

Malware Detection in Android platform

using DNN

MSc Research Project

MSc Cybersecurity

Akshay Ashok Wakhare

Student ID: X19208103

School of Computing

National College of Ireland

Supervisor: Prof. Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Akshay Ashok Wakhare

Student ID:

X19208103

Programme:

MSc in Cybersecurity

Year:

2020-2021

Module:

Industry Internship

…….………

Supervisor:

Prof. Vikas Sahni

Submission

Due Date:

06/09/2021……………………………………………………………………………………….………

Project Title:

Malware Detection in Android platform using DNN

Word Count:

………………6300…………… Page Count…………22…………………………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Akshay Ashok Wakhare

……

Date:

05/09/2021…………………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Malware Detection in Android platform using DNN

Akshay Ashok Wakhare

X19208103

Abstract

The android platform market is growing exponentially and so the attacks on android

platform are increased. The attacks usually performed by installing an android

application with malicious code inside the application. On initializing the malicious

application an attacker is able to get device access, network information and so on. In the

past, many researchers have performed research on this problem. This research is

performed aiming to solve and add extra layer of defence in android platform using deep

learning technology.

The research is carried out by developing hybrid malware detection models in which

static model was developed using static features of an android application such as

manifest permissions, Intents and API calls whereas the dynamic model was developed

using dynamic features such as system calls and system binder calls. The recurrent

neural network particularly Long Short-Term Memory technique is utilized to developed

both the models. Both the static and dynamic models are trained and the efficiency of the

models is analysed using confusion matric and roc & auc scores. The developed models

will be used in the organisation to add an extra layer of security in their current working

mobile threat detection system.

Keywords: Android malware detection, Hybrid malware detection, LSTM,

Recurrent neural network

1 Introduction

The android devices such as mobile devices, tablets are increased over the last decade.

Particularly the android platform has gained popularity due to open source, cost effectiveness

and easiness. As the number of users increased the attackers now targeting the mobile devices

to performed their attacks. The attacks can be performed using various techniques although

the most commonly used technique by an attacker is to installed the android application

inside the target device in which the malicious code is embedded in the application and on

opening the app user can get the victim’s device access from which the information such as

device information and network information can be retrieved to performed further malicious

activity. As per Norton’s security blog the malware types in mobile devices have increased

by 54% in the year 2016-2017. The malicious applications are installed into the devices by

downloading those apps from websites or by sending them over mail. On opening those

applications, the malicious code starts to execute. The attacker embeds malicious code inside

2

the application in a way that the malware can be spread to other devices connected to the

same network. 1

There are various solutions available in the market which detect such malicious application

when installed in the device. Few solutions use signature-based detection in which the

signature of the installed application is compared with the signature of the already observed

malwares. Few solutions use machine learning technology to detect such application on the

basis of their properties known as Anomaly-based malware detection. In anomaly-based the

detection the static or dynamic properties can be used. In static properties the detection is

done using the parameters such as permissions, intents, API calls can be extracted without

initializing the application whereas in dynamic properties by capturing the system call,

system binder call or network activity the detection can be done.2

Various researchers have performed their research in this area and has achieved results

according to their methodology although the research performed by them has faced some

shortcomings. The researchers have performed their research using various techniques such

as using deep neural network methods like RNN, CNN and LSTM. Their research shown

good result although they either used static or dynamic features to carry out their work.

Also, the ability to detect new malware type is not taken into consideration by few

researchers as the attackers are now developing such malicious application which has

capability to bypass the present malware detection solutions.

This research was motivated to avoid those shortcomings and developing a better solution for

the malware detection in android platform along with adding an extra layer to current

industry model which is DeepThinker. In this research two separate models were trained

using deep neural network technique i.e., Long Short-Term Memory. The following sections

represent the previous works summary, methodology used in this research design

specification of the proposed system, Implementation and Evaluation of the developed

solution.

2 Related Work

The related section explains an extensive literature review of the work done in the android

malware detection field by other researchers. The methodologies, techniques used, technical

factors used by the researchers in their study along with their observations and future scope is

explained in the following section. Earlier the researchers have proposed various techniques

or frameworks that detects the malicious application in android platform. While considering

their work the outcomes and shortcomings in their research are taken into consideration in the

proposed research. Three subsections are categorised while conducting the research such as

Malware detection using static features, Malware detection using dynamic features and

malware detection using hybrid features with their approaches and results.

