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Configuration Manual

Karen Hernandez Abasolo
Student ID: x20118210

1 Introduction

The current manual configuration aims to replicate the proposed research project from
scratch. It contains hardware and software requirements, also all the packages, libraries, and
programming codes performed during each stage of the implementation.

2 System Configurations

2.1 Hardware
Operating System: Windows 10
Processor: Intel(R) Core (TM) i5-6300U CPU @ 2.40GHz 2.50 GHz
Installed RAM: 8.00 GB (7.88 GB usable)

2.2 Software

The following software enabled the implementation:
Microsoft Office: Excel
Anaconda Navigator for Windows (Version 1.9.7)
Jupyter Notebook (Version 6.3.0)
Python (Version 3.8.8)

2.2.1 Python Environment Setup

Machine learning models were completely implemented on Jupyter Notebook hosted by
Anaconda framework, using python language. The last stage of the project which consisted of
a fusion of machine and deep learning models was implemented in this environment.

2.2.2 Google Colab Environment Setup
Deep learning models were implemented on Google Colaboratory, a product from Google

Research that allows to write and execute code in Python language. GPU was set as a
hardware accelerator.

3 Project Implementation

The current research project involves three main stages: implementation of machine learning
models, deep learning models, and a fusion system that combines both predictions provided
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by them. For better understanding, the manual configuration will explain all stages of each
process.

Machine Learning Models

3.1.1 Data Gathering

The first step is getting the dataset from OAI study?. It is required to create a user and login
into the account as shown in Figure 1.

Username: Kar_2401 NDA Login D

Reset Password

Request Account

w;
h

NIH Login

Figure 1. Login to OAI Study

NDA | ABCD | CCF | OAl | NIAAAps | AMPSCZ 4

About OAl Study Details Publications Query and Download

OAI Full Data Downloads
Complete OAI Dataset

These zip files contain the entire OAl archive. This includes all the files from all of
the other downloa on this page of the selected type.

COMPLETE DATA - ASCI; COMPLETE DATA - SAS

Participant Information

These zip files contain the Enrollees ({demographic and cohort information),

Meast ject). AllClinical,
Medic

ingredients and use frequency), a p replacement)
tables. The AllClin table contain data from tiple ets including

Figure 2. Clinical Dataset from OAI study

Clinical data is downloaded from the website. It is a zipped file that contains clinical data of
each visit of the patients. The current project only considered the file "AllClinical00" which
is data at the baseline of the study.

! The Osteoarthritis Initiative: https://nda.nih.gov/oai



Figure 3. Dataset Files

There are important attributes such as Sex and Race that were merged from another file as is
shown in Figure 4.

#Reading files
df clinical = pd.read_csv("C:/Users/karen/Downloads/Clinicalea.csv")
df_measinventory = pd.read_csv{"C:/Users/karen/Downloads/measinventory.csv")

#Adding varigbles from agnother datoset

df_koa=pd.merge(df _clinical,df measinventary[["ID","PE2SEX"," "P22RACE"]],how="1ft")

Figure 4. Accessing clinical data from the system

3.1.2 Data Preparation

Libraries required to explore, impute missing values, graph plots, and statistical analysis of
clinical data are shown in Figure 5.

#Libraries required to preprocess climical data

import pandas as pd
import numpy as np

import category_encoders as ce

import matpletlib.pyplot as plt
import seaborn as sns

from sklearn import preprocessing

from sklearn.preprocessing import MinMaxscaler

from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import RFE

Fig 5. Libraries required to preprocess clinical data

Before starting the preprocessing stage, all dataframe was duplicated and a single ID was
created because the variable outcome is for each knee of the patient, however, clinical data is
a single row per patient, that process is illustrated in Figure 6.

ID_L=df_koafimal[ "ID"].astype{str)+"L"
df_koafinalL=df koafinal.assign(ID SIDE=ID L.values)
df_koafinalL

ID_R=df koafimal["ID"].astype{str)+"R"
df_koafinalR=df_koafinal.assign(ID SIDE=ID_R.values)
df_koafinalr

Fig 6. Creating a unique ID for both knees of a patient
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A column with more than 50% of missing values is dropped. Besides, due to the sensitivity of
patient information, all rows with NA values are dropped.

df_koa_cleanl=df_koa.drop(columns=[ "V2aRAMEDS", "VEBKOOSFXI", "PELIKFNLEVY" , "VBBSMKNOW" , "V@BK00SFX2", "VeBFFQYRE2" , "VEBHOURWK" , "VeaKl
df_koa_cleanl.head(}

3
df_koa_final=df_keca_cleanz.dropna()
df_koa_final

Fig 7. Deleting missing values

The target variable comes from x-ray images, and it is needed to merge it with clinical
dataset, this process is in Fig 8.

