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DeepFake Detection using Deep Neural Networks

Ambuj Agnihotri
x19220073

Abstract

Deepfakes are fake images or videos created with artificial algorithms, image pro-
cessing, and face swap. Deepfakes are computer-generated fake images or videos in
which images are merged to create new images or videos representing events, com-
ments, or activities that never occurred. The end product can be quite stunning. A
”Generative Adversarial Network,” or GAN, is an artificial intelligence technology
that can be used to create fake images. GAN, a multifunction technique used to cre-
ate Deep Fakes, is established to map faces using ”landmark” points. Such features
include the edges of a person’s eyelids and mouth, nostrils, and the curve of the
jawline. This research project’s main objective is to employ neural networks to dis-
tinguish between fraudulent and authentic images. For deepfake image detection,
a publically available Flickr Faces High Quality (FFHQ) dataset is utilized. Deep-
fake image detection employs a variety of pre-trained Convolutional Neural Net-
work (CNN) architectures (EfficientNetB4, InceptionV3, and InceptionResNetV2)
for feature extraction and Long Short-Term Memory (LSTM) for classification. The
Classification Report including Accucary, F-1 score, and other features are used to
analyze the results. To execute code with essential python libraries such as Keras,
Matplotlib, sklearn, and others, Google Colab and Jupiter Notebook are utilized.
EfficientNetB4-LSTM, Inceptionv3-LSTM, and InceptionResNetv2-LSTM models
achieved test accuracy of 98%, 96%, and 97%, respectively.

Keywords: Deepfake, Generative Adversarial Network (GAN), Deep Learn-
ing,Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM)

1 Introduction

1.1 Motivation and Project Background

The emerging technologies have evolved so much that they have enormous power to
make the nightmare come true. Privacy and security have become questionable in our
nations. Facts state that 14968 fake videos were posted to social media or generally
online platforms with almost 96 percent of the swaps were of the celebrity’s and used for
pornographic acts. The number of fake videos created is multiplying rapidly as well. It’s
not only the images but video recordings are transformed into something objectionable
and either blackmailed or posted online. It’s not only the privacy of an individual that
is at stake, but sometimes it can be the entire nation suffering or the lives of innocent
people that are taken away for such criminous acts. When fake videos of national leaders
are created and spread across, it’s the security and reputation of the country that is
jeopardized but just revenge or an act of entertainment for the ones that create them.
Hence classifying fake and real images is an important topic of discussion and work has



been done to make the prediction as accurate as possible in all ways including performance
and prediction quality with deep learning techniques. They are so powerful and reliable
that they can transform the videos thereby helping filmmakers and others reducing the
manual work. But at the same time, they can be used to create deepfake videos and
images. Hence as a positive sign of work, efforts are made to research how accurately the
deep learning methods are used to detect fake/real images.

The word ‘Deepfake’ is a combination of words ‘deep learning” and ‘fake’ which means
manipulated images or any other digital representations that have fabricated piece of it
which is unreal. Deepfake is a form of artificial intelligence. Anybody who has access to
computers is eligible to produce deepfakes. A deepfake is a counterfeit created by deeply
studying the images or the videos of the target person and then imitating the same
behavior by transforming parts of it or entirely. Barrett once said that the preliminary
fake videos/images are made more believable by the Generative Adversarial Networks
(GAN) process. The faults in the forgery are addressed through this process several
times. As a fact, Al tools are used to paste the body of a person with verbal statements
of somebody else create these. Even though simple tools can be used to create fakes,
deepfakes are forged in a way that it is hard to detect with bare eyes and a normal
innocent man believes it as true.

The dataset used in this research, fake images were created using a Style-Based Gener-
ator Architecture for Generative Adversarial Networks (StyleGAN)(Karras et al.| (2019))
using real images from Flickr-Faces-HQ dataset at 1024x1024 pixels. It offers intuitive,
scale-specific monitoring of the synthesis and resulting to an automatically learnt, un-
supervised distinction of properties (e.g., posture and identities when trained on facial
images) and random variance in the resulting images (e.g., freckles, hair). To understand
the concept of Deepfake, an example of real and fake images (generated through styl-
e¢GAN) in our dataset can be seen below. The dataset contains some fake images which
can be identified as fake by human eyes and some are not. Deep Learning models with
proper training can help in identifying such fake and real images.
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Figure 1: Real And Fake Image from the dataset



1.2 Research Question and Objectives

RQ: "How accurately can the hybrid deep learning model detect deepfake images gener-
ated by StyleGAN?”

Sub RQ: "How much training time does different CNN architecture take in a CNN-
LSTM hybrid model?”

The remaining paper is arranged in the following format. The next section delves
into prior research on detecting deepfakes using hybrid models. The technique as well
as procedure, consisting of a thorough analysis of the dataset collection, pre-processing
phases, and data mining algorithms used, is presented in sections 3 and 4 of the paper.
The description of the project’s implementation, evaluation methods, and outcomes is
presented in sections 5 and 6 of the paper. The last section 7 concludes the paper by
providing an overall summary as well as recommendations for further research.

2 Related Work

This section’s topic is linked to the previous image classification literature review related
to deepfake detection. This section’s topic is linked to the previous image classification
literature review related to deepfake detection. It is divided into three sections: 1) Deep-
fake Detection using different CNN Architectures 2) CNN-LSTM Hybrid Architecture
in Image Classification 2) Deepfake Detection using Hybrid CNN-LSTM Architecture 4)
Comparison and summary.

2.1 Deepfake Detection using different CNIN Architectures

DeepFakes were introduced as part of innovations in machine learning techniques for
image processing and manipulation. DeepFakes employ deep learning methods to develop
fake images that can be difficult to tell apart from actual images. [Khalil and Maged
(2021)) researched the creation and detection of deepfakes. One autoencoder understands
the attributes of the input image, while the other understands the characteristics of
an output image, and then the two encoders share their characteristics. For creating
the deepfake image, the output image was redesigned using the input image’s decoder,
resulting in an output image with characteristics from the input image. The use of image
enhancement techniques to increase the quality of deepfakes generated was investigated.
CNN architecture named MesoNet was used to detect deepfakes. It has 4 Convolutional
and pooling layers subsequently a dense network with a hidden layer. MesoNet was able
to categorize deepfake images with an accuracy rate of over 80%.