1 https://us.norton.com/internetsecurity-mobile-types-of-common-mobile-threats-and-what-they-can-do-to-

your-phone.html
2 https://sci-hub.se/10.5772/intechopen.69695

3

The research carried was out referring to the precious work in the field of android malware

detection using machine learning and/or deep learning.

2.1 Static Feature Analysis

The researcher (Booz et al., 2018) designed a framework ‘Anastatia’ in the research where

they build the multiple machine learning models as well as the multilayer deep belief network

using static features such as Intents, permissions, API calls with the optimizer stochastic

gradient descent. Their results shown great accuracy although the study faced the

computation limitations. The approach using permissions and using deep learning then

extended by the researcher (Fereidooni, Conti, Yao and Sperduti, 2016). The multi layered

perceptron model was used in the research in which they extracted the static feature such as

permissions of an application. The grid search method was used to calculate the model

optimization. They followed the methodology in which various dense layers along with the

multiple neuron’s combinations were used at each layer to reduce the time as the hyper

parameters was consuming more time. The both researches calculated their model efficiency

using F1 score. Their future scope defined was to focus on the dynamic features of the

android application.

The study carried out by researcher (Feng et al., 2019) presented a device-based framework

as previous research developed the models on server side. In their research they used static

features such as manifest permissions, API calls and opcode sequences. One hot encoding

method was used on extracted features using which they formed feature vector as input to the

next layer. For model training they used convolution neural network technique. They used

TensorFlow to implement their model and later deployed that model into device using

TensorFlow lite. Their research has their own shortcomings such as the small sized dataset as

well as the computation limitation on the devices with older hardware configuration. In the

research followed by (Feng et al., 2021) they used CNN and RNN. To overcome previous

research short-coming they used larger dataset. In that study the RNN model achieved higher

accuracy and efficiency than the CNN. They also used various mobile devices with different

configurations for testing the framework. Their research was still focused on static features

and not on dynamic.

In study carried out by (Kim et al., 2019) seven different features with different characteristic

of the android application was used by the researchers. They created the feature vector using

the multiple feature encoding technique. The multimodal neural network was developed

where one feature vector was passed over single layer. Five different layers were used in that

model and those layers are merged in last layers which is used to classify the application.

They also used dropout regularization in their DNN model to overcome the overfitting issue.

Their model achieved higher accuracy although the classification of new malware was not

taken into consideration. They proposed using dynamic features in their future research.

In the research performed by (Vinayakumar, Soman and Poornachandran, 2017) they used

the recursive neural network in which they utilized the LSTM technique to carry out their

4

research. Their research was to detect malware as well as the classification using permission

sequences, they developed a word level language model. They trained the model using long

short-term memory and achieved higher accuracy using larger dataset although they only

focused on only static feature i.e., permissions. They proposed using dynamic features for the

research in their future work.

2.2 Dynamic Feature Analysis

The other approach for detection of malware application using dynamic features was

followed by the researcher (Hou, Saas, Chen and Ye, 2016). They used android emulators to

generate the dynamic data which they used as dynamic features. They used system calls of

linux kernel to create a graph vector in which they used graph encoding method. The stacked

neural network was developed in their research where the final layer was used to classify the

benign and malicious application. The usage of dynamic feature technique was extended by

(Tan, Li, Wang and Xu, 2020) in which they extracted API calls from applications using

dynamic analysis. The model portioning and early exit methods were used in their model to

optimize the model accuracy and computation load. Even though they achieved good

research they used sample devices to carry out their research and not on real devices.

In the research performed by (Gronat, Aldana-Iuit and Balek, 2019) the researchers used API

calls along with system calls extracted from android applications to develop a model named

MaxNet. The recurrent neural network method was used along with LSTM in which they

used max loss function to improve time complexity of their model. They used dataset

consisting 36000 samples in which their model achieved 96.2 percent accuracy. This

research approach was referred by another researcher (Xiao et al., 2017) in which they used

system call sequences.

Their research was performed by developing two LSTM models. The first LSTM model was

trained with the malicious samples dataset whereas the second model was trained using

benign samples dataset. To classify a new malware/benign sample the similarity scores were

calculated on the basis of the outputs of trained models. They achieved good results in their

research yet limiting the research to only dynamic features and not hybrid.

