ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSC. Cyber Security

Saifullah Sheikh
Student ID: X19216815

School of Computing
National College of Ireland

Supervisor: Imran Khan

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Saifullah Sheikh
Student ID: X19216815
Programme: MSc. In Cyber Security Year: 2020-2021
Module: Internship
Lecturer: Imran Khan

Submission Due
Date: 16-08-2021

Project Title: Improve the detection accuracy and performance of
intrusion detection system using deep Bi-Directional LSTM.

Word Count: 1920 Page Count: 8 Pages

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: = ... Saifullah Sheikh........cocoooiiii e,
Date: = 16-08-2021....cc o

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project a
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Saifullah Sheikh
Student ID: X19216815

1. System Requirements

To process & execute the implementation model smoothly & minimize the time consumption
while running the program, we need to follow some essential software and hardware
requirements.

1.1 Software: -

There is various software that | used for implementation and execution of project such as,

e Google Colaboratory (google cloud based environment)
e Pycharm

e Microsoft excel

e Anaconda Navigator

e Jupyter Notebook

e Python

1.2 Hardware: -

The project implementation has done in Asus TUF Gaming laptop & the specification of
machine is,
e Ram-12 GB DDR4

e HardDisk—1TB

e SSD-512GB

e GPU - NVIDIA Geforce GTX

e 0O.S.—Windows 10 Enterprise 64bit.

e Processor - AMD Ryzen 7 3750H with Radeon Vega Mobile Gfx 2.30 GHz

In this research project we used publicly available dataset of UNSW-NB15 dataset was
created by the IXIA PerfectStorm, it shown below in fig.1

@ Dataset

UNSW_NB15

by the IXIA PerfectStorm tool. Australian Centre for Cyber Security (ACCS)

ﬂ Mr Wells David « updated 3 years ago (Version 1)

Data Tasks Code Discussion Activity Metadata Download (605 MB) New Notebook

B8 Usability 5.3 % Tags

The raw network packets of the UNSW-NB 15 dataset was created by the IXIA PerfectStorm tool in the Cyber Range Lab of the Australian Centre for Cyber Security
(ACCS) for generating a hybrid of real modern normal activities and synthetic contemporary attack behaviours.

Tcpdump tool is utilised to capture 100 GB of the raw traffic (e.g., Pcap files). Tt

s dataset has nine types of attacks, namely, Fuzzers, Analysis, Backdoors, DoS,
ce, Shellcode and Worms. The Argus, Bro-IDS 9

are used and twelve algorithms are developed to generate to y 49 features witt

eneric, Reconnaissa

Exploits,

the class label

Fig.1 UNSW-NB15 Dataset

e Here, we used Google colaboratory that is cloud based platform to perform all
implementation process, this steps helped to setup a Google colaboratory
environment. as we can see in Fig.2

& Copy of Welcome to Colaboratory
File Edit View Insert Runtime Tools Help Last editec

o

+ Code + Text

Q
O What is Colaboratory?
<>
Colaboratory, or ‘Colab’ for short, allows you to write and execute Python in your browser, with
=) « Zero configuration required
* Free access to GPUs
- Easy sharing
Whether youTe a student, a data scientist or an Al researcher, Colab can make your work easier. Watch Introduction to Colab to find out more,
or just get started below!
~ Getting started
The document that you are reading is not a static web page, but an interactive environment called a Colab notebook that lets you write and
execute code.
For example, here is a code cell with a short Python script that computes a value, stores it in a variable and prints the result:
seconds_in_a_day = 24 * 60 * 6@
seconds_in_a_day
86400
To execute the code in the above cell, select it with a click and then either press the play button to the left of the code, or use the keyboard
shortcut ‘Command/Ctrl+Enter’. To edit the code, just click the cell and start editing
Variables that you define in one cell can later be used in other cells:
seconds_in_a_week = 7 * seconds_in_a_day
seconds_in_a_week
604800
Colab notebooks allow you to combine executable code and rich text in a single document, along with images, HTML, LaTeX and more. When
you create your own Colab notebooks, they are stored in your Google Drive account. You can easily share your Colab notebooks with co-workers
or friends, allowing them to comment on your notebooks or even edit them. To find out more, see Overview of Colab. To create a new Colab
notebook you can use the File menu above, or use the following link: Create a new Colab notebook
Colab notebooks are Jupyter notebooks that are hosted by Colab. To find out more about the Jupyter project, see jupyter.org
~ Data science
=

Fig.2 Google Colaboratory home page

After downloading the UNSW-NB15 dataset | uploaded it to google drive then directly
mounted it on google colaboratory notebook. Shown in figures 3.