#Merging target variable

df_target = pd.read_excel("c:/Users/karen/Desktop/kaggle_0A/target_variable.xlsx"™)

df_kea_wv2=pd.merge(df_koa_vl,
df _target,
how="1left")
df_koa_v2

Fig 8. Merging target variable with clinical dataframe

filteri=df_koa_v3['VERABCIRC']»138
filtered_df = df_kea_w3[filteri]
filtered_df

filterl=df_keca_w3[ "vesABCIRC']>138
filtered_df = df_koa_w3[filteri]
filtered_df

Fig 9. Deleting outliers in the dataframe

from sklearn.preprocessing import MinMaxsScaler

celumn_names_to not_normalize = ["ID', 'ID SIDE', "KLGRADE']

celumn_to_normalizel = [x for x in list(transf_data) if x mot in column_names_to_not_normalize ]
7z = transf_data[column_to normalizel].values

scaler = MinMaxscaler()

z_scaled = scaler.fit_transform{z}

df_tempo = pd.DetaFrame(z_scaled, columns=column_to normalizel, index = transt_data.index)
transf_data[column_to_normalizel] = df_tempo
df_tempo

Fig 10. Normalization of variables

3.1.3 Modelling machine learning methods

Implementation of machine learning requires a set of libraries to be set described in Figure
11.



import pandas as pd
import matpleotlib.pyplot as plt
import numpy as np

from imblearn.pipeline import make_pipeline as make_pipeline_imb # To do our transformation in @ unigue time
from imblearn.over_sampling import SMOTE

from sklearn.pipeline import make_pipeline

from imblearn.metrics import classification_report_imbalanced

#library to split the dataset
from sklearn.model_selection import train_test_split
from cellecticns import Counter

from sklearn.ensemble import RandomForestClassifier
import xgboost as xgb
from sklearn.ensemble import aradientBeostingClassifier

#Libraries for tunming the model
from sklearn.model_selection import stratifiedkrold
from sklearn.model_selection import cross_wal_score, GridSearchlV

#libraries for evgluation

from scikitplet.metrics import plot_roc

from scikitplet.metrics import plot_precisicn_recall

from sklearn.metrics import fi_score

from sklearn.metrics import precisicn_score, recall_score, fbeta_score, confusion_matrix
from sklearn.metrics import precision_recall curve, accuracy_score, classification_report

Figure 11. Libraries required to implement machine learning models

SPLITINTO TRAIN AND TEST

X = koa_hotencoded_allvar.drop(["KLGRADE"], axis=1) #Setting the X to do the split
X.set_index('ID_SIDE', inplace=True}

X.values

y = koa_hotencoded allvar["KLGRADE"].values # transforming the values in array

X col = koa_hotencoded_allvar.drop(["KLGRADE","ID SIDE"], axis=1)

# splitting data inte training and test set
¥ _train, X _test, y_train, y_test = train_test_split({X, y, random_state=2, test size=8.3@)

#Consider train and test dota to divide the same groups in image models
¥_train_df = pd.DataFrame(X_train)
¥ _test_df = pd.DataFrame(X_test)

¥ train_df.to_csv("C:/Users/karen/Desktop/train_data/train2.csv”)
X _test df.to_csv("C:/Users/karen/Desktop/test_data/test2.csv")

Figure 12. Train and Test datasets are created

To overcome dealing with an imbalanced dataset, SMOTE technique is applied to enhance
the models, the implementation of the technique is shown in Figure 13.

