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Abstract

Despite recent improvements in machine-learning prediction methods, the meth-
ods used by most lenders to predict credit defaults have not changed. This is
because most of the high-performing methods are of a black-box nature. It is a
requirement that credit default prediction models be explainable. This research
creates credit default prediction models using tree-based ensemble methods. It is
shown that model performance can be improved by using gradient boosting methods
over traditional credit default predictions models. The top performing XGBoost
model is then taken and made explainable. This research proposes a model-agnostic
counterfactual extraction algorithm that explains the drivers behind a particular
prediction. The algorithm focuses on extracting the counterfactuals that have the
fewest contrasting features. This results in counterfactuals that are easily under-
stood by humans and can be easily translated into insights that the lay user can
understand. A definite standard of explainability is defined and the counterfactual
extraction algorithm results in explanations that meet this standard. Given that
the explanation method is model agnostic, it can be used on any prediction model
and can be deployed for a wide range of applications.

1 Introduction

The most significant risk that banks and lenders are exposed to is a large number of
borrowers not meeting their loan repayment obligations. This is known as credit default
risk. A lenders income stream is dependent on borrowers repaying their loans. This
means that a large increase in credit defaults may bring about expenses that the lender
cannot absorb and the lender may become insolvent. Many banks meet the ”too big to
fail” criteria whereby the failure of a large bank can cause widespread economic adversity.
In the previous global financial crisis banks faced increases in credit defaults so severe,
that the governing bodies of many major economies had to implement expensive bailouts
to avoid the aforementioned adverse economic outcomes that would be brought about by
the failure of a large bank. Many banks and lenders are legally obligated to create models
that predict credit defaults. These models advise banks capital requirements which ensure
that the bank can absorb losses brought about by a significant increase in credit defaults.
Given the potential economic adversity brought about by a banks inability to absorb such
losses, these models are heavily regulated and scrutinised. Although this highlights the
need for credit default prediction models to perform well, model performance alone is not
the target of these models. Interpretability (or explainablilty) being a key requirement.
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Transparency and explainability is a necessity when deploying credit default prediction
models in practice. In other words, the reasons behind the predictions of these models
must be adequately understood by a lay user. Along with predicting regulatory capital
requirements, these models decide whether a potential borrower is given credit. For
decades, the right to explanation has been legally guaranteed in most legal jurisdictions.
This not only underscores the need for model explainability, but also that the explanations
derived must be transparent and accessible. This interpretability requirement means that
the model of choice for many bank’s credit default models is Logistic Regression. Logistic
Regression is a linear model that is high-performing and explainable. There have been
advances in Machine Learning (ML) techniques such that models now exist, that typically
outperform Logistic Regression. These models have yet to be deployed because of their
opaque (or ”Black-Box”) nature.

This research asks the following question:

Can credit default prediction be improved using explainable AI and can the
predictions of the models be adequately explained?

This research takes an arbitrary dataset and builds a credit default prediction model using
high-performance black-box methods. Once an optimal model is derived, the model’s
predictions are made transparent to the point where a defined minimum standard of
explainability is met. The derived model is then compared to a traditional Logistic
Regression-based credit default prediction model that is modelled on the same dataset.
The objective of this research is for the ML method to outperform the traditional credit
default prediction method while upholding a minimum standard of explainability.

The following document describes the process undertaken to build a credit default
model and make it explainable. The literature review in section 2 reviews other attempts
to improve credit default prediction and highlights why these models must be explain-
able. The literature review section also looks at other attempts to make credit default
prediction models explainable and highlights why they do not meet the explainability
standard required in an industrial setting. The methodology section 3 commences where
the proposed model prediction and explainability methods are explored. The methodo-
logy section is followed by section 4 where a practical approach to building the models
and explaining them is documented. The documentation of the model build, explan-
ation process and the challenges faced in each process is discussed in section 5. This
is followed by the evaluation section 6 where the performance and transparency of the
finalized solution is explored. The final section 7 concludes by determining whether the
research objectives are met and how this will affect future work on the topic.

2 A Review of the Related Work

The following literature review explores other attempts to improve credit default pre-
diction and shows why these models must be explainable. Firstly, the research showing
how credit default prediction can be improved is discussed. This is followed by looking
at historical research demonstrating why such models must be explainable. This is then
followed by looking at other attempts to make credit default models explainable.

Given that banking portfolios can be worth billions, even marginal improvements can
be considered significant. This means that the pursuit to improve model performance in
credit default prediction is a worthwhile one. Previous research has shown that credit de-
fault prediction can be implemented successfully using less interpretable machine learning
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methods. Most of this research focuses on corporate bankruptcy prediction. For example,
Moscatelli et al. (2020), Barboza et al. (2017) and Guégan and Hassani (2018) all show
that tree-based methods such as Random Forest and Gradient boosted trees (XGBoost,
LightGBM) outperform Logistic Regression as a corporate bankruptcy prediction tool.
Barboza et al. (2017) and Guégan and Hassani (2018) attempts methods such as Sup-
port Vector Machines (SVM) and Artificial Neural Networks (ANN) but the performance
gains seen from these compared with a Logistic Regression is either; less conclusive (Bar-
boza et al.; 2017) or significantly worse (Guégan and Hassani; 2018). Fitzpatrick and
Mues (2016) used machine learning methods for predicting mortgage defaults and found
that tree-based methods outperform Logistic Regression. This shows that using less in-
terpretable machine learning methods (tree-based methods in particular) can result in
valuable performance improvements. As stated in Moscatelli et al. (2020) tree-based
methods are better able to pick up non-linear relationships that a Logistic Regression
typically does not. Qiu et al. (2019) found that the Random Forest model did not con-
clusively outperform the Logistic Regression but another tree-based ensemble model, the
LightGBM did. There are certain cases where the model choice is not a factor at all in
model performance such as in Chen et al. (2021) where none of the models conclusively
outperform another. It is worth noting that Chen et al. (2021) used a very rigorous
evaluation procedure where the out-of-time testing was performed, and the performance
was scored based on a varying risk appetite.

Model performance is not the sole requirement for credit default prediction models.
Credit default prediction models must be transparent and explainable. Credit default pre-
diction models are often used to automate decisions on loan applications making them
sensitive by nature. Onay and Öztür (2018) mentions the legislation in the US (Fair
and Accurate Credit Transactions Act, US Fair Credit Reporting Act and Equal Credit
Opportunity Act) that uphold the rights for customers to know why their loan applica-
tions are declined. In the EU, the General Data Protection Regulation (GDPR) grants a
right to explanation (Wachter et al.; 2018). There exist ethical reasons why these credit
default models must be explainable. Explainability can highlight any discriminatory bias
the model may have. Munnell et al. (1996) found that racial discrimination in lending ap-
plication success exists. This can have wider socioeconomic effects which might increase
racial wealth inequality. This was found to be the case in Charles and Hurst (2002) where
they propose that one of the factors influencing wealth inequality between Blacks and
Whites in the US may be varying loan application success rates between the races.

