

Securing Embedded Metadata with

Symmetric and Asymmetric Encryption

MSc Research Project

Cyber Security

Dmitry Cherniy

Student ID: 19230265

School of Computing

National College of Ireland

Supervisor: Ross Spelman

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Dmitry Cherniy…………………………………………………………………………………………

Student ID:

19230265…………………………………………………………………………………………………

Programme:

 Cybersecurity………………………………………………………

Year:

2021……………

Module:

MSc Internship…………………………………………………………………………………………

Supervisor:

Ross Spelman ……………………………………………………………………………………………
Submission

Due Date:

16/08/2021……………………………………………………………………………………………………

Project

Title:

Securing Embedded Metadata with Symmetric and Asymmetric

Encryption ……………………………………………………………………………………….………

Word

Count:

8152……………………………… Page Count: 26………………………………….…………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

16/08/2021……………………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Securing Embedded Metadata with Symmetric and

Asymmetric Encryption

Dmitry Cherniy

Student 19230265

Abstract

The penetration of information technologies into our lives has led to fundamental

changes in our work, study, business, and leisure. It allows us to think, plan and make

decisions in new ways. However, accelerating technological changes have created

challenges related to digital security and user privacy. In recent years, unsecured metadata

has led to serious security breaches, exposing businesses, individuals, and organisations

to financial and reputational losses. Such security issues have become a significant

concern and demonstrate the need to protect vital information about the original data. This

report addresses common security issues related to embedded metadata. The report

proposes a scheme for protecting embedded metadata using symmetric and asymmetric

cryptography algorithms and describes the proposed model in detail.

Keywords - Metadata Encryption, XXTEA, AES, RSA, ElGamal, ECC, ECDH, Digital

Signature, DSA, ECDSA, SHA-256

1 Introduction

In 2020 more than 4 billion people were using the Internet, and the audience of social networks

has exceeded 3.8 billion. Businesses and organisations continue to expand their online

activities, and the volume of digital transactions is constantly growing. However, despite all

the benefits, the Internet poses privacy and security concerns for its users. Storing and

delivering digital information creates many challenges. Among the most common problems

for individuals and businesses is the privacy and security of digital data. Every day, users send

billions of files over the Internet, which may contain digital traces. The information embedded

in digital files is called metadata. It provides additional information about the files,

specifications and version of the software used to create the file, date and time of creation,

author name, geolocation, etc. Disclosure of this information can create privacy issues for a

business, individual or organisation. Recent events, in particular, the ongoing Snowden affair,

revealed widespread global surveillance by the U.S. government since 20131. According to the

NSA and the CIA former officials, governments often rely solely on metadata to process and

identify the information collected during mass surveillance operations. Although the

information contained in metadata seems trivial, yet it has the potential to create serious issues.

1 https://www.bbc.com/news/world-us-canada-23123964

2

The embarrassment faced by the U.K. government in 2003 is a typical example of such a

scenario. In 2003 the U.K. government presented a report to U.N. about the situation in Iraq.

But report metadata showed that most of this 19-page dossier is a rewriting based primarily on

open publications by three Iraqi researchers (Al-Marashi, 2006). This raised serious suspicions

about the report's quality, reliability, and originality, resulting in national embarrassment.

During the war in Iraq in 2007, insurgents pinpointed the location of the American Apache

helicopters by examining the metadata of photographs posted on the Internet. As a result, the

enemy carried out a mortar attack on the compound, destroying four AH-64 helicopters2. In

another example, American law firm Venable won the case for its client by studying the

defendant's document's system metadata. It was revealed that the last file save occurred earlier

than the previous print, which experts on both sides acknowledged could not have been the

case. The court found this evidence sufficient and awarded the plaintiff $ 20 million in

compensation plus legal costs3.

Metadata is essential to facilitate systems interoperability and ensures the immutability of the

structure of an electronic document during processing operations. It is also used to set licensing

restrictions on the distribution of information, indicating the author of the content. At the same

time, metadata embedded in documents can leak confidential information. Therefore, it is

crucial to protect metadata and restrict its access only to authorised users.

Previous research has focused chiefly on protecting embedded metadata using symmetric

encryption methods (Wijayanto et al., 2016; Bhangale, 2019), hierarchical or group-based

models for metadata access control (Lepsoy, 2015) and digital watermarking techniques

through the digital watermarking algorithms (Faiz bin Jeffry and Mammi, 2017). The model

proposed in this research paper provides metadata security by using symmetric and asymmetric

encryption algorithms. The proposed design achieves metadata security, integrity,

authentication and users privacy without revealing sensitive information. Furthermore, the

proposed scheme is efficient in terms of encryption speed and computational operations

compared to the state-of-the-art methods described in the literature. This paper seeks to address

the following research question: "How can symmetric and asymmetric encryption combined

ensure the security, integrity, and confidentiality of Embedded Metadata?"

2 Related Work

2.1 Previous approaches for Securing Embedded Metadata

Metadata is data about data that refers to additional information about the data object. It

provides information about the characteristics and properties that describe entities, allowing

automatically search and manage them in large information flows. Metadata is an essential

component of any document, music file, video recording, or image file. It is assigned

automatically and includes a description of the file, titles and subheadings, author and editor,

date and time of creation, geolocation, version and technical characteristics of the software,

etc. Unsecure metadata is a rapidly increasing threat to digital security largely ignored because

metadata is typically hidden from users. Sometimes embedded metadata can be more valuable

2 https://www.defensetech.org/2012/03/15/insurgents-used-cell-phone-geotags-to-destroy-ah-64s-in-iraq
3 https://www.venable.com/insights/publications/2015/10/venables-20millionplussanctions-trade-secrets-win

3

than the file itself. It can serve as a source of information about a potential victim as part of the

social engineer's attack. Searching for metadata in image files is one of the stages of the

"doxing" technique, which has already become a prevalent practice of collecting information

about a person of interest on the Internet for various purposes4. There have been numerous

studies on securing metadata, and many approaches have been proposed. Mamta et al. (2020)

suggested encode metadata in the image file using a secure data strip. Encoded metadata is

embedded in a data strip and added to the image. However, lossy compression algorithms

(JPEG, PNG, etc.) can damage the strip, resulting in the loss of metadata. Faiz bin Jeffry and