The approach to detect gaming malwares in android by (Jaiswal, Malik and Jaafar, 2018)

analyzed the system calls for both malicious and non-malicious application by capturing the

frequencies of the various systems calls in both malign and benign applications for various

timestamps. Their methodology of the analysis is that they captured the system calls for

different time intervals in which they found the frequencies for system calls such as

clock_gettime, ioctl, brk, mprotect, futex, pread64, read, write and getPackageInfo higher as

compared to non-malicious applications. Their approach helped the research to which can be

used to create signatures of the malicious application using system calls.

5

2.3 Hybrid Feature Analysis

To overcome the shortcoming from previous researches few scholars used hybrid model

methodology. The research carried out by (Khoda et al., 2019) developed a model using deep

learning technique. In their research they used features such App permissions, API calls.

Intents as static features whereas system calls were used in their dynamic feature analysis

which were extracted using monkey tool. In their study the model was trained using adversial

retraining technique and created the multilayer perceptron model. Their results showed good

accuracy rate although the dataset used in their research was of 3000 malware samples. The

hybrid methodology was extended by the researcher (Alshahrani et al., 2018) along with the

model deployed on device side. The dynamic features were extracted from the device and

those features and the APK was then transmitted to server on which the static features were

extracted using the APK. They used database to store the extracted features and the

multilayer perceptron model was trained using those features. Their study achieved 95%

accuracy on device-based model yet they used smaller dataset for training the model although

they proposed using larger dataset in their future work.

The study carried out by the researcher followed the same approach using the features used

by (Khoda et al., 2019) in their research they used deep belief network for training the model.

They also used dropout method to avoid model overfitting issue. They calculated

performance matrix using F1 score, accuracy, precision and recall. Their research motivated

them for using deep learning techniques such as RNN and CNN as their research achieved

better results as compared to previous study. The research performed by (Hadiprakoso, Buana

and Pramadi, 2020) utilized the hybrid methodology in which they used static and dynamic

features. They compared the deep neural network model with the models which were trained

using machine learning such as Random Forest, SVM and Naïve bayes. They used two

different models in deep learning such as DNN-S and DNN-D. Their research achieved

higher accuracy as compared to other machine learning models.

The research performed by (Chaulagain et al., 2020) followed a different approach in which

they developed two separate LSTM models to classify the malware applications. In the static

model they used API calls to train the static model whereas system calls were extracted and

transformed using embedding technique into low-dimensional semantic space. They

performed the testing using LSTM, Bi-directional LSTM and Attention based Bi-directional

LSTM techniques. Their research outperformed as compare to previous researches although

their model was lacking back propogation while training as the results of static and dynamic

model was combined in their final layer.

On analysing the researches mentioned above the conclusion can be made that even though

the researchers achieved good results in their study their research has few shortcomings

which they defined as their future scope. Such as the research mentioned by (Booz et al.,

2018) and (Fereidooni, Conti, Yao and Sperduti, 2016) the model was build using few static

features. The research performed by (Feng et al., 2019) had few malware samples failing to

6

classify a new malware. The research carried out by (Khoda et al., 2019) was focused on

comparison of different models and not on specific methodology.

In this project, the methodology, structure mentioned in above work was referred while

performing the research. In a nutshell, the work done by the previous researcher used the

smaller dataset whereas in this research the larger dataset was used. The shortcoming of

previous studies such as using either static or dynamic features was taken care by developing

hybrid model. The datasets used in this research was normalized and scaled while doing this

research. The research was carried out using LSTM method as the research perfomed by

(Chaulagain et al., 2020) achieved the higher accuracy. The evaluation of the model is

decided based on the performance matrix as well as roc & auc scores.

2.4 Research Niche

The following table summarize the literature review on the basis of the techniques used to

developed the model, Type of analysis used in research with their shortcoming and the

positives of the research which motivated the proposed research.

Table 1: Research Niche Summary

Author ML/DL

Model

Feature type Shortcoming Motivational

Positives

(Booz et al.,

2018)

Anastatia

(Deep Belief

Network)

Static Computational

Limitations

To use deep

learning

(Fereidooni,

Conti, Yao and

Sperduti, 2016)

MLP Static Exclusion of

Dynamic features

To include

dynamic features

(Feng et al.,

2019)

CNN Static Less computation

capacity of android.