This all stresses the need for model explainability and transparency. For the purposes
of this research, a minimum standard of model explainability must be defined. A report
on big data produced by the European Banking Authority (EBA) (European Banking
Authority; 2020) describes how a model is explainable if the following conditions are met:

1. How the result is reached is understandable by humans.

2. Justifications for the main factors that led to the output must be provided and
these must be understood by humans.

This defines a clear minimum standard of explainability required by the models in order
to be considered explainable and is the minimum standard required by the models derived
by this research.

The previous research mentioned focus almost exclusively on model performance.
Explainability if addressed at all, was not a primary concern. This means the models
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created by the research would not be deployed in an industrial setting. There are cases
where model interpretability is mentioned such as in Fitzpatrick and Mues (2016) who
acknowledge the Logistic Regression’s widespread use in industry due to its interpretable
nature. Moscatelli et al. (2020) and Fitzpatrick and Mues (2016) derive feature import-
ance measures which fail to the meet the standards set in the previous paragraph as they
do not adequately justify the model prediction. Chen et al. (2021) state that the goal
of ML models is purely prediction and that explanation of the relationships between the
dependent and independent variables is the goal of statistical models such as Logistic Re-
gression. It may be true that ML methods have little or no obligation to be explainable,
but this does not mean that the performance gains from these models cannot be utilized
while simultaneously upholding a defined standard of explainability.

There have been other attempts to make ”black-box” credit default prediction models
explainable. The research is quite sparse with most papers being written within the past
two years. Arguably, the most popular method of making such black-box models explain-
able is using SHapley Additive exPlanations (SHAP) (Lundberg and Lee; 2017). SHAP
gives feature importance measures that aid the user in understanding the features that
influence the model’s prediction. SHAP is a model agnostic method which means that it
is implemented in parallel with the prediction algorithm. Using model agnostic methods
gives the researcher more freedom when it comes to model choice and for this reason
model agnostic methods are used in this research. Bussmann et al. (2020) used SHAP
values as a tool to explain a black-box credit default prediction model. Bussmann et al.
(2020) compares the model performance of an XGBoost model to a Logistic Regression.
Similar to the research discussed in first paragraph of this literature review, the less in-
terpretable XGBoost model outperforms the Logistic Regression. Although the methods
used in Bussmann et al. (2020) make the reasons behind the model predictions clearer,
it does not meet the standard set by European Banking Authority (2020). Insufficient
justification is given behind the motivation behind the models prediction. The feature
importance measures are ambiguous. If the model is used to decide the outcome of loan
applications is used, the customer would not have sufficient information to improve their
creditworthiness.

Example rule-based extraction is another method used to justify black-box model pre-
dictions. Islam et al. (2021) state that these rules can be easily understood by humans.
Keane and Smyth (2020) state that counterfactuals in particular, satisfy GDPR’s right
to explanation. An example of using rule extraction to explain a black-box model (Ran-
dom Forest) is in Prentzas et al. (2019). They use a case-based reasoning rule extraction
method in parallel to the Random Forest model. This method is model agnostic and,
although their model is not used for credit default prediction but the insights are directly
applicable. Fernandez et al. (2020) compares the counterfactual approach to the feature
importance methods. They highlight the limitations in using feature importance to ex-
plain credit default predictions such as how the most important features may not be the
ones that make the crucial decision. They conclude by stating that feature importance
methods can be ambiguous and often misleading, stating that using counterfactuals is a
superior approach as a result.

All the academic papers reviewed can be summarized in Table 1:
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Table 1: Summary of literature review

Paper Methodology and
Domain

Insights Shortcomings

Moscatelli
et al.
(2020)

Optimize model per-
formance for corporate
bankruptcy prediction.

Tree-based ensemble
models outperform
Logistic Regression.

No attention paid to
model explainability.
Although Feature im-
portance measures are
derived, they are not
explored in detail.

Barboza
et al.
(2017)

Optimize model per-
formance for corporate
bankruptcy prediction.

Tree-based ensemble
models outperform
Logistic Regression.
Performance gains from
neural networks and
SVM compared with
Logistic Regression are
less conclusive

No attention was paid
to model explainability.

Guégan
and
Hassani
(2018)

Apply machine learn-
ing methods to a credit
scoring problem.

Tree-based ensemble
models outperform Lo-
gistic Regression. SVM
and neural network
models significantly
underperform Logistic
Regression.

Paper ignores explain-
ability.

Fitzpatrick
and Mues
(2016)

Mortgage default pre-
diction using ML meth-
ods.

Tree-based ensemble
models outperform
Logistic Regression.

No attempt to make
models explainable but
does acknowledge the
Logistic Regression’s
widespread use due to
its interpretable nature.

Qiu et al.
(2019)

Using ML methods to
predict credit defaults
on the Kaggle Home
Credit dataset.

LightGBM outperforms
Logistic Regression but
Random Forest does
not.

No attempt to make
model explainable.

Chen
et al.
(2021)

Predicting mortgage
delinquency using ML
methods

Model choice does not
play a part in model
performance. Very
rigourous evaluation
methods that are worth
considering.

Does not attempt to
make models explain-
able. States that ML
methods have no oblig-
ation to be explainable.

Onay and
Öztür
(2018)

A literature review to
address the challenges
presented by big data in
credit scoring.

Addresses the regulat-
ory challenges big data
presents in credit de-
fault prediction.

Paper is a pure literat-
ure review, and no data
analysis or modelling is
performed.

Wachter
et al.
(2018)

Using counterfactu-
als to satisfy model
explainability chal-
lenges in credit default
prediction

Highlights the US reg-
ulation that requires
credit default prediction
models to be explain-
able.

Lack of empirical ex-
amples on real-world
data.
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Munnell
et al.
(1996)

Highlights racial in-
equality in lending in
Boston in the mid-1900s

Shows the ethical is-
sues surrounding loan
application decisions

Given publication date,
insights although relev-
ant, may be out of date.

Charles
and Hurst
(2002)

Investigates the influ-
ence of unequal lending
decisions on the wealth
gap between blacks and
whites in the US

Highlights the societal
importance of transpar-
ent credit decisions

Given publication date,
insights although relev-
ant, may be out of date.

European
Banking
Authority
(2020)

Investigates the chal-
lenges faced by banks in
implementing big-data
analytical techniques.