& unsw_main.ipynb
(- PY! B comment
File Edit View Insert Runtime Tools Help All changes saved
RAM
= + Code + Text v Disk

* Intrusion Detection using Deep Bi-LSTM on UNSW - NB15

<>

O - LOADING THE LIBRARIES

from google.colab import drive
drive.mount(’/centent/drive’)

Mounted at /content/drive

© cd /content/drive/MyDrive/Unsi-BoT

[» /content/drive/MyDrive/UNSW-BOT

Fig. 3 one drive data imported into Google colaboratory.

Intrusion Detection using Deep Bi - LSTM on UNSW — NB15

1. Loading Libraries: -

1.1) Here, as we can see below in fig. 4. | imported pandas and numpy that is predefined package library for
the use of pre-processing of data & MinMaxScaler is imported to scale the data for deep learning.
seaborn (sns) is used for plotting and data visualization and it built on the top of matplotlib to plot the
data.

import pandas as pd

import numpy as np

from sklearn.preprocessing import MinMaxScaler
import seaborn as sns

import matplotlib.pyplot as plt

Fig. 4. Loading Library

1.2) Here, we imported model from keras library and this are the thing for neural network as all this are the
major packages for deep learning which we imported from keras library.

from keras.models import Model

from keras.layers import Dense, LSTM, Bidirectional, Dropout, Input
from keras.preprocessing.sequence import TimeseriesGenerator

from keras.callbacks import ModelCheckpoint, ReducelLROnPlateau

from keras.optimizers import Adam

Fig.5. Keras Library Imported

1.3) Now here, we loaded our dataset for training and testing two data should be available so for the total
dataset will go through on training and remaining will pass through to testing. The dataset is used as input
the pd (pandas) library and function “pd.read_csv” for both train and test. After loading the dataset, we
executed it and got message ‘Data Loaded Successfully’.

[1 print("\n\tDATA LOADED SUCESSFULLY'\n\{**H#HRaEERRARAIABRRARRIRATRLLEIND")
train set = 'Training.csv’
test set = 'Testing.csv'
train = pd.read csv(train set, index col="id")
test = pd.read csv(test set, index col='id")

Fig.6. Data Loading

1.4) Now here, we used fig to give a figure size in count plot, and in next line we used seaborn (sns) themes
‘darkgrid’ for better visualization as there are various seaborn themes such as whitegrid, dark, white, tick
and darkgrid so here we chose a random theme darkgrid and we set a title attack types for plotting. We
plotted the data to know the attack types & we passed the train data, this plot shown like normal,
backdoor, analysis. It shown the number of occurrences for each attack category & it mainly show how
many attack which are repeatedly occurs on total datasets like we have plotted, Figure 7.

[] # Count Plot for Sequences
print("\n\tPLOTTED COUNT PLOT\n\H®F®#xEExidssiiitssbiirirsdassssxin")
ftig = plt.figure(figsize=(16,8))
sns.set theme(style="darkgrid")
ax = sns.countplot(x="attack cat"”, data=train)
ax.set title("Attack Types™)
plt.show()

Fig.7. Attack types & count plotting

2. Data Pre-Processing: -

2.1. Here, in pre-processing step we used train.isna().sum() to return the number of missing values in each
column & count total missing values in data frames. In order to pass the data, zero (0) means these
features is having null missing values. After checking that there are no missing values then we move
on to features selection by using correlation.

- PRE PROCESSIMG

Int (T WA ECHECKING M
weint (Erain_Ssaa) s

dtype: inted

Fig.8.Data pre-processing

3. Feature Selection: -

3.1. It will show based upon the label each and every features are correlated so likewise it will remove the
less correlated values like we can see the values in (-). and greater than 0 means highly correlated
values and we have to remove the negative correlated values and only pass the positive correlated
values. we dropped all this features ‘dload’, ‘swin’, ‘attack_cat’ from train & test because all these
contains unwanted data. Then train and test label will be saved on training_label & testing_label &
then we copied trainig_label into temp_train and testing_label into temp_test.

