
DeepFake Detection using Deep Neural
Networks - Configuration Manual

MSc Research Project

Data Analytics

Ambuj Agnihotri
Student ID: x19220073

School of Computing

National College of Ireland

Supervisor: Dr. Christian Horn

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ambuj Agnihotri

Student ID: x19220073

Programme: Data Analytics

Year: 2021

Module: MSc Research Project

Supervisor: Dr. Christian Horn

Submission Due Date: 16/08/2021

Project Title: DeepFake Detection using Deep Neural Networks - Configur-
ation Manual

Word Count: 1032

Page Count: 13

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



DeepFake Detection using Deep Neural Networks -
Configuration Manual

Ambuj Agnihotri
x19220073

1 Section 1

The configuration manual contains a full explanation of the environmental setup used
during the development of a research project: “DeepFake Detection using Deep Neural
Networks”. Hardware and software specifications are covered in Section 2, Section 3 deals
with data sources, while section 4 deals with implementation.

2 System Configuration

2.1 Hardware Configuration

Table 1: Hardware Configurations
Features Versions

Operating System Windows 10 Home (2019 Microsoft Corporation.)
Processor Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz

RAM 8GB
System Type 64- bit Operating System, x64-based processor
Hard Drive 1TB

2.2 Software Configuration

The research was carried out using two software environments: 1) Google Colaboratory
and 2) Anaconda’s Jupyter notebook for deep learning models written in Python pro-
gramming language. The Python code is exhibited using Anaconda version 4.10.3 in the
Jupyter Notebook (6.0.3) web application platform. Jupyter Notebook uses Python 3.8.3
and Google Colab uses python 3.7.11 as its environment. The following are the important
libraries that were utilized during the research project.

• Numpy : 1.19.5

• Keras : 2.6.0

• Matplotlib : 3.2.2

1



• sklearn : 0.23.1

• Tensorflow (Jupyter Notebook): 2.6.0

• Tensorflow (Google Colab) : 2.5.0

3 Data Sources

Flickr-Faces-High Quality (FFHQ)1 dataset contains 70,000 high-quality PNG images
with a 1024 × 1024 pixel resolution, representing a wide range of race, age, and im-
age background. Eyeglasses, sunglasses, hats, and other accessories are also adequately
covered. For their Style-Based Generator Architecture, which is publicly accessible on
GitHub, Karras et al. (2019) had used the FFHQ dataset to create deepfake images which
are selected as fake images for this research2.

4 Implementation

1000 real and 1000 deepfake images are obtained from the two sources stated above and
stored in a folder named dataset, based on the available computing capacity.

4.1 Data Pre-processing

After Dataset collection, we used splitfolders library from python to split the dataset
into training, validation and testing sets in ratio of 80%, 10% and 10% respectively as
shown in figure 1. It is saved into a new folder named ’split dataset’. This folder is also
uploaded on Google drive to be used in Google Colaboratory Code execution as well.

Figure 1: Splitting Dataset

1https://github.com/NVlabs/ffhq-dataset
2https://github.com/NVlabs/stylegan

2

https://github.com/NVlabs/ffhq-dataset
https://github.com/NVlabs/stylegan


Figure 2 shows importing of all necessary libraries which will be used in code imple-
mentation. we have checked the Tensorflow version as well.

Figure 2: Importing Libraries

Figure 3 indicates the directory settings of Train, Validation, and Test sets. Each
directory path has two folders inside it i.e real and fake which have an equal amount of
real and fake images in them which shows the dataset is balanced.

Figure 3: Path Directory

Some preliminary data visualization is done using matplotlib python library. Figure
4 depicts that train set real and fake images is plotted using load image function and
output 1024*1024 resolution images are obtained.

3



Figure 4: Preliminary Data Visualisation

Figure 5: Fake and Real Images

4.2 Data Transformation

Data Augmentation is implemented above on a training set with different parameters
such as rotation range as 10, horizontal flip as True, zoom range as 0.1, etc. Resizing of
the input image as per computation capacity is been set to 350 * 350 and batch size is
chosen as 16. Below is the code for the same.