Li et al.[(2021]) had taken the frame and clip levels using the temporal and spatial rota-
tion angles to identify the intrinsic uniformity of face landmarks for more robust deepfake
detection to tackle against frame scaling and compression. The experimental platform
was a Windows 10 machine having a 3.0GHz Intel(R) Core(TM) i7-9700 processor and
32GB of RAM and the Deepfake-TIMIT dataset and FaceForensics++ datasets were
used to test the model.. To obtain the spatial features, researchers initially picked a
tiny proportion of steady landmarks and utilized those to create facial vectors. Second,
they built the temporal rotation feature using the rotation angles of facial vectors from
neighboring frames. Finally, they computed the statistics of both features independently
to create the feature vector for Support Vector Machine (SVM) classification.



ul ain et al.|(2021) researched real and fake facial image recognition using Error Level
Analysis (ELA) with Deep learning models. The initial stage for detecting fabricated faces
was image normalization for actual and fake picture assessment. Normalized pictures were
then preprocessed with ELA and fed into various deep learning models that had already
been trained. To measure the efficiency of models, they finetuned them for classification of
two classes: fake and real. Confusion Matrix was used to evaluate models. Different CNN
Architectures used were VGG-16, ResNet, ResNet50, and Inception-v3. VGG model had
the best training accuracy of 91.97% with a lower number of epochs, which is significantly
superior to all other approaches.

Bonettini et al.| (2021) targeted current facial alteration techniques for solving the
challenge of face altering identification in video sequences by ensembling different trained
CNN models. Starting with a basic CNN model (EfficientNetB4), various models were
created using two alternative concepts: a. Siamese training and b. Attention Layering.
An attention method that provided an idea of the model while also boosting the network’s
training capabilities. A triplet siamese training approach that pulled feature information
to improve classification results. The proposed model was implemented on 2 different
datasets i.e FF++ and DFDC. AUC and Log Loss were obtained for different combin-
ations of models for evaluation and it was observed that EfficientNetB4 with Attention
Mechanism and Siamese training helped to improve the accuracy of the model. The em-
bedding of temporal information might potentially be added to this study to improve the
model’s performance and accuracy.

Zhang et al. (2021)) proposed a method to detect fake videos/images even when they
are compressed or are of poor quality especially in social media using self-supervised
decoupling networks (SSDN). The networks are trained using authenticity and compres-
sion features and a self-supervised method is used for feature decoupling. The results
obtained show that the proposed method beats the state-of-the-art methods for deepfake
detection for compression. For a Low-Quality setting (LQ) SSDN achieves an accuracy of
91.80% which is better than F3-net (state-of-the-art methods) by 1.4%. This method is
outstanding and is considered for the review as the compression and authenticity factor
is considered which other methods don’t with comparatively better accuracy. With the
method proposed in this paper, higher accuracy is expected with mediocre quality levels.

The DeepFake Detection challenge (DFDC) created by Facebook motivated Pokroy
and Egorov (2021) to compare the performance of Efficient networks in detecting fake
videos. The highest performing model was utilized and the DFDC data for training
them. The method begins by framing the videos, applying a random combination of
augmentation methods, use efficient networks to get a feature matrix, classify the frame
using a binary classifier, and finally averaging the predictions to detect fake videos. This
paper concludes that the correlation between the model performance and their size is
minute and the best performances were showed by B4 and B5 models. This paper uses
high-resolution frames and it is proved that with a lower number of parameters, accuracy
decreases which is considered for the research conducted.

Tjon et al.| (2021) described a new architecture called ‘Eff-YNet’ to determine the
differences between the altered and the real videos. The combination of an EfficientNet
encoder and a U-net is used to classify and segment deepfake videos. The spatiotemporal
inconsistencies are detected using ResNet 3D networks. The results from the ensemble
techniques of Eff-Y networks and Resnet 3D are quoted to be better than the baseline
methods. The DFDC data is used for this and consists of real-fake pairs to create seg-
mentation masks which might not always be available. Also, this paper does not provide



any evaluation methods other than Area Under Curve (AUC) to compare the results and
evaluate them. These limitations are considered for this research and attempts have been
made to overcome them.

AMTENRnet, an effective fraudulent face detector, was demonstrated by combining
an adaptive manipulation traces extraction network (AMTEN) with CNN to reveal face
picture tampering in complicated scenarios by |Guo et al.| (2021). AMTEN, a face picture
forensics preprocessing tool, was created to learn modification traces. AMTEN used an
adaptive convolution layer to anticipate manipulating footprints in the picture, which are
then utilized in future layers by changing parameters during the back-propagation pass to
enhance manipulation traces. They replicate realistic face picture forensics as realistically
as possible by performing some post-processing techniques such as lossy compression,
scaling and, blurring to input images. AMTENnet surpasses state-of-the-art methods in
spotting fraudulent facial images created by several methods, with an accuracy rate of
98.52%.

GAN-generated face recognition based on an enhanced Xception was investigated
by |Chen et al| (2021). The following are advancements to Xception Model: (1) To
prevent overfitting, four residual blocks were excluded; (2) Inception piece with dilated
convolution was used to substitute the familiar convolution layer in the Xception’s pre-
processing model to procure multi-scale features; (3) Feature pyramid network was used
to achieve multi-level attributes for final judgment. The pluralistic image finalization
technique used in the FFHQ dataset was used to create a locally GAN-based generated
face (LGGF) dataset for checking model performance. All of the experiments were run
in Keras on a single 11 GB GeForce GTX 1080 Ti, i7-6900 K CPU, and 64 GB RAM
machine. In terms of training, they employed the Adam optimization method, with an
initial learning phase rate of 0.001 and a total of 128 epochs. Three indicators were used
to assess the effectiveness of the model: Precision, Accuracy, and Recall. The proposed
model outperforms existing models built for entire generated faces, particularly for faces
with tiny generated parts, according to experimental data.

