --cache

Figure 15: Installing dependencies and extracting data

Detections are made from the test data and stored in YoloV5 - runs - detect - exp. The
model is then tested with the desired video input.

rt Image, display

4.3 MobileNetV2 FPN lite and Optical Character Recognition

The Google drive is mounted to Colab and paths for the folder are assigned.

Ipip install protobuf matplotlib==3.2

JEL_PATH' ¢
TRAINED_F

Figure 17: Requiremetns for MobileNet V2

The TensorFlow2 model is cloned from the repository and the Object Detection algorithm
dependencies are installed.

object_detect / oto --python out=. & cp object_detection/p: es) p.py . & python -m pip install .

1

o --python_out=. yject_detecti .py setup.py hon setup.py builc

Figure 18: Installing TensorFlow Object Detection

The lable map containint the information about the number of classes is created. As the
Tensorflow predictions can only be done on Tensorflow record files, which is a binary file
created from both the images and annotations.

labels = [{'name":

open(files["

r label in labels:
f.write("
f.write("\tna n' . format(labell 'r
f.write('\t .format(label['id']))
f.write('}

ARCHIVE_FILES = os.path.join(paths["
if os.path.exists(ARCHIVE_FILES):
-zxvf {ARCHIVE FILES}

if not os.path.exists(files['TF | _SCRIPT']):
lgit clone https://github.com/nicknochnack/Gener:

Ipython {files['TF | } -x {os.path.joi s train')} -1 {files['LABELMAP']} -o {os.path.join(paths['ANN
Ipython {files['TF_| } -x {os.path.joi s)} -1 {files['LABELMAP']} -0 {os.path.join(paths['A

Successfully created the TFRecord file: Tensorflow/workspace/annotations/train.record
Successfully created the TFRecord file: Tensorflow/workspace/annotations/test.record

Figure 19: Creating Label map and TensorFlow Records

The model is then trained and detections from the image is preformed.

TRAINING SCRIPT =
command = n r={} {3 -- C 0 ! iles[" LINE_CONFIG'])

print(command)

python Tensorflow/models/research/object detection/model main_tf2.py --model dir=Tensorflow/workspace/models/my ssd_mobilenet --pipeline config path=Tensorflow/workspace,

I{command }

Figure 20: Training the model

matplotlib import pyplot as plt
atplotlib inline

category index = label map_util.create_category_index from labelmap(files[’
IMAGE_PATH = os.path.join(paths["IMAGE |

img = cv2.imread(IMAGE_PATH)

image_np = np.array(img)

input_tensor = tf.convert_to_tensor(np.expand_dims(image np, @), dtype=tf.float32)
detections = detect_fn(input_tensor)

num_detections = int(detections.pop('num D)}

detections {key: value[@, :num_detections].numpy()
for key, value in detections.items()}

detections["num ti '] = num_detections

detections[’ n_c = detections| ‘¢].astype(np.inte4a)

label id offset = 1
image np_with_detections = image np.copy()

viz_utils.visualize boxes_and_labels_on_image_array(
image_np_with_de
detections[
detections[
detections|['d

Figure 21: Performing Detections from images

10

Filering Region of interest and OCR from the images are perfomed

t easyocr
detection_threshold = 0.7

image = image np with detections

scores = list(filter(x> detection threshold, detections[
boxes = detections[de n "1[:1en(scores)]

classes = detection 1[:1en(scores)]

width = image.shape[1]
height = image.shape[@]

x, box in enumerate(boxes):

print(box)
box*[height, width, height, width]

print(roi)
region = image[int(roi[e]):int(roi[2]),int(roi[1]):int(roi[3])]
reader = easyocr.Reader(['en'])
ocr_result = reader.readtext(region)
print(ocr_result)
plt.imshow(cv2.cvtColor(region, cv2.COLOR BGR2RGB))

~ result in ocr_result:
print(np.sum(np.subtract(result[e][2],result[e][1])))
print(result[1])

region_threshold = ©.05

filter_text(region, ocr_result, region_threshold):
rectangle size = region.shape[@]*region.shape[1]

in ocr_result:
= np.sum{np.subtract(result[e][1], result[e][e]))
height = np.sum{np.subtract(result[e][2], result[@][1]))

if length*height / rectangle size > region threshold:
plate.append(result[1])
return plate

filter_text(region, ocr_result, region_threshold)

Figure 22: Extracting ROl and performing OCR

11