Mammi, (2017) proposed digital watermarking techniques to add EXIF information into image

files through the digital watermarking algorithms. The drawback of this method is similar to

the previous approach, image cropping and compression methods used by processing

algorithms can damage the watermark containing metadata. Bane and Minnear, (2017)

proposed a system for prioritising, filtering and normalising metadata from files. The metadata

associated with the files is saved and stored separately in the storage repository. Such design

requires implementing an additional layer of software, and the metadata is stored in separate

files. Some studies have suggested encrypting EXIF metadata in image files using symmetric

encryption. Wijayanto et al. (2016) proposed a scheme using the eXtended Tiny Encryption

Algorithm (XTEA). XTEA cypher is robust and widely used in many cryptographic

applications. It can be used in a wide range of hardware due to its low memory requirements

and ease of implementation (Andem, 2003). Bhangale (2019) proposed a similar approach to

encrypt EXIF metadata with AES encryption. AES is a symmetric encryption algorithm that is

well analysed and widely used (Heron, 2009). However, the common weakness of both

methods is that symmetric encryption schemes cannot provide authentication and integrity of

the data. An attacker can simply copy encrypted EXIF information, modify and even attach it

to a different file without the users' knowledge. Also, proposed methods are limited to JPEG

files and suffer from the encryption key distribution problem inherent in symmetric encryption

schemes. Lepsoy (2015) proposed two (hierarchical and group-based) models for metadata

access control. The first model is based on a design where the hierarchical level limits metadata

privacy settings. The second model implements the role-based access control where privacy

settings of embedded metadata depend on several predefined contextual groups. Both models

include the option to remove metadata.

Deleting metadata containing copyright information can lead to copyright infringement and

cause significant financial losses for the owner. In 2016, for the practice of eliminating

metadata, Facebook was sued by a German photographer. The court agreed to the

photographer's claims, and now Facebook will be forced to adapt its system of uploading

photos for German users5. MIT researchers proposed a metadata-protection scheme called "mix

nets" (Kwon, Lu and Devadas, 2020). Mix nets use chains of servers, known as mixes. The

limited identity information and shuffling techniques break the link between source and

destination, making it difficult for adversaries to obtain information passing over the network.

However, this design can expose services, users, and operations in the event of a compromised

server. The proposed method encrypts all files, not just metadata, which leads to additional

4 https://en.wikipedia.org/w/index.php?title=Doxing&oldid=993558752
5 https://petapixel.com/2016/11/22/german-photographer-sued-facebook-removing-exif-data-won/

4

server overhead, latency and reduced end-to-end performance. The process provides data in

transit security; the data at rest isn't protected. Other studies are focused on user awareness

about the information contained in the data. Most of the suggested solutions do not provide

sufficient and reliable metadata protection. We conducted our research and concluded that a

comprehensive cryptographic approach is needed to achieve security, integrity, and

confidentiality of embedded metadata. Further, we will discuss the various cryptography

algorithms and the different entities involved in the proposed scheme.

2.2 Study of Encryption Algorithms

Cryptography is the science of methods for ensuring Confidentiality (the impossibility of

reading information to outsiders), Integrity (the impossibility of imperceptibly changing

information) and Authentication (verifying the authenticity of authorship or other properties of

an object). The construction of cryptographic systems is based on the reuse of relatively simple

transformations, the so-called cryptographic primitives. Modern cryptography is characterised

by the use of open encryption algorithms and computational tools. The encryption algorithms

are divided into the following groups:

1) Symmetric encryption is a method that uses the same cryptographic key to encrypt and

decrypt information. (Delfs and Knebl, 2007). Depending on the principle of operation,

there are two types of symmetric encryption algorithms: block ciphers and stream ciphers.

Block algorithms encrypt data in blocks of a fixed length 64, 128 or another number of bits,

depending on the algorithm. Modern block ciphers include AES, TEA, XXTEA, Twofish,

Blowfish. Stream ciphers involve processing each bit of information by using the

corresponding bit of a pseudo-random secret sequence of numbers, formed based on the

key and has the same length as the encrypted message. Examples of stream ciphers include

RC4, WAKE, HC-256. AES is a symmetric block encryption algorithm, has a block size

of 128 bits and a key length of 128/192/256 bits (Heron, 2009). This algorithm is well

analysed and widely used. The Tiny Encryption Algorithm (TEA) is a block-type

encryption algorithm developed in 1994 at the University of Cambridge by D. Wheeler and

R. Needham (Wheeler and Needham, 1995). TEA is a non-proprietary cipher. Due to low

memory requirements and ease of implementation, it is widely used in many cryptographic

applications and a wide range of hardware. XXTEA (Corrected Block TEA) is an improved

version designed to eliminate critical errors and correct weaknesses of the original TEA

algorithm. It was presented in a technical report in 1998 (Wheeler J. David and Rojer M.

Needham, 1998). XXTEA is executed on simple and fast operations: XOR, substitution,

addition (Yarrkov, 2010).

Symmetric algorithms require fewer resources and demonstrate faster encryption speed

than asymmetric algorithms. Most symmetric ciphers are supposedly resistant to attacks by

quantum computers, which in theory pose a threat to asymmetric algorithms. The weak

point of symmetric encryption is key exchange. The secret key must be transmitted to all

parties; however, when transmitted over unsecured channels, it can be intercepted and used

by outsiders (Chandra et al., 2014). In our proposed design, we solve this problem by

encrypting the key using asymmetric algorithms. Symmetric key algorithms alone cannot

provide authentication and integrity.

5

2) In asymmetric cryptography, keys work in pairs. Each pair consists of public and private

keys. If the data is encrypted with a public key, it can only be decrypted with the

corresponding private key. Each pair of asymmetric keys is mathematically related. It is

impossible to use a public key from one pair and a secret one from another. RSA is a public-

key cryptographic system that uses integer factorisation (Rivest, Shamir and Adleman,

1977). It is valid for both encryption and digital signature. The security of RSA is based on

the complexity of factoring two large primes. As with any public-key system, each user has

two encryption keys: one public and one private. If the sender wants to send a message, he

looks for the recipient's public key, encrypts his message with that key, and once the

encrypted message reaches the recipient, he takes care of decrypting it with his private key.

RSA algorithm is used in a large number of cryptographic applications.

The ElGamal scheme is a public-key cryptosystem based on the difficulty of computing

discrete logarithms on large prime modulo (Menezes, van Oorschot and Vanstone, 1997).