Defines a clear standard
of model explainabilty.

Lack of empirical ex-
amples.

Lundberg
and Lee
(2017)

Provides a method to
interpret black-box ma-
chine learning models.

Method is useful and
hence widely used

Empirical examples
shown deal with deep
learning and are not
directly applicable to
credit default prediction

Bussmann
et al.
(2020)

Tries to make a credit
default prediction
model explainable
using SHAP.

Provides an effective
method to explain a
black-box credit default
prediction model. Com-
pares the model to a
traditional Logistic Re-
gression model.

Arguably fails to meet
the minimum stand-
ard of explainability
described in European
Banking Authority
(2020).

Islam
et al.
(2021)

Surveys a wide range
possible approaches to
make a credit default
prediction model ex-
plainable

Each approach is ex-
plored in detail.

Lack of empiricism.
Paper concludes with
stating that traditional
methods are more
effective.

Keane
and
Smyth
(2020)

Uses counterfactuals to
explain a black-box ML
model.

Describes how to find
good counterfactu-
als. States that good
counterfactuals sat-
isfy GDPR’s right to
explanation

Concludes by saying
that good counterfactu-
als are sparse.

Prentzas
et al.
(2019)

Uses rule extraction
to explain a Random
Forest model

Explains the Random
Forest model very ef-
fectively

Research focused on ap-
plication different to
credit default predic-
tion.

Fernandez
et al.
(2020)

Compares using coun-
terfactuals to feature
importance measures as
a method to explain
model predictions

Shows why counter-
factuals are superior
to feature importance
measures for explaining
model predictions

None relevant to this re-
search

The literature review done sets out the objectives for this research clearly. As shown,
credit default prediction model performance can be improved by using black-box ML
prediction methods, with tree-based ensemble models being the best performing on ag-
gregate. A definite explainability standard was defined (European Banking Authority;
2020). This sets a clear definition of what makes a model explainable. The literature
shows that counterfactuals are the best way to make a black-box model explainable.
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Counterfactual examples satisfy GDPR’s right to explanation (Keane and Smyth; 2020).
The counterfactuals show what features need to be changed to achieve a compatible result
thus highlighting the drivers behind the model prediction and hence justifying the model
prediction. This satisfies the explainability standard set by European Banking Authority
(2020). It is for these reasons that counterfactuals will be used as the novel approach for
this research.

3 Methodology

3.1 The Underlying Data

The data required must satisfy a number of requirements. Predicting credit defaults is a
binary classification problem. The target variable will represent a binary outcome that
indicates the presence or absence of a loan default. Most banks look at other financial
data linked to the customers such as their current account spending, credit card data
and/or payment profiles with respect to other loans they might have. Finding this data
can be difficult given that financial data is sensitive and confidential.

The dataset chosen for this project is the Kaggle Home Credit dataset 1. This was
offered as a Kaggle competition in May 2018. Home Credit is an international non-bank
financial institution that specializes in lending to people with little or no credit history.
The task set by the Kaggle competition was to correctly classify a binary outcome indicat-
ing the presence or absence of default. Because the dataset was offered as part of a Kaggle
competition, the data has been widely explored and many high-performing models have
been created. The sole goal of the Kaggle competition is to optimize model performance,
with the AUC being the target performance metric. Model transparency was not a re-
quirement for the competition and, little or no attention was paid to model transparency.
The expectation of this research was not to outperform the leading Kaggle submission
but to build on the work done by the competitors by addressing model transparency.

The data satisfies the requirements for this project. The target variable is binary
indicating the presence or absence of a loan default. There is surrogate data that can be
linked to each loan such as the customers credit history, instalment data on other loans
and external data from the Credit Bureau. This surrogate data matches what a bank
would typically have when building a credit default prediction model. Given that the
source of this data is Kaggle, this data is open and publicly available.

3.2 Data Exploration

3.2.1 Data Structure

The dataset comes as a set of CSVs2. Given that the data contains different tables linked
by different keys, an ideal way to store this was by using a Postgres relational database3.
The database diagram is found on the Kaggle website4. The use of a Postgres SQL
database allows the easy querying and manipulation of data. An Analytical Base Table
(ABT) was created using this database and the SQL interface in Section 5.2.

1https://www.kaggle.com/c/home-credit-default-risk
2https://www.kaggle.com/c/home-credit-default-risk/data
3Data Pipeline: https://github.com/i-am-yohan/home_credit_2_postgres
4Data Information: https://www.kaggle.com/c/home-credit-default-risk/data
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The application train/test dataset is dimensioned using SK ID CURR. Other unique
identifiers include SK ID PREV and SK ID BUREAU. The SK ID CURR variable has a one-
to-many relationship with the other unique identifiers. To create meaningful features,
the features engineered from tables at different levels to SK ID CURR are aggregated to
SK ID CURR. SQL makes this straightforward using the Group By command. The feature
engineering is further discussed in Section 5.2.

3.2.2 Train and Test Splitting

The Kaggle Home Credit data comes with both and train and test set. The test dataset
does not contain target labels and the performance score is obtained by submitting the
predictions to the Kaggle website. The only performance score output from submitting
a prediction is the AUC. Although this will be used to evaluate model performance, the
AUC alone is not sufficient to determine if the model meets the required performance
criteria. Measures such as accuracy, precision and recall are also required (Section 3.6.1).
The training set was partitioned into a training and hold-out (test) sample at an 80:20
ratio respectively. This allows the calculation of a wider range of model evaluation scores
which will be used in tandem with the Kaggle submission score(s).

3.2.3 Class Imbalance

The class imbalance in the target variable is significant. Defaulted cases make up approx-
imately 8% of the overall population. This results in the trained model underclassifying
the minority cases. Class imbalance is typically dealt with using sampling techniques
and/or class weightings. Optimizing performance with respect to sampling methods is
out of scope for this research and as such the decision was taken to use class weightings to
deal with class imbalance. Class weightings penalize the model’s loss function dispropor-
tionately to balance and hence unbias the predictions. This is convenient as no sampling
was required and does not typically cause the model to underperform.