Most of the deepfake detection models process the videos frame by frame and very few
consider the temporal inconsistencies. Trinh et al. (2021) proposes a Dynamic Prototype
Network (DP Net) that utilizes dynamic representations to determine temporal artifacts.
On top of this the temporal logic specifications is added to check the model’s compliance
towards the behaviors.The prediction is based on comparing the input depictions to the
prototypes to see how similar they are. The network then tries to find the real/fake by
looking at the temporal behavior activated by dynamic prototypes. The summation of
the similarity scores between prototypes are picked for detection. This model provides a
trustworthy method for people themselves to detect deepfakes.This paper proves better
than the state-of-art methods by 1-4% of AUC which is the base evaluation method
used.This paper doesn’t provide a strong evaluation method to compete the state-of-art
methods which has been considered in this research.

Two methods for detecting deepfakes for classification tasks to automatically recognize
deepfake videos by [Pan et al.| (2020 were Xception and MobileNet. Obtaining frames
from the video, identifying faces from those individual frames, and storing face regions
as photos were the three phases of the pre-processing module. Both MobileNet and
Xception use depth-wise and pointwise convolutional layers and are centered on CNN
Architecture. The only change is that MobileNets includes fewer features to improve
the model’s efficiency. Over the matching dataset being used to train each model, it
performed well in classification and also examining the effects of various loss functions



and optimizers on the outcomes.

2.2 CNN-LSTM Hybrid Architecture in Image Classification

Ozkaya et al| (2021) analyzed Ground Penetrating Radar B scan (GPR B Scan) images
of varying quality for soil type’s performance using a hybrid residual CNN and Bi-LSTM
model. This model’s fundamental architecture was made up of blocks. Convolution,
Rectifier Linear Unit (ReLU), and batch normalization were part of block structures.
Each block comprises 20 filters, each of which is 3*3 pixels in size. To boost efficiency,
residual links among the block and pooling layers were established. The challenge of
gradient vanishing was attempted to be avoided via these residual connections. Three
Bi-LSTM units were linked together in a parallel. There were 150 hidden units in each
of these units. Finally, for the classifying task, Softmax regression was used. All of these
tests were run on Matlab Software with an Intel Core i7-7700 HQ CPU running at 2.8
GHz and 16 GB RAM. Accuracy, precision, recall, and F1 score were used as performance
evaluation criteria. GPR data were divided randomly split into the train (75%) and test
(25%). The efficiency of the classification model was 97.31%, which was superior to any
state-of-the-art method.

An approach to COVID-19 diagnosis using Lung Ultrasound (LUS) with an integrated
autoencoder-based hybrid CNN-LSTM model was used by Dastider et al.| (2021)). The use
of CNN and RNN to evaluate both spatial and temporal aspects of the LUS images was
proposed. To create a robust, noise-free classifier model, CNN has used auto - encoder
system and separate convolutional sections combined with a customized DenseNet-201
network. To confirm the efficacy of the proposed system, a five-fold cross-validation
approach was used. To increase the classification accuracy of the traditional DenseNet
network, it was suggested to add LSTM layers on top of CNN. For both CNN and LSTM,
the Adam optimizer was employed for every stage, with a learning rate of le-3, batch
size 64, and 120 epochs. To stop the overfitting of the model, numerous dropout stages
were utilized after the convolutional layers. Evaluation metrics like accuracy, precision,
etc. proved that the CNN-LSTM hybrid model was better than traditional DenseNet.

A study on the classification of gastrointestinal tract diseases using Residual LSTM
layered CNN was conducted by |Ozturk and Ozkaya) (2021)) to give early detection for
clinical treatment, which can assist in early detection of polyps. The proposed framework
used three famous CNN architectures: AlexNet, GoogLeNet, and ResNet50. These CNN
architectures were utilized to strengthen the extracting features section using a transfer
learning strategy. During training, the batch size was set to 16, the learning rate was set
to 0 001, and the dropout parameter was set to 0.35. Every LSTM block in the structure
had two LSTM components in it, and these two-layer LSTM units act in tandem. The first
LSTM unit’s input is adaptively changed based on the CNN architecture and positioning
in the LSTM blocks. Every LSTM block had one dropout layer with a value of 0.35 to
avoid overfitting. The classification problems can benefit from feature importance at all
stages. CNN pooling layers comprising low, mid, and high-level image characteristics can
be send to LSTM blocks which are better for classification tasks based on past learnings.

Gill and Khehra| (2021)) researched the classification of fruits images based on an
integrated and hybrid approach of CNN, RNN, and LSTM networks. For the creation of
discriminative features and sequential identifiers, CNN and RNN were used. The LSTM
was explained by using a memory cell to store learning at each classification interval.
The key change was that the last layer of the classic CNN architecture was replaced



by 2 layers (Fine and Coarse), and monitoring inputs were provided to the coarse and
fine classes independently. RNN displays an ephemeral form with effective norms of
varied lengths but incapable to dissipate, expanding gradient concerns and gradients lack
to be inseminated between layers of RNN. LSTM was used to address RNN concerns
by including a memory cell (C) at each level. Accuracy, F-measure, sensitivity, and
specificity were among the evaluation metrics employed. The technique outperformed
classic CNN, RNN, and LSTM models in terms of performance.

2.3 Deepfake Detection using Hybrid CNN-LSTM Architecture

Stanciu and lonescu| (2021)) looked into whether the video’s temporal features may be
used to boost the effectiveness of already present deepfake detection algorithms. Instead
of using the completely aligned face as input to the model and only picking selected facial
areas, they tested whether some facial sections offer greater knowledge about the legit-
imacy of the video. (1) Face identification, (2) landmark mapping, (3) face separation,
and aligning at an image size of 299 * 299, and (4) face parts separation including eyes,
nose, and mouth utilizing landmark points were all part of the preprocessing. Xception
network, which helped in extracting a feature vector for each image in the sequence,
the LSTM block, which was a two-layer, 256-layer LSTM that produced a temporal
descriptor for the sequence and was used for classification. For the CelebDF dataset, the
model offered a 13.46 percent gain in AUC, while for the FF+4 dataset, it yielded a
virtually flawless 99.95 percent AUC.