#SMOTE will oversample all classes to have the same number of examples as the class with the most examples.
# transform the dataset
oversample = SMOTE()
X_train_SMOTE, y_train_SMOTE = oversample.fit_resample(X_train_final, y_train)
# summarize distribution
counter = Counter(y_train_SMOTE)
for k,v in counter.items():
per = v / len(y_train_SMOTE) * 1@@
print(‘'Class=%d, n=%d (%.3f%¥%)" ¥ (k, v, per))
# plot the distribution
plt.bar{counter.keys(), counter.values())
plt.show()

Figure 13. SMOTE strategy applied in Train dataset



Random Forest

Figure 14 shows the implementation of Random Forest, this is the first machine learning
model. A search of the best parameters to improve it is conducted by GridSearchCV. Three
experiments were implemented here, Random Forest with hyperparameters, Random Forest
taking into consideration hyperparameter and SMOTE technique, and Random Forest with
hyperparameters and Weighted dataset. In the end, the importance of features in this model is
plotted.

rf = RandomForestClassitier{max_depth=4, n_estimators=28})
rf.fit(x_train_final, y_train)

# Run prediction on test set.
y_pred_rf = rf.predict(X_test_fimal)
y_pred_train_rf=rf.predict(¥_train_final)

#Evaluating
print{"Train accuracy::",accuracy_score(y_train,y_pred_train_rf)})
print{"Test accuracy::",accuracy_score(y_test,y_pred_rf))

Figure 14. Implementation of Random Forest, a first model with parameters set by default

#Tunning parameters

param_grid = {
"bootstrap': [True],
"max_depth': [8@8, %0, 1lea, 118],
"max_features': [2, 3],
"min_samples leaf': [3, 4, 5],
"min_samples split': [8, 18, 12],
'n_estimators': [20,108, 26, 3J0@, 1000]}

rf_grid = GridsearchCV{estimator = rf, param_grid = param_grid,

cv = 3, n_jobs = -1, wverbose = 2)

rf_grid.fit(X_train_final,y train)
rf_grid.cv_results , rf _grid.best params_,rf_grid.best _score_

Fig 15. Tunning parameters by GridSearchCV with 3 cross-validation in the process.

rf_weig = RandomForestClassifier(max_depth=29@, max_features=2,min_samples_leaf=2, min_samples split=§,
n_estimators=30@,class_weight="balanced")

rf_weig.fit(X_train_final, y_train)
k_fold = StratifiedkFold(n_splits=18, shuffle=True, random_state=42)

new_scores = cross_val score(rf_weig, X_train_final, y train, cv=k_fold, n_jobs=-1)

print{"Cross validation train accuracy score:", new_scores.mean())

new_scores_test = cross_val_score(rf_weig, X_test _final, y test, scoring='accuracy', cv=k_fold, n_jobs=-1)
print({"Cross validation train accuracy score:", new_scores_test.mean())

Fig 16. Random Forest version after applying hyper parametrization, implementing option that
balance the dataset.

plt.title({"Feature Importance”,fontsize=25)
plt.bar{range(Xtrain_df.shape[1]),importances[sorted_indices],align="center”)
plt.xticks{range{xXtrain_df.shape[1]),xXtrain_df.columns[scrted_indices],rotation=9&)
plt.tight_layowk()

#plt.figure{figsize=(8, &))

#plt.xlabel{ "Feature importance score’, jontsize=28)

pli.show()
Fig 17. Plotting Feature Importance in Random Forest Model



Gradient Boosting
A baseline Gradient Boosting model is implemented however, to enhance it is applied a set of
searches of the best parameters as shown below.

#Tunning parameters
p_test3 = {'learning_rate':[e.15,8.1,8.05,2.01,2.885,8.801], 'n_estimators’:[1ee,25@,50@,758,1608,1258,150@,1758]}

tuning = Gridsearchcviestimator -GradientBoostingClassifier(max_depth=4, min_samples_split=2, min_samples_leaf-1, subsample-=1,ma:
param_grid = p_test3, scoring='accuracy',n_jecbs=4, cw=5)

tuning.fit(x_train_final,y_train)
tuning.cv_results_, tuning.best_params_,tuning.best score_

EMAX_DEPTH

p_test2 = {'max_depth':[2,3,4,5,6,7] }

tuning = GridSearchCV{estimator =GradiemtBoostingClassifier(learning_rate=2.91,n_estimaters=258, min_samples_split=2, min_sample:
param_grid = p _test2, scorimg="accuracy',n_jobs=4, Cv=5)

tuning.fit{X_train_final,y_train)

tuning.cv_results_, tuning.best_params_,tuning.best_score_

#MIN SAMPLE SPLIT AND MIN SAMPLES LEAF

p_test4 = {'min_samples_split':[2,4,6,8,18,20,48,60,188], 'min_samples leaf':[1,3,5,7,9]}