3.3 Model Explanation Approach

As previously discussed, the model must be explainable for it considered for industrial
use. Trivially the traditional credit scorecard model is explainable by nature. There
is no need to modify the model to make it explainable. The machine learning models
are not explainable and extra steps were taken to make these models explainable (dis-
cussed further in section 3.4). As discussed in the literature review section 2, extracting
counterfactual predictions meet these criteria. Taking the hypothetical counterfactual:
”Customer A could achieve a credit score of Y if they increase their Loan-to-Value to X1

and reduce their proportion of late credit card payments to X2 like that of customer B”.
This explains why the customer received the credit score they got and it also shows the
features that caused the model to make the prediction it made. Counterfactuals must
be simple for them to be understood easily by lay humans. Therefore, the target coun-
terfactual will be the one that requires the adjustment of the smallest possible number
of features. This will require finding the counterfactual that has a very similar profile to
the case that requires explanation. This is known as the nearest-unlike-neighbour (NUN)
as discussed in Keane and Smyth (2020). The approach to finding the adequate NUN is
documented in Section 4.2.
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Finding the counterfactual with the smallest distance is not sufficient to explain the
model outcome. The counterfactual values should be applied to the case that requires
explanation and this should result in the desired prediction or better. Using the hypo-
thetical example in the last paragraph, if by changing the Loan-to-value and number of
late credit card payments for customer A to that of customer B does not result in the
desired credit score or better, then the counterfactual is invalid. This was assessed when
searching for the counterfactuals.

The criteria for finding adequate counterfactuals is summarized in the below:

1. Must be the smallest possible.

2. The adjustments to the parameters because of the change in feature set must result
in the desired predicted outcome or better.

This is the stopping criteria for the algorithm discussed in Section 4.3.

3.4 Overall Research and Model Build Approach

The research and model build approach is highlighted in Figure 1.

Figure 1: Research Approach

The approach taken is based off CRISP-DM5 with extra steps added for the model
explanation component of this project. Given that the counterfactual explanation ap-
proach is model agnostic, it will only need to be implemented on one model. It is because
of this that step 5 also contains a model selection component where the best candidate
is chosen to move to the next stage. The stage after evaluation is the explanation phase
where the counterfactuals will be extracted. Simultaneously with model deployment, the
predictions of each model must be visualized so that they can be digestible to poten-
tial borrower and other non-technical audiences. This is the research and model build
approach taken for this research project.

5CRISP-DM: https://www.datascience-pm.com/crisp-dm-2/
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3.5 Prediction Models Used

These are the learning algorithms built in the model creation phase. The models created
are as follows:

• Traditional Credit Default Risk Prediction Model

• Random Forest

• Gradient Boosted Trees - Light Gradient Boosting Model (LightGBM)

• Gradient Boosted Trees - Extreme Gradient Boosting Model (XGBoost)

As discussed in Section 2, tree-based models tend to be the highest performing models
when predicting credit defaults. These are the model prediction algorithms used in this
research. As previously discussed, the Traditional Credit Default Risk Prediction Model
will act as the control group.

3.5.1 Traditional Credit Default Risk Prediction Model

Historically Logistic Regression is the main tool of choice for credit default prediction6.
Typical credit default models features xn = (xi,1, . . . , xi,j) are binned. The Weights of
Evidence (WoE) for each of those bins are calculated as follows:

WoE = ln

(
%Goods

%Bads

)
(1)

The WoE gives the predictive power of the independent variable in relation to the de-
pendent variable. This gives the developer a method of handling outliers, non-linearity,
feature scaling and missing values. The predictive power of each bucket or feature is the
Information Value (IV). It is calculated as follows:

IV = ln (%Goods−%Bads) ∗WoE (2)

A Logistic Regression is trained on the best found subset of features binned by the WoE.
Chen et al. (2020) states how the IV is the main risk measurement tool for the risk rating
model and they define the risk rating model as the international mainstream risk model.

This research created a credit default prediction model using the methods mentioned
in the previous paragraphs. To calculate WoE and IV values, the R package scorecard
7 was utilised. The scorecard implements optimal binning, WoE calculation and IV
calculation as documented in both Siddiqi (2005) and Refaat (2011). This model will act
as a control group and the ML-based model must outperform this while upholding the
minimum transparency criteria.

3.5.2 Random Forest

Random Forest is an ensemble method that is commonly used for classification. The
model is an ensemble of Decision Trees. A Decision Tree is a set of if-then-like logical
statements used to split into specified classification buckets. Training the Decision Tree

6https://www.accenture.com/nl-en/blogs/insights/the-future-of-default-prediction-a-

comparison-of-machine-learning-model-performance
7Scorecard R package https://CRAN.R-project.org/package=scorecard
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involves deriving the optimal decision rules that best classify the example. Decision Trees
are explainable and transparent and are sometimes considered suitable for deployment
in industry. The main disadvantage is that Decision Trees suffer from over-fitting and
bias. In general, Decision Trees, because of their simplistic nature, are not considered
competitive with Logistic Regression and were excluded from the current research because
of this. Random Forests are proposed as a method to remedy this disadvantage Breiman
(2001). Random forests are an ensemble of Decision Trees where each Decision Tree is
grown independently, and each individual Decision Tree has an equal vote as to what the
outcome is. This is done at the expense of interpretability, but as shown in Section 2
they can be a powerful classification algorithm.

3.5.3 Gradient Boosted Trees

Like the Random Forest algorithm, Gradient Boosted Trees are an ensemble algorithm
consisting of (typically) Decision Trees. The main difference is how the trees are built
and how the overall prediction is made. Boosted trees are built sequentially where each
tree tries to correct the errors of the previous tree. Unlike the Random Forest where
each tree has an equal vote, the classification is a weighted vote of each tree’s prediction.
The gradient boosting algorithms chosen for this research project are XGBoost (Chen and
Guestrin; 2016) and LightGBM (Ke et al.; 2017). As shown in Section 2 they can typically
outperform the Logistic Regression. The main difference between the two algorithms is
how each individual tree is grown. In XGBoost the tree is grown level-wise while in
LightGBM each tree is grown leaf-wise.

3.6 Model Evaluation Approach

Optimizing model performance while upholding a clearly defined standard of explainab-
ility is the primary goal of this research project. The models are evaluated under the
headings of Model Performance and Model Explainability. The following subsections will
detail the criteria that the derived model must meet for it to be suitable for deployment.

3.6.1 Evaluation of Model Performance

In the context of this research, model performance is defined as the model’s ability to
correctly predict potential defaults. This does not encapsulate the model’s transparency
and the model performance measures discussed in this section do not account for the
model’s transparency. To assess the performance of the model the following performance
measures were derived:

• Accuracy - The proportion of correct classifications in the evaluation data.

• Precision - The proportion of true positives among the predicted positives.

• Recall - The proportion of positives correctly predicted.