Sanghvi et al. (2021)) created a method that allows consumers to discern between
machine-generated multimedia components and actual media. In preprocessing, Faces
from each of the frames were collected using the pre-trained MTCNN for face recognition,
and all of the extracted faces were put together to generate a face-only clip. All frames in
which the face was not recognized were discarded, and a new frame for face recognition was
supplied. CNN and LSTMs had worked quite well for image or video classification because
CNN gathers spatial features whereas LSTMs acquire temporal features. The authors
combined LSTMs with the several CNN architectures and metric learning techniques in
this paper. The Triplet + LSTM model, which was based on triplet loss, was found to
be the best over 60 frames and thus was considered as the best model for constructing a
deepfake detection system.

Suratkar et al.| (2020)) used CNN architectures based on Transfer-Learning to improve
the generalizability of Deepfake Detection. A technique that utilizes a CNN to collect
characteristics from each frame of a clip to train a binary classifier that can effectively
distinguish between real and fake videos. The approach is tested on a large number of
deepfake films pulled from diverse datasets. CNN Models such as Xception, Inception v3,
MobileNet, ResNet50, etc. were used as base models. Extra layers and hyperparameters
such as dropout, decay rate, etc. were added on top of that for training and tested on
the rescaled dataset. Except for the ResNets model every other model performed well
and Inception v3 being outstanding among all of them.

Hashmi et al.| (2020) used the Conv-LSTM Hybrid Framework for deepfake detection
using microscopic-typo evaluation of video frames in an exploratory study. CNN feature
extractors used a transfer learning strategy that starts with a pre-trained ResNet model
and then passes it on to the LSTM network, which was chosen over GRU due to memory
constraints. On the massive data, the training on Nvidia 1080x TI GPU lasted over
seven days (Kaggle DFDC training set). To avoid memory allocation issues, the batch



size was set to one. In terms of computational complexity, the model was a heavyweight.
According to evaluation results, the best traits for classification were eyes, eyebrows, head
movement, and mouth movement.

Giiera and Delp| (2018) utilizes a CNN architecture for obtaining frame-level attrib-
utes. These attributes were then used to train RNN that learns to classify whether or
not a video has been tampered with. In image processing tasks, CNNs have had a lot
of success, while LSTMs are commonly utilized for long sequence processing difficulties.
Random 70/15/15 split was done in preprocessing phases to generate three distinct sets,
which were used for training, validation, and test, respectively. Every frame was resized
to 299 299 pixels. The main problem they solved was the creation of a model that can
recursively analyze a sequence in a meaningful way. They employed a 2048-wide LSTM
unit with a 0.5 risk of dropout to solve this challenge, which was capable of doing exactly
what they require. Training, Test, and Validation accuracies were similar with different
frames per second for the Conv-LSTM model.

2.4 Summary

According to the research papers reviewed, the Deepfake idea poses a serious safety risk,
and new tactics to recognize and counter it are urgently needed. In terms of identifying
deepfakes, there are fewer techniques that can reliably assess whether an image or video is
real or fake. To distinguish deepfake, approaches like a CNN-LSTM hybrid model appear
to be efficient. We will focus on developing multiple CNN models with LSTM classifiers
to recognize fake or real photos using a dataset containing real and fraudulent images
(using StyleGAN) from the FFHQ dataset.

3 Methodology

This project is in the domain of data science and machine learning, Knowledge Discovery
in Databases (KDD) being one of the most often utilized approaches in this domain will
be considered. The reason for choosing KDD over the Cross-Industry Standard Data
Mining method(CRISP-DM) is that CRISP-DM usually requires the deployment of the
project because of business applications, whereas this is not an obligatory phase to finish
in KDD, which aligns with our research. Below image explains the KDD architecture.
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Figure 2: KDD Structure for Deepfake Detection



3.1 Data Selection

Many studies used datasets of images/videos that were either too small or of low quality.
When choosing a dataset, we ensured that it is of reasonable quality and has an adequate
amount of images. Deepfake detection is a rising issue for all High-tech firms, open-source
datasets for this task are readily available on Kaggle, GoogleAl, FacebookAl, and other
sites, alleviating any ethical concerns about data. For this project, we employed two
separate publicly available datasets for real and fake images from Github. Flickr-Faces-
HQ (FFHQ)[] is a high-resolution human face image dataset extracted from the Flickr
website. The dataset comprises 70,000 high-quality PNG images with a dimension of
1024 * 1024 pixels, with a wide range of ethnicity, age, and image background. It also
covers eyeglasses, sunglasses, caps, and other accessories well. Karras et al. (2019) used
FFHQ dataset for their Style-Based Generator Architecture to create fake images and is
publicly available on GitHubﬂ

3.2 Data Preprocessing

Data collected from websites are subject to a range of errors, noise, raw format, and
other variables. Insufficient data preprocessing can lead to undesirable outputs due to
false content or unnecessary attribute values in data sets. All images were collected from
Flickr and were automatically aligned and resized using dlib, adopting all of the website’s
prejudices. We only selected photos with permissive licenses. To create a new dataset of
2000 images for deep learning models, 1000 real and 1000 fake images with a dimension of
1024 * 1024 were picked from the FFHQ dataset and the StyleGAN dataset, respectively.

3.3 Data Transformation

To make predicting issue patterns easier and remove the temporal framework, data trans-
formation is required. This is the most crucial and innovative stage of the study. It’s
a crucial step because it removes the distracting background from the images, reducing
their size. ’train valid test split’ was used to split the dataset into train, validation, and
test sets at a ratio of 80%, 10%, and 10%, respectively. For better training validation
and testing, the train, validation, and test sets contain an equal number of real and fake
images.

