

Configuration Manual

MSc Research Project

Data Analytics

Karen Hernandez Abasolo

Student ID: X20118210

School of Computing

National College of Ireland

Supervisor: Dr. Hicham Rifai

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Karen Hernandez Abasolo

Student ID:

X20118210

Programme:

Data Analytics

Year:

2020-2021

Module:

MSc Research Project

Lecturer:

Dr. Hicham Rifai

Submission Due

Date:

16/08/2021

Project Title:

Detection of Knee Osteoarthritis Severity using a Fusion of

Machine and Deep Learning models

Word Count:

1931 Page Count: 18

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Karen Hernandez Abasolo

Date:

16/08/2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Karen Hernandez Abasolo

Student ID: x20118210

1 Introduction

The current manual configuration aims to replicate the proposed research project from

scratch. It contains hardware and software requirements, also all the packages, libraries, and

programming codes performed during each stage of the implementation.

2 System Configurations

2.1 Hardware
Operating System: Windows 10

Processor: Intel(R) Core (TM) i5-6300U CPU @ 2.40GHz 2.50 GHz

Installed RAM: 8.00 GB (7.88 GB usable)

2.2 Software
The following software enabled the implementation:

Microsoft Office: Excel

Anaconda Navigator for Windows (Version 1.9.7)

Jupyter Notebook (Version 6.3.0)

Python (Version 3.8.8)

2.2.1 Python Environment Setup

Machine learning models were completely implemented on Jupyter Notebook hosted by

Anaconda framework, using python language. The last stage of the project which consisted of

a fusion of machine and deep learning models was implemented in this environment.

2.2.2 Google Colab Environment Setup

Deep learning models were implemented on Google Colaboratory, a product from Google

Research that allows to write and execute code in Python language. GPU was set as a

hardware accelerator.

3 Project Implementation

The current research project involves three main stages: implementation of machine learning

models, deep learning models, and a fusion system that combines both predictions provided

2

by them. For better understanding, the manual configuration will explain all stages of each

process.

Machine Learning Models

3.1.1 Data Gathering

The first step is getting the dataset from OAI study1. It is required to create a user and login

into the account as shown in Figure 1.

Figure 1. Login to OAI Study

Figure 2. Clinical Dataset from OAI study

Clinical data is downloaded from the website. It is a zipped file that contains clinical data of

each visit of the patients. The current project only considered the file "AllClinical00" which

is data at the baseline of the study.

1 The Osteoarthritis Initiative: https://nda.nih.gov/oai

3

Figure 3. Dataset Files

There are important attributes such as Sex and Race that were merged from another file as is

shown in Figure 4.

Figure 4. Accessing clinical data from the system

3.1.2 Data Preparation

Libraries required to explore, impute missing values, graph plots, and statistical analysis of

clinical data are shown in Figure 5.

 Fig 5. Libraries required to preprocess clinical data

Before starting the preprocessing stage, all dataframe was duplicated and a single ID was

created because the variable outcome is for each knee of the patient, however, clinical data is

a single row per patient, that process is illustrated in Figure 6.

Fig 6. Creating a unique ID for both knees of a patient

4

A column with more than 50% of missing values is dropped. Besides, due to the sensitivity of

patient information, all rows with NA values are dropped.

Fig 7. Deleting missing values

The target variable comes from x-ray images, and it is needed to merge it with clinical

dataset, this process is in Fig 8.

Fig 8. Merging target variable with clinical dataframe

Fig 9. Deleting outliers in the dataframe

Fig 10. Normalization of variables

3.1.3 Modelling machine learning methods

Implementation of machine learning requires a set of libraries to be set described in Figure

11.

5

Figure 11. Libraries required to implement machine learning models

Figure 12. Train and Test datasets are created

To overcome dealing with an imbalanced dataset, SMOTE technique is applied to enhance

the models, the implementation of the technique is shown in Figure 13.

Figure 13. SMOTE strategy applied in Train dataset

6

Random Forest

Figure 14 shows the implementation of Random Forest, this is the first machine learning

model. A search of the best parameters to improve it is conducted by GridSearchCV. Three

experiments were implemented here, Random Forest with hyperparameters, Random Forest

taking into consideration hyperparameter and SMOTE technique, and Random Forest with

hyperparameters and Weighted dataset. In the end, the importance of features in this model is

plotted.

Figure 14. Implementation of Random Forest, a first model with parameters set by default

Fig 15. Tunning parameters by GridSearchCV with 3 cross-validation in the process.

Fig 16. Random Forest version after applying hyper parametrization, implementing option that

balance the dataset.

Fig 17. Plotting Feature Importance in Random Forest Model

7

Gradient Boosting

A baseline Gradient Boosting model is implemented however, to enhance it is applied a set of

searches of the best parameters as shown below.

Fig 18. Tunning parameters to enhance Gradient Boosting Model

Figure 19. Version of Gradient Boosting model with hyperparameters

8

Figure 19. Version of Gradient Boosting model with hyperparameters and SMOTE technique

applied in the dataset

In the last part of Gradient Boosting model, it is performed a plot that shows the feature

importance using this algorithm, following the same code as Random Forest.