tuning = GridsearchCv(estimator -GradientBoecstingClassifier(learning_rate-8.91, n_estimators=25@,max_depth=7, subsample-1,max_fe:
param_grid = p_test4, scoring="accuracy',n_jobs=4, cv=5)

tuning. fit{x_train,y_train)

tuning.cv_results_, tuning.best params_,tuning.best_score_

#MAX FEATURES

= NE MAX FEATURES

p_tests = {"max_features':[2,2,4,5,6,7]}

tuning = GridsearchCviestimator =-GradientBoostingClassifierylearning_rate=28.81, n_estimators=258,max_depth=7, min_samples_split=:
param_grid = p_testS, scorimg="accuracy',n_jobs=4, cv=5}

tuning.fit(¥_train,y_train)

tuning.cv_results_, tuning.best_params_,tuning.best_score_

#SUE SAMPLE
p_teste= {"subsample':[e.7,0.75,0.8,8.85,8.9,0.95,1]}

tuning = GridSearchCVi{estimator =GradientBoostingClassifier(learning_rate=8.81, n_estimators=258,max_depth=7, min_samples_split=:
param_grid = p teste, scoring="accuracy',n_jobs=4, cv=5)

tuning. fit({X_train,y_train)

tuning.cv_results_, tuning.best_params_,tuning.best_sceore_

Fig 18. Tunning parameters to enhance Gradient Boosting Model

#LAST MODEL |
from sklearn.model_selection import Stratifiederold

new=GradientBeostingClassifier{learning_rate-8.81, n_estimators=258,max_depth=7, min_samples_split-=48,
min_samples_leaf=9,max_features=7 , subsample=1, random_state=18)

skf = stratifiedKrFeold{n_splits=18, shuffle=True, random_state=1)
new.fit(x_train_final,y_train)

FEVALUATE WITH CROSS-VALIDATION
scores = cross_val_score(new, X_train_fimal, y_train, cv=skf, scoring="accuracy"”, n_jobs=-1)
scores_test = cross_val_score{new, X test_final, y_test, scoring="accuracy', cw=skf, n_jobs=-1)

print{"cross_validation train accuracy™, scores.mean())
print{"cross_validation test accuracy"”, scores_test.mean())

#PREDICT
pred_train=new.predict{x_train_final)
pred=new.predict{X_test_final)

print{"Train accuracy::",accuracy_score(y_train,pred_train)})
print{"Test accuracy::",accuracy_score(y_test,pred})

Figure 19. Version of Gradient Boosting model with hyperparameters




GE_classifier SMOTE = GradientBeostingClassifier{learning_rate-=28.81, n_estimators=258,max_depth=7, min_samples_split=43,
min_samples_leaf=2,max_features=7 , subsample-=1, random_state=18)

GE_classifier_ SMOTE.fit({X_train_sMOTE,y_train_SMOTE)
skf = Stratifiedkreld{n_splits=1@8, shuffle=True, random_state=1)

# Run prediction on test set.

y_predict_train_smcte-GB_classifier SMOTE.predict{x_train_sMOTE}
y_pred_smote = GB_classifier SMOTE.predict({X_test_fimnal}

y_score_SMOTE_gb = GE_classifier SMOTE.predict_proba(X_test_final)
FEVALUATE WITH CROSS-VALIDATION
scores_gb_smote = cross_val_score(GB_classifier_sSMOTE, X_train_sSMOTE, y_traim_sMOTE, cv=skf, scoring="azccuracy", n_jobs=-1)

scores_test_gh_smote = cross_wval_score(GB_classifier SMOTE, X_test_final, y_test, scoring='accuracy', cv=skf, n_jobs=-1)

print{"Train accuracy::",accuracy_score(y_train_SMOTE,y_predict_train_smote}}
print{"Test accuracy::",accuracy_score(y_test,y_pred_smote))

Figure 19. Version of Gradient Boosting model with hyperparameters and SMOTE technique
applied in the dataset

In the last part of Gradient Boosting model, it is performed a plot that shows the feature
importance using this algorithm, following the same code as Random Forest.

Xtreme Gradient Boosting (XGBoost)

A similar approach to Gradient Boosting is set for XGBoost. Firstly, a baseline model is
performed, then, a search of the best parameters is conducted to fine max_depth,
min_child_weight, gamma, subsample, colsample_bytree, and reg_alph. The final model is
presented in Figure 20.