3.4 Model Selection

After these steps, the data becomes ready for the deep learning models for training
and validation. This study presents a CNN architecture (EfficientNetB4, Inception-v3,
and Inception-ResNet-v2) for extracting features from each image and forwarding the
sequence to LSTM (RNN) for classification of fake and real images.

EfficientNetB4: Unlike traditional methods, which scale network parameters like
breadth, depth, and resolution randomly, Tan and Le (2019) method scales each para-
meter evenly with a defined set of scaling factors. Authors constructed a family of
networks named EfficientNets, which outperform state-of-the-art performance with up to
10x greater efficiency (smaller and faster). On a range of scales, EfficientNet gives a vari-
ety of networks (B0 to B7) that provide a reasonable mixture of efficiency and accuracy.

'https://github.com/NVlabs/ffhq-dataset
Zhttps://github.com/NVlabs/stylegan
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In general, EfficientNet models outperform previous CNNs in terms of performance and
accuracy, while minimizing parameter quantity and FLOPS by an order of magnitude]
Performance of each model in EfficientNet was compared by [Pokroy and Egorov| (2021))
in detecting deepfake videos. Results suggested that EfficientNet B4 and B5 were the
best models for deepfake detection tasks. Due to the higher computational complexity of
B6 and B7, there was a reduction of accuracy in these models. According to the dataset
and computation capacity available, EfficientNetB4 was the perfect choice of CNN model
with LSTM for this research.

InceptionV3: Inception-v3 is a CNN structure that improves on previous versions
of Inception by streamlining the framework and deploying additional inception modules
than Inception-v2. It uses Factorized 7 x 7 convolutions, Label Smoothing, and an extra
auxiliary classifier to transport label information lower down the network, among many
other improvements (also uses batch normalization for layers in the sidehead). |Suratkar
et al.| (2020) used different architecture such as Inception v3, MobileNet, ResNet50, etc.
in task of detecting deepfakes using transfer learning. The Inception v3 model, according
to their findings, outperformed all other models in terms of accuracy and predictions
while requiring less training time and computational complexity. The Adam optimizer,
with a learning rate of 0.0001, was found to be the greatest fit for such a system in terms
of achieving the optimal solution in a short amount of time with great precision.

Inception-ResNet-V2: The ResNet results motivated the idea of a hybrid Inception-
Resnet module. There are two versions of Inception-ResNet: Inception-ResNet-v1l and
Inception-ResNet-v2. Inception-ResNetv2 improved performance significantly faster and
had higher accuracy than Inception-v4. The Inception-ResNet-v2 model integrates the
Inception structure with a residual network (ResNet) interface to form the Inception-
ResNet-v2 framework. The reason for using the residual link is that it avoids deteriora-
tion during the deeper framework and gives precise feature details like color, texture, and
location. Inception-ResNet-v2 has three main frameworks: convolutional, activation, and
pooling. The Convolutional Layer aids in the extraction of features from images. The
activation layer is located between or at the ends of the system and assists in evaluating
whether or not such a neuron will fire. The activation function for this research will be
ReLu, which means that only positive values will be fired.

LSTM: An image sequence with the possibility of being a fake or not will be provided
by CNN architecture. The main challenge is creating a framework that can handle a
sequence iteratively and realistically. The LSTM is frequently used to examine images
sequentially. Obtaining images delivering these to a network consumes a lot of memory
and, due to the large datasets, it requires a lot of computing power as well. LSTM
maintains patterns or features as well as face characteristics and does not preserve images
on a physical server, as discussed by Hashmi et al.| (2020). Before the next sequence, the
LSTM memory cell captures, retains, and adapts the current sequence pattern. The
current is eliminated from the cell when the next sequence arrives. These patterns are
assigned values, which are subsequently saved in the LSTM memory modules. This loop
repeats throughout the image sequence.

3.5 Model Evaluation

Deepfake Detection is a classifying task that attempts to determine if an image is real
or fake. When making classification predictions, four types of outcomes can occur. 1)

3https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
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When the model anticipates that an image will be classified as fake and it is fake (True
Positive(TP)). 2) When the model anticipates that an image as real and it is real(True
Negative(TN)). 3) A prediction is given by the model that an image is fake and it is real
(False Positive(FP)). 4) Model predicted an image as real but it is fake (False Negat-
ive(FN)). TP and TN should be emphasized in our system. Model’s accuracy is defined
as the percentage of right predictions it makes. The total number of accurate predictions
(TP4+TN) divided by the total number of predictions (TP+TN+FP+FN) is the idea of
model accuracy. The number of positives (TP) accurately categorized out of all positives
(TP4+FN) is the Recall (True positive rate or Sensitivity). The recall is not a great in-
dicator by itself. There’s also Precision, which is a metric. Precision is expressed as the
ratio of accurately predicted positives (TP) out of all predicted positives (TP+FP).

4 Design Specification

The figure 3 depicts the research’s design specification. Following the gathering of data,
the dataset is partitioned into train, validation, and test sets. For better model learning,
image augmentation is used on the training set. All three sets have their images aligned
and resized. To detect deepfakes, pre-trained CNN models with weights as the imagenet
are picked with an LSTM classifier. To show research findings and modeling implementa-
tions, Python libraries such as Matplotlib, sklearn.metrics and others are being used. To
recognize deepfakes containing various CNN frameworks with RNN (LSTM), a Hybrid
Deep Learning model is applied.