Xtreme Gradient Boosting (XGBoost)

A similar approach to Gradient Boosting is set for XGBoost. Firstly, a baseline model is

performed, then, a search of the best parameters is conducted to fine max_depth,

min_child_weight, gamma, subsample, colsample_bytree, and reg_alph. The final model is

presented in Figure 20.

Figure 20. Last version of Xtreme Gradient Boosting model

3.1.4 Evaluation

Random Forest, Gradient Boosting, and XGB are evaluated with cross-validation to prevent

overfitting in the models. Once the predicted values are obtained, they are assessed against

the real ones. ROC curve is plotted, and Precision, Recall, F1-score, and Accuracy are

calculated in a classification report.

9

Figure 21. Plotting Confusion matrix

Figure 22. Printing classification report

Figure 23. Printing ROC Curve

Deep Learning Models

Deep learning models were implemented on Google Colab due to some advantages as the

time required to run the models and memory available in the cloud service. The source code

for the deep learning models was based on a GitHub repo2.

3.1.1 Data Gathering

Images are available on the OAI study website, however, in terms of accessibility and easy

management of them, we worked with a dataset that has been already cropped3 as is

illustrated in Figure 24, this dataset corresponds to the baseline of the study. However, the

2 https://github.com/fontainelam/KneeOsteoarthritis.git
3 Chen, Pingjun (2018), “Knee Osteoarthritis Severity Grading Dataset”, Mendeley Data, V1, doi:

10.17632/56rmx5bjcr.1

10

split into train, test, and validation of 4,466 knee x-ray images were rearranged according to

our train and test dataset from clinical data as is shown in Figure 25.

Figure 24. X-ray images Dataset

Fig 25. Selecting x-ray images according to train and test sets created with clinical data

Train, validation, and test datasets are uploaded in Google Drive to be mounted in Google

Colab. Click on the URL and select Gmail account to enter the authorization to proceed.

Fig 26. Drive mounted in Jupyter Notebook

11

Figure 27. Loading images from Train, Test, and Validation folders

3.1.2 Data Preparation

Figure 28 shows the libraries required to preprocess images by data augmentation.

ImageDataGenerator is used from Keras Library.

Fig 28. Libraries required to preprocess x-ray images

Image rotation, Gaussian Blur, horizontal flip, shearing, and zooming are techniques applied

to enhance image quality; the script in Figure 29 shows their parameters.

12

Figure 29. Generating augmented data

Before implementing the models, the training set is balanced creating synthetic images, The

technique will reduce the impact of dealing with an imbalanced dataset.

Figure 30. Balancing training dataset

3.1.3 Modelling deep learning methods

The libraries required to implement DenseNet201 and InceptionResNetV2 and its

correspondent evaluation are listed in Figure 31.

Figure 31. Libraries required to implement machine learning models

13

DenseNet201

All layers in DenseNet201 model are imported from Keras package. A set of parameters such

as image size, the rate of dropout, learning rate is declared before running the model. Some

layers are stacked at the end of DenseNet201 schema as illustrated in Figure 32.

Figure 32. Execution of DenseNet201

A callback function is created to manage the performance of the model. Its parameters are set

as shown in Figure 33.

Figure 33. Parameters to implement a callback function

The first epochs trained in the previous model are frozen and, 15 layers were added as a

strategy to improve the model. The neural network was compiled and executed again.

3.1.4 Evaluation

To track the performance of the neural network, it was plotted accuracy and loss for training

and validation data across the epochs, the code is shown in Figure 34. Furthermore, deep

learning models followed the same evaluation as machine learning models to be comparable,

obtaining ROC curve and metrics such as precision, recall, accuracy, and f1-score.

14

Figure 34. Accuracy and Loss Plot for Training and Validation Sets

InceptionResNetV2

The implementation of this model follows the same process as DenseNet201. The model is

called from Keras Package before compiling it.

Figure 35. Execution of InceptionResNetV2

From both models, predicted values in test dataset are exported in a csv. file to complete the

last stage in the research project.

4. Fusion Model

This section is implemented in Jupyter Notebook hosted by Anaconda. The first step is to

obtain probability scores per class from each machine learning model as is demonstrated in

Figure 36. Then, the average between them is calculated and finally, the class with the

highest probability score is taken as the KL grade as shown in Figure 38.

15

Figure 36. Probability scores per class from ensemble methods

Figure 37. Computing means of probability scores per KL grade

Figure 38. Max voting system between machine learning models

A system that performs majority voting between the outcome from machine learning models

and predicted values from DenseNet201 and InceptionResNetV2 is implemented, the

technique is shown in Figure 39.

Figure 39. Majority voting between three independent outcomes

To conclude the current research project, metrics to evaluate predicted values against real one

is obtained by executing a classification matrix and report.

16

References

Abedin, J. et al. (2019) “Predicting knee osteoarthritis severity: comparative modeling based

on patient’s data and plain X-ray images,” Scientific reports, 9(1), p. 5761.

Qiu, S. et al. (2018) “Fusion of deep learning models of MRI scans, Mini-Mental State

Examination, and logical memory test enhances diagnosis of mild cognitive

impairment,” Alzheimer’s & dementia (Amsterdam, Netherlands), 10(1), pp. 737–749.

Tiulpin, A. et al. (2019) “Multimodal machine learning-based knee osteoarthritis progression

prediction from plain radiographs and clinical data,” Scientific reports, 9(1), p. 20038.