The ElGamal cryptosystem includes an encryption algorithm and a digital signature

algorithm. Elliptic Curve Cryptography (ECC) is a public key cryptography method based

on elliptic curves over finite fields (Hoffstein, Pipher and Silverman, 2008). The significant

difference between ECC and RSA or ElGamal algorithms is the key size versus

cryptographic strength for comparable security bit levels. ECC provides the exact

cryptographic strength of RSA and ElGamal systems but with much smaller keys (Mahto

and Yadav, 2017). The Diffie-Hellman protocol allows two or more parties to obtain a

shared secret key using matching private and public key pairs (Diffie et al., 1976). The

ECDH is an implementation on the Diffie-Hellman algorithm for elliptic curves

(Haakegaard and Lang, 2015). Asymmetric key systems are much slower than symmetric

key algorithms, requiring longer keys to provide the exact cryptographic strength (Mahajan

and Sachdeva, 2013). Public-key cryptographic systems can provide authentication and

integrity (Simmons, 1979).

3) A digital signature is a cryptographic scheme designed to identify the originator of the

signed message and protect the data from being changed by third parties. Digital signatures

are implemented using asymmetric cryptography and cryptographic hash functions. The

basis of an electronic digital signature is the mathematical transformation of the data being

signed using the signer's private key and the fulfilment of the following conditions:

• A digital signature can only be created using a private key.

• Anyone with access to the corresponding public key can check the validity of an electronic

digital signature.

• Any change in the signed data (even a change in just one bit in a large file) invalidates the

electronic digital signature.

Digital signatures are designed to achieve multiple cryptographic goals: data integrity,

authentication, and nonrepudiation (Martin, 2012). Digital signature algorithms, in general,

consist of three parts:

• Key Generation Algorithm - generates a random key pair of specific parameters for

the user. The two most important aspects are the randomness of the keys, and the

key length is consistent with the security level of the algorithm.

• Digital Signature Algorithm - defines particular ways to apply asymmetric keys to

data during the signing process.

6

• Signature Verification Algorithm - Similarly, signature verification follows a

predefined process.

The most common and widely used digital signatures are based on asymmetric encryption

algorithms: RSA, DSA, ECDSA, EdDSA and ElGamal Signature Scheme. In asymmetric

digital signature schemes, the message is signed using a private key, and verified using a

public key. ElGamal signature scheme is rarely used in practice. NSA developed a much

more secure algorithm known as Digital Signature Algorithm (DSA), a cryptographic

system that uses the private key from a key pair to create an electronic signature (Schneier,

1996). DSA security is based on mathematical concepts of discrete logarithm complexity

and modular exponentiation properties. It is not used for encryption like the RSA scheme.

RSA is a public-key cryptographic system that uses integer factorisation, and its security is

based on the complexity of factoring two large primes. It can be used both for encryption

and electronic signatures. ECDSA is a subset of DSA that includes elliptic curve

cryptography. It provides a level of security similar to RSA but with much smaller keys

(Johnson and Menezes, 1999). Therefore ECDSA is a desirable algorithm for the

implementation of digital signatures.

4) A cryptographic hash function is a mathematical function that takes as input a variable-

length string and converts it to a fixed, enciphered string, usually called a message digest

or a hash value (Halevi and Krawczyk, 2008). Hash functions are mainly used when

calculating checksums from data and when creating electronic signatures. The results of

hash functions are statistically unique and called hash code, checksum, or message digest.

Currently, the most popular cryptographic hash functions are SHA-1, SHA-256 and MD5.

MD4 is the fastest hash function optimised for 32-bit machines in the M.D. family,

developed by University of Massachusetts professor R. Rivest in 1990 (Rivest, 1990). MD4

contains three loops of 16 steps each. In 1993, the MD4 cracking algorithm was described,

so today, this function is not recommended for use with real applications. MD5 is the most

common of the M.D. family of functions. It is similar to MD4, but security enhancements

make it 33% slower than MD4. MD5 contains four cycles of 16 steps each and provides

data integrity control (Ciampa, 2009). Since the first successful attempt to break this hash

function dates back to 1993, many researchers showed that the algorithm makes pseudo-

collisions possible. MD5 is currently not recommended for use in real-world applications.

In 1993, the NSA worked with NIST to develop a hashing algorithm, SHA-1 (published

in FIPS PUB 180), for the secure hashing standard (Dang, 2015). It creates a 160-bit value,

also called a message digest. This hash function contains four stages. SHA-1 holds more

rounds and runs on a bigger buffer than MD5, and runs slower than MD5 on the same

hardware (Aggarwal, 2014). SHA-2 is a family of cryptographic hash functions that include

the SHA-256 algorithm. As studies have shown, SHA-2 algorithms work 2-3 times slower

than MD5 and SHA-1 hash algorithms (Wei Dai, 2009). The SHA-3 hash function (also

called Keccak) is a variable bit function developed in 2012 (Swenson, 2012). The SHA-3

function algorithm is built on the principle of a cryptographic sponge construction. In 2015,

the function algorithm was approved and published as FIPS 202 (Hernandez, 2015).

3 Research Methodology

7

In this research paper, we have proposed a combination of symmetric and asymmetric

encryption schemes to ensure embedded metadata's confidentiality, integrity, and

authentication. To compare and evaluate the effectiveness of the proposed design, we have

implemented six various combinations of symmetric and asymmetric algorithms and digital

signatures. Further, we will discuss the proposed schemes in pairs. The methods in the pairs

are similar in design and differ only in the type of symmetric encryption.

• In methods 1 and 2, we used AES/XXTEA, RSA and RSA digital signature algorithms.