#%68 model with hyperparameters

xgbt = xgb.XGEClassifier({learning_rate =-2.21, n_estimators=Seee, max_depth=9,
min_child_weight=3, gamma=2, subsample=2.8, colsample_bytree-=8.7,reg_alpha=2.1,
objective= ‘multi:softmax’',num_classes=5 ,nthread=4, scale_pos_weight=1, seed=27)

xgbs . fit(x_train_final,y train)}

skf = StratifiedkFcld(n_splits=18, shuffle=True, random_state=1)
#Evaluate

preds_xgbS=xgbs.predict(X_test final)
y_train_pred_xghS=xgbS.predict{X_train_final}

y_score? = xgbs.predict_proba{X_test final)

FEVALUATE WITH CROS5-VALIDATION
1

scores_xghS = cross_wval_score{xgbhs, X_train_final, y_train, cv=skf, scoring="accuracy", n_jobs=-1)
scores_test_xght - cross_val_score(xghs, X_test_final, y_test, scoring='accuracy', cv=skf, n_jobs=-1}

print{"cross_validation tralm accuracy”, scores_xgbS.mean())
print{"cross_validation test accuracy”, scores_test xgbS.mean{}}

print{"Train accuracy::",accuracy_score(y_train,y train_pred_xgh5})
print{"Test accuracy::",accuracy_score(y_test,preds_xgbs})

Figure 20. Last version of Xtreme Gradient Boosting model
3.1.4 Evaluation

Random Forest, Gradient Boosting, and XGB are evaluated with cross-validation to prevent
overfitting in the models. Once the predicted values are obtained, they are assessed against
the real ones. ROC curve is plotted, and Precision, Recall, F1-score, and Accuracy are
calculated in a classification report.



#Evaluagting

cme=confusion_matrix(y_test,preds_xgbt}
fig,ax=plt.subplots(figsize=(18,5))

ax.matshow{cms)

plt.title({"Confusicn matrix",fontsize=2a)
plt.ylabel{"True vaLLes"JFDntsikE=L5)
plt.xlabel{"False values",fontsize=15)
for {(i,j), = in np.ndenumerate(cms):
ax.text{j,i,"{:0.1f}".format(z),ha="center",va="center")

Figure 21. Plotting Confusion matrix

print{classificaticn_report(y_test,preds_xgb5))

precisicon
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8.74 a.71
8.29 a.32
2.58 a.23
2.48 8,45
2.82 a.82

a.54
2.4a a.22
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B

143a
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1428

Figure 22. Printing classification report

#Plot metrics
plot_roc(y_test,y_score2)
plt.shou()
ROC Curves
10 “..k. -~
rd
-
-
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L
!
o
v 06
g == ROC cutve of class 0.0 (area = 0.81)
[l
C; — ROC curve of class 1.0 (area = 0.65)
: = ROC curve of class 20 (area =0.72)
ROC curve of class 3.0 (area = 0.85)
ROC curve of class 4 0 (area = 0 94)

Figure 23. Printing ROC Curve

Deep Learning Models

micro-average ROC curve (area = 0.83)
macro-average ROC curve {area = 0.79)

Y 4 T
04 06 08
False Positive Rate
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Deep learning models were implemented on Google Colab due to some advantages as the
time required to run the models and memory available in the cloud service. The source code
for the deep learning models was based on a GitHub repo?.

3.1.1 Data Gathering

Images are available on the OAI study website, however, in terms of accessibility and easy
management of them, we worked with a dataset that has been already cropped?® as is
illustrated in Figure 24, this dataset corresponds to the baseline of the study. However, the

2 https://github.com/fontainelam/KneeOsteoarthritis.git
3 Chen, Pingjun (2018), “Knee Osteoarthritis Severity Grading Dataset”, Mendeley Data, V1, doi:

10.17632/56rmx5bjcr.1



split into train, test, and validation of 4,466 knee x-ray images were rearranged according to
our train and test dataset from clinical data as is shown in Figure 25.