DATASET SPLIT

i Image Image Alignment Visualizations after
(Training, ’
GG AT Augmgmatlon on and Resizing preprocessing using
. Training set (350 * 350) MATPLOTLIB
Testing)
Deep Learning|Hybrid Models
DEEPEAKE EfficientNetB4 : Inception-
DATASET and LSTM s ResNet-V2 and

LSTM (Model 2)

(Model 1) LSTM (Model 3)

Evaluation Visualizations
Metrics after

(Classification Implementation
Report) using

MATPLOTLIB

Figure 3: Design Specification

5 Implementation

5.1 Preliminary Data Exploration

The examination of the image dataset is the very first step in the project implementation.
Identifying the file types in the dataset. Data analytics is supposed to be all about
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analyzing data. dataset has image files of PNG format in folder named fake and real
images. Dataset divided into train, validation, and test folders in proportions of 80%,
10%, and 10%, respectively, each having a labeled folder (real and fake) i.e., out of
2000 photographs, the train folder contains 1600 (800 real and 800 fake), whereas the
validation and test folders each have 200 images (100 real and 100 fake images). The
Google Colaboratory platform was utilized to run the model, which was aided by the
GPU Tesla T4. The final dataset was uploaded to Google Drive and used with the
drive mount feature during execution. To begin, all necessary libraries were imported,
including Tensorflow, Keras, and Sklearn. The figure 4 shows how to use Python libraries
to explore a dataset.

s Real Faces C Fake Faces

Figure 4: Data Exploration for real and fake images

5.2 Data Preprocessing

The amount of available data generally contributes to the success of deep neural network
models. Data augmentation is a technique used to generate new training data from old
data. This is performed by transforming images from the training samples into fresh
and unique training images utilizing domain-specific techniques. Image data augmenta-
tion, which comprises changing pictures in the training set into modified duplicates that
match to the same categorization as the original image, is a well-known approach of data
augmentation. Transforms involve procedures such as shifts, zooms, and many other
picture alteration approaches. Image data augmentation is often utilized on the training
set only, not the validation or test sets. Data preprocessing, such as image resizing and
pixel scaling, is distinct in that it must be done equally across all sets communicating
with the model. Batch size was set to 16 and image size was chosen as 350 * 350 as we
were facing GPU issues on Colaboratory in processing larger size than that. A batch size
of 16 was chosen and an image size of 350 * 350 because we were having GPU troubles
on Colaboratory when processing images larger than that.
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¢ : & Found 1600 images bzlonging to 2 classes
input_size = 350 .
batch_size_num = 16
train_datagen = ImageDataGenerator( 1
rescale = 1/255,  #rescale the tensor values to [e,lﬂ 10
rotation_range = 10,
width_shift_range = 0.1,
height_shift_range = 0.1,
shear_range = 0.2,
zoom_range = 0.1,
horizontal flip = True,
fill_mode = 'nearest’

150

:

) S0 100 150 2200 20 300

0 5 10 150 2200 20 300 0 S0 100 150 200 250 300

Figure 5: Image Augmentation Parameters and Images after Resizing and Augmentation

5.3 Model Implementation and Evaluation

After Data Preprocessing steps, scaled and resized image data is ready for model training
and vaildation steps. The LSTM is a form of RNN that can preserve long-term reliabil-
ities. When employed in layered scenarios, LSTMs have proved to be able to supplement
CNN’s extracting features capabilities. LSTMs can memorize trends preferentially for a
long time, while CNN’s can extract the important elements from them. When utilized for
image classification, the LSTM-CNN layered structure outperforms the standard CNN
classifier. The suggested concept is based on Artificial Neural Networks such as Recur-
rent and Convolutional Neural Networks, making them resilient and applicable to a wide
range of classification tasks. Below is description of such three hybrid models chosen for
this research.

5.3.1 EfficientNetB4 (CNN) with LSTM (Model 1)

R Ef{fr (type) Output Shape - Param ?‘&&

;;;;cientnet-gli(Functional) (No;e, 11, =1, 1792) 17673816
dense_8 (Dense) (None, 11, 311, 512) 918016
dropout_4 (Dropout) (None, 11, 311, 512) (<]
dense_9 (Dense) (None, 11, 11, 128) 65664
time_distributed_2 (TimeDist (None, 11, 14€8) (2]

e 1stm_2 (LSTM) (None, 128) 786944
dropout_5 (Dropout) (None, 128) 2]
dense_10 (Dense) (None, 100) 12900
dense_11 (Dense) (None, 1) 101

Total params: 19,457,441
Trainable params: 19,332,241
Non-trainable params: 125,200

dense_3: Dense

Figure 6: Model 1 Architecture

The data is delivered to the CNN model (EfficientNetB4) in the first step, which
has a total of 17673816 parameters. The second layer is a dense layer of units 512 with
the activation function as 'relu’, and the third layer is a dropout layer of 0.5 to reduce
the model overfitting scenario. We employed a dense layer of units 128 in the following
layer to try to identify more hidden feature trends. The dimensions are then flattened
over the next layer to prepare an input vector to the LSTM model with params 786944.
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The LSTM outcome is being used in the next layers to integrate the learning from all
the above layers and produce classification output. As the project’s goal is to categorize
real or fake images, the model compilation is done using the loss function of binary cross-
entropy and Adam’s optimizer. Accuracy is one of the metrics used to measure and refine
model training. To ensure consistency of outcomes and training timeframe, all data sets
are run using 20 epochs and a batch size of 16.

As indicated in the figure 7 below, the highest training and validation accuracy ob-
tained in EfficientNetB4 and the LSTM hybrid model is 98.75% and 98.50%, respect-
ively, from different epochs. The training and validation losses are respectively 0.0459
and 0.0486. Early stopping can be noticed at the ending of epochs 11, indicating that
validation loss has not improved in the last 5 epochs. The optimal model for testing is
saved having epochs value of 0.0486.

Epoch 11/20
10/100 | ] - 1545 2s/step - loss: .8459 - accuracy: 0.9875 - val loss: 8.2328 - val accuracy: 9.8950

Epoch 0a11: val loss did not improve from 6.04863
Epoch ege1: early stopping

Epoch 6/28

100/100 | ] - 1535 2s/step - loss: @.8979 - accuracy: 8.9675 - val loss: 0.0486 - val accuracy: 0.9850

u o ik ' g =

Figure 7: Training and Validation Accuracy (Model 1)

In the figure 8 below, training and validation accuracy, as well as both loss, are
displayed for each epoch in a plot using the matplotlib library. Except for epochs 2, the
model worked well because the training and validation values in both plots are closer to
each other. The model 1 classification report, which shows that testing accuracy is 98%
and F1 scores for fake and actual photos are 99% and 98%, respectively, is also presented
below.