For symmetric encryption used AES symmetric block cipher, with a block size of 128 bits

and a key length of 128 bits. XXTEA is a block cipher with a 128 bits key length and a

block size at least of 64 bits. XXTEA with 128 bits key length and AES with 128 bits key

length in CBC mode is used for metadata encryption. RSA is used for symmetric key

wrapping, data integrity and user authentication. The security of the RSA algorithm is

based on the complexity of factoring two large primes. In the RSA system, each participant

has both a public key pubKey {e,n} and a private key privKey {d,n}. In the proposed

scheme, the sender first encrypts the metadata (M) with symmetric systems using randomly

generated secret key k:

C = Ek(M)

The secret key k is then encrypted with an RSA algorithm using the receiver public key:

c=RpubKey(k) = me mod n

To decrypt the metadata, receiver first applies RSA using their private key to get the secret

key:

k = RprivKey (c) = cd mod n

and then decrypts metadata with a symmetric algorithm using a secret key k:

M = Dk(C)

RSA is also used for digital signatures to ensure data integrity and user authentication. The

sender calculates the hash value h (using a cryptographic hash function SHA-256) of the

file to be signed. The digital signature g is created using the sender's private key s {d,n}:

g = Ss(h) = hd mod n

Receiver reads digital signature from the embedded metadata and decrypts it using sender’s

public key p {e,n}:

 h’ = Sp(g) = se mod n

To verify digital signature receiver computes the hash value h of the file with ciphertext

metadata using SHA-256 and compares it with h'.

• In methods 3 and 4, we used AES/XXTEA, ElGamal and DSA digital signature algorithms.

ElGamal is a public-key cryptosystem based on the difficulty of computing discrete

logarithms on large prime modulo. The ElGamal cryptosystem includes encryption and

digital signature algorithms. ElGamal encryption should not be confused with the ElGamal

digital signature algorithm, which is rarely used in practice. Therefore in the proposed

methods 3 and 4, the ElGamal encryption algorithm is used for symmetric key wrapping,

and DSA is used to create digital signatures. In the ElGamal cryptosystem, each party has

a public key {p} and the private key {s} which must be kept secret. For the entire group of

subscribers, a large prime number q and a number g are chosen such that 1 < g. A pair of

private s and public keys p created as follow:

1 <= s <= q-1

8

p=gs mod q

it is assumed that the message is presented as a number M < q.

Thus, the plaintext data M is encrypted as follows:

A session key is selected - a random integer k

Knowing receiver’s public key p, the following numbers are calculated:

a = gk mod q and b = pk M mod q

A pair of numbers (a, b) is a ciphertext. Knowing the receiver’s private key {s}, the original

plaintext can be computed by the formula:

M = b *aq-1-s mod q

For data integrity and user authentication, we used DSA public key algorithm. In DSA, the

secret key is a number s ∈ (0, t). The public key is calculated by the formula d= ts mod k.

The public parameters are numbers {k, t, g, d} and the secret parameter - the number {s}.

Message signature is performed according to the following algorithm:

A random number n ∈ (0, t) is selected, and the following values are calculated

 a = (gk mod k) mod t

 b = n-1(H(m) + s*a) mod t

The DSA signature is a pair (a,b).

Calculations perform signature verification:

 c = b-1 mode t

 e1= H(m) * c mode t

 e2= a* c mode t

U = (ge1 * de2 mode k) mode t

The DSA signature is correct if U = a.

• In methods 5 and 6, we used AES/XXTEA, ECDH and ECDSA digital signature

algorithms. Instead of generating a random secret password, we implemented an ECDH

key exchange protocol to establish a common symmetric key. In ECDH, each party have a

key pair consisting of a private key {x} and a public key {Y}. The sender's key pair is {xs,

Ys} and the receiver's key pair is {xr, Yr}. Before executing the protocol, the parties must

exchange public keys. Each party calculates common secret key k by multiplying the own

private key with the opposite public key:

k = xс ⋅ Yr = xr ⋅ Ys

The sender encrypts the data with symmetric systems using the common secret key k:

C=Ek(M)

The receiver decrypts data with a symmetric algorithm using a common secret key k:

M = Dk(C)

We used ECDSA public key algorithm for digital signature verification. ECDSA is similar

in structure to DSA but based, in contrast, on the use of elliptic curves cryptography. NIST

recommends the use of digital signatures implemented with elliptic curves for asymmetric

ECC-based algorithms (Barker and Dang, 2015). The ECDSA signature algorithm takes as

input the result of cryptographic hash function H, a private key privK. It creates a signature

consisting of a pair of integers {k, n} as output. The ECDSA signature verification

algorithm takes as input a signed message M and the signature {k, n} obtained by the

signature algorithm using the public key pubK corresponding to the signer's private key

privK.

9

The proposed design provides hybrid encryption scheme for metadata security by extracting,

encrypting and embedding the important tags in the metadata. The symmetric key secrecy is

provided by public-key encryption. Only the users with matching key pairs can access

encrypted information. Metadata remains embedded in the file and is not stripped from it

during storage or transmission. The proposed design ensures confidentiality, integrity,

authentication and nonrepudiation of embedded metadata. The above statements are justified

by a comparative analysis, calculation and comparison of storage costs and calculation of the

proposed methods with modern schemes found in the literature.

4 Design Specification

The encryption algorithms and the corresponding key sizes for proposed methods were chosen

in accordance with NIST guidelines and recommendations (Barker and Dang, 2015).

Symmetric encryption is implemented using XXTEA and AES ciphers in CBC mode and 128

bits keys. We chose RSA cryptographic algorithm with PKCS padding scheme, ElGamal

cryptosystem, and ECDH key exchange protocol for asymmetric encryption. To ensure

integrity and authentication, a "Sign-then-Encrypt" scheme was implemented. Initially, we had

implemented “Encrypt-then-sign”, but after an additional literature review, we decided to

change it as many authors didn’t recommend it. Signing a ciphertext would allow everyone to

be able to verify it, not just the receiver. Ciphertext signing in “Encrypt-then-sign” scheme,

can also affect nonrepudiation, as the sender may not be aware of the content of the signed

ciphertext. Signing a plaintext will allow only the receiver to decrypt and then verify data

(Davis, 2001). This design change caused us to redefine all six methods and rewrite the Java

code. RSA and DSA algorithms with 2048 bits key and ECDSA with 256 bits key used to

generate and verify digital signatures. We chose a 256-bit cryptographic hash function SHA-

256 to calculate the hash values. During the encryption/decryption process, embedded metadata

is extracted and saved in XMP format. Adobe XMP (Extensible Metadata Platform) is a

technology created by Adobe and allows users to add additional information to files and

enables the exchange of metadata between different applications6. Table 1 below shows

combinations for encryption algorithms, corresponding user keys and specifications for the

proposed methods.