< C @ datamendeley.com/dataset

« = Q

Mendeley Data FAQ  Createaccount  Signin

Knee Osteoarthritis Severity Grading

Dataset Dataset metrics
Published: 4 September 2018 | Version 1 | DOI: 10.17632/56rmxSbjcr.1 Usage

Contributor: Pingjun Chen

Description

contains knee X-ray data on and knee K

is organized from OAI (https:/joal.ep}

both knee Joint dete

©PLUMX View details
sforg/datarelease)

Latest version

Version 1
Published: 4 Sep 2018
DOL: 10.17632/56rmx5bjer.1

pal
(=) KneeXrayData.zip 7GB & @ Cite
Cite this dataset

Chen, Pingjun (2018), “Knee Osteoarthritis
Severity Grading Dataset”, Mendeley Data,
V1, doi 10.17632/56rmxSbjcr.1

Figure 24. X-ray images Dataset

In [208]: for file_name in images_to_ccnsider:
shutil.move{os.path.join(original, file_name),target)

In [212]: originall -
targetl = r”

s\ karen\Downloads\arc

le - Copy‘\KEEPTHEM"+"%\\"
rs'\karen\Desktop\train_data W

_images"

In [214]: train_to_consider = pd.read_excel{"C:/Users/karen
train_to_censider

Fig 25. Selecting x-ray images according to train and test sets created with clinical data

ktop/train_data/train_id.xlsx")

Train, validation, and test datasets are uploaded in Google Drive to be mounted in Google
Colab. Click on the URL and select Gmail account to enter the authorization to proceed.

£ InceptionResNetV2.ipynb
L P Py B comment A% share €8 @
File Edit View Insert Runtime Tools Help
+ Code  + Text o BAM ~ | A Edtng | A
- Requirement already satisfied: kiwisolver>=1.@.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib»=1.4.8-»>scikit-plot) (1.2.1)
[] Requirement already satisfied: six in /usr/lecal/lib/python3.7/dist-packages (from cycler>=@.1@->matplotlib>=1.4.8->scikit-plot) (1.15.8)

Q Installing collacted packages: scikit-plot
Successfully installed scikit-plot-.3.7

<> 3
T eoB ST
O ﬁ from google.colab import drive
bdrive.mount('/content/drive")

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client id=947318989803-6bn6gk8qdgfandgipfee6491hcBbredi.apps.googleusercontent. coméry

Enter your authorization code:

BATCH_SIZE = &8

TARGET_IMG_HEIGHT = 224
TARGET_IMG_WIDTH = 224

CLASS_MODE = "categorical’
INTERPOLATION_BILINEAR = 'bilinear’

[ 1 train_dir = "/content/drive/MyDrive/research/train”
test_dir = "/content/drive/MyDrive/research/test”
= val dir = "/content/drive/MyDrive/research/val”
» Executing (7s) Cell > mount() > raw_input() > _input_request() > recv() > recv_multipart() .y

Fig 26. Drive mounted in Jupyter Notebook
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#load training set
# augment data and shuffle the training dataset
train_generator = get_image_data_from_directory(train_dir, True, True})

#Load validation set
val_generator = get_image_data_from_directory(val_dir)

#load test set
test_generator = get_image_data_from_directory(test_dir)

Found 3886 images belonging to & classes.
Found 328 images belonging to 5 classes.
Found 1438 images belonging to 5 classes.

Figure 27. Loading images from Train, Test, and Validation folders
3.1.2 Data Preparation

Figure 28 shows the libraries required to preprocess images by data augmentation.
ImageDataGenerator is used from Keras Library.

#Data preprocessing

import os

import zipfile

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from tensorflow.keras.preprocessing import image

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.preprocessing.image import array_to_img, img_to_array, load_img

Fig 28. Libraries required to preprocess x-ray images

Image rotation, Gaussian Blur, horizontal flip, shearing, and zooming are techniques applied
to enhance image quality; the script in Figure 29 shows their parameters.
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# Creating traim, test and validation datasets

def scalar({img): # A customized functicnm to enhance image quality
img=np.array{img, dtype="uints'}
img=cv2.cvtColor{img, cv2.COLOR_RGB2GRAY)
smocth=cv2.GaussianElur(img, (2,3),8) |
eql=cvZ.equalizeHist (smooth)
img=cv2.cviColor(eql, cv2.COLOR_GRAYZRGB)
img=np.array{img, diype=('float32"})
return img

# create a normal, non-augmented data generator
datagen_normal = ImageDataGenerator({preprocessing_function=scalar)

create an augmented data generator

vertical flipping, zooming, rotating, shearimg, brightness
datagen_augment = ImageDataGenerator{preprocessing_functicn=scalar,
rotation_range=1%,
width_shift_range=2.1,
height_shift_range=2.1,
#brightness_range=[e.2,8.9],
shear_range=2.25,
Zoom_range=a.1,
#channel_shift_range = 28,
herizontal_flip = True)
#f1ll_mode="constant®)

s
#

Figure 29. Generating augmented data

Before implementing the models, the training set is balanced creating synthetic images, The
technique will reduce the impact of dealing with an imbalanced dataset.