• Area Under receiver operating Curve (AUC) - The Receiver Operating Curve (ROC)
measures the model’s classification ability subject to varying decision boundary
thresholds. The ROC plots the true-positive rate to the false-positive rate. The
area under the curve (AUC) aggregates the performance measures given by the
ROC curve.
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The class imbalance (discussed in Section 3.2.3) is considered when considering what
performance measures must be favoured. Given that the proportion of defaults tends to
outweigh non-defaults, accuracy alone is not a sufficient measure to assess model per-
formance. This is related to the misclassification cost imbalance seen with loan defaults.
A false negative is significantly more costly than a false positive. Therefore, Recall and
AUC measured are favoured for this research project. The precision and accuracy meas-
ures are only considered in the model selection phase when the Recall and AUC measures
do not yield a conclusive optimal model.

To identify bias and/or over-fitting, K-fold cross validation is implemented. If the
performance metrics are stable for each fold, then for the purposes of this research, the
model was considered free of bias and overfitting.

The evaluation metrics are calculated for both the traditional credit default predic-
tion model and the candidate ML-models. As part of the goal of this research, it is a
requirement for at least one of the ML models to outperform the traditional credit default
prediction model. This is because the candidate ML models are of a Black-box nature
while the traditional credit scorecard model is by its nature explainable. Black-box mod-
els for credit default prediction must offer performance gains over traditional methods to
justify their use and/or the resources used to make them explainable.

3.6.2 Evaluation of Model Explainabilty

Explainability is subjective and cannot be quantified using a numeric measure. It is
because of this that a definite standard of explainability was defined in Section 2. The
transparency goal of the resulting solution will be to meet this standard. If the model
cannot be adequately explained to this standard, then it will not be considered for de-
ployment.

4 Design Specification

4.1 Model Building

In this section the algorithms employed to derive an optimal model are described. During
the model build, the model is validated using a hold-out sample taken as a proportion
of the training data. This is to test the performance variance brought about by hyper-
parameter changes, feature selection etc. Given that time and computational resources
were limited, methods such as grid search and random search are not used to optimize
the chosen feature set and hyperparameters. Once the models were built, each model was
validated using K-fold cross validation. The model building process by model created is
described in the following sections.

4.1.1 Traditional Credit Default Risk Prediction Model

Before any model training takes place, the variables must be binned and the WoE trans-
formation for each feature must be calculated. This can be done automatically using
the scorecard package in R (see Section 3.5.1). The WoE bins are adjusted if required.
Once the variables are preprocessed, the model building process can begin.

Regularization is not commonly used when building credit scorecards in industry. In-
stead, overfitting is dealt with by using dimensional reduction. In this case, backward
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stepwise selection is implemented. Before any model training is done, variables with poor
IVs are dropped as they will likely have no predictive power. The Logistic Regression
model was then trained on all remaining features using R’s built-in glm function. The
model is tested for multicollinearity using the Variance Inflation Factor (VIF) measure.
The variable with the largest VIF is dropped and this process continues until all features
are below the required VIF threshold. Once that is completed all insignificant variables
are dropped as these add noise. The WoE binning calculation means that in isolation,
every variable must have a positive relationship with loan default. Any variables with
a negative relationship with the target variable are dropped so that when the scorecard
is created, no variable will give negative scores. If overfitting and bias still exist, then
variables will be removed iteratively by selecting the lowest IV. This is done until over-
fitting and bias does not exist. These are the steps undertaken to ensure a robust credit
scorecard model is created.

4.1.2 Tree-Based Ensemble Models

All of the black-box models considered for this research project are tree-based ensemble
models and therefore the build process for each model was largely the same. For the Ran-
dom Forest model, the RandomForestClassifier function in the scikit-learn python
package was used while the LightGBM and XGBoost models were built using their name-
sake python packages. The complexity of the trees was the main parameter in adjusting
for over/underfitting. For the Random Forest model, the complexity of each tree was
adjusted using the minimum impurity decrease. For LightGBM model, the max number
of leaves was used to adjust the complexity of each tree while the XGBoost was adjusted
using the max number of levels for each tree. This is intuitive because LightGBM and
XGBoost build trees leaf-wise and level-wise respectively. The number of trees was adjus-
ted iteratively. For the Random Forest model, extra trees are used to remedy overfitting
but this can have diminishing returns as the number of trees get large. In this case, the
number of trees was increased until the model performance converged. For XGBoost and
LightGBM, additional trees have the potential to cause overfitting, so the number of trees
was increased until the AUC in the training and validation dataset diverged. For each
model, the feature importance measures are used for feature selection.

4.2 Finding the Nearest-Unlike-Neighbour Counterfactual

Given that the target is to find the counterfactuals with the smallest number of features
to vary, the NUN will be found by finding the example with smallest Euclidian distance
with 1 or more features removed. This is calculated as follows:

NUN({x1, . . . , xk}) = argminj

 n−k∑
i=0

i\{x1,...,xk}

|Ti − CFi,j|

 (3)

where:

• Ti - Standarized feature i for the case of interest T

• CFi,j - Standarized feature i for potential counterfactual j

• {x1, . . . , xk} - The list of excluded features.
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All potential counterfactuals CFi,1, . . . , CFi,n are selected due to user specified criteria.
For example, if the user wants to see what features to adjust to achieve a score of Y or
higher then CFi,1, . . . , CFi,n will be all cases with a predicted credit score of Y or higher.

The counterfactuals found must satisfy the criteria set in Section 3.3. If the changes to
features {x1, . . . , xk} are applied to Ti as they are in CFoptimal, then this must yield a credit
score that meets the specified criteria. If changing {x1, . . . , xk} in Ti to what they are in
CFoptimal does not result in the desired credit score or better, then the counterfactual is
not valid. The feature set {x1, . . . , xk} must be small. The search for the optimal feature
set(s) {x1, . . . , xk} is quite exhaustive given that a model with m features will result in
m! feature combinations. This means that in addition to the criteria set in Section 3.3,
the algorithm must be scalable.

4.3 Finding the Desired Counterfactual Set

An algorithm to find the desired feature set(s) {x1, . . . , xk} to exclude when looking for
the NUN counterfactual that satisfy the requirements set out in section 4.2 must be
derived. The algorithm to find the optimal feature set(s) {x1, . . . , xk} operates using the
following step-by-step procedure:

1. Take an observation that requires explanation.

2. Find the NUN for each input feature in isolation.

3. For each NUN counterfactual found, for each respective feature/feature set, replace
the value in the case of interest with the value of that of the counterfactual and
predict each outcome.

4. If at least one of the predictions meets the specified criteria, then output the re-
spective counterfactuals and terminate the algorithm. If none of the predictions
meet the specified criteria, then continue to the next step.

5. Take a sample of the predictions that are closest to the required criteria. The
sample size is set by the user.

6. For each feature relating to each resulting counterfactual, add each other remaining
features and calculate the NUN for each.