Table 1. Specifications of the Proposed Methods

Method

Symmetric

Key

Algorithm

Symmetric

Key Size

Public

Key

Algorithm

Public Key

Type / Size

Digital

Signature

Digital

Signature

Key

Type / Size

1 AES 128 bits RSA
RSA / 2048

bits
RSA

RSA / 2048

bits

2 XXTEA 128 bits RSA
RSA / 2048

bits
RSA

RSA 2048/

bits

6 https://www.adobe.com/products/xmp.html

10

3 AES 128 bits ElGamal
ElGamal /

2048 bits
DSA

DSA / 2048

bits

4 XXTEA 128 bits ElGamal
ElGamal /

2048 bits
DSA

DSA / 2048

bits

5 AES 128 bits ECDH

ECDSA

Curve

P-256 / 256

bits

ECDSA
ECDSA P-

256 / 256 bits

6 XXTEA 128 bits ECDH

ECDSA

Curve

P-256 / 256

bits

ECDSA
ECDSA P-

256 / 256 bits

Methods 1-4 are similar in design and illustrated in Figures 1 and 2. Methods 5 and 6 are based

on Elliptic Curve Cryptography (ECC) and ECDH key exchange protocol and shown in Figures

3 and 4. For the comparable security level ECC requires much shorter keys than algorithms

based on modular arithmetic (Maletsky, 2020). The detailed implementation steps included in

the proposed methods are as follows:

4.1 Embedded Metadata Encryption Process using AES/XXTEA,

RSA/ElGamal and RSA/DSA Digital Signature

1. Input: File with plaintext metadata.

2. Calculate sha-256 hash of the plaintext data

3. Generate a random secret key.

4. Extract metadata and save it to an external XMP file.

5. Encrypt content of XMP file with random password from step 3 using AES or XXTEA

algorithms.

6. Remove all metadata from the File.

7. Encrypt secret key with sender's and receivers' public key using RSA or ElGamal

algorithms.

8. Embed ciphertext metadata into the File with the following tags: sender's public key,

secret key encrypted with the public key of a receiver, secret key encrypted with the

public key of a sender, ciphertext metadata.

9. Create and attach RSA or DSA digital signature using sha-256 hash and sender's private

key.

10. Output: File with encrypted metadata.

11

Figure 1: Metadata Encryption Process

4.2 Embedded Metadata Decryption Process Using AES/XXTEA,

RSA/ElGamal and RSA/DSA Digital Signature

1 Input: File with encrypted metadata.

2 Read digital signature tag from metadata.

3 Read sender's public key from the metadata.

4 Decrypt secret key with receiver's private key using RSA or Elgamal algorithms.

5 Decrypt ciphertext metadata with a secret key using AES or XTEA algorithms and save

it in a separate XML file.

6 Remove metadata from the File.

7 Restore metadata from XML file to the received File (copy all tags from external XML

file back to the File).

8 Calculate sha-256 hash of the file

9 Verify the RSA or DSA digital signature using sha-256 hash values and the sender's

public key.

10 Output: File with decrypted metadata.

12

Figure 2: Metadata Decryption Process

4.3 Embedded Metadata Encryption Process using AES/XXTEA, ECDH

and ECDSA Digital Signature

1 Input: File with plaintext metadata.

2 Calculate sha-256 hash of the plaintext data

3 Compute common secret key using ECDH key exchange protocol.

4 Extract metadata and save it to an external XMP file.

5 Encrypt content of XMP file with the common secret key from step 3 using AES or

XXTEA algorithms.

6 Remove metadata from the File.

7 Create and embed new metadata into the file with the following tags: sender's public

key, ciphertext metadata.

8 Create and attach ECDSA digital signature using sha-256 hash and sender's private

key.

9 Output: File with encrypted metadata.

Figure 3: Metadata Encryption Process

4.4 Embedded Metadata Decryption Process using AES/XXTEA, ECDH

and ECDSA Digital Signature

1 Input: File with encrypted metadata.

2 Read digital signature tag from metadata.

3 Read sender's public key from the metadata.

4 Compute the common secret key using ECDH key exchange protocol.

5 Decrypt ciphertext metadata with a common secret key using AES or XTEA algorithms

and save it in a separate XML file.

6 Remove all metadata from the File.

7 Restore metadata from XML file to the received File (copy all tags from external XML

file back to the File).

8 Calculate sha-256 hash of the file

13

9 Verify ECDSA digital signature using sha-256 hash values and sender's public key.

10 Output: File with decrypted metadata.

Figure 4: Metadata Decryption Process

5 Implementation

We have implemented the proposed design in Java programming language using the Java

security APIs, Bouncy Castle Crypto APIs, Apache common codec. The project code was

developed in the NetBeans environment on Linux Virtual Machine. Ubuntu Linux system was

installed in VMware Fusion as a guest. Mac OS system was used as a host. A total of six

methods were implemented and evaluated. The technical characteristics of the methods are

demonstrated in Table 1.

5.1 Keys Generation.

RSA 2048-bits keys are created and placed in specified locations with GenerateRsaKeys.java

class (Figure 5).

Figure 5: RSA Keys Generation

ElGamal and DSA 2048-bits keys generation is implemented with GenerateElGamalKeys.java

and GenerateDsaKeys.java classes. ECDSA 256-bit keys are created with

GenerateECkeys.java class.

5.2 Extracting and Removing Embedded Metadata.

Figure 6 shows the metadata of the Jpeg file.

14

Figure 6: File with Plaintext Metadata

All operations with embedded metadata are performed using methods of ExifTool.java class.

Java code of extracting, copying and removing operation is illustrated in Figure 7.

Figure 7: Metadata Operations

5.3 Metadata Encryption with Symmetric Ciphers.

Before encrypting the metadata, depending on the method, we must generate either a random

128-bit secret key or compute a shared secret key using the ECDH algorithm. For this purpose,

we used AesEncryption.java, ECCryptography.java classes methods (Fig. 8,9).

Figure 8: Secret Keys Generation

Figure 9: Computing Common Secret Keys using ECDH Protocol

The plaintext is encrypted with AES or XXTEA symmetric algorithms, as shown in Figures 10 and

11.

Figure 10: AES Encryption

15

Figure 11: XXTEA Encryption

AES encryption is implemented with Java security APIs and is shown in Figure 12.

Figure 12: AES Encryption Implementation

XXTEA encryption algorithm library for Java is borrowed from GitHub (code author: Ma

Bingyao)7 and implemented in XXTEA.java class, Figure 13.