Smaller Dataset

To use Manifest

permissions and

API calls as

features in static

model

(Feng et al.,

2021)

CNN and

RNN

Static Only Static features

utilized

To include

dynamic features

(Kim et al.,

2019)

DNN Static Only Static features

utilized

To include

dynamic features

(Vinayakumar,

Soman and

Poornachandran,

2017)

LSTM Static Only used App

permission in static

analysis

To use LSTM

model

(Hou, Saas,

Chen and Ye,

2016)

ANN Dynamic Limited to dynamic

Use of Deep

neural network

(Tan, Li, Wang

and Xu, 2020)

Multi model

NN

Dynamic Real time detection

not possible

Use API calls

7

(Gronat, Aldana-

Iuit and Balek,

2019)

MaxNet

(LSTM)

Dynamic No included the

static features

Use of LSTM

(Xiao et al.,

2017)

LSTM Dynamic Two separate models

for Benign and

Malicious dataset

Use of LSTM

(Jaiswal, Malik

and Jaafar, 2018)

System call

Analysis

Dynamic Only importance of

the system calls was

defined.

This research

helped to create

threat model

based on system

calls.

(Khoda et al.,

2019)

MLP Hybrid Smaller Dataset To use large

dataset

(Alshahrani et

al., 2018)

MLP Hybrid Smaller Dataset To use large

dataset

(Khoda et al.,

2019)

DBN Hybrid To use CNN or RNN To use both

static and

dynamic features

(Hadiprakoso,

Buana and

Pramadi, 2020)

DNN Hybrid Used Machine

learning models

To develop two

separate models

for Static and

Dynamic

(Chaulagain et

al., 2020)

LSTM Hybrid Only used API calls

in static and System

calls in dynamic

To use more

features

To develop

LSTM models

3 Research Methodology

The methodology used in this research was extension to the current industry model to detect

malicious application in android. In the current model, the first line of defence is simple

where signature-based detection is performed in which the application signature is fetched

from the installed APK file before running the application and is passed to the virustotal and

google play protect business subscription. The second line of defence is initiated after

application is in up and running state where particular features of the APK are extracted and

are passed to the machine learning model known as DeepThinker. The aim of this research

was to improve the second layer of defence by utilizing the deep learning methodology and

the updated data for training the model.

In the research carried out, the two different models were trained Static and Dynamic where

static model utilizes the static features of the APK such as Manifest Permissions, API call

signature, Intent whereas in the dynamic model the dynamic features of the running APK

such as System Calls, System Binder Calls were used to train and test the model. The static

dataset was obtained from the industry where the original source of the dataset was Drebin in

which the 215 features were extracted using Mobile Sandbox Tool for the 15031 Malicious

8

and Bening applications. The dynamic dataset was obtained from the open source and the

dataset is named as CICMaldroid 2020 in which various 470 features was extracted including

system calls and system binder calls for the 11598 malicious and benign applications.

The following diagram shows the basic architecture of both the static and dynamic model.

Fig. 1 Developed Model

The dataset for the both models were taken in the first step where the data pre-processing was

applied where factors such as ‘nan’ values, numerical null, categorical null, Data encoding,

data skewness were taken into consideration. After data pre-processing the feature

importance of the dataset was calculated using XGBoost after data split in which the factors

which are highly important for decision making were calculated. In static model top 15

features were taken whereas in dynamic model top 20 features were chosen. The data were

split into training and testing dataset. In model training phase the models were trained using

sub type of Recursive Neural Network which is Long-Short Term Memory. The decision of

utilizing LSTM model was taken into consideration after analysing the methodologies and

results of the previous research in the same domain from various researchers. The

methodology and outcoming results of (Chaulagain et al., 2020) inspired to carry out the

research using LSTM for both static and dynamic models. The data was split into 80-20%

where 80% data was used to train the model where 20% of the data was utilized to test the

models to calculate the performance of the trained models. The models trained are discussed

in the section 4. The performance metrics are also mentioned in the section 4 where the

Accuracy, F1-Score, Sensitivity, Specificity and Precision were calculated.

4 Design Specification

9

Lately the researchers are using the deep learning methodology for the detection of malicious

application in their research. The deep learning models such as ANN, CNN, RNN are used to

develop accurate and time efficient models. Many researchers use the model according to the

data they are having to carry out the research. In this research, data used was enormous data

and in order to achieve the enhanced model the deep learning method was chosen to carry out

the further research.

This section illustrates the information of the model design for both static and dynamic

model. In this research the LSTM models were trained. The following diagram describe the

basic LSTM architecture which was referred while doing the research.

