ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Ananya Pratap Singh Chandel
Student ID: 19237529

School of Computing
National College of Ireland

Supervisor: Prof. Noel Cosgrave

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee

Ireland

School of Computing

Student Ananya Pratap Singh Chandel
) =1 1.0 1= SRR
StUAENt ID: X19237520 .. ittt e e aa e s nenres
Programme: Data Analytics.......ccccooviiiiiiiiiiccie e, Year: ..2020-2021.....
Module: MSC ReSearch Project ... e
Lecturer: NOEI COSGIAVE ...ttt e et e e et e e e be e e e be e e eeabeeesare e enreeea
Submission
DU@ Date: 16/08/202 1.ttt aae e ae e nraeenaepaaeenres
Project Detecting Diabetic Retinopathy from Retinal fundus images using DC-CNN
11 ="
Word
Count: 903, e Page Count: 8.

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

oY L T = X o -SSR

[1= 1 o<

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Ananya Pratap Singh Chandel
Student ID: 19237529

1 Introduction

This research project detects diabetic retinopathy using retinal fundus images by designing a
novel dual-channel convolutional neural network. All the steps that may be required for the
replication are mentioned under this configuration manual. Project design flow from data
collection to model evaluation is explained. Code snippets from different sections are also
added as per requirement.

2 System Configuration

To carry out the implementation of this project, Google Colaboratory has been used. Google
provides free-to-use cloud-based machines that are used to run python codes but with certain
limitations. Google Collab Pro can be used with added GPU usage and ram utilization.
System configuration of google Collaboratory used for this project is GPU(Tesla K80)
having 2496 cuda cores and 12GB DDR5 VRAM, CPU hyper-threaded Xeon Processors
@2.3Ghz, disk 100 GB available, and ram 12.6 GB available.

3 Data Collection

The dataset used for this research has been taken from Kaggle. Kaggle allows downloading
data by using API token that can be obtained from the profile section of the Kaggle account
as can be seen in figure 1 below. After that Create a Google Colab notebook and connect it to
the cloud (basically start the notebook interface). After that, upload the "kaggle.json™ file that
Kaggle sent you. This allows data to be directly loaded into the Colaboratory environment.

Q

Home Competitions Datasets Code Discussion Followers Notificatiorfs unt Edit Public Profile
Y(ema refere rOC n now he DAl

trolled on the Notification sett

Figure 1: Downloading kaggle API

4 Setting up Google Colaboratory

Alternatively, a dataset can also be downloaded and stored in Google Drive and can be
accessed by Google colaboratory anytime. Before reading the data, Google drive must be
mounted. Figure 2 shows the mounting of google drive and also reading data using
Kaggle.json file. You may be asked to authenticate your account to access drive through
google collab on mounting google drive. For faster performance runtime environment can be
changed to GPU. The coding is done using python version 3.9.3, and google colab provides

ready to use jupyter notebook environment for coding.

0.1 IMPORTING DATA

: from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call
drive.mount ("/content/drive", force_remount=True).

'mkdir -/.kaggle/
lcp kaggle.json ~/.kaggle/
!chmod 600 /root/.kaggle/kaggle.json

'kaggle datasets download -d sovitrath/
.«diabetic-retinopathy-224x224-gaussian-filtered

Downloading diabetic-retinopathy-224x224-ganssian-filtered.zip to /content
997 423M/427M [00:09<00:00, 40.3MB/s]
1007 427M/427M [00:09<00:00, 47.4MB/s]

lunzip '/content/diabetic-retinopathy-224x224-gaussian-filtered.zip'

Figure 2: Shows mounting of google drive and reading data through kaggle API

5 Installing Python Libraries

All the necessary packages can be installed using !pip install commands in google colab, as

can be seen in figure 3 below.