Figure 13: XXTEA Encryption Implementation

5.4 Asymmetric Encryption of Secret Key

The secret key is then encrypted with a corresponded public key, as shown in Figure 14. The

method encrypts of RsaCryptography.java class takes the path to the public key and plaintext

as arguments.

Figure 14: Secret Key Encryption using RSA

Both encryption and decryption methods RsaCryptography.java class recognise the key type

using exceptions, thus reducing the number of methods and code.

Figure 15: Using Exceptions to Determine the Type of the Key

ElGamal encryption was implemented similarly, as shown in Figures 16 and 17

7 https://github.com/xxtea/xxtea-java/blob/master/src/main/java/org/xxtea/XXTEA.java

16

Figure 16: Encryption of Secret Key using ElGamal

Figure 17: ElGamalCryptography.java encrypt Method

There is no need to encrypt a shared key computed with ECDH key exchange protocol in

methods 5 and 6, as the key is calculated independently by the receiver. The shared key is

computed using the getSharedSecretSender method of the ECCryptography.java class using

the Bouncy Castle Crypto API, Figure 18.

Figure 18: Computing Shared Key Using ECDH Key Exchange Protocol

5.5 Digital Signatures Generation

The digital signature creating process depends on the method. The Java code for generating

RSA, DSA, and ECDSA digital signatures is shown in Figures 19, 20 and 21.

Figure 19: Generation of RSA Digital Signatures

Figure 20: Generation of DSA Digital Signatures

Figure 21: Generation ECDSA Digital Signatures

5.6 Embedding Metadata Tags

Tags are embedded using ExifTool.java class and illustrated in Figure 22.

Figure 22: Embedding Metadata Tags

17

The file with encrypted metadata and embedded tags is illustrated in Figure 23.

Figure 23: The File with Encrypted Metadata

5.7 Extracting Metadata Tags

The receiver obtains metadata tags using the readTags method of ExifTool.java class

Figure 24: Extracting Metadata Tags

When implementing the readTags method, we encountered compiling errors in

AesEncryption.decrypt method. We fixed this problem by removing the end of line characters

from the return string, added by the SystemCommandExecutor class methods:

Figure 25: Compiler Error Fix

We've also added an exception to the core methods to catch this error to prevent MiTM data

integrity attacks if they are deliberately introduced by an attacker by modifying metadata

tags:

Figure 26: Catching Exception Event

5.8 Decrypting of the Secret Key With Asymmetric Ciphers

Secret key is decrypted with the corresponded private key depending on the method or

computed using the ECDH algorithm.

Figure 27: Decrypting of Secret Key using RSA

18

Figure 28: Decrypting of Secret Key using ElGamal

Figure 29: Computing Common Secret Key using ECDH

5.9 Decrypting of Ciphertext Metadata with Symmetric Ciphers

Cyphertext is decrypted with AES or XXTEA ciphers.

Figure 30: Decrypting Ciphertext Metadata using AES

Figure 31: Decrypting Ciphertext Metadata using XXTEA

5.10 Embedding Decrypted Metadata

To embed decrypted metadata, we first save it in a separate XMP file, remove it from the

original file and then restore it from the XMP file using ExifTool.java class methods, as

illustrated in Figure 32

Figure 32: Embedding Decrypted Metadata

The output file with decrypted metadata is illustrated in Figure 33, which is the same as the

original file shown in Figure 6 (verified by digital signature).

19

Figure 33: File with Decrypted Metadata

5.11 Digital Signature Verification

Digital signature verification depends on the method; an example of Java code used for DSA

signature verification is demonstrated in Figure 34.

Figure 34: DSA Digital Signature Verification

The software output is illustrated in Figure 35, which shows verification status (passed or

failed).

Figure 35: Digital Signature Verification Output

6 Evaluation

In the following sections, we evaluate and compare the results of the proposed methods. The

assessment focuses on analysing the performance of the implemented methods, including

encryption key generation time, memory consumption, encryption/decryption time, and data

capacity analysis. The focus on these results is essential as execution time and memory

consumption correspond to the computing device's hardware requirements and power

consumption.

6.1 Generation of Asymmetric Key Pairs

To evaluate average keys generation times, we have created Java outer classes to iterate through

the main methods specified number of times.

The results are demonstrated in Table 2 and Figure 36.

Table 2. Key Pair Generation Times

Figure 36: Comparative Status of Key Pairs Generation Times

RSA keys pair generation is the slowest, and DSA is the fastest.

6.2 Average Encryption Time Analysis

Key Pair

Type/Bits

Average Key

Generation Time,

Milliseconds

RSA 2048 542

ElGamal 2048 181

ECDSA 256 36

DSA 2048 26

20

We created outer Java classes to iterate through the main classes to evaluate the time required

to encrypt/decrypt metadata for each method. Results are demonstrated in Tables 3 and 4,

Figures 37 and 38. Detailed descriptions and specifications for each technique are summarised

in Table 1.

Table 3. Metadata Encryption Times

Method # File Type Average Encryption Time, Milliseconds

1 Jpeg 2258

2 Jpeg 2260

3 Jpeg 2396

4 Jpeg 2397

5 Jpeg 2114

6 Jpeg 2132

Figure 37: Comparative Status of Encryption Times

6.3 Average Decryption Time Analysis

Table 4. Metadata Decryption Times analysis

Method # File Type Average Decryption Time, Milliseconds

1 Jpeg 823

2 Jpeg 826

3 Jpeg 831

4 Jpeg 838

5 Jpeg 738

6 Jpeg 745

Figure 38: Comparative Status of Decryption Times

21

6.4 Memory Utilisation Analysis

The comparative status of memory utilisation for each method is demonstrated in Table 5 and

Figure 39.

Table 5. Memory utilisation

Method # File Type Memory Utilised by the Program, MB

1 Jpeg 15.24

2 Jpeg 15.07

3 Jpeg 25.48

4 Jpeg 25.29

5 Jpeg 47.60

6 Jpeg 42.78

Figure 39: Comparative Status of Memory Utilization

6.5 Data Capacity Analysis

The file with encrypted metadata increases in size by including extra tags, as demonstrated in

Table 6 and Figure 40.