7. Return to step 3.

The pseudo-code in Algorithm 1 describes the algorithm in detail. Given that n
is constant, the algorithm has complexity O(n). This means that it is scalable. The
algorithm is an iterative process and terminates when a counterfactual that satisfies the
required criteria is found. The number of features increases by 1 at each iteration and the
algorithm terminates when the criteria is reached. It is because of this that the number
of features that require change to achieve the desired outcome will likely be the smallest
possible.
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Algorithm 1 How to find an ideal set of Counterfactuals

Data: Every training and test example with their predicted outcome.
Result: An array of counterfactuals that explain the model’s predictions for a particular

case c.
Require: any X∗ such that y∗−α < C(X∗) < y∗+β where α, β are arbitrary tolerances

set by the user.
1: y = C(X): where y is the predicted outcome where X is the input feature set {xi}

for all i ∈ 1, . . . ,m;
2: y∗: the desired predicted outcome;
3: y0 = C(X0): as the initial prediction which requires explanation;
4: n: a number to sample at each iteration set be the user;
5: k := 0;
6: if k := 0 then
7: find NUN(xi) for each xi ∈ {x1, . . . , xm};
8: take {χ1,k, . . . , χm,k} as the feature sets resulting from NUN(xi) for each xi ∈

{x1, . . . , xm}
9: for each feature set χi,k for each NUN(xi) replace the values in X0 for the feature

set χi,k with the values in NUN(xi) resulting in values {X ′1,k, . . . , X ′m,k};
10: if y∗ + α < C(X ′i,k) < y∗ − β for any X ′i,k ∈ {X ′1,k, . . . , X ′m,k} then
11: return NUN(χi,k) for which χi,k that satisfies y∗ − α < C(x′i,k) < y∗ + β;
12: end if
13: end if
14: while ¬(y∗ − α < C(χi,j) < y∗ + β) for any found i, j do
15: k := k + 1;
16: find n features sets χi,k−1 which C(X ′1,k−1) is closest to y∗;
17: for each remaining χi,k−1, add xi for each xi ∈ {x1, . . . , xm} resulting in feature

sets χi,k for i = 1, . . . n ∗m;
18: find NUN(χi,k) for all χi,k for i = 1, . . . , n ∗m;
19: Calculate C(X ′i,k) for i = 1, . . . n ∗m;
20: if y∗ − α < C(X ′i,k) < y∗ + β for any Xi,k then
21: return NUN(χi,k) for which χi,k that satisfies y∗ − α < C(X ′i,k) < y∗ + β;
22: end if
23: end while

5 Implementation

This section describes the model build and explanation phases8.

5.1 Configuration

The process was configured such that all redundant and duplicative data cleaning and
preprocessing was minimized. For example, operations such as train/test splitting, outlier
removal and feature engineering were done prior to any model train. The data resulting
from these operations was loaded to the postgres DB and the models were built using
the resulting data. This ensured that each model is built using the same ABT. There are
cases where some operations can not be generalized for each model, and these operations

8Project Code: https://github.com/i-am-yohan/explainable_credit_scoring
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were done during the respective model build. Operations such as feature selection and
feature scaling were done in each respective model build phase as they vary from model
to model.

5.2 Data Cleaning, Feature Engineering and Analytical Base
Table Creation

5.2.1 Data Cleaning and Preprocessing

The data contains many missing values to be imputed. The imputation methods vary
based on the feature. Features such as AMT CREDIT, AMT INCOME TOTAL, AMT ANNUITY

and AMT GOODS PRICE are highly correlated so missing values were imputed using a linear
regression. The external credit score variables (EXT SOURCE X) were imputed using their
mean values. When joining other tables on to the main application train|test, null
values are created when a link does not exist between the base table and the joined table.
In the cases where this occurs, the feature will be imputed with a 0 value.

5.2.2 Feature Engineering and Analytical Base Table Creation

Intuitively, financial distress and/or the possibility of incurred risk (colloquially known
as ”Skin in the game”) is what drives loan default. The features created must capture
this. The features can be created from the base table or from the surrogate tables or a
combination of the surrogate tables. For example, the principal of the loan relative to
the value of the underlying asset might be a good measure of the ”skin in the game”
the customer has in the underlying loan or the number of late payments on other loans
might indicate financial distress. Combinations of other features were taken such as the
EXT SOURCE X multiplied by the age of the applicant. Given that the Kaggle competition
has finished, features created by other users were considered. An example of this is the
TARGET NEIGHBORS 500 MEAN feature created by the winning submission 9. The feature
engineering process resulted in 326 features.

5.3 Model Build

This section will describe the process and challenges faced when building each model.

5.3.1 Parameterization Optimization

Model performance was optimized via feature engineering. Feature engineering delivered
the most performance gains relative to time and resources spent. In the early stages of
development when the model training failed to result in adequate model performance,
the feature engineering phase of development was revisited. New features were created,
and this improved model performance. This is consistent with the development approach
discussed in section 3.4.

For the credit scorecard model, there were no hyperparameters that were adjusted.
Any overfitting was dealt with by removing features until overfitting is no longer observed.
This is discussed further in Section 5.3.2. With respect to hyperparameter selection in
the tree-based ensemble models, in the early stages of the research, methods such as grid
search and random search were explored. These were found to be slow and did not yield

9https://medium.com/thecyphy/home-credit-default-risk-part-2-84b58c1ab9d5
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many significant model performance improvements. Therefore, the hyperparameters were
adjusted iteratively. This produced models that outperformed (with the exception of the
Random Forest) the control model so further hyperparameter optimization was deemed
redundant. For the tree-based ensemble models, feature selection showed a negligible
effect on model performance. This is discussed further in Section 5.3.3. This was the
approach taken to optimize parameterization.

The build process split by model is described in the following subsections:

5.3.2 Traditional Credit Default Risk Prediction Model

The WoE binning procedure was done using the scorecard package. All constant vari-
ables that could not be used in this analysis were dropped. Once the WoE values were
created, variables with a total IV of less than 5% were dropped. 5% as this removed
potentially poor model predictors while still leaving large number of features to tune the
model adequately. The model was then trained using the remaining features. To identify
multicollinearity, the Variance Inflation Factor (VIF) of each feature was calculated. The
feature with the largest VIF was be removed iteratively until all features have a VIF of
5 or lower. The model then was retrained with the new feature set. All insignificant
(p-value greater than 5%) features were removed. The model was then retrained and all
features with negative relationships with the target variable were removed. The resulting
model was adequate and passed the k-fold cross-validation test. This resulted in the
candidate credit default model that will be considered for deployment. Given that this
is the model typically used in industry, this will serve as the control model which the
black-box methods proposed by this research will have to outperform.