Training and Validation Accuracy LA e s e e i e e
cm = confusion_matrix(test_generator.classes, preds)

print('Confusion Matrix')
print(cm)

08

(S 200/200 [============================== ] - 178s 877ms/step
Confusion Matrix
[[99 1]
[ 298]]

07

06

®  Taining Accuracy
— Validation Accuracy

T H s s 5 © #### PRINT CLASSIFICATION REPORT]
names = ['fake', "real']
= o print('Classification Report')
aining loss - =g -
12 _Va‘.da.,gwms print(classification_report(test_generator.classes, preds, target_names=names))

05

Training and Validation Loss

Classification Report
precision recall f1-score support

06 fake 0.98 9.99 9.99 100
& real 0.99 0.98 0.98 100
02 accuracy 0.98 200
- macro avg 0.99 0.98 0.98 200

3 H 4 B 0 weighted avg 0.99 0.98 .98 200

Figure 8: Plots and Classification Report (Model 1)

14



5.3.2 Inception V3 (CNN) with LSTM (Model 2)

[» Creating Directory: .\tmp_checkpoint

Model: "sequential_ 14"

Layer (type) Output Shape Param #
inception_v3 (Functional) (None, 9, 9, 2048) 21802784

dense_29 (Dense) (None, 9, 9, 512) 1049088

dropout_15 (Dropout) (None, 9, 9, 512) =]

dense_30 (Dense) (None, 9, 9, 128) 65664

time_distributed_7 (TimeDist (None, 9, 1152) =]

time_distributed(flatten): TimeDistributed(Flatten)

1stm_a (LSTM) (None, 128) 655872

dropout_16 (bropout) “(wome, 1289 e
FER K= dense_31 (Dense) (None, 100) 12900
dense_32 (Dense) (None, 1) 101

Total params: 23,586,409
Trainable params: 23,551,977
Non-trainable params: 34,432

Figure 9: Model 2 Architecture

After Image augmentation, pre-processed data is passed as input to the Inception
model, neural network employed pre-trained networks with initial weights derived from
training on the Imagenet data, and then customized layers added on top of it. After
then, the complete network can be trained without any layers being frozen. Except for
the pre-trained CNN architecture with parameters 21802784, which is slightly greater
than ExceptionNetB4, the model architecture above reveals that all of the layers are
maintained identical to model 1. LSTM layer has 655872 parameters for model 2. With
a learning rate of 0.0001, all other model compilation parameters are maintained the
same. The model is run on a total of 20 epochs. The best model from the 20 epochs
is saved for the final testing task on the test set with the help of the Model checkpoint
feature. The patience parameter is set to 5, which means that if the model does not
improve validation loss for 5 consecutive epochs, model training will be terminated with
the help of the early stopping feature.

Each Epoch saves the best model for testing and also simultaneously analyzing out-
comes with a 200-image validation set. The training and validation accuracy obtained
in Inception v3 and the LSTM hybrid model is 98.37% and 94.50%, respectively, from
different epochs, as shown in the figure below. The training and validation losses are
0.0484 and 0.1636, respectively.

Epoch @@011: val_loss did not improve from 8.16359
Epoch 12/20

100/100 [======= ] - [EEE 15/step - loss: 0.0484 - accuracy: 8.9837 - val loss: 0.2343 - val_accuracy: 6.9660
Enggh:ope12:.val dess.did.pot. imorove From @639, ooy soay s s s s

Epoch 7/20

100/100 [ ] - 128s 1s/step - loss: 0.1253 - accuracy: ©.9581 - val loss: @.1636 - val_accuracy: ©.9450

Epoch 00007: val _loss improved from ©.21581 to @.16359, saving model to .\tmp_checkpoint/best_model.hs
Epoch 8/20
100/100 [

] - 1295 1s/step - loss: 0.0988 - accuracy: @.9694 - val loss: 8.3110 - val accuracy: ©.9050

Epoch 00@08: val loss did not improve from 0.16359

Figure 10: Training and Validation Accuracy (Model 2)
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° Training and Validation Accuracy 200/200 [ ] - 14s 63ms/step

G
09 ° from sklearn.metrics import confusion_matrix, classification_report
cm = confusion_matrix(test_generator.classes, preds)
08 print('Confusion Matrix')
print(cm)
07
[» Confusion Matrix
s [[95 5]
®  Taining Accuracy [ 3 97]]
— Validation Accuracy
05
2 4 6 8 10 ] S : ; e
[ ] from sklearn.metrics import confusion_matrix, classification_report
Training and Validation Loss names = ['fake', 'real']
® Taining loss print('Classification Report')
12 = Validation Loss

print(classification_report(test_generator.classes, preds, target_names=names))

Classification Report

08 precision recall fi-score support
06

fake 0.97 9.95 9.96 100

04 real 9.95 0.97 0.96 100

0z accuracy 0.96 200

i macro avg 0.96 0.96 9.96 200

X I z T T = weighted avg 0.96 0.96 0.96 200

Figure 11: Plots and Classification Report (Model 2)

Training and validation accuracy, as well as training and validation loss, are plotted
for each epoch in the figure below. Except for epochs 3, the model performed well, as
both the training and validation points are near in both plots. The best model (from
training) is used for testing the test set of 200 images after model training is completed.
The model 2 classification report is also shown above in figure 11, which demonstrates
that testing accuracy and F-1 are both 96%.