Table 6. File Size Increase Results

Method # File Type Original File Size, MB Increase in File Size, Bytes / %

1 Jpeg 7.1 50595.0 / 0.045

2 Jpeg 7.1 50715.0 / 0.046

3 Jpeg 7.1 73155.0 / 0.065

4 Jpeg 7.1 73275.0 / 0.066

5 Jpeg 7.1 30765.0 / 0.028

6 Jpeg 7.1 30885.0 / 0.028

22

Figure 40: File size increase comparison

6.6 Data Integrity (Digital Signature Verification) Analysis

Previously proposed metadata protection methods, based on symmetric encryption, are

generally insecure. An adversary can alter the contents of a file or perform a ciphertext attack

without the user's knowledge. Methods proposed in this paper include digital signature

verification to prevent such attacks. Any manipulation of the file's content or ciphertext attack

will be detected and reported to the user. We tested our methods against data integrity attacks,

and all attempts to alter the data were successfully detected. For example, if we crop the Jpeg

file (Figure 41), the software will detect such an attack by verifying the digital signature, inform

the user and exit (Figure 42).

Figure 41: Modifying an Image File by Cropping

Figure 42: Digital Signature Verification

23

6.7 Comparative Analysis of Different Approaches to Metadata Protection

Previous approaches for securing metadata are compared and summarized in Table 7. Unlike

other methods, only the model proposed in this research paper provides for the

confidentiality, integrity, and authentication of embedded metadata.

Table 7. Approach Evaluation

Paper Approach Pros Cons Confidentiality Integrity Authentication Nonrepudiation

Encryption EXIF

Metadata for

Protection

Photographic

Image of Copyright

Piracy

Encrypting EXIF

metadata with

XTEA symmetric

cipher

Provides

confidentiality

Only Jpeg files are

supported, vulnerable

to MiTM and data

integrity attacks. Key

management issues

Yes No No No

Securing Image

Metadata using

Advanced

Encryption

Standard

Encrypting EXIF

metadata with

AES symmetric

cipher

Easy to

implement,

provides

confidentiality

Only Jpeg files are

supported, vulnerable

to MiTM and data

integrity attacks. Key

management issues

Yes No No No

Metadata protection

scheme for JPEG

privacy security

using hierarchical

and group-based

models

Hierarchical and

group-based

models for

metadata access

control

Has metadata

access control

based on privacy

policies

This concept requires

a third party to

implement, doesn't

provide confidentiality

Yes No No No

A study on image

security in social

media using digital

watermarking with

metadata

Embedding EXIF

information into

a particular

image through

the digital

watermarking

algorithms

Protects the

metadata from

removal by users

or social media

Only works with

image files, vulnerable

to data integrity

attacks, image

compression

algorithms can still

damage a watermark

No No No No

Proposed Paper

Secure embedded

metadata with

symmetric and

asymmetric

encryption

Provides

Confidentiality,

Data Integrity

and User

Authentication.

Supports many

file types

Require users to set up

public/private keys

Yes Yes Yes Yes

2.1 Discussion

We have implemented, tested and evaluated the performance of the proposed design using

different combinations of symmetric/asymmetric cryptography schemes and digital signatures.
Conducted tests showed that the RSA key generation time was the slowest, followed by

ElGamal and ECDSA, and the DSA key generation time was the fastest. RSA and ElGamal

take longer to generate 2048 bit keys because the calculation must include a modular

expression. The encryption and decryption times of RSA-based methods 1 and 2 are better than
ElGamal-based methods 3 and 4 (Siahaan and Oktaviana, 2018), while methods 5,6 based on

elliptic curve key-exchange algorithms were the fastest. AES based methods 1,3,5 were slightly

quicker than XXTEA methods 2,4,6 but required more memory to execute. Methods 5 and 6

based on elliptic curve algorithms outperformed all other methods in encryption and decryption
speed (Mahto and Yadav, 2017), but they utilise more memory than other methods.

Encrypted file increases in size because of extra tags added. Methods 3 and 4 based on the

ElGamal algorithm produced the largest files, followed by RSA and ECDH based methods.

24

Methods 5 and 6 had the smallest files. Drawing from the results above, we can conclude that

methods 5 and 6, based on elliptic curve cryptography, are the fastest performing algorithms

across all metrics except memory utilisation. Choosing the correct method in the proposed
design is a trade-off between execution time and memory consumption.

7 Conclusion and Future Work

In many cases, embedded metadata contains sensitive and essential information about the

original data. As recent years have shown, the use of insecure metadata has led to severe
hacking incidents and many security breaches, so the metadata information must be protected.

In this report, we proposed six metadata protection methods and implemented them in the Java

programming language. The proposed design ensures confidentiality, integrity, authentication
and nonrepudiation of embedded metadata. None of the approaches described in previous

studies provides metadata integrity, authentication, and nonrepudiation. The proposed design

can be used in sensitive or confidential environments such as military, pharmaceutical, medical

and legal applications and to comply with GDPR regulations. However, encryption makes the
metadata information unavailable for processing. A possible solution is to use attribute-based

searchable encryption (ABSE) schemes. ABSE technique enables detailed search and retrieval

of data files using the encrypted metadata without disclosing any information in plaintext

(Chaudhari and Das, 2021). Future work will be to look at ways of combining the proposed
design with the core ABSE techniques, as this could enhance the usability and interoperability

of the proposed methods.

References

Aggarwal, S. (2014) ‘A review of Comparative Study of MD5 and SHA Security Algorithm’,

International Journal of Computer Applications, 104, p. 4.

Al-Marashi, I. (2006) ‘The “Dodgy Dossier:” The Academic Implications of the British

Government’s Plagiarism Incident’, Middle East Studies Association Bulletin, 40(1), pp. 33–

43.

Andem, V. R. (2003) ‘A Cryptoanalysis of the Tiny Encryption Algorithm’, p. 68.

Bane, A. and Minnear, R. (2017) ‘Method and system for the normalisation, filtering and

securing of associated metadata information on file objects deposited into an object store’.

Available at: https://patents.google.com/patent/US9619487B2/en (Accessed: 25 October

2020).

Barker, E. B. and Dang, Q. H. (2015) Recommendation for Key Management Part 3:

Application-Specific Key Management Guidance. NIST SP 800-57Pt3r1. National Institute of

Standards and Technology, p. NIST SP 800-57Pt3r1. doi:

10.6028/NIST.SP.800-57Pt3r1.