5.3.3 Tree-Based Ensemble Models

The features were standardized for all the models. To avoid noise caused by highly
correlated variables, when two variables were correlated with a value above 85%, one
of the variables was removed. For all models reducing the number of features based on
feature importance had a negligible effect on performance so the number of features was
reduced until model performance began to decline. This removed redundant features
without sacrificing model performance. Each tree model showed overfitting at first so
the complexity of the individual trees were reduced. For the Random Forest model, the
min impurity decrease hyperparameter was reduced until no overfitting occurred. For
the LightGBM model the maximum number of leaves for each tree was optimised to a
value of 4. For the XGBoost model maximum depth parameter was set to 2. All the
tree-based ensemble models passed K-fold cross-validation and were brought to the next
stage of analysis.

5.4 Model Explanation

5.4.1 Mapping Prediction to Credit Score

Typically, in credit scorecard development, the model prediction output from the model
is mapped to a natural number. This is done using the typical Odds-to-Score mapping
formulae 10. For the deployed model, the target score was 600, the target odds was set to

10Convert odds to score formulae: https://rstudio-pubs-static.s3.amazonaws.com/376828_

032c59adbc984b0ab892ce0026370352.html
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1 and the points to double the odds was set to 50. Given that the decision boundary for
each model prediction is 50%, the required score to be predicted as non-defaulted is 600
or higher. If the deployed model was used to decide the outcome of a loan application,
then the required credit score for a successful application is 600 or higher.

5.4.2 Optimal Counterfactual Search

The goal of this research was not to find the optimal counterfactual but rather to make a
black-box model explainable. The goal was to find at least one sufficient counterfactual
rather than finding the optimal counterfactual. It is because of this that the counterfac-
tual algorithm discussed in Section 4.3 terminates a soon as one or more counterfactuals
that meet the specified criteria discussed in Section 3.3 are found. The algorithm favours
counterfactuals that involve adjusting the smallest number of features because trivially,
these are easiest to explain. Finding the optimal counterfactual explanation by any metric
was out of scope for this research.

5.4.3 Nearest-Unlike-Neighbour Search Results

As discussed in section 3.3, finding the NUN does not always result in the desired outcome.
Take the example in Table 2:

Table 2: Counterfactual Example
Counterfactual 0 Counterfactual 1

CF account no. 321072 321072

Feature to adjust amt annuity days birth

Case value 33309 -14311
CF value 25447.5 -8930
Score of case 587.64 587.64
Score of CF 643.71 643.71
New predicted score 595.28 629.88

Account number 100177 was predicted to have a score of 587.64. Using the deployed
model in an application setting with a decision boundary of 600, this case would be
refused credit. In Table 2 the NUN for exclusive of two features was found, amt annuity

and days birth. These were found using the formula in section 4.2. This resulted in
finding the same counterfactual (abbreviated as CF in Table 2) for both features. Assume
the desired score is 600 or above. Changing the value of amt annuity in account number
100177 to that of 321072 will result in a score of 595. This means that the counterfactual
is invalid because adjusting the amt annuity to that of the counterfactual will not result in
a score of 600 or above. In contrast, changing the value of days birth in account number
100177 to that of 321072 will result in a score of 630 which satisfies the required criteria.
If deployed in the algorithm in section 4.3 the algorithm would terminate after the first
iteration given that Counterfactual 1 satisfies the required criteria. Counterfactual 1 can
be easily translated to the sentence: ”Case 100177 has a low credit score because the
applicant is too old”. The ethical issues surrounding such an explanation are discussed
in Section 6.2.
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5.4.4 Deployment of Counterfactual Search Algorithm

The algorithm deployed delivers varying counterfactuals depending on the required cri-
teria. Take the case of account 101999, which has a predicted score of 548. If the target
score is set to 600 or higher, the algorithm outputs a single counterfactual suggesting
alterations to target neighbors 500 mean. The target neighbors 500 mean feature
is a combination of external bureau credit scores and the credit to annuity ratio. This
means that the customer has a poor credit rating with the bureau and the loan term
must be increased to decrease the credit-annuity ratio. This adequately explains why the
model predicted default for this customer. This can be easily translated to actionable
insights that can be understood by the lay user. The underlying factors that led to the
output are also very clear. Taking 101999 above, and setting a target score of 750, the
algorithm outputs three counterfactuals each with three features, indicating three ways
the customer can improve their credit score to a value of 750.

Case 131594 with a particularly poor credit rating (475) and is predicted as being
highly likely to default. If the algorithm runs with the target score of 600 or higher, it
outputs 4 counterfactuals each with three features for two different NUNs. Taking one of
the counterfactuals which contains features avg bal limit ratio, ext source max and
target neighbors 500 mean. Both ext source max and target neighbors 500 mean

indicate that the customer has a poor rating with the bureau. The counterfactual indic-
ates avg bal limit ratio that needs to be decreased indicating that the customer has
a lot of credit card debt which could indicate financial distress. If the target score is 750
or higher the number of features that require adjustment increases to 5.

Case 116492 is unlikely to default with a predicted score of 848. Running the al-
gorithm with a target score of 600 or lower results in two counterfactuals which show
how 116492 has a much more favourable external bureau credit rating among other fea-
tures to that of a case with a score of 600 or lower. This shows that the algorithm can
be used to explain a wide range of scenarios.

Using a narrow counterfactual search range, results in simple counterfactuals also.
Taking the case 131594 which has a predicted score of 475 with a counterfactual search
range between 600 and 610, the algorithm outputs 1 counterfactual with 4 features to
adjust. This indicates that the counterfactual extraction algorithm outputs simple and
effective counterfactuals for a wide range of scenarios.

6 Evaluation

The model was evaluated subject to performance and transparency.

6.1 Model Performance

The model performance subject to the measures discussed in Section 3.6 are summarized
in Table 3:

Each model has the same performance profile. The implication that business with
varying risk appetites will choose different models is not an issue when choosing between
the above models as each model delivers the same risk profile. This means evaluating
the models subject to a varying misclassification cost as seen in Chen et al. (2021) is not
necessary and likely will not yield any significant results.
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Table 3: Comparison of Model Performance Between Algorithms
Accuracy Precision Recall AUC

Train

Credit Scorecard 68.97% 16.49% 70.43% 76.21%
LightGBM 69.83% 17.24% 72.52% 78.30%
Random Forest 68.42% 16.30% 70.85% 76.00%
XGBoost 71.63% 18.34% 73.30% 80.00%

Test

Credit Scorecard 68.84% 16.37% 69.65% 75.66%
LightGBM 69.60% 16.93% 70.80% 77.39%
Random Forest 68.47% 16.14% 69.26% 75.15%
XGBoost 71.40% 17.87% 70.69% 78.12%

Kaggle
Submission
(AUC)

Credit Scorecard N/A N/A N/A 75.56%
LightGBM N/A N/A N/A 76.78%
Random Forest N/A N/A N/A 74.19%
XGBoost N/A N/A N/A 77.59%

The Random Forest fails to outperform the credit scorecard model. This makes it
unsuitable for deployment. The Random Forest is a black box model and attempting to
make the Random Forest explainable is a waste of resources given that the traditional
credit scorecard model is by its nature, explainable. Both gradient boosting methods
outperform the credit scorecard model in every performance metric. When comparing
the performance of each model, the XGBoost model it the highest performing overall.
Given that the counterfactual method of explanation is model agnostic, the decision was
taken to deploy the counterfactual method of explanation on the XGBoost model only.

This shows that model performance can be improved using opaque tree-based en-
semble models rather than Logistic Regression. In some cases, it might not be worth the
resources to deploy a black-box model and then make it explainable. A banking loan
portfolio can be worth billions and in that case any gain in performance can create value.
Choosing to deploy the black-box model followed by making it explainable will ultimately
depend on the business issue at hand and the resources the developers have. It could be
the case that the black box model outperforms the explainable model to the extent that
choosing not to deploy it would be costly. This makes the pursuit to come up with a
method to make the models explainable worthwhile.

6.2 Model Explainability

The goal of the transparency aspect of the model was so that it could meet the ex-
plainability standard set out in European Banking Authority (2020) as documented in
Section 2. The counterfactuals extracted for each case can be understood by humans.
The underlying factors that drive the model prediction are clear and easily understood
by humans. However, knowledge of the underlying features is required to translate these
explanations into insights that the lay user can understand. The explanations satisfy the
criteria discussed in European Banking Authority (2020) and highlighted in Section 2.
This explanation method is model agnostic. This gives banks and other lending institu-
tions a much greater choice of what model to use when predicting loan defaults. This also
can be used for other applications where model transparency is a necessity. Overall, the
model explainability method proposed satisfies the required criteria making the overall
research a success.

There could be a case where the explanation fails to meet ethical standards. Tak-
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ing the example in Section 5.4.3, the counterfactual extracted can be interpreted as the
clients older age as the reason for a poor credit score. This is unethical because this is
discrimination based on the clients age which is banned by the US Equal Credit Oppor-
tunity Act. Although this is an issue for the model created in this paper it is not an
issue for the proposed concept. This feature could be removed from this model or the
algorithm in Section 4.3 could be set up to avoid such sensitive features when search-
ing for counterfactuals. Such issues are beyond the scope of this research. This further
highlights the effectiveness of the model explanation approach. The counterfactual-based
explanation has highlighted this ethical issue to the developer where it might have been
previously missed.

7 Conclusion and Future Work

This research shown that model performance can be improved using black-box predictions
methods over the traditional credit scorecard-based models and that this can be done
while upholding a defined minimum standard of explainability. The counterfactual search
algorithm proposed in this research has been shown to extract rules that explain the model
predictions and the drivers behind such predictions. These counterfactuals can be easily
translated into insights that can be understood by the lay user. This has wide-reaching
implications not only for credit default prediction but for any modelling approach that
requires explainability. This extends model choice to include black-box models that are
better able to identify the non-linear relationships between the target variable and the
predictor variables. This means that banks and lenders have the potential to use models
which could help them reduce expenses brought about by loan defaults and/or identify
and avoid lending opportunities that are too risky.

Future work on this topic will involve improving the presentation of the explanations.
It would be interesting to explore the possibility of improving the visualization outputs
from the process to make the explanations clearer. Future work should explore whether
the counterfactuals can be automatically output as natural language descriptions. This
will allow a user to explain the model predictions with little or no knowledge of the
underlying features. In addition to improving the explanations, it would be interesting
to assess the generality of the proposed counterfactual extraction algorithm. Further
research on the topic would involve assessing the model’s effectiveness on different datasets
and/or for different prediction applications. It would be interesting to find out if this type
of explainable AI can be used for a wide range of applications because it would open up a
lot of potential for ML models to be deployed in areas where they were previously deemed
not appropriate.

References

Barboza, F., Kimura, H. and Altman, E. (2017). Machine learning models and bank-
ruptcy prediction, Expert Systems with Applications 83: 405–417.
URL: https: // www. sciencedirect. com/ science/ article/ pii/

S0957417417302415

Breiman, L. (2001). Random forests, Machine Learning 45(1): 5–32.
URL: https: // link. springer. com/ article/ 10. 1023/ A: 1010933404324

21

https://www.sciencedirect.com/science/article/pii/S0957417417302415
https://www.sciencedirect.com/science/article/pii/S0957417417302415
https://link.springer.com/article/10.1023/A:1010933404324


Bussmann, N., Giudici, P., Marinelli, D. and Papenbrock, J. (2020). Explainable machine
learning in credit risk management, Computational Economics .
URL: https: // doi. org/ 10. 1007/ s10614-020-10042-0

Charles, K. K. and Hurst, E. (2002). The transition to home ownership and the black-
white wealth gap, The Review of Economics and Statistics 84(2): 281–297.
URL: https: // doi. org/ 10. 1162/ 003465302317411532

Chen, K., Zhu, K., Meng, Y., Yadav, A. and Khan, A. (2020). Mixed credit scoring
model of logistic regression and evidence weight in the background of big data, in
A. Abraham, A. K. Cherukuri, P. Melin and N. Gandhi (eds), Intelligent Systems
Design and Applications, Springer International Publishing, Cham, pp. 435–443.

Chen, S., Guo, Z. and Zhao, X. (2021). Predicting mortgage early delinquency with
machine learning methods, European Journal of Operational Research 290(1): 358–372.
URL: https: // www. sciencedirect. com/ science/ article/ pii/

S0377221720306846

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system, CoRR
abs/1603.02754.
URL: http: // arxiv. org/ abs/ 1603. 02754

European Banking Authority (2020). Eba report on big data and advanced analytics.
URL: https: // www. eba. europa. eu/ file/ 609786/

Fernandez, C., Provost, F. J. and Han, X. (2020). Explaining data-driven decisions made
by AI systems: The counterfactual approach, CoRR abs/2001.07417.
URL: https: // arxiv. org/ abs/ 2001. 07417

Fitzpatrick, T. and Mues, C. (2016). An empirical comparison of classification algorithms
for mortgage default prediction: evidence from a distressed mortgage market, European
Journal of Operational Research 249(2): 427–439.
URL: https: // www. sciencedirect. com/ science/ article/ pii/

S0377221715008383
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