class_weights_dict = dict(enumerate{class_weight.compute_class_weight{class_weight="balanced', classes=np.asarray{range(5)), y=train_labels_from_files}}}
print{class_weights_dict)

{@: 2.47714285714285715, 1: 1.897838291972883, 2: ©.79523885952388952, 3: 1.5862736833773087, 4: 9.5428571428571437

Figure 30. Balancing training dataset
3.1.3 Modelling deep learning methods

The libraries required to implement DenseNet201 and InceptionResNetV2 and its
correspondent evaluation are listed in Figure 31.

from tensorflow impert keras

rom tensorfleow.keras import Model, optimizers, preprocessing

rom tensorflow.keras.preprocessing import image

rom tensorflow.keras.preprocessing.imapge import ImageDataGenerator

rom tensorfleow.keras.preprocessing.image impert array_te img, img_te_array, load_img
rom tensorflow.keras import regularizers

rom tensorflow.keras.optimizers import Adam, Adamax

“h —h h —h ch h

il

rom tensorfleow.keras.models impert Sequential
rom tensorflow.keras.layers import Input, Dense, Activation, Conv2D, MaxPooling2p, Flatten, Dropout, BatchNormalization
from tensorflow.keras.layers.experimental.preprocessing import Rescaling

—+

from tensorflow.keras.applications import DenseNet2e1l

from tensorflow.keras.optimizers import schedules
from tensorflow.keras.optimizers.schedules import PiecewiseConstantDecay

from sklearn.metrics impert confusion_matrix, classification_repert
from sklearn.utils import class_weight
import cw2

Figure 31. Libraries required to implement machine learning models
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DenseNet201

All layers in DenseNet201 model are imported from Keras package. A set of parameters such
as image size, the rate of dropout, learning rate is declared before running the model. Some
layers are stacked at the end of DenseNet201 schema as illustrated in Figure 32.

height=224

width=224

img_shape=({height, width, 3}

dropout=.32

1r=.821

img_shape=({height, width, 3)

base_model=tf.keras.applications.DenseNet281( include_top=False, input_shape=img_shape, pcoling='max', weights='imagenst'}

x=base_model.output

x=keras.layers.BatchNormalization(axis=-1, momentum=9.33, epsilon=0.881 )(x)

x* = Dense(512, kernel_regularizer = regularizers.l2(1 = @.918),activity_regularizer=regularizers.li{@.eas),
bias_regularizer=regularizers.li(@.88s) ,activation="relu', kernel_initializer= tf.keras.initializers.GlorotUniform{seed=123})(x)

x=Dropout(rate=dropout, seed=123}(x)

output=Dense(5, activation='softmax',kernel_initializer=tf.keras.initializers.Glorctuniform{seed=122}}(x)

model=Model{inputs=base_mecdel. input, cutputs=output}

model.compile(Adamax(lr=1r}, loss='categorical crossentropy', metrics=['accuracy']}

Figure 32. Execution of DenseNet201

A callback function is created to manage the performance of the model. Its parameters are set
as shown in Figure 33.

patience=1 # epochs te wait to lower learning rate is metric does mot improve

stop_patience=2 # consecutive epochs to wait without metric improvement before stopping training

threshold=.3 # define level of training accuracy that must be achieved before switching to monitor validatiom loss
factor=.5 # define value to multiply current learning rate by to get lower learning rate if metric did not improve
dwell=Falze # wxperimental- if metric for current metric did not improve set weights back to those of previous epoch
model_type="Densedet2el’ # model selection name

freeze=True # 1f True base model weights are frozem in training

epochs=12 # number of epochs to dun

callbacks=[LRA(model=model,patience=patience,stop_patience=stop_patience, threshold=threshold,
factor=factor,dwell-dwell, model_name=model_type, freeze=freeze, end_epoch=epochs - 1 )]

Figure 33. Parameters to implement a callback function

The first epochs trained in the previous model are frozen and, 15 layers were added as a
strategy to improve the model. The neural network was compiled and executed again.

3.1.4 Evaluation

To track the performance of the neural network, it was plotted accuracy and loss for training
and validation data across the epochs, the code is shown in Figure 34. Furthermore, deep
learning models followed the same evaluation as machine learning models to be comparable,
obtaining ROC curve and metrics such as precision, recall, accuracy, and f1-score.
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acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_less = history.history['val_loss"]

epochs_range = range(total_epochs)

plt.figure(figsize=(15, 2))

plt.subplot{1, 2, 1)

plt.plotfacc, label='Training Accuracy H
plt.plot(val_acc, label="validation Accuracy"'}
plt.legend(loc="lower right')

plt.title( 'Training and Validaticn Accuracy'}

plt.subplokt{1, 2, 2)

plt.plet(loss, label='Training Less'
plt.plotival_loss, label="validation Loss')
plt.legend({loc="upper right')
plt.title{'Training and validation Loss')
plt.show()

Figure 34. Accuracy and Loss Plot for Training and Validation Sets

InceptionResNetV2
The implementation of this model follows the same process as DenseNet201. The model is
called from Keras Package before compiling it.

height=224

width=224

img_shape=(height, width, 3)

dropout=.3

1r=.881

img_shape={height, width, 3)

base_model=tf.keras.applications.Inceptionresnetvz{ include_top=False, input_shape=img_shape, pooling="max", weights='imagenet'}

x=base_model.cutput

x=keras.layers.BatchNormalization(axis=-1, momentum=©.%3, epsilon=8.281 ){x)

X = Dense(512, kernel_regularizer = regularizers.l2(l = @.815), activity regularizer=regularizers.l1(@.085),
bias_regularizer=regularizers.l1(@.ees) ,activation="relu', kernel_initializer= tf.keras.initializers.glerotuniform{seed=123})(x)

x=Dropout(rate=dropout, seed=123)(x)

ocutput=Dense(5, activation='softmax',kernel_initializer=tf.keras.initializers.GlorctuUniform{seed=123)}(x)

model=Model( inputs=base_mecdel.input, outputs=cutput)

model . compile(Adamax(learning_rate=1r), loss="categerical_crossentropy’, metrics=["accuracy'])

Figure 35. Execution of InceptionResNetV2

From both models, predicted values in test dataset are exported in a csv. file to complete the
last stage in the research project.

4. Fusion Model

This section is implemented in Jupyter Notebook hosted by Anaconda. The first step is to
obtain probability scores per class from each machine learning model as is demonstrated in
Figure 36. Then, the average between them is calculated and finally, the class with the
highest probability score is taken as the KL grade as shown in Figure 38.
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prob_predict « pd.Datarrase(data.y_score_weig,
Index«X_test,index.copy())

prob_predict.coluems = [“RF_@', 'RF_1°,'RF_2','RF_2',"RFS')
prob_predict]

prodb_predicti.columas « [‘GB 8", 'GB_1','GR_2','GE_3","GE4"]
prob_predicti

proo_predict?

Figure 36. Probability scores per class from ensemble methods

#The mean of probaility scores is computed to obtain a single value per class
df_clinicalMmL['@'] col_@.mean{axis=1)
df_clinicalMmL['1'] ol_l.mean(axis=1)

calZz.mean(axisﬂ}
col_3.mean{axis=1)
col_4.mean{axis=1)

df_clinicalMmL['2']
df_clinicalMmL['2']
df_clinicalML['4']

Figure 37. Computing means of probability scores per KL grade

[ T TR T Y
(]

#Max voting: according to the highest probaility score, it is considered the outcome of that instance

df_clinicalML = df_clinicalML.assign{ML_models=ML_models.values)

df _clinicalmL

F3 RF4 GE_D GBE_1 GB_2 GB 2 .. MGB 1 XGB 2 XGB 3 pel=X] [} 1 2 3 4 ML_models

Figure 38. Max voting system between machine learning models

A system that performs majority voting between the outcome from machine learning models
and predicted values from DenseNet201 and InceptionResNetV2 is implemented, the
technique is shown in Figure 39.

df_fusion['final'] = df_fusion.apply{lambda row : mode{row[ 'DenseMet2@l_preds'],
row[ ' InceptionResNetv2_preds"], row['ML_models']), axis = 1)
df_fusion

format ground_truth DenseNet201_preds InceptionResMetV2_preds ML_models final
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Figure 39. Majority voting between three independent outcomes

To conclude the current research project, metrics to evaluate predicted values against real one
is obtained by executing a classification matrix and report.
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