Bhangale, R. (2019) ‘Securing Image Metadata using Advanced Encryption Standard’

Chandra, S. et al. (2014) ‘A comparative survey of Symmetric and Asymmetric Key

Cryptography’, in 2014 International Conference on Electronics, Communication and

Computational Engineering (ICECCE). 2014 International Conference on Electronics,

25

Communication and Computational Engineering (ICECCE), pp. 83–93. doi:

10.1109/ICECCE.2014.7086640.

Chaudhari, P. and Das, M. L. (2021) ‘Privacy Preserving Searchable Encryption with Fine-

Grained Access Control’, IEEE Transactions on Cloud Computing, 9(2), pp. 753–762. doi:

10.1109/TCC.2019.2892116.

Ciampa, M. D. (2009) CompTIA Security+ 2008 in depth. Australia ; United States : Course

Technology/Cengage Learning. Available at:

http://archive.org/details/comptiasecurity20000ciam (Accessed: 15 June 2021).

Dang, Q. H. (2015) Secure Hash Standard. NIST FIPS 180-4. National Institute of Standards

and Technology, p. NIST FIPS 180-4. doi: 10.6028/NIST.FIPS.180-4.

Davis, D. (2001) Defective Sign & Encrypt in S/MIME, PKCS#7, MOSS, PEM, PGP, and

XML. Available at: https://theworld.com/~dtd/sign_encrypt/sign_encrypt7.html (Accessed:

10 July 2021).

Delfs, H. and Knebl, H. (2007) Introduction to Cryptography: Principles and Applications.

Springer Science & Business Media.

Diffie et al. (1976) ‘New Directions in Cryptography’, pp. 644–654.

Faiz bin Jeffry, M. A. and Mammi, H. K. (2017) ‘A study on image security in social media

using digital watermarking with metadata’, in 2017 IEEE Conference on Application,

Information and Network Security (AINS), pp. 118–123. doi: 10.1109/AINS.2017.8270435.

Halevi, S. and Krawczyk, H. (2008) Randomized Hashing and Digital Signatures. Available

at: https://www.ee.technion.ac.il/~hugo/rhash/ (Accessed: 15 June 2021).

Hernandez, P. (2015) NIST Releases SHA-3 Cryptographic Hash Standard, NIST. Available

at: https://www.nist.gov/news-events/news/2015/08/nist-releases-sha-3-cryptographic-hash-

standard (Accessed: 24 May 2021).

Heron, S. (2009) ‘Advanced Encryption Standard (AES)’, Network Security, 2009(12), pp. 8–

12. doi: 10.1016/S1353-4858(10)70006-4.

Johnson, D. and Menezes, A. (1999) The Elliptic Curve Digital Signature Algorithm

(ECDSA).

Kwon, A., Lu, D. and Devadas, S. (2020) ‘XRD: Scalable Messaging System with

Cryptographic Privacy’, p. 18.

Lepsoy, J. et al. (2015) ‘Metadata protection scheme for JPEG privacy security using

hierarchical and group-based models’, in 2015 5th International Conference on Information

Communication Technology and Accessibility (ICTA), pp. 1–5. doi:

10.1109/ICTA.2015.7426905.

Mahajan, D. P. and Sachdeva, A. (2013) ‘A Study of Encryption Algorithms AES, DES and

RSA for Security’, Global Journal of Computer Science and Technology. Available at:

https://computerresearch.org/index.php/computer/article/view/272 (Accessed: 15 December

2020).

26

Mahto, D. and Yadav, D. K. (2017) ‘RSA and ECC: A Comparative Analysis’, 12(19), p. 9.

Maletsky, K. (2020) ‘RSA vs. ECC Comparison for Embedded Systems’, p. 6.

Mamta et al. (2020) ‘Metadata Security Measures for Protecting Confidential Information on

the Cloud’, in Chellappan, S., Choo, K.-K. R., and Phan, N. (eds) Computational Data and

Social Networks. Cham: Springer International Publishing, pp. 398–410.

Rivest (1990) The MD4 Message Digest Algorithm. Available at:

https://datatracker.ietf.org/doc/html/rfc1186 (Accessed: 15 June 2021).

Schneier, B. (1996) Applied cryptography : protocols, algorithms, and source code in C.

New York : Wiley. Available at:

http://archive.org/details/Applied_Cryptography_2nd_ed._B._Schneier (Accessed: 10 June

2021).

Siahaan, A. P. U. and Oktaviana, B. (2018) ‘Comparative Analysis of RSA and ElGamal

Cryptographic Public-key Algorithms’, p. 10.

Simmons, G. J. (1979) ‘Symmetric and Asymmetric Encryption’, ACM Computing Surveys,

11(4), pp. 305–330. doi: 10.1145/356789.356793.

Swenson (2012) NIST Selects Winner of Secure Hash Algorithm (SHA-3) Competition, NIST.

doi: 10/nist-selects-winner-secure-hash-algorithm-sha-3-competition.

Wei Dai (2009) Speed Comparison of Popular Crypto Algorithms. Available at:

https://www.cryptopp.com/benchmarks.html (Accessed: 24 May 2021).

Wheeler, D. J. and Needham, R. M. (1995) ‘TEA, a tiny encryption algorithm’, in Preneel, B.

(ed.) Fast Software Encryption. Berlin, Heidelberg: Springer Berlin Heidelberg (Lecture

Notes in Computer Science), pp. 363–366. doi: 10.1007/3-540-60590-8_29.

Wheeler J. David and Rojer M. Needham (1998) ‘Correction to XTEA’. Available at:

http://www.movable-type.co.uk/scripts/xxtea.pdf (Accessed: 22 May 2021).

Wijayanto, H., Riadi, I. and Prayudi, Y. (2016) ‘Encryption EXIF Metadata for Protection

Photographic Image of Copyright Piracy’, 5(5), p. 7.

Yarrkov, E. (2010) Cryptanalysis of XXTEA. 254. Available at:

https://eprint.iacr.org/2010/254 (Accessed: 22 May 2021).

	1 Introduction
	2 Related Work
	2.1 Previous approaches for Securing Embedded Metadata
	2.2 Study of Encryption Algorithms

	3 Research Methodology
	4 Design Specification
	5 Implementation
	6 Evaluation
	2.1 Discussion

	7 Conclusion and Future Work
	References