4



Figure 6: Data Augmentation

5



Figure 7: Post Augmentation Visualisation

After Augmentation, Code for Data visualisation executed again to confirm changes
of resizing and re-scaling of images at 350 * 350.

Figure 8: Images After Resizing

6



4.3 Model Implementation and Evaluation

4.3.1 EfficientNetB4-LSTM (Model 1)

Figure 9: Model 1 Building

Above code shows hybrid model building containing EfficientNetB4 and LSTM. n output
parameter is set to be 1 for binary classification (i.e. fake or real). Pretrained CNN on
weights as Imagenet is used with LSTM model. Activation function for Dense layer with
n outputs is chosen as sigmoid.

7



Code for model compilation and saving model checkpoints while training can be seen
in figure 6. Learning rate of 0.0001, loss as binary cross-entropy, and metrics as accuracy
are chosen while compiling code. Early stopping feature on Validation loss is implemented
with the patience of 5 epochs. the best model is saved with the Model checkpoint feature
based on validation loss for testing on the test set.

Figure 10: Code Compilation Model (1)

Setting the epochs at 20, the model training code can be seen below. After training
each epoch, the model automatically validates the model on the validation set which gives
us validation loss and accuracy for each epoch.

Figure 11: Training and Validation Model (1)

8



The Below code is for training and validation accuracies and losses are plotted after
training to get a clear idea of model training.

Figure 12: Training and Validation Plots Model (1)

Figure 13: Plots and Accuracy of Model (1)

Results can be seen below for the plots. All points and line are nearby except for
epochs except for epoch 2. Figure 13 and 14 shows classification report and code re-
spectively of testing of best model obtained from training on test sets and finally making
predictions and classification report is printed to get the performance of the model us-
ing accuracy, F-1 score. Training and test Accuracy of the model is 98.75% and 98%
respectively.

9



Figure 14: Code for Testing Best Model (1)

4.3.2 InceptionV3-LSTM (Model 2)

Firstly, we imported cnn architecture of inceptionv3 from keras.applications.inception
library which is shown in figure below. Inception has other versions as well but needed
v3 to be implemented for our research.

Figure 15: Importing InceptionV3 Model

Preprocessing steps kept same as input for this model is alo batch size 16 and image
size 350*350. Only difference is that instead of using EfficientNetB4, InceptionV3 CNN
architecture is used with LSTM. During Model building that step can be seen clearly
from image below. Rest of code remains the same.

10



Figure 16: InceptionV3-LSTM Model Building (Model 2)

Training and validation accuracy of InceptionV3-LSTM model is 98.37% and 96%
respectively. Plots obtained and classification report can be seen from below figure.

Figure 17: Classification Report of Model 2

11



4.3.3 InceptionResNetv2-LSTM (Model 3)

Firstly, we imported cnn architecture of InceptionResNetV2 from keras.applications.inception resnet v2
library which is shown in figure below. Inceptionresnet has other versions as well but v2
is needed to be implemented for our research.

Figure 18: Importing InceptionResNetV2 Model

Figure 19: InceptionResNetV2 Model Builiding (Model 3)

Only difference is CNN architecture which is InceptionResNetv2 in model 3 with
LSTM. Rest of things reamins same. Due to larger architecture, training time was more
for this model and is implemented using Jupyter Notebook. Training and test accuracy

12



for InceptionResNetv2 model is 98.75% and 97%. Plots obtained and classification report
can be seen from below figure.

Figure 20: Evaluation And Classification (Model 3)

References

Karras, T., Laine, S. and Aila, T. (2019). A style-based generator architecture for gen-
erative adversarial networks.

13


	Section 1
	System Configuration
	Hardware Configuration
	Software Configuration

	Data Sources
	Implementation
	Data Pre-processing
	Data Transformation
	Model Implementation and Evaluation
	EfficientNetB4-LSTM (Model 1)
	InceptionV3-LSTM (Model 2)
	InceptionResNetv2-LSTM (Model 3)