5.3.3 Inception-ResNet-V2 (CNN) with LSTM (Model 3)

Model: “sequentiai_B"

inception_resnet_v2_input: InputLayer

l Layer (type) Output Shape Param #

inception_resnet_v2: Functional

inception_resnet_v2 (Functio (None, 9, 9, 1536) 54336736

dense_7 (Dense) (None, 9, 9, 128) 196736
dropout_4 (Dropout) (None, 9, 9, 128) 0
-
time_distributed_2 (TimeDist (None, 9, 1152) 0
‘ time_distributed(flatten): TimeDistributed(Flatten)
l I1stm 2 (LSTM) (None, 128) 655872
Istm: LSTM dropout_5 (Dropout) (None, 128) %)
dense_8 (Dense) (None, 100) 12900
dense_9 (Dense) (None, 1) 101

Total params: 55,202,345
Trainable params: 55,141,801
Non-trainable params: 60,544

dense_1: Dense

dense_2: Dense

Figure 12: Model 3 Architecture

After preprocessing, pre-processed data is supplied as input to the InceptionResNet
v2 model. CNN architecture used pre-trained networks with initial weights taken from
Imagenet data training, and then dense and dropout layers were added after it. Pre-
trained CNN architecture with 54336736 parameters, which is significantly more than
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ExceptionNetB4 and inception v3. Because InceptionResNetv2 already includes a dense
framework, we deleted a dense layer. Similar to Inception v3, the LSTM layer includes
655872 parameters. The rest of the model compilation parameters remain unchanged.
A total of 20 epochs are used to run the model. Because of the significant computing
demands, the patience parameter has been set to 3. The early stopping feature is used
to halt model training.

Epoch 00008: val loss did not improve from 0.06265

Epoch 9/20

100/100 [ ] - 1671s 17s/step - loss: ©.0443 - accuracy: 0.9875 - val loss: @.1338 - val accuracy:
0.9600

Epoch 00009: val_loss did not improve from 0.06265

Epoch 00009: early stopping

Epoch 00005: val loss did not improve from 8.13696

Epach 6/26

160/100 [ ] - 17715 18s/step - loss: ©.8827 - accuracy: ©.9688 - val loss: 0.0627 - val accuracy:
0.9700

Figure 13: Training and Validation Accuracy (Model 3)

As shown in the figure 13 above, the training and validation accuracy of InceptionResNet-
v2 and the LSTM hybrid model is 98.75 percent and 97.00 percent, respectively, from
separate epochs (9 and 6). The training and validation losses are respectively 0.0443 and
0.0627. After epochs 9, the Early Stopping feature is also indicated below because there
is no improvement in validation loss.

In the figure 14 below, training and validation accuracy, as well as training and val-
idation loss, are presented on a plot using the matplotlib library for each epoch. Except
for epochs 8, the model performed exceptionally well, as the training and validation plot
points in both plots are nearby. The model 2 classification report, which shows that
testing accuracy and F-1 are both 97%, is also presented below.

1 Training and Validation Accuracy — 200/200 [ ____] - 625 295m5/5tep
. Confusion Matrix
.
09 [[98 2]
[ 496]]
08
07 #it## PRINT CLASSIFICATION REPORT

names = ['fake', 'real']
08 2 attmonsamey | | print('classification Report')

.

T 7 7 1 3 ¢ 7 & ¢ print(classification report(test generator.classes, preds, target names=names))
vy Training and Validation L:ssh — Classification REpOf‘t
iz = idain precision  recall fi-score support
" fake 0.96 0.98 0.97 100
S real 0.98 0.9 0.97 100
03
0 accuracy 0.97 200
" i macro avg 0.97 0.97 0.97 200

® ¢ o weighted avg 0.97 0.97 0.97 200

o

Figure 14: Plots and Classification Report (Model 3)
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5.4 Model Comparision and Discussion

After model evaluation, Results are compared below in a table. All hybrid models per-
formed exceptionally well in the task of detecting deepfakes, as training accuracy for
all three models is above 98%. A slight difference is observed in test accuracy, as the
EfficientNet B4-LSTM model comes out to be the best model among all with the highest
test accuracy. As compared to other literature papers, the accuracy of EfficientNetB4-
LSTM models was better than Bonettini et al.| (2021]), which implemented EfficientNetB4
with Attention and Siamese training on DFDC and FF++ datasets. Overall, Pretrained
CNN architecture with LSTM hybrid models performed well in deepfake detection and
classification tasks. Training time for each model also plays a vital role in the perform-
ance of deep learning models. In terms of Training time, we have chosen a batch size of
16 and epochs as 20 for all models. Model 1 and 2 trained faster (Approx. 3 mins per
epochs) due to smaller architectures (lesser parameters involved) as compared to Model
3 (Approx. 28 mins per epochs).

Table 1: Results Comparision

Model Train Accuracy (%) | Test Accuracy (%)
EfficientNetB4-LSTM (Model 1) 98.75 98.00
InceptionV3-LSTM (Model 2) 98.37 96.00
InceptionResNetv2-LSTM (Model 3) 98.75 97.00

6 Conclusion and Future Work

The major purpose of the research project is to address the research question, ”How
accurately can the hybrid deep learning model detect deepfake images generated by
Style-GAN?” To detect deepfake images from a publically available FFHQ dataset, a hy-
brid deep learning model is utilized, with pre-trained CNN architectures (EfficientNetB4,
Inception-v3, and InceptionResNet-v2) for extracting features and LSTM classifier for
sequence classification. To discover the best potential model in detecting deepfakes,
Evaluation metrics like as Classification Report, Accuracy, and F-1 Score is used to com-
pare different CNN architectures with LSTM. In this study, EfficientNetB4 with LSTM
is the best model, with 98 percent test accuracy and less training time than other models.
Although InceptionResNetv2 with LSTM is slightly more accurate than Inceptionv3, In-
ceptionv3 requires less training time. To summarize, using pre-trained CNN architectures
with LSTM is a wonderful way to detect deepfake images or videos and can assist in the
development of a successful system for this purpose.

Higher training time for models with larger architecture, such as InceptionResNetv2,
is a limitation of this study. Due to the lack of better system configurations, a smaller
dataset of 2000 images is used for research, although CNN architectures can work on
bigger datasets as well. Due to Out Of Memory exceptions, while executing code, the
image size must be kept at 350 * 350 pixels. Future work can be done with a larger
portion of this dataset, taking better resolution images (1024 * 1024) and better system
configurations to construct a strong and reliable system that can detect deepfakes in
videos or images.
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