~ FEATURE SELECTION

[1 print("\n\tBEST FEATURES USING CORRELATION\n\T®#®#®&smmmmmikscriscmkirsmmestinnm)
print(train.corr()["label™])

train.drop(["dload”,"swin","attack_cat"],axis = 1,inplace = True)

test.drop(["dload","swin","attack_cat"],axis = 1,inplace = True)

training_label = train['label’].values
testing label = test['label’].values
temp_train = training label

temp_test = testing label

BEST FEATURES USING CORRELATION

3R S R P SR R R S SR R S SR R R R R R R R R R

Fig. 9. feature selection

3.2,

here, we created a new dummy column by using python function get_dummies() for data
manipulation & it basically converts all categorical string data in the form of dummy or numerical
indicators. Here we converted the categorically data such as ‘proto’ (protocol), ‘service’, ‘state’ into
the numerical indicators values. If we type ‘train’ or ‘test’ in new line and run it then we will see
protocol, services and states. we convert the categorical data into numerical order to pass the
numeric data into the neural network

Creates new dummy columns

unsw
unsw

3.3.

[]

4.

4.1.

pd.concat([train, test])
pd.get dummies(data=unsw, columns=['proto’', 'service', 'state'])

Fig. 10 String conversion to numeric

In the unsw value it contains all the labels like normal and abnormals, here we have taken a label
means whether its normal and abnormal if these features comes it means the label will be normal. |
dropped the label here (unsw.drop). now we are taking all the values in arrays format, as unsw.values
will be copied to unsw_label so in the next step of minmax scaling we will scale the unsw_value.

Normalising all numerical features:
unsw.drop(['label’], axis=1, inplace=True)
unsw value = unsw.values

Fig. 11 Normalizing Numeric features

MIN MAX SCALING: -

It scales based upon the minimum and maximum values so basically it goes through the dataset and
then it will check the lowest minimum values and highest maximum values so based upon that it will
divide all the dataset into maximum values and lowest values so likewise it divides all the things
accordingly, why we are doing this? This will convert all the features into the float values like 0.001,
0.1 will be changed. For the reason is 1 consists of more memory as compared to 0.001 any float
values, so if you pass 0.001 the training time will be reduced as compared to passing 1 so that’s why
we carried the total data. We have scaled total dataset that is in train_set & test_set .There are lots of
float values in our dataset that’s why we used min max scaling and it gives exact result for our scaling
process, and if the dataset consists 1 to 100 means we can use standard scaler but here our dataset
consists float values that’s the main reason we are using minmax scaling rather than standardscaler.

v MIN MAX SCALING

[] # MinMax Scaling
print("\n\tSCALING COMPLETED SUCESSFULLY\n\{#*® &tk iiciciasn=sx®=\n")
scaler = MinMaxScaler(feature_range=(9, 1))
unsw_value = scaler.fit_transform(unsw_value)
train_set = unsw_value[:len(train), :]
test_set = unsw_value[len(train):, :]

SCALING COMPLETED SUCESSFULLY

s R R R R R R R R R

Fig. 11. MinMax Scaling

5. DEEP BI-DIRECTIONAL LSTM: -

5.1. Bidirectional (this is a package, so we have to imported it), LSTM (this is a Istm architecture, this we
have to declared between the bidirectional). Units=24 (this are the number of unit s means which
passed into a feature. Units means number of neurons in it. So here 24 neurons can pass in a single
time so like this which we have declared it). Activation function is ‘tanh’. We used ‘tanh’ for
implementing my process because as compared to other activation function it is better. Basically, it is
very common to the sigmoid activation function. The ‘tanh’ function range is from (-1 to 1).
return_sequence=True = At first iteration it will learn some feature, so feature means if this value is
coming so it will be normal.In order to prevent that over fitting we reduced the dropout layer; it will
take the features and after that will check the result again whether the result improved or not.
likewise, it will check every layer. now it will check 0.1, 0.2, 0.3, 0.4 & 0.5 is enough and more than 0.5
means it will check the iteration like it sends more data and there will be too much loss while running
the code so for that reason we must reduce the dropout like 0.1 to 0.5.To learn the features using
TANH as it delivers better training performance for multilayer neural networks for the Bi-LSTM Layers
and then that layers will be passes as to the Dense layer which consists of RELU and at last for the
classification we have used SIGMOID Function.here we also used optimizer which is a adam as adam
is the most popular optimizer which is used for classification and here (learning rate) is ‘Ir=0.001" so it
will learn in a keen manner and learn accurately for 0.001.