Fig. 2 Simple LSTM Model

The basic architecture of LSTM is inherited from the recurrent neural network which is

designed to overcome the problem that occurs in general RNN i.e., vanishing gradient. The

LSTM has the memory cells. The architecture of LSTM cell is categorized into three parts

known as forget gate, Input gate and Output gate. The decision of the information obtained

from the previous cell need to be remembered or needs to be dropped as irrelevant is decided

using forget gate. This is useful for the model to long term range as well as the short-term

range. The cell learns from the information obtained in Input cell whereas the updated

information from the current cell is passed to the next cell using output gate. The cell

contains the information along with the previous and current cell. The decision of the forget

gate that is information need to be stored or dropped overcome the vanishing gradient issue in

LSTM model and the model can be trained effectively as compared to the general RNN.

The research was carried out for classification of malicious application uses the Many to One

Model of the LSTM. In which output of the model is decided using multiple inputs. In the

diagram below the X denotes the input sequence, u denotes the hidden state whereas the Y

denotes the output value.

10

Fig. 3 Many to One Model

4.1 Evaluation Metrics:

The need of the evaluation metric in any deep learning is important as the metrics help

researchers to understand and evaluate the efficiency of the built model. In the research the

performance was calculated using Accuracy, F1-Score, Sensitivity, Specificity and Precision

(ROC & AUC values). The model was tuned until the desired output of the model was not

met. The ROC & AUC values used are defined below:

4.1.1 Accuracy

While calculating the accuracy the ratio of the correct prediction to the total number of

predictions are calculated.3

Accuracy = True Positives (TP) + True Negatives (TN) / True Positives (TP) + True

Negatives (TN) + False Positives (TP) + False Negatives (TN)

Where, True Positives are the values which are true and model also predicted them true.

True Negatives are the values which are false and model also predicted them as false.

False Positives are the values which are true but the model predict them as false.

False Negatives are the values which are false but the model predict them as true.

4.1.2 Precision

The precision of the model was calculated by the ratio of the correctly predicted positive

observation to the total number of the positive observations.

Precision = True Positives / (True Positives + False Positives)

4.1.3 Sensitivity / Recall

Sensitivity is calculated as the ratio of the number of predicted positive values to the total

number of true positives and false negatives.

Sensitivity = True Positives / (True Positives + False Negatives)

4.1.4 Specificity

3 https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62

11

Specificity is calculated as the ratio of the number of predicted negative values to the total

number of true negatives and false positives.4

Specificity = True Negatives / (True Negatives + False Positives)

4.1.5 F1-Score

The harmonic mean of the precision and recall are used to calculated the F1-Score.

F1-score = 2 * (Sensitivity * Precision) / (Sensitivity + Precision)

4.1.6 Time Efficiency:

The total time required to trained the model with 100 Epoch and total time required to test the

split test data were calculated in seconds.

5 Implementation
The following section illustrates the implementation of the static and dynamic model carried

out in this research. The pre-processing and feature importance is also mentioned in this

section.

5.1 Environment Setup:

The most widely used technology in data science is python. In this research the python

language is used for model building. Jupyter Notebook and Anaconda are also installed on

the Windows 10 system for development and execution of the model.

5.2 Dataset:

The static dataset was taken from the industry whose original source was Drebin in which the

various 215 features were extracted using Mobile Sandbox Analysis Tool against 15031

Malicious and Bening applications. The dynamic dataset was referred from the open source

named as CICMaldroid 2020 in which 470 different features was extracted consisting system

calls and system binder calls against 11598 malicious and benign applications. These two

datasets were used while doing the research.

5.3 Packages/Libraries:

The below mentioned packages/libraries were installed for the research implementation.

• Numpy: To support large and multidimensional arrays the numpy library is used in

this research.

• Pandas: For data analysis and data manipulation the pandas were utilized.

• Matplotlib: To visualize the output results and plotting the graphs this library is used.

• Keras: This library was used in which the APIs for neural network are defined for

easiness of data science community.

4 https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

12

5.4 Model Implementation:

5.4.1 Data Pre-processing:

In this phase the imported datasets were checked for the nan, null values and the handling of

any such values were taken into consideration. The target class that the classification of the

application was encoded using label encoding where value 1 was assigned for the malicious

application and 0 value was assigned for benign application.

The dataset was then checked for skewness of the data and the skewness transformation was

handled using cube root method. The datasets used in this research were imbalanced datasets

that means the samples for the malicious applications was more as compared to the benign

application which would have impacted the efficiency and accuracy of the trained model. To

avoid such problems imblearn library was used in which SMOTE module was utilized to

balance the datasets.