0.2 DOWNLOADING DEPENDENCIES

'pip install tensorflow_addons
'pip install keras_tuner

Figure 3: Installing dependencies

The Figure 4 below represents all the necessary libraries that need to be imported for carrying
out the execution of the project. The list of packages that need to be installed prior to the

execution of code is as follows:

Numpy Version: 1.19.5
Pandas Version: 1.1.5
Tensorflow Version: 2.5.0
Matplotlib Version: 3.2.2
Sklearn Version: 0.22.2.post1
Keras Version: 2.5.0
OpenCV Version: 4.1.2
Keras Tuner Version: 1.0.3

0.3 IMPORTING LIBRARIES

import numpy as nop
import pandass as pd
import random, oc=B

from tenscrflow import lite

import tensorflow as tf

from tenscrflow import heras

from tensorflow.keras import layera
import shwotil

import matplotlib.pyplot as plt
‘matplotlib inline

from matplotlib.image import imread

from keras.preproceasging.image import ImageDataGenerator
from tensorflow.keras.metrics import categorical accuracy, AUC
from sklearn.model_selection import train_test_split

import tensorflow_addons
from tensorilow_addons.metrice import FlScere, CohenKappa

from FPIL import Image

impart cwl2

from tgdm import tgdm
import kheras

import glob

from keras.preprocessing.images import array to_img, img to_array, load_ img

import plckle

from tensorflow.keras.applications.wgeElé import WGG1S6, preprocess_input

from tensorflow.keras.models import Model, load model

from tensorflow.keras.layerg import Input, Dense, Embedding, Dropout, ConwiD,
MaxPool2D, MaxPooling2D, Flatten, Add

from tensorflow.keras.utils import plot_model

from tensorflow.keras.layerse import add

from tensorflow.keras.preprocessing import image

from tensorflow.keras.models import Sequential

from tensorflow.keras import regularizers

from tensorflow.keras.layere import concatenate

from tensorflow.keras.optimizers import Adam, RMSprop

import keras_tuner as kt

from sklearn.metrica import confusion matrix
from sklearn.metrica import accuracy_sacorea
from sklearn.metrica import classification report

6 Data Preprocessing
The data preprocessing code can be seen from the code snippet below, which uses pandas
data frame .

Mapping the dictionaries to create new columns: Type and Binary type
df ['binary_type'] = df['diagnosis'].map(diagnosis_dict_binary.get)
df ['type'] = df['diagnosis'].map(diagnosis_dict.get)

df .head ()

id_code diagnosis binary_type type
0 000c1434d8d7 2 DR Moderate
1 001639a390£f0 4 DR Proliferate DR
2 0024cdabOcle 1 DR Mild
3 002c21358ceb 0 No DR No DR
4 005b95c28852 0 No_DR No_DR

7 Data Transformation

The code for data transformation and splitting the data into train test split can be seen in the
code snippet below with utilizes clean library.

0.6 DATA TRANSFORMATION

Original Data was split into Train(80%) and Test(20%) data to use it efficiently for
Model Development and Evaluation phase
train, test = train_test_split(df, test_size = 0.2, stratify = df['type'])

print(train['type'] .value_counts(), '\n')
print (test['type'] .value_counts(), '\n')

No_DR 1444
Moderate 799
Mild 296
Proliferate_DR 236
Severe 154

Name: type, dtype: int64

No_DR 361
Moderate 200
Mild T4
Proliferate_DR 59
Severe 39

Name: type, dtype: int64

8 Data Visualization

The below code shows a snippet for visualizing the retinal fundus Images.

0.6.1 Visualization of DR and Non-DR Images

f = plt.figure(figsize=(12,6))

creating a object

im1 = Image.open(r"/content/New_DR/train/DR/001639a390f0.png")
im2 = Image.open(r"/content/New_DR/train/No_DR/002c21358ce6.png")

f.add_subplot (1,2, 1)
plt.title('DR')
plt.imshow(iml)

9 Data Augmentation

The below code shows the implementation of the Keras image data generator for performing
data augmentation.
def train_data_gen(path):
datagen = ImageDataGenerator(rescale = 1./255,shear_range = 0.1,zoom_range =
.0.1,horizontal flip = True)
train_dr_path = glob.glob(path)
train_dr_label = train_dr_path[0].split("/") [-1]
for image path in glob.glob(os.path. join(train_dr_path[0], "*.png")):
img = load_img(image_path)
x = img_to_array(img)
x = x.reshape((1,) + x.shape)
i =
for batch in datagen.flow(x, batch_size=1,save_to_dir=(os.path.join("/
.content/New DR/train/",train_dr_label))+'/', save_prefix=train_dr_label,
.save_format='png'):

i+=1
if i > 5:
break

10 Keras tuner

Hyperparameter optimization is performed using the Keras tuner library. A random search
function from the Keras library is used to tune one of the channels in the network.