DEEP BI DIRECTIONAL LSTM

|:] p[\]'_nt("'\n‘\tMODEL CRE.':'«TED SUCESSFULLY\\”\t:?=::F:I=a'::r=:a'::jc=::r:jca‘::r=:a‘::jc=::r:jca‘::r=:a'::jc=::r:jca'::r\\n")
Deep Bi Directional LSTM Model
input traffic = Input(shape=(time steps, 194))

Istml = Bidirectional(LSTM(units=24, activation='tanh',
return_sequences=True, recurrent_dropout=0.1))(input traffic)

Lstm dropl = Dropout(@.5)(1stm1)

Istm2 = Bidirectional (LSTM(units=12, activation='"tanh', return sequences=False,
recurrent_dropout=0.1))(1stm dropl)

Lstm drop2 = Dropout(@.5)(1stm2)

mlp = Dense(units=6, activation="relu")(lstm drop2)

mlp2 = Dense(units=1, activation="sigmoid")(mlp)

classifier = Model(input traffic, mlp2)

optimize = Adam(lr=0.001, beta 1=0.9, beta 2=0.999, epsilon=1e-8)

Fig.12 Deep Bi-Directional LSTM

5.2. After the model declaration we have to Compile it. So here classifier is the model name. here, we
used binary_crossentropy . Binary means at last we have to mention 0 or 1, likewise our output will
be this attack or this attack) as there are many crossentropy such as categorical or binary.

print(“\n\tMODEL ‘COMPILED SUCESSFULLY\n\tF* ZF R Earii e nist s xs sk st aateiNn"™)
classifier.compile(optimizer=optimize, loss="binary crossentropy’, metrics=['accuracy'])

Fig.13 Compilation process.

6. Model Fitting: -

6.1. File path= “model.hdf5” (This is the model name)
Model Checkpoint — whether to only keep the model that has achieved the “best performance” so far,
or whether to save the model at the end of every epoch regardless of performance. (This is the call
backs).

Monitor =Val_accuracy (It will check the validation accuracy each and every iteration, the accuracy
does not improve Gradually means it will stop the iteration). Then, we just fitting the model like
Classifier Is the model name

So in each and every iteration what’s The accuracy and validation accuracy we got. So at the end we
got 93.3 accuracy it means there is a no improvement on it. So validation accuracy did not improve

from 0.81377 & It will automatically stop the overall iteration.

As you can see the epoch at 50, We assigned epoch 50 so it’ll check 50 iterations.

MODEL FITTING

[] filepath="model.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor="val accuracy’, verbose=1, save best only=True, mode="max")

reduc_lr = ReduceLROnPlateau(monitor="val accuracy', patience=16, mode='max', factor=0.2, min delta=0.0001)

history = classifier.fit generator(train generator, epochs=50, verbose=2, steps per epoch=168,
callbacks = [checkpoint],
validation data=test generator, shuffle=g, validation steps=80)

Fig.14. Model Fitting

7. Performance Metrics: -

7.1. So this is the performance metrix our predicted variable will be stored in label_original (in model
prediction) & our predicted variable is y_pred where we saved the things. The import function of
testing, the accuracy score, confusion matrix, classification report were obtained from the library of
'sklearn.metrics. In the final step of the testing stage, i obtained a confusion metrix that was
completed with the help of 'sklearn.metrics' library using function ' confusion_matrix' .

PERFORMANCE METRICS

[1]

from sklearn.metrics import confusion_matrix, classification_report,accuracy_score

pr‘int("\n‘\tACCURACY SCORE\n\tx*xx*x**x**x**X**x**x**xx*x**X\n")
print(f"\t{accuracy_score(label original, y_pred)}")

print("\n\tCONFUSION MATRIX\n\t*®*¥K¥Xmukiskskiirinxaxxxaxsxs\n")
print(f"\t{confusion_matrix(label original, y pred)}")

print("\n\tCLASSIFICATION REPORT\n\L¥**¥XXXxxxxxsxsskxx kXX XX xxxx\n")
print(f"\t{classification_report(label original, y_pred)}")

ACCURACY SCORE
KKK RORR O ORKKRRR RO SO R KR X

©.9149518694196429

CONFUSION MATRIX
KK KKK OK RO R K KRR KR KKK ROR Rk X

[[42961 13040]
[1591 114440]]

CLASSIFICATION REPORT
KKK KKK KR RO KK ROROR R KR KKK RO KR X

precision recall fl-score support
2] 0.96 0.77 0.85 56001
1 0.90 0.99 0.94 116031
accuracy 0.91 172032
macro avg 0.93 9.88 0.90 172032
weighted avg 0.92 0.91 0.91 172032

Fig.15. Result Testing