5.4.2 Feature Importance:

Feature importance is method in which the input features which are highly responsible for

predicting the dependent variable is calculated by assigning scores to the input features. The

feature important method is widely used to get insights of the model, data. To reduce the

dimensionality and improve the model efficiency the feature importance scores are used.

In this research, the XGBoost algorithm was used to calculate the features which were

responsible for predicting the target values i.e whether the application is malicious or non-

malicious. The XGBoost algorithm was applied on both static and dynamic models where top

15 features were selected for training the static model and 20 features were selected for

training the dynamic model.

5.4.3 Data Split:

For both the models the dataset was split into two parts i.e., train data and test data into 80-

20% ratio. where for model training the LSTM model 80% split data was used and after

model was trained the testing of the model was carried out using 20% of the data.

13

Fig. 4 Static and Dynamic LSTM Model Implementation

5.4.4 Model Training:

The model training phase started after data preprocessing and after getting the feature

importance graph using XGBoost. In the first phase the dynamic model was trained using the

20 important features. While training the model the recurrent neural network was used in that

particularly the LSTM techniques was utilized. In the LSTM the output of the first layer is

treated as the input for the next layer. In the modeling phase two LSTM layers were defined

where the units which is the output dimension for the next layer were defined as 32. The

‘relu’ activation function was used in both the layers with the input shape parameter which is

nothing but the inputs from the training data. Here, in the input layer the input shape needs to

be provided into three dimensions to the model hence prior to the training the training data

were reshaped into three dimensions. As two layers were used return sequence parameter

need to be set true in the first layer i.e., in the activation layer. To improve the performance of

the model and to avoid model overfitting the dropout regularization method was used after

defining each layer of the LSTM in which 20% data for the input connections was excluded

for weight updates. After two layers with the output units set to 32 the output layer was

defined with unit size 1 along with the sigmoid activation function as the output of the final

layer was 0 and 1. In the compilation phase the model was compiled using ‘adam’ optimizer

and ‘mean square error’ loss function was used for calculating the model loss.

While in the second phase the static model was trained. The steps followed to train the model

were similar to the dynamic model along with the LSTM although the layers defined in the

static model were different. In the static model the units in the first input layer were defined

14

as 64 as the output from this layer was input to the next layer. In the compilation phase

‘adam’ optimizer was used along with the mean error square loss function.

6 Evaluation

The following section elaborates the model efficiency and final outcomes of both the models.

The efficiency was calculated using confusion matrix, the accuracy and loss were graphically

plotted after validation of the models. The sections overall cover the results of the research

followed in this project. In deep learning, confusion matrix is often used to conclude the

performance of the model. In this research the confusion matrix was calculated for both static

and dynamic model along with the ROC & AUC scores and time required to train and test the

models.

6.1 Dynamic Model:

1. Confusion Matrix:

The confusion matrix is useful to calculate the roc auc scores such as accuracy, precision,

recall and F1-score. In this research the calculated confusion matrix are as follows:

Fig. 5 Confusion Matrix for Dynamic Model

Here, the True Positive values means the application was benign and model also predicted the

benign value for validation data. The value for the same was 325.

False Negative values means the application was malicious but the model predicted the

benign which were 23.

False Positive values means the application was benign although model predicted the

malicious application which were 111.

True Negative values means the application was malicious and model also predicted them as

malicious which were 1861.

15

2. Accuracy:

The accuracy of the model is nothing but the correct prediction of the model with respect to

the training and validation data. The formula for the Accuracy is ratio of the number of the

correct predictions to the total number of the predictions. Here in dynamic model the correct

predictions were (325+1861= 2186) and total number of predictions were

(325+23+111+1861= 2320) so 2186/2320 is 0.9422. Accuracy was 94.22%.

The roc & auc scores were calculated using confusion matrix. The values for the dynamic

model are as follows:

Fig. 6 ROC & AUC scores

3. Model Execution Time:

The total time required to train the model with 100 epochs were 292.06 Seconds whereas the

Testing time required to test the data on trained model was 0.21 milliseconds.

6.2 Static Model:

1. Confusion Matrix:

In the static model, the True Positive values means the application was benign and model also

predicted the benign value for validation data. The value for the same was 1832.

False Negative values means the application was malicious but the model predicted the

benign which were 98.

False Positive values means the application was benign although model predicted the

malicious application which were 114.

True Negative values means the application was malicious and model also predicted them as

malicious which were 963.

16

Fig. 7 Confusion Matrix for Static Model

2. Accuracy:

The accuracy of the model is nothing but the correct prediction of the model with respect to

the training and validation data. The formula for the Accuracy is ratio of the number of the

correct predictions to the total number of the predictions. Here in dynamic model the correct

predictions were (1832+963= 2186) and total number of predictions were

(1832+98+114+963=3007) so 2186/3007 is 0.9294. Accuracy was 92.94%.

The roc & auc scores were calculated using confusion matrix. The values for the static model

are as follows:

Fig. 8 ROC & AUC scores

3. Model Execution Time:

The total time required to train the model with 100 epochs were 393.67 Seconds whereas the

Testing time required to test the data on trained model was 0.26 milliseconds.

6.3 Case Study 1

Feature selection and Threat Modelling:

As both the dataset were having various features, the dynamic dataset was having 470

features whereas static dataset was having 215 features so in order to achieve time efficiency

while achieving the accuracy the feature selection method was used. The 20 features which

were most responsible for classification were selected using XGBoost for dynamic data

17

whereas 15 features which were responsible for the classification were selected for static

data. The features on Y-axis denotes the index number from the dataset.

Also, according to the study carried out by (Jaiswal, Malik and Jaafar, 2018) the frequency of

the system calls such as clock_gettime, ioctl, brk, mprotect, futex, pread64, read, write and

getPackageInfo were found higher in malicious application as compared to the benign

application. The study was referred while selecting the features from the dataset along with

the feature importance graphs. The above-mentioned features from study and features from

the graph were found similar.

Fig. 9 Feature Importance for Dynamic Data

Feature Importance for Static Data:

Fig. 10 Feature Importance for Static Data

6.4 Case Study 2

For Dynamic model the analysis of the accuracy and loss graph were performed and

represented in this experiment.

18

Train/Test Accuracy Graph: The following graphs demonstrate the accuracy of model

while training and testing for each epoch. On doing analysis of the graph, it can be seen that

the model accuracy was increasing at each epoch for both the training and testing data.

Fig. 11 Dynamic Model Train/Test Accuracy

Train/Test Loss Graph: On analysing the following loss graph the loss for the both training

and testing the model was gradually decreasing.

Fig. 12 Dynamic Model Train/Test Loss

6.5 Case Study 3

For Static model the analysis of the accuracy and loss graph were performed and represented

in this experiment.

Train/Test Accuracy Graph: The following graphs demonstrate the accuracy of model

while training and testing for each epoch. On doing analysis of the graph, it can be seen that

the model accuracy was increasing at each epoch for both the training and testing data.

19

Fig. 13 Static Model Train/Test Accuracy

Train/Test Loss Graph: On analysing the following loss graph the loss for the both training

and testing the model was gradually decreasing.

Fig. 14 Static Model Train/Test Loss

6.6 Discussion

On analysing the efficiency parameters, the working of the models developed in this

research can be interpreted as an efficient model in order to detect the malicious application

in android system. The idea behind using deep learning and particularly the LSTM was that

the LSTM model is considered as suitable model for long range learning. In this research the

models were trained using 100 epochs in which at every epoch the accuracy of the models

was increasing as well as the loss was observed was minimum. Although the accuracy of the

models was impressive with respect to the LSTM, the dataset which were used was balanced

using SMOTE which was the drawback in this research. In the dataset the values for the

malicious application were higher as compared to benign one. The methodology developed in

this research overcomes the issues occurred in the previous research such as in research of

(Xiao et al., 2017) they only developed dynamic model. In the research the limitation can be

stated as the models trained were two separate models in which two separate invocations will

20

be required from current deployed system which is one as of now, although the Mobile

Threat Detection system will become more efficient than the current system as the dataset

used were large and updated with new malware types.

7 Conclusion and Future Work

The key motive behind this research was to improve current mobile threat detection system

deployed in the organization by developing the model which will be more efficient than the

current model i.e., DeepThinker. Also, to overcome the drawbacks of the current model such

as the older model was developed using old dataset, the model deployed was only for

dynamic analysis and the static analysis was based on signature-based detection. The research

model will suffice this drawback as it will add an extra layer of security in second line of

defence of the current deployed system. Even if installed app bypass the signature-based

detection the static model will ensure the detection of malicious or benign application prior to

the app gets in running state.

The models were fine-tuned in order to achieve the better performance. In final phase, the

static model has achieved 92.94% accuracy in detection of the malware/benign application

which were passed to the model in validation phase whereas the dynamic model has achieved

94.22% accuracy along with the F1-Score 90.08% and 96.52% respectively. Due to time

constrain, the methodology such as Bi-LSTM was not experimented in this research which

can be the future scope of the research along with the research for detection of malware

application in iOS environment as the current deployed system also has the ability to detect

malicious applications in iOS environment. In future work, the model will be deployed on

Cloud and the testing of the models will be carried out with the real time malicious as well as

non-malicious application where the feature extraction and analysis will be carried out on

server side.

21

References

Booz, J., McGiff, J., Hatcher, W., Yu, W., Nguyen, J. and Lu, C., 2018. Tuning Deep

Learning Performance for Android Malware Detection. 2018 19th IEEE/ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD),.

Fereidooni, H., Conti, M., Yao, D. and Sperduti, A., 2016. ANASTASIA: ANdroid mAlware

detection using STatic analySIs of Applications. 2016 8th IFIP International Conference on

New Technologies, Mobility and Security (NTMS).

Feng, R., Chen, S., Xie, X., Ma, L., Meng, G., Liu, Y. and Lin, S., 2019. MobiDroid: A

Performance-Sensitive Malware Detection System on Mobile Platform. 2019 24th

International Conference on Engineering of Complex Computer Systems (ICECCS),.

Feng, R., Chen, S., Xie, X., Meng, G., Lin, S. and Liu, Y., 2021. A Performance-Sensitive

Malware Detection System Using Deep Learning on Mobile Devices. IEEE Transactions on

Information Forensics and Security, 16, pp.1563-1578.

Kim, T., Kang, B., Rho, M., Sezer, S. and Im, E., 2019. A Multimodal Deep Learning

Method for Android Malware Detection Using Various Features. IEEE Transactions on

Information Forensics and Security, 14(3), pp.773-788.

Vinayakumar, R., Soman, K. and Poornachandran, P., 2017. Deep android malware detection

and classification. 2017 International Conference on Advances in Computing,

Communications and Informatics (ICACCI),.

Hou, S., Saas, A., Chen, L. and Ye, Y., 2016. Deep4MalDroid: A Deep Learning Framework

for Android Malware Detection Based on Linux Kernel System Call Graphs. 2016

IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW),.

Tan, X., Li, H., Wang, L. and Xu, Z., 2020. End-Edge Coordinated Inference for Real-Time

BYOD Malware Detection using Deep Learning. 2020 IEEE Wireless Communications and

Networking Conference (WCNC),.

Gronat, P., Aldana-Iuit, J. and Balek, M., 2019. MaxNet: Neural Network Architecture for

Continuous Detection of Malicious Activity. 2019 IEEE Security and Privacy Workshops

(SPW),.

Xiao, X., Zhang, S., Mercaldo, F., Hu, G. and Sangaiah, A., 2017. Android malware

detection based on system call sequences and LSTM. Multimedia Tools and Applications,

78(4), pp.3979-3999.

Jaiswal, M., Malik, Y. and Jaafar, F., 2018. Android gaming malware detection using system

call analysis. 2018 6th International Symposium on Digital Forensic and Security (ISDFS),.

Khoda, M., Imam, T., Kamruzzaman, J., Gondal, I. and Rahman, A., 2019. Selective

Adversarial Learning for Mobile Malware. 2019 18th IEEE International Conference On

Trust, Security And Privacy In Computing And Communications/13th IEEE International

Conference On Big Data Science And Engineering (TrustCom/BigDataSE),.

22

Alshahrani, H., Mansourt, H., Thorn, S., Alshehri, A., Alzahrani, A. and Fu, H., 2018.

DDefender: Android application threat detection using static and dynamic analysis. 2018

IEEE International Conference on Consumer Electronics (ICCE),.

Khoda, M., Kamruzzaman, J., Gondal, I., Imam, T. and Rahman, A., 2019. Mobile Malware

Detection: An Analysis of Deep Learning Model. 2019 IEEE International Conference on

Industrial Technology (ICIT),.

Hadiprakoso, R., Buana, I. and Pramadi, Y., 2020. Android Malware Detection Using

Hybrid-Based Analysis & Deep Neural Network. 2020 3rd International Conference on

Information and Communications Technology (ICOIACT),.

Chaulagain, D., Poudel, P., Pathak, P., Roy, S., Caragea, D., Liu, G. and Ou, X., 2020.

Hybrid Analysis of Android Apps for Security Vetting using Deep Learning. 2020 IEEE

Conference on Communications and Network Security (CNS),.

