

1

Novel Approach to Detect SQL Injection

Attacks

MSc Research Project

Chirag Chaudhary

x19213808

School of Computing

National College of Ireland

Supervisor: Prof. Vikas Sahni

2

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Chirag Chaudhary

Student ID:

x19213808

Programme:

MSc in Cyber Security

Year:

2020-21

Module:

MSc Research Project/Internship

Supervisor:

Prof. Vikas Sahni

Submission

Due Date:

06/09/2021

Project Title:

Novel Approach to Detect SQL Injection Attacks

Word Count:

6625 Page Count. 20

3

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

Signature:

CHIRAG CHAUDHARY

Date:

01/09/2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including

multiple copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the

project, both for your own reference and in case a project is lost

or mislaid. It is not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be

placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if

applicable):

1

Novel Approach to Detect SQL Injection Attacks

Chirag Chaudhary

X19213808

Abstract

The concerns for the cyber security threats have increased drastically since the increase in the

use of the online services which are web-based applications. To increase the customer base

most of the organizations are providing with more and better services through the online

platform and giving them access to their web applications. And since the online applications

stores sensitive and personal data of the users, if any malicious individual are able to attain

unauthorized access they can cause serious harm. These web applications use databases to store

the data which can be operated by the use of the SQL language commands. The attackers use

this language to gain access and change, delete or steal the data from the database. In this

research machine learning algorithms are used to find a mechanism that can detect the SQL

injection attacks. Throughout the research the experiments are performed using three major

classification models which are – Gradient Boosting algorithm, Random Forests and Support

Vector Regression. Further, critical analysis and comparison of each algorithm is implemented

to determine the most optimal model that can be used to build the SQL Injection Detection

System.

1. INTRODUCTION

All the online services we use on a daily basis are web-based applications. Most of the

organizations attract its customer base through online platform by providing access to their

web application. This has increased their customer base exponentially. On the other hand, this

also gives window for the cyber security challenges. The security threat is a concern for SMEs

and also for big organizations. All the online application we access stores our personal and

sensitive data. Any unauthorized access to the data can cause harm at higher level.

The data we provide to the web applications are stored in a database. The operations and actions

performed on this database can only be performed using Structured Query Language (SQL). It

is the most common and user-friendly language used in any organization. With the ease, there

are threats and vulnerability that comes along with this language. Attackers use this language

to get the unauthorized access to the database to get the data access, modify data and even

delete the whole data. This type of attack is known as SQL Injection attack. Many researches

have been performed to mitigate this attack but unfortunately attackers were able to defend

these techniques. This study propose to find the defensive mechanism against SQL Injection

attack using machine learning algorithm.

In this study, Machine Learning algorithms are used to build the SQL Injection Detection

system. Before finalizing this algorithm, multiple experiments are performed using Support

Vector Machine, Random Forests and gradient Boosting classification model. Later,

comparison have been made to determine the accuracy of all the three models.

2

The study begins with the in-depth research on previous methods used by the researchers to

detect SQL Injection attack, scope of machine learning, SQL Injection attack, its type. In

section 3 author have described the research method which include the solution architecture

and workflow of the solution used. Further in section 4, definition of the design specification

is explained where the author have explained each step involved in the implementation phase.

Furthermore in section 5, implementation phase of the model is explained in detail that includes

the dataset used and the implementation of all the three algorithm used including,

1. Support Vector Machine

2. Random Forests

3. Gradient Boosting

In section 6 which is evaluation phase, all the experiments are performed in this study including

experiment 1, 2 and 3. Finally the last section includes the Conclusion and future work where

the author has discussed the conclusion of the study and the future work that can be performed

to improve this research.

2. LITERATURE REVIEW

SQL Injection acquire first rank in OWASP Top Ten (Inc., 2021). It is an attack where user

can insert SQL type commands and can exploit the database of the web application. With the

increase in the digitalization, this type of attack is increasing exponentially. As per the experts,

it is the most serious vulnerability that has the capability to exploit the data confidentiality and

the attacker can get the complete access of database. This can lead to fraud, data theft, loss of

confidential information and personal data, and violation of data protection laws. In the

following sections the author has researched about the SQL Injection, mechanism of SQL

Injection, types of SQL Injection, the traditional approaches used to identify SQL Injection,

Machine Learning, and various ML algorithms used by researchers in past studies.

2.1.SQL Injection

According to the study by Gartner Group over 300 internet sites, the web applications that are

vulnerable to the SQL Injection Attack (SQLIA) are widespread (William G.J. Halfond, Jeremy

Viegas, and Alessandro Orso, n.d.). There are well known attacks that occurred in the past on

well-known and popular web sites. Most recently in early 2021, SQL injection attack happened

on Gab website that resulted in the exfiltration of around 70 GB of data followed by the second

attack in the next week. In 2015 year, the same attack was performed on one of the British

telecommunications company TalkTalk’s servers that resulted in the stealing of personal

information of around 156,959 customers. Similarly, Barracuda Networks security was

compromised in 2011 year and this attack led to the getting access to the username and email

addresses of all the employees (Wikipedia, 2021).

To get the better understanding of the SQL injection attack. In the following sections, research

about what is SQL Injection, its mechanism, types of SQL injection attacks and their

consequences is performed.

3

SQL injection falls under the category of code-injection wherein the user while entering the

data into the web application inserts the malicious code along with the data. This user data that

includes malicious code is known as SQL Injection attack.

2.2.SQL Injection Mechanism

In the research paper (Swarnaprabha Patil, Prof. Nitin Agrawal, 2015) author discussed the

various mechanisms that can be used to inject SQL Injection attack. Commonly known

mechanisms are Injection through user input, Using Cookies for injection, injecting while using

server variables, and second order injection.

Injection through user input: It is a type of an input mechanism where attacker uses

commands or code and inserts that code using the form submission. Generally, the web

application offers the feature of submitting form application. After user enters the details, these

forms are then sent via HTTP using GET or POST requests to web application (Milic, 2019).

This gives the attacker a window to enter malicious code. These codes are so accurate that can

break the security of the web application.

Using cookies for Injection: This is the method that is used by the malicious client attackers.

All the web application generates a file that stores all the information about the logs and

activities performed by the application user (Dornseif, M., 2005). This file is known as

Cookies. Wherever the cookie file used in order to produce the SQL queries, it file can be

misused by the clients by corrupting the substance of the file. Attacker can insert a malicious

code in the cookie file that further has the capability to perform SQL injection attack.

Injection while using server variables: There are certain characters such as HTTP, variables,

network headers. When these characters are grouped together, they are known as server

variables. In order to perform activities such as logging and identifying the length of browsing,

Web application uses server variables. But these variables are required to be handled with

appropriate measure as they can be used by the attacker to perform SQL injection. In any

instance, if these variables are inserted into database without refining, the attacker can replace

the original values of HTTP header with the malicious code and thus they can make the web

application vulnerable to the SQL Injection attack (Principal, 2018).

Second-order injection: In this type of method, attacker initiates the vulnerable code in the

database by triggering and enforcing SQLIA (Anley., 2002). Second-order injection uses a

technique when the attacker has the knowledge of the input, when and where it will be used.

Accordingly, the attacker defines its attacking technique.

2.3.Types of SQL Injection Attack

There are numerous studies that have been done in order to specify the types of SQL Injection

attacks. In the study (Rubidha Devi.D*, 2R.Venkatesan, 3Raghuraman.K , Dec-2016), the

authors have described the types of SQL Injection attacks into multiple categories. The study

states that there are attacks that can be done independently and few attacks are injected in

combination. The categories defined by them are,

4

Tautology based attack: In this attack, the malicious code is injected in conditional statements.

The objective is to enforce the conditional statement outcome to be true. The intent of this

attack is to bypass authentication, to extract the data from the database, and to get the details

of parameters that can be used for performing injection. Example query of Tautology attack is

shown in the below figure.

Figure 1: Tautology based attack

Incorrect Queries: In this type of attack, the information of the database is changed by the

attacker. Here, attacker focuses on getting access to the sensitive and critical information of

database including its structure, datatype and more. Example of the query of Incorrect Queries

attack type is given in the figure below.

Figure 2:Incorrect queries attack

Union Queries: In this type of attack, attacker targets the database queries. Any SQL query

performed by the developer is changed by the attacker by adding its own query with the

developer query. This results into getting the output which attacker wants in addition to the

output expected by the developer. Generally, this type of attack is implemented by injecting

code in the web application in a certain form of statements such as, UNION, SELECT or more.

Examples of the query of Union queries attack type is shown below.

Figure 3: Union Queries attack

Stored Procedures: Here author explains how stored procedures can be used by an attacker for

SQLIA. According to this study (Rubidha Devi.D*, 2R.Venkatesan, 3Raghuraman.K , Dec-

2016), Stored procedures are those features of database that are provided by the database

owners to improve the database functionality. There procedures are used to perform interaction

between operating system and database. If incase, attacker gets to know the type of database

used in the web application backend, it will be easier for an attacker to perform SQL injection

using stored procedures. Example query of such type of attack is shown below.

5

Figure 4: Stored Procedure attack

Inference: This type of attack is also known as Piggy-back queries. This type of attack is

different from all the attacks as in this case attacker instead of making changes in the existing

queries, it adds its own query in addition to the existing the query. This results in a situation

where database starts receiving more than one query subsequently. The first query generally is

the original and followed by the query of attacker injected along with the original. This leads

to the SQL Injection attack and makes the web application vulnerable. Example of query of

this type of attack is given below.

Figure 5: Inference attack

Alternate Encodings: This type of attack is more of prevention method rather than an attack.

In this type of attack the query is written with an objective to prevent the injected code detection

by the automated tools and codes. Here, attacker writes a query and attack it with the malicious

code to execute the SQL injection. In this way, the attackers can eliminate the detection of the

SQL attack tools.

After getting a good knowledge and understanding of SQL Injection, its mechanism, and types.

The study further researched about the methods to detect the SQL Injection attacks. It came

across multiple methods that are used by the researchers and were able to identify SQL

Injection attacks to a certain level. In the below sections it has discussed few studies and have

outlined their conclusion.

In a study (Jemal, 2020), author has discussed and proposed various SQL injection attack

detection technique. In this paper, the solution of detecting the attack is defined based on the

classification of the SQL injection attacks. Majorly author focused on summarizing the SQL

injection attacks, their sources, types and goals. The contribution of the paper includes,

summary of the SQL attack, its source, types, goals were explained. Further, detection and

prevention technique of SQL injection attack based on their classes are described. SQL

Injection attack were classified as Query-model based SQLI, Obfuscation based, Monitoring

and Auditing based, Entropy based, Ontology based SQL attacks. Moreover, the solutions

proposed are, SQLStor detection method that depends on the comparison of semantics that is

6

by comparing the original structure of syntax tree with the structure generated by the benign

query. Obfuscation/DE Obfuscation technique for detecting SQL injection attack that uses

encryption method in order to prevent unauthorized access to the database. PSIQOP known as

Preventing AQL Injection attack by Query optimization process. Automation testing approach

to detect entropy-based SQL injection attacks.

In one of the studies (Muhammad Amirulluqman Azman, 2021), the author proposed to use

Machine learning to detect SQL Injection. This study was close to our solution but vary in

terms of the research approach and the result obtained. In this paper, author proposed Signature

based detector and it described its solution to be distributed majorly in three phases. First phase

includes Extraction of the data. For this they have used the log files of one of the web

applications and a tool is used that extracts the URL. Further the log file data is converted into

a set of k signatures using k-cross fold validation. The second stage includes building classifier

model. Author classified the URL into two classes, benign and malicious web requests using

Boyer’s Moore classification algorithm. The model performs string matching function. It

compares each URL feature with the set of malicious features. This solution was showing high

accuracy but there was a limitation of this solution. In case of real-time data, this solution failed

to address the problem.

In another study (S. O. Uwagbole, W. J. Buchanan and L. Fan,, 2017), Machine learning

predictive analytics approach is used to detect SQL Injection attack. The dataset used by the

author contained symbols and SQL tokens. The model built was further deployed as a web

service so that model can learn in the live environment and can increase its knowledge base.

The major technique used in this study are, dataset extraction, text pre-processing, Feature

hashing, filter-based feature selection technique, splitting training and test data, training the

model and testing the results. The drawback of this solution was that it only predicts whether

the web requests contain SQL injection attack or not. When it comes to multi-classification,

the model has the limitation. So, in this paper the objective is to propose am advance solution

to eliminate this limitation.

Another study that proposed a solution for detecting SQL injection is (K. Kamtuo and C.

Soomlek, 2017). In this paper, author built a Machine learning model to detect the SQL

Injection attack. More than one model is developed in this study including Support Vector

Machine, Artificial Neural Networks (ANN), Boosted Decision tree, and Decision Jungle. The

author further did a comparative analysis of the results of all the four models. The efficiency

of the models built by the author were evaluated using parameters such as precision, processing

time and, probability of false alarm. The results shows that the logically incorrect queries were

best detected by Support Vector Machine model, Union queries and piggybacked queries were

best predicted by Decision jungle model. The solution proposed in this study was efficient, but

the limitation was the author failed to build a model that can work for all types of vulnerabilities

of SQL Injection. So, in order to eliminate this limitation, this study was conducted to build a

model that is efficient for all the types of queries.

Apart from machine learning there were other tools and technologies to detect SQL injection

attack. In a study (Inyong Lee, 2012), author proposed a solution that was using static and

7

dynamic analysis of the web application. The static analysis was defined as the method where

the sentences of SQL query are analyzed in order to detect and prevent SQL injection. The

objective of the static method is to evaluate the user input and replace the query whenever

necessary to prevent any malicious query to be entered. For example, JDBC checker uses JSA

(Java String Analysis) (Inyong Lee, 2012) that dynamically checks the user input and eliminate

SQL injection. Similarly, dynamic analysis is a method that analyze and evaluates the response

received from the web application post scanning method. The scanning is process where we

send each input to the target and the target sends a response. This response id analyzed in the

dynamic analysis. This study proposes a novel approach which is a combination of both static

and dynamic analysis. The method is designed in such a way that it eliminates the attribute

values of all the SQL queries at real time thus performing dynamic analysis and later it performs

a comparison between the static analyzed SQL queries thus, performing static analysis. The

proposed method was unique, but the limitation is it cannot be implemented on a Web

Application connected to the database.

In another study (Hou, 2016), the solution for detecting SQL injection attacks is proposed. The

major focus of this study to detect the SQL injection in the cloud environment. The method

proposed in the combination of dynamic analysis and the input filtering. Further the solution

proposed in implemented in the cloud environment to detect the SQL injection attack on the

cloud. The solution was implemented in three stages. First phase includes analyzing the SQL

statements by collecting the SQL keywords using lexical regulation method. Second phase

includes development of rule tree by analyzing the collected SQL keywords and the last stage

includes detecting the SQL injection by traversing the rule tree based on the model that was

developed by SQL syntax regulations.

In a study (L. Xiao, 2016), the problem of detecting SQL injection attack is resolved. The

author proposed a novel approach of high precision. The solution was named as Expectation-

based Detection method (L. Xiao, 2016). After doing an intense study, author says that there

were many solution proposed for detecting SQL injection that predicts the past experienced

attacks but the unknown attacks were not discovered and detected. This method solves a

problem of detecting unknown SQL injection attacks. The expectation - based detection model

was designed in two stages. The first stage is known as Expectation. In this stage the calculation

of probability of SQL injection attack keywords is performed from a dataset using the formula

shown below.

Figure 6: Formula for calculation Expectation value

The second stage was termed as Preparation. In this stage the model detects the SQL injection

attack on the basis of the Expectation calculation. The model built by the author was efficient

but the experiments resulted in the calculations of prediction of special keywords that were not

of high-precision and needs to be improved by doing more appropriate calculation.

After doing intense research of previous studies and work performed by multiple researchers

this study concluded that apart from the automatic tools there are no accurate and efficient

solution proposed for detecting SQL injection attacks. So, we decided to propose an advance

solution for detecting SQL injection that can be used at industrial level to eliminate the

8

vulnerabilities of SQL injection. This study proposes to build advance machine learning models

to detect SQL injection and to classify those attack. It further proposes to do a comparative

analysis of all the models built and to find out the best and efficient mode suitable for solving

our problem.

In the following sections discusses the method used in the proposed solution. The deep

understanding of each model used in our study is discussed to get the better understanding of

algorithm behind the working of the models.

3. RESEARCH METHOD

This section contains the methodology that is utilized to solve the issue. Herein several methods

are used to experiment along with the previous studies done by the researchers in the past using

the traditional methods.

The study offers a technique to detect SQL Injection utilizing the Machine Learning upon

conducting considerable research and evaluating past work in detecting SQL Injection attacks

(R. Sathya, 2013). It also proposes performing a comparative analysis of several machine

learning models in order to identify the most suitable model for handling this challenge.

The two types of Machine Learning algorithms are:-

a) Supervised Learning Algorithm and

b) Unsupervised Learning Algorithm.

Supervised Learning: The supervised learning algorithm depends on training a sample data

from a source of data that has previously been classified correctly (Cannady, 2017). In feed

forward or Multilayer Perceptron (MLP) models, such strategies are used. There are three

different properties of this MLP (Cannady, 2017).

• One or more layers of hidden neurons that are not part of the input or output layers of

the network that enable the network to learn and solve any complex problems

• The nonlinearity reflected in the neuronal activity is differentiable and,

• The interconnection model of the network exhibits a high degree of connectivity these

characteristics along with learning through training solve difficult and diverse

problems.

The error back propagation algorithm is a method of learning in a supervised model via

training. The samples of input and output are used to train the network in an error correction-

learning algorithm and determine the error signals, which is the difference between the

expected output and the intended output and the synaptic weights of the neurons are modified

which is equal to the error signal’s product and the synaptic weight’s input instance.

Unsupervised Learning: An unsupervised learning algorithm utilizes the self-organizing

networks of neural to recognize the concealed order within an unlabelled input data. The

capability to retain and sort out information with no signals for error to analyze the prospective

resolution. In unsupervised learning, the lack of strategy for the learning algorithm might be

useful since it enables the algorithms to explore retrospectively for patterns that were not

initially considered. The following are the primary characteristics of Self-Organizing Maps

(SOM) (Handa, 2019;):

9

• An adaptive transformation is done, wherein random dimension pattern of the incoming

signals is converted into one- or two-dimensional map.

• Feed forward structure is represented by the network along with sole computational

layer which is made up of rows and columns of neurons.

• Each input signal is retained in its right context at every step of representation, and

• Neurons that engage with highly associated segment of data are near together and

interact via synaptic connections. Since the neurons challenge each other in the layer to

become active therefore this computational layer is also known as the competitive

algorithm.

The study has utilized supervised learning algorithm to resolve the issue. The Supervised

Learning includes two types of machine learning models which are regression model and

classification model and it has used the classification model since the main goal of this study

is to determine the whether the query comprises of any SQL Injection attack or not.

One of the most commonly occurring decision-making activities involves in human activity is

classification. When an object needs to be allocated to a predetermined class or class influenced

by a number of recorded attributes, a classification challenge arises. Many industrial issues

have been labeled as classification issues. Weather forecasting, character

recognition, bankruptcy forecasting, medical diagnosis, Stock market estimation, and speech

recognition are just a few examples. Many industrial issues have been labeled as classification

issues. Weather forecasting, character recognition, bankruptcy forecasting, medical diagnosis,

Stock market estimation, and speech recognition are just a few examples. These classification

difficulties can be handled in a few ways, by using both mathematically and nonlinearly (Siraj,

n.d.).

So as to develop a machine learning model, the study particularly uses the Gradient Boosting

technique which is an Ensemble learning strategy for reducing inaccuracies and delivering

more correct estimates. To generate results, the Gradient Boosting technique uses basic

classifiers, primarily decision trees, in a sequential way. Gradient Boosting with Multiple

Decision Tree Classifiers The approach begins by classifying the data with a basic classifier

while using several decision tree classifiers for the Gradient Boosting. The figure [7] shows

the structure of Gradient Boosting algorithm.

Figure 7: Gradient Boosting Algorithm structural design

The results are then used to determine the defects or data points that the basic classifier could

not comfortably integrate. In the next round, the algorithm concentrates on those data points

and tries to integrate them as well. By following these steps, the inaccuracies are decreased and

also considered the outlying data points. However, in an attempt of overdoing this renovation

10

might also result in over fitting. Therefore, the key aspect of considering this strategy is

learning to terminate remodeling at an appropriate precision and mistake rate as a result.

4. DESIGN SPECIFICATION

In this section description of the architecture of our solution is described. The solution

proposed in this study is to build a machine learning model to detect SQL injection attacks.

The stages involved in implementing SQL injection detection system from scratch is discussed

and described. There is total six stages involved in implementing our model. The structure of

the model is shown below.

Figure 8: Architecture of SQL Detection system

Access Logs: Logs represents the collection of plain-text data and SQL injection data. To

access the logs generally automatic tools are used. For example, Sematext logs, Paesseler

PRTG Network monitor etc.

Extract: The logs accessed from the web application are then extracted in a text format in .csv

format. The dataset obtained goes through data preparation, cleaning and Feature extraction

phase.

Training Set and Testing Set: In this stage to train and test our model, split the dataset into

two parts training and test data. It is always advisable to split the dataset in ratio of 3:2 or 7:3.

Major part of dataset to be used as a training data and rest for testing.

Train: In this phase, training of the model is performed by training dataset which means

increasing the knowledge base of the model. The study has used 70% of our dataset for training.

Test: Once your model is trained, now your machine can be tested using test dataset. For testing

the model, 30% of the dataset is used which is unknown to our model in order to test the

efficiency of our model.

Knowledge base: The knowledge base is defined as the training dataset which the machine has

learnt. The more data provided to the model, your model performs more accurate and the

efficiency of the model gets increased.

Results: To determine the results, there are multiple techniques that can be used such as,

accuracy score, f1 score, confusion matrix. The result is to determine the accuracy and

efficiency of the model. The more the accuracy % the better is the prediction.

11

5. IMPLEMENTATION

5.1. Dataset

The dataset consists of the following two parts: Their descriptions are given under respective

sections.

5.1.1. Plain-Text Dataset

This dataset consists of plain-text sentences and has around four thousand rows. The plaintext

dataset has been created with payloads received from html forms. The dataset consists of a

combination of URL’s, special characters, textual data and numerical data.

Following features of this dataset make it a good choice for this problem.

5.1.2. Diversity

The dataset not only contains just the textual data, but it is comprised of special characters and

numbers. This is helpful while training the model to identify SQL Injections with better

accuracy and avoid false positives.

5.1.3. Source

The dataset is created by collecting user inputs from a form in a web application. Because of

the source of the dataset, there is more probability of wide range of scenarios being covered

for training the model efficiently.

5.2. SQL Injection Dataset

It was difficult to compile a dataset for this topic because no datasets with open access to

genuine SQL Injection assaults were accessible. A software tool called Libinjection was used

to construct the dataset for SQL Injections. Libinjection is a free software tool for web

application vulnerability assessments. To check the web applications for vulnerabilities of SQL

Injection attacks, it sends SQL Injections as payload. All the payloads created by libinjection

were collected using this software for a specific instance, and along with a dataset all these

payloads were utilized as that of the Structured Query Language Injection dataset (Bentéjac,

2021). Around 6,000 SQL Injections including all three categories, Blind SQL Injection, Error

Based, and Union Based, are included in this collection. An example of SQL Injection dataset

is shown in Figure

5.2.1. Categories

SQL Injections of all categories are included which will help during the model training, which

will result in the ability to correctly recognize all the categories of the SQL injections.

5.2.2. Size

The dataset is large enough for this model to be suitably trained.

12

5.2. Tokenization

Tokenization is generally the first and most essential stage in data preprocessing in machine

learning analyses that use datasets based on text. Tokenization is the process of splitting a string

of characters into little parts known as tokens. In other cases, tokenization often entails the

removal of specific characters (Natekin Alexey, 2013). This is a common technique used

in learning based on words. The picture below shows a typical tokenization instance in NLP

(Natural Language Processing). Each component of the statement is tokenized at each stage,

as can be observed.

Figure 9: Tokenization Implementation

Figure 10: Output of Tokenization

Furthermore, because we're looking for SQL Injections, each letter in both datasets is kept, and

regular expressions is utilized to construct tokens are constructed rather than tokenizing words

13

in this scenario. In this method, a series of characters are combined with each other for

tokenization.

5.2.1. Regular Expression

Plain-text as well as SQL Injection datasets both have regex employed to tokenize every input.

They specify a string structure for a series of characters. The matching of the pattern are widely

utilizes the Regular expressions (Chen, n.d.). Regular expression to be compiled into a regular

expression object re.compile() technique is utilized in this research.

Several SQL queries along with SQL words that are reserved are utilized to generate the regular

expression. Lexical evaluation employing regular expressions in Python is used to accomplish

tokenization.

To separate the objects into tokens, the Groupby() technique is utilized. Using the tokens that

are generated from the dataset, extraction of feature is conducted on the dataset. There are three

factors in the token object.

5.2.2. Token_Count

The token count argument keeps track of how many times certain token appears in the

overall dataset.

5.2.3. Token_Value

The token value attribute holds the true figures of newly generated tokens.

5.2.4. Token_Type

The plain or sqli are the two categories in which the token_type criterion the token falls wherein

the dataset of SQL injection creates sqli token types and the dataset based on plain text creates

the plain token type. Further, function groupby() is utilized to assembled the tokens

simultaneously depending on the series that it frequently happen concurrently.

5.3.Feature Extraction

The initial stage in extraction of features is to compute the G-test Scores including all token

items in the dataset, which is done once the dataset has been tokenized. A dataframe is built

using Python's Pandas package before computing the G-test results. The following columns

make up this dataframe, which serves as the fresh dataset.

• Token_Count

• Token_Value

The fresh dataset is calculated using the G-test.

14

5.3.1. Calculating G-test score

The likelihood ratio is another name for the G-test score. It is regarded as a viable substitute

of the Chi-square Test. When there is only one categorical variable and 2 classes to categorize,

the G-test score is typically utilized. Because the classification is to categorize data into

2 different classes, plain-text and SQL injection, this aspect makes G-test score ideal for usage

in our technique. G-test scores are used to measure how far a prediction deviates from the

optimal prediction. They are used with ordinal attributes. The data must be pre-processed

before the G-test scores can be computed. The numbers in the data are transformed to float type

numerical numbers. In this scenario, two sorts of G-test scores are computed.

• Observed G-test Score

• Expected G-Test Score

The overall tokens, the number of tokens in each row, and the categories of tokens are used to

determine the expected G-test score. If the data had been distributed properly then the expected

G-test score would be obtained. The real score of the data event is the recorded G-test score.

5.3.2. Calculate Entropy

The computation of the entropy is the next stage in the extraction of the feature, the

computation is done for every row that is in the dataset. The way it is easier to estimate the

indiscrimination of the data. The entropy of the dataset depends on the level of similarity of

the data, wherein the dataset entropy will be less if the data is extremely alike and vice versa.

So as to split the divide the data entropy is used by the decision trees (Farooq, n.d.).

 A decision tree's objective is to divide data in a manner that related data is clustered

collectively. As a result, the decision trees use entropy to authenticate their split. They proceed

with the separation if the entropy drops, and if the entropy grows, they try to divide at a different

place.

5.3.3. Calculate G-test Score Mean

The approximate value of G-test scores for every token inside the dataset is obtained in this

stage. Utilizing pandas library in Python, a fresh dataset is created and maintained in a Data

frame. Utilizing the Gradient Boosting Classifier, the model is trained using the dataset.

Figure 11: Formula for G-test mean score

15

6. EVALUATION

6.1. Experiment 1

The first experiment performed was using Support Vector Machine algorithm. Support Vector

Machine classification model was built to detect SQL injection attack. The parameters

considered for building the model are,

Kernel = Linear, random_state = 0

In the next step, models are trained by fitting ‘X_train’ and ‘Y_train’ data. Then, the testing of

the model was performed by predicting ‘X_test’ data which was compared to the ‘Y_test’.

Finally, to evaluate the efficiency of our model, this study has used Accuracy score method.

The model fitting and prediction is shown in figure [9]

Figure 12: Experiment 1 - Support Vector Machine Model

Results: The accuracy of the Support Vector Machine model is 99.8%

6.2. Experiment 2

The second experiment performed was using Random Forests Classifier. Random Forests

classification model was built to detect SQL injection attack. The parameters considered for

building the model are,

n_estimators = 100, random_state = 0

In the next step, models are trained by fitting ‘X_train’ and ‘Y_train’ data. Then, the testing of

the model was performed by predicting ‘X_test’ data which was compared to the ‘Y_test’.

Finally, to evaluate the efficiency of our model, this study has used Accuracy score method.

The model fitting and prediction is shown in figure [10].

Figure 13: Experiment 2 - Random Forests Classification Model

Results: The accuracy of the Support Vector Machine model is 99.7%

16

6.3. Experiment 3

The third experiment performed was using Gradient Boosting Classifier algorithm. Gradient

Boosting classification model was built to detect SQL injection attack. The parameters

considered for building the model were,

n_estimators = 100, learning_rate = 0, max_depth = 7, random_state = 0

In the next step, models are trained by fitting ‘X_train’ and ‘Y_train’ data. Then, the testing of

the model was performed by predicting ‘X_test’ data which was compared to the ‘Y_test’.

Finally, to evaluate the efficiency of our model, this study has used Accuracy score method.

The model fitting and prediction is shown in figure [11].

Figure 14: Experiment 3 - Gradient Boosting Classification Model

Results: The accuracy of the Gradient Boosting Machine Learning model is 99.9%

6.4. Discussion

As you can see that the third experiment gives the maximum accuracy of 99.9%. Thus, in order

to solve the problem statement, the Gradient Boosting classifier model outperforms and was

used to predict the SQL Injection attacks.

After finding out the most optimal classification model, Gradient Boosting model is been used

to build our SQL Injection Detection system that will predict any SQL query. Our SQL

Detection system takes the SQL statement as a user input and detects if the provided input

contains the SQL injection or not. See the below figure [12] that shows the example of multiple

user inputs. The variable “check_data” stores the user input value.

17

Figure 15: SQL Injection Detection System Model

The figure [13] below shows the few examples of user inputs and the results obtained by our

SQL Injection Detection System.

S.NO USER INPUT (Check_data) RESULTS

1

server=localhost;database=northwind;uid=sa;pwd=;

This is the code containing S

QL INJECTION

2

SELECT * FROM users WHERE username = '' OR

1=1-- ' AND password = 'foo'

Enter the text to check: SEL

ECT * FROM users WHERE userna

me = '' OR 1=1-- ' AND passwo

rd = 'foo'

-

RESULT

This is the code containing S

QL INJECTION

3

SELECT /*!32302 1/0, */ 1 FROM tablename

Enter the text to check: SEL

ECT /*!32302 1/0, */ 1 FROM t

ablename

-

RESULT

This is NORMAL TEXT

4

SELECT ID, Username, Email FROM

[User]WHERE ID = 1 AND

ISNULL(ASCII(SUBSTRING((SELECT TOP 1

name FROM sysObjects WHERE xtYpe=0x55

Enter the text to check: SEL

ECT ID, Username, Email FROM

[User]WHERE ID = 1 AND ISNULL

(ASCII(SUBSTRING((SELECT TOP

1 name FROM sysObjects WHERE

xtYpe=0x55 AND name NOT IN(SE

LECT TOP 0 name FROM sysObjec

ts WHERE xtYpe=0x55)),1,1)),0

)>80--

-

RESULT

This is the code containing S

QL INJECTION

18

AND name NOT IN(SELECT TOP 0 name FROM

sysObjects WHERE xtYpe=0x55)),1,1)),0)>80-- "

5

hi my name is chirag chaudhary

Enter the text to check: hi

my name is chirag chaudhary

-

RESULT

This is NORMAL TEXT

Figure 16: SQL Injection Detection system Results Table

7. CONCLUSION AND FUTURE WORK

After doing an in-depth research about SQL Injection attacks and their effects in an industry,

it is really important to mitigate this attack and to provide a reliable solution against it. This

vulnerability is listed in top 10 OWASP and is still considered as one of the main attack that

can harm the personal and sensitive data. There were many mechanism that were applied in

order to solve this problem but majority of them only focused on the previous attacks and the

unknown attacks were not registered. In this study, machine learning algorithm has been used

to register this problem and build a SQL Injection detection system that can predict previous

and unknown queries and cam classify whether the given query contains a SQL injection attack

or not. This study experimented with three major classification models, Support Vector

Regression, Random Forests and Gradient Boosting algorithm. In our case, Gradient Boosting

algorithm out performs and gives an accuracy of 99.9% . To achieve this efficiency hyper-

parameter tuning was performed. To conclude, this study was able to build a SQL Injection

Detection system using Gradient Boosting model and our system is able to classify unknown

queries as a SQL Injection attack and plain text.

In the future this study could be further enhanced to detect other important attacks. Further the

approach used in this model can also be modified and can be combined with other approaches

such as dynamic and static code analysis. Alternatively to enhance the security and

performance of existing approach one can increase the size of the dataset which will improve

the knowledge base of the model. Since the scope of machine learning is wide, also one can

further experiment with neural networks as they are relatively strong models.

8. REFERENCES

Anley., C., 2002. Advanced SQL Injection In SQL Server Applications. White paper, Next

Generation Security Software Ltd. .

Bentéjac, C. C. A. &. M.-M. G., 2021. A comparative analysis of gradient boosting algorithms..

Artif Intell Rev 54, , Issue https://doi.org/10.1007/s10462-020-09896-5, p. 1937–1967 .

Cannady, J. B. F. a. J., 2017. The promise of machine learning in cybersecurity,. s.l., IEEE, pp.

pp. 1-6.

Chen, T. C. G., n.d. XGBoost: A Scalable Tree Boosting System, Washington: IEEE.

Dornseif, M., 2005. Common Failures in Internet Applications, s.l.: s.n.

19

Farooq, U., n.d. Ensemble Machine Learning Approaches for Detection of SQL Injection

Attack, s.l.: Preliminary communication.

Handa, A. S. A. S. S., 2019;. Machine learning in cybersecurity: A review.. WIREs Data

Mining Knowl Discov. , Issue https://doi.org/10.1002/widm.1306.

Hou, K. W. a. Y., 2016. Detection method of SQL injection attack in cloud computing

environment. s.l., IEEE, pp. pp. 487-493,.

Inc., O. F., 2021. OWASP Top Ten. [Online]

Available at: https://owasp.org/www-project-top-ten/

[Accessed 03 09 2021].

Inyong Lee, S. J. S. Y. J. M., 2012. A novel method for SQL injection attack detection based

on removing SQL query attribute values. Mathematical and Computer Modelling

ScienceDirect, Volume 55(Issues 1–2), pp. Pages 58-68,.

Jemal, I. &. C. O. &. H. H. &. M. A., 2020. SQL Injection Attack Detection and Prevention

Techniques Using Machine Learning.. International Journal of Applied Engineering Research,

pp. 569-580.

K. Kamtuo and C. Soomlek, 2017. Machine Learning for SQL injection prevention on server-

side scripting. Chiang Mai, Thailand, IEEE, pp. pp. 1-6.

L. Xiao, S. M. T. I. a. K. S., 2016. SQL Injection Attack Detection Method Using Expectation

Criterion. 2016 Fourth International Symposium on Computing and Networking (CANDAR),

Issue doi: 10.1109/CANDAR.2016.0116., pp. pp. 649-654.

Milic, T., 2019. SQL Injection Attacks and Defenses, Melobourne: Swinburne University of

technology.

Muhammad Amirulluqman Azman, M. F. M. a. R. S., 2021. Machine Learning-Based

Technique to Detect SQL Injection Attack. Journal of Computer Science, 05 February.

Natekin Alexey, K. A., 2013. Gradient boosting machines, a tutorial. Frontiers in

Neurorobotics, 7(https://www.frontiersin.org/article/10.3389/fnbot.2013.00021), p. 21.

Principal, A. C., 2018. SQL Injection Attacks and Prevention: An Overview. IJCRT, 2

April.6(2).

R. Sathya, A. A., 2013. Comparison of Supervised and Unsupervised Learning Algorithms for

Pattern Classification. (IJARAI) International Journal of Advanced Research in Artificial

Intelligence, Volume 2.

Rubidha Devi.D*, 2R.Venkatesan, 3Raghuraman.K , Dec-2016 . A STUDY ON SQL

INJECTION TECHNIQUES. nternational Journal of Pharmacy & Technology IJPT, Vol.

8(Issue No.4), pp. 22405-22415 .

20

S. O. Uwagbole, W. J. Buchