ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Shriya Gandhi
Student ID: x19218079

School of Computing
National College of Ireland

Supervisor. Jorge Basilio

‘-
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee I
reland
School of Computing
Shriya Gandhi
(Y 0]« =1 o 1 SRS RTSPRRPOt
Name:
X19218079
(Y 0T« =T o 1 o 1 0 2SSO PRPPPTS
Data Analytics 2021
Programmee: ... Year:
MSc Research Project
10 T Y LU =TT PRRRRNt
Jorge Basilio
0= ot o] = P
Submission 16-08-2021
LD L= D T =P

Classifying the Insincere Questions using Transfer Learning
[od oo =T ot ol 1 o = SR UPPRR

Word Count:coooeiiiiiee e Page Count: ... 10........cccooiiiiiiiiiie e,

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Y e L 1= T] <SSO T ST RSP OPRRRPPRO

[1= 1 o<

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Shriya Gandbhi
Student ID: x19218079

1 Introduction

This research project aims to automatically classify the insincere questions on Quora using
the transformer-based models. In this configuration manual, we have outlined the steps to be
followed for smooth replication of research project. The different steps of a project life cycle,

starting from data collection until model testing and evaluation, are explained. Reference to
code snippets is provided wherever required.

2 System Configuration
The entire project has been implemented on Google Colaboratory Pro with GPU (Tesla P100-

PCIE-16GB) enabled. Google Colaboratory Pro version ensures that the model training
session does not get disconnected because of RAM outage.

3 Dataset

The dataset for our research work is extracted from Kaggle.

4 Google Colaboratory Setup

The data extracted from Kaggle is uploaded to Google drive as in google colab we can access
the data by simply mounting the drive. The code snippet for mounting of drive-in google
colab can be found below.

Authorization for mounting google drive onto colab.

b B) WO

counts.google.com/o/oauth2/auth?client id=947318989803-6bn6qkBqdgfandg3pfeetddlhcdbredi.apps.googleuserconten

Google Drive successfully mounted.

[2] #loading drive
from google.colab import drive
drive.mount('/content/drive’)

Mounted at /content/drive

https://www.kaggle.com/c/quora-insincere-questions-classification/data

Also, before proceeding towards coding, we first checked the GPU availability.

[1] # If there's a GPU available...
import torch
if torch.cuda.is_available():

Tell PyTorch to use the GPU.
device = torch.device("cuda")

print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(®@))

If not...

else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")

There are 1 GPU(s) available.
We will use the GPU: Tesla P1@®-PCIE-16GB

5 Installing Python Libraries for Data Pre-processing

The required libraries for data pre-processing are installed and imported.

[3] #Importing libraries
import re
import nltk
import pandas as pd
import io
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm.notebook import tqdm
from tqdm import tqdm
from wordcloud import WordCloud, STOPWORDS
from nltk.tokenize import word_tokenize
nltk.download('punkt')

[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Package punkt is already up-to-date!
True

[4] !pip install contractions
import contractions #importing python library to expand the contractions

Requirement already satisfied: contractions in /usr/local/lib/python3.7/dist-packages (@.0.52)

Requirement already satisfied: textsearch>=0.0.21 in /usr/local/lib/python3.7/dist-packages (from contractions) (©.0.21)

Requirement already satisfied: anyascii in /usr/local/lib/python3.7/dist-packages (from textsearch>=@.8.21->contractions) (@.2.@)
Requirement already satisfied: pyahocorasick in /usr/local/lib/python3.7/dist-packages (from textsearch>=8.0.21->contractions) (1.4.2)

The uploaded dataset is read and stored inside a pandas dataframe.

[]

train_df = pd.read_csv("/content/drive/MyDrive/Shriya/train.csv") #Read dataset

° train_df.head()

qid question_text target

0 00002165364db923c7e6 How did Quebec nationalists see their province...

—

000032939017120e6e44 Do you have an adopted dog, how would you enco...
2 0000412cabed628ce2cf Why does velocity affect time? Does velocity a...
3 000042bf852a498cd78e How did Otto von Guericke used the Magdeburg h...

4 0000455dfa3e01eaelaf Can | convert montra helicon D to a mountain b...

0

0

0

[]

train_df.shape

(1306122, 3)

6

Exploratory data analysis

{) #Checking for presence of NA values
(train_df.isna()).sum()

[> qid =
question_text 2]
target e

dtype: inté4

[] train_df['target’'].value_counts()

e 1225312
1 808160
Name: target, dtype: inté4

[]

#Bar plot for Target variable distribution
train_df.target.value_counts().plot(kind="bar',color=["red","blue"])
plt.xlabel("Target variable")

plt.ylabel("Count in Million")

Text(e, ©.5, 'Count in Million')
1le6

12

10 1

08 4

0.6 1

Count in Million

04 -

0.2 1

0.0 -

Target variable

Word cloud

#Wordcloud with commonly used words
comment_words = "'
stopwords = set(STOPWORDS)
iterate through the csv file
for val in train_df.question_text:
typecaste each val to string
val = str(val)
split the wvalue
tokens = val.split()
Converts each token into lowercase
for i in range(len(tokens)):
tokens[i] = tokens[i].lower()

" "

comment_words += ".join(tokens)+"
wordcloud = WordCloud(width = 8@, height = gee,
background_color ='white',
stopwords = stopwords,
min_font_size = 1@).generate(comment_words)

plot the WordCloud image

plt.figure(figsize = (8, 8), facecolor = None)
plt.imshow(wordcloud)

plt.axis("off")

plt.tight_layout(pad = @)

plt.show()

An additional column, quest_len, is added to python data frame. It stores the length of each
question. The maximum, mean, median question lengths are identified.

(1]

#Max length of questions - sincere and insincere

train_df['quest_len'] = train_df['question_text'].apply(lambda x: len(str(x).split()))
print("Maximum length of a sincere question:", max(train_df[train_df['target']==0]['quest_len']))
print("Maximum length of a insincere question:", max(train_df[train_df['target']==1]["quest_len']))

Maximum length of a sincere question: 134
Maximum length of a insincere question: 64

#Mean length of questions
res = train_df['quest_len'].mean()

print("The mean length in words are : " + str(res))

The mean length in words are : 12.803689463740754

#Median length of questions
res = train_df['quest_len'].median()

print("The median length in words are : " + str(res))

The median length in words are : 11.0

Using quest_len, plots to visualize the sincere and insincere question lengths are plotted.

#Plot for finding length of question tokens - sincere
sincere = train_df[train_df["target"] == 0]

plt.figure(figsize = (15, 8))

sns.distplot(sincere["quest_len"], hist = True, label = "sincere",color='blue')
plt.legend(fontsize = 10)

plt.title("Questions Length Distribution by Class", fontsize = 12)
plt.xlabel('Sincere Question Length')

plt.show()

#Plot for finding length of question tokens - insincere

insincere = train_df[train_df["target"] == 1]

plt.figure(figsize = (15, 8))

sns.distplot(insincere["quest_len"], hist = True, label = "insincere", color='red',norm_hist=True)
plt.legend(fontsize = 18)

plt.title("Questions Length Distribution by Class", fontsize = 12)

plt.xlabel('Insincere Question Length')

plt.show()

7

Data Pre-processing

The contractions such as didn't, couldn't present in the questions are expanded. Using lambda
expressions, the steps of clean_text function are iterated over all the questions of the dataset.
The pre-processed data is stored inside a new column, cleaned_questions.

[1] #Function for expanding the contractions
def clean_text(txt):
cleaned_text= contractions.fix(txt)
return cleaned_text

[] #Applying clean_text function on our data
tqdm.pandas()
train_df['cleaned_questions'] = train_df['question_text'].progress_apply(lambda txt: clean_text(txt))

100% | INENENEINE| 1306122/1306122 [e@:11<@0:00, 114692.11it/s]

Functions for removing punctuations and numbers are written and applied over the
cleaned_questions text.

#Function for removing punctuations
def remove_punch(text):
Removing punctuations in string
Using regex
res = re.sub(r'[*a-zA-Z]', ' ', text)
return res

[] train_df['cleaned_questions'] = train_df['cleaned_questions'].progress_apply(lambda text: remove_punch(text)) #applying remove_punct on our data

1c0% | [IINENIRN | 1396122/1306122 [@0:07<00:00, 182714.18it/s]

[] #Function for removing numbers
def remove_num(text):
using filter and lambda
response = "".join(filter(lambda x: not x.isdigit(), text))
return response

[1 train_df['cleaned_questions'] = train_df['cleaned_questions'].progress_apply(lambda text: remove_num(text)) #applying remove_num on our data

100% | NN | 1305122/1306122 [@0:17<00:00, 76575.70it/s]

Finally, the data is validated for the presence of any duplicate records. The pre-processed file
is then stored as a CSV file.

o train_df.shape

> (13@6122, 5)
[1 train_df.drop_duplicates('cleaned_questions', keep='first',inplace=True) #dropping duplicates if any

[1 train_df.shape #df size reduced after dropping duplicates

(1385328, 5)

[1 train_df['target'].value_counts()

e 1224569
1 80759
Name: target, dtype: inte4

[1 #Writing the pre-processed dataframe to a csv file
train_df.to_csv('clean_data.csv')

8 Model Implementation

We have implemented BERT and XLNET models for three samples of data. The steps for
implementation of both models are similar. The below section briefs about the steps followed
for XLNET with 10% data.

Installing the modeling dependencies

° #Installing the necessary dependencies
Ipip uninstall torch torchvision -y

Ipip install torch==1.6.0+culdl torchvision==0.7.8+cul@l -f https://download.pytorch.org/whl/torch_stable.html
Ipip install -U transformers

Ipip install -U simpletransformers

[] #importing libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split

[1 #Importing required libraries for model training
from simpletransformers.classification import ClassificationModel
import pandas as pd
import logging
import sklearn

2021-88-14 21:12:31.452135: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0

The cleaned data is uploaded to google drive. The google drive is mounted in colaboratory,
and data is read in pandas dataframe.

#loading drive
from google.colab import drive
drive.mount('/content/drive")

Mounted at /content/drive

[1 df=pd.read_csv("/content/drive/MyDrive/Shriyva/clean_data.csv") #reading csv file

L 1 df=df.iloc[:,3:] #selecting the required column from dataframe

L 1 df.head()

target cleaned_questions
(o] o How did Quebec nationalists see their province...
1 0 Do you have an adopted dog how would you enco...
2 o] VWhy does velocity affect time Does velocity a...
3 0 How did Otto von Guericke used the Magdeburg h...
4 o Can | convert montra helicon D to a mountain b...

We have used the sample() function to extract 10% data from the original dataframe.

Note- For 50% and 70% data, the argument inside sample() changes to 0.5 and 0.7,
respectively.

[] df=df.sample(frac=0.1) #sampling the data to select 10% records

[] df.shape

(130533, 2)

The data is split into train-val-test at a ratio of 80-10-10 using the train_test_split function.

[1] # splitting the data into training, test and eval dataset
X = df['cleaned_questions']
y = df['target']

[] #splitting in 806-1@-1@ ratio
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test_size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)

[] print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)

(104425,)
(104426,)
(13053,)
(13@53,)
(13054,)
(13054,)
(None, None)

Python's logging module is used to track the execution of model commands and errors if any.

[] logging.basicConfig(level=logging.INFO)
transformers_logger = logging.getLogger("transformers")
transformers_logger.setlLevel(logging.WARNING)

After running multiple iterations, an optimum set of hyperparameters are chosen for our
proposed models. We have used the Classification module provided by Simple Transformer
distribution. The model, its tokenizer, maximum length of sequence, epoch, batch size,

learning rate, optimizer, dropout and more are given as arguments to the ClassificationModel
function.

We have chosen evaluate_during_training to be True, thus in the train_model function, both
training and evaluation data are passed.

The wandb_project stores the runtime data of the model. We have extracted the GPU
utilization plot from wandb projects created for each run.

Note — For BERT models, the ClassificationModel arguments are bert and bert-base-uncased.

[] results=[]

Create a ClassificationModel

model = ClassificationModel('xlnet', 'xlnet-base-cased’, args={
'max_seq_length': 134,
"train_batch_size': 16,
‘eval_batch_size': 32,
‘evaluate_during_training': True,
‘evaluate_during_training_steps': 3eeee,
‘num_train_epochs': 2,
'weight_decay': @,
'learning_rate': le-5,
‘adam_epsilon': 1le-8,
'logging_steps': 58,
"save_steps': 2809,
'eval_all_checkpoints': True,
'overwrite_output_dir': True,

‘optimizer' : 'AdamW’',
‘manual_seed' : 42,
‘no_cache' : True,

'wandb_project' :"XLNET18", #The wandb XLNET1@ project keeps a log of all the actions and outputs of model training and eval
'dropout': ©.3,
‘output_dir': ‘outputs/'})# All the selected parameters are passed as an argument to the Classification Model

Train the model
model.train_model(train_df,eval_df=eval_df) #Model training

The eval_model is used to obtain the model performance results on evaluation data.

[1 # Evaluate the model
result, model_outputs, wrong_predictions = model.eval_model(eval_df, acc=sklearn.metrics.classification_report)

print(result['acc'])
append model score
results.append(result['acc'])

9 Predictions

Once the evaluation results look fine, predict function is used to test the model with test data.
A confusion matrix and classification report are printed for each model.

[1

[1

from sklearn.metrics import confusion_matrix
from sklearn.metrics import classificaticn_report

predictions, raw_outputs = model.predict(test_df.cleaned_questions.tolist())

confusion matrix
matrix = confusion_matrix(y_test,predictions, labels=[9,1])
print('Confusion matrix : \n',matrix)

INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.

0% | 27/13054 [00:04<34:27, 6.30it/s]

Confusion matrix :
[[12043 179]
[320 512]]

matrix = classification_report(y_test,predictions,labels=[0,1])
print('Classification report : \n',matrix)

The model is tested on few raw samples as well.

[1]

predictions, raw_outputs = model.predict(['Is asia over populated?'])

INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.

predictions

[e]

predictions, raw_outputs = model.predict(['Is Donald Trump going to eat my family'])

INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.

predictions

[1]

10