The Random Search from Keras Tuner was implemented to find the best model by
considering Validation Loss as the objective function to compare the different models.
tuner = kt.RandomSearch/(

build _model,

objective='val_loss',

max_trials=5,

overwrite=True)

The Keras Tuner was fed with the original Train and Test images based on which it

provided us with the best model with least validation loss.

tuner.search(np.array(¥X_train_cnn), np.array(y_train), epochs=20,
swwvalidation_data=(X_test_cnn, y_test))

best_model 1 = tuner.get_best_models() [0]

11 Defining CNN

The below code snippet gives an idea about defining a function to create a CNN.
The second channel of the architecture consists of customised convolutional neural
network architecture that leverages the input features 224 * 224 * 3 (i.e., 1,50,528
features) of CNN.
def create_cnn(width, height, depth, regress=False):

inputShape = (height, width, depth)

chanDim = -1

define the model input

inputs = Input(shape=inputShape)

layeri Conv2D(32, (3,3), activation='relu') (inputs)

layer2 = MaxPooling2D((2,2)) (layerl)

Tayer21 = Drapont((0.25)) (Qayer?)

layer3 = Conv2D(64, (5,5), activation='relu')(layer21)

layerd = MaxPooling2D((2,2)) (layer3)

layerdl = Dropout((0.25)) (layer4)

layer5 = Conv2D(128, (5,5), activation='relu')(layer4l)

layer6 = MaxPooling2D((2,2)) (layer5)

layer6l = Dropout((0.25)) (layer6)

layer7 = Conv2D(128, (3,3), activation='relu')(layer6l)

layer8 = MaxPooling2D((2,2)) (layer7)

layer81 = Dropout((0.25)) (layer8)

layer9 = Flatten() (layer81)

layer10 = Dropout(0.5) (layer9)

layeril = Dense(256, activation='relu') (layerilO)

construct the CNN
model = Model (inputs, layeril)
return the CNN

return model

12 Visualising performance

After model has been trained the performance of the model is plotted using learning curves
same can be seen below.

Accuracy and Loss plot of DC-CNN performed on Training and Testing Data without
Augmentation

summarize history for accuracy

plt.plot (hiatcry .hiatory [accuracy' 101:1)
plt.plot(history.history['val_accuracy'] [1:])
plt.title('model accuracy')
plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')
plt.show()

summarize history for loss
plt.plot(history.history['less'][1:])
plt.plot(history.history['val_loss'][1:])
plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')
plt.show()

13 Performing Predictions

The code snippet below defined a function to perform predictions on the trained model using
the test data.

0.14 MODEL PREDICTIONS

Creating a function to generate the predictions of our DC-CNN model
def generate_predictions(path):
X data = []
files = glob.glob (path)
tor myFile in tiles:
print (myFile)
image = cv2.imread (myFile)
X_data.append (image)
X_test_data_vgg = extract_featuresl(¥_data)
X_test_data_cnon = np.array(X_data)

preds = model .predict([X_test_data_vgg, X_test_data_cnn])

return preds

14 Evaluating results

After the results are predicted, the below code snippet is used to visualize the results.

Further analysis is also performed to identify few extra parameters for evaluation.
conf_matrix = [[350,24],[11,348]]

Creating a funciion to report confusion metrics
def confusion_metrics (conf_matrix):
save confuston metric and slice into four pieces
TP = conf_matrix[1] [1]
TN = conf_matrix[0] [0]
FP = conf_matrix[0] [1]
FN = conf_matrix[1] [0]
print('True Positives:', TP)
print ('True Negatives:', TN)
print('False Positives:', FP)
print('False Negatives:', FN)

calculate accuracy
conf_accuracy = (float (TP+TN) / float(TP + TN + FP + FN))

calculate mis-classification
conf_misclassification = 1- conf_accuracy

calculate the sensitivily
conf_sensitivity = (TP / float(TP + FN))
calculate the specificity
conf_specificity = (IN / float(TN + FP))

calculate precision

conf_precision = (TN / fleat(TN + FP))

calculate f_1 score

conf_f1 = 2 + ((conf_precision * conf_senaitivity) / (conf_precision +,
—conf_sensitivity))

print('-"'*50)

print(f'Accuracy: {round(conf_accuracy,4)}')

print(f'Mis-Classification: {round(conf_misclassification,4)}')

print(f'Sensitivity: {round(conf_sensitivity,4)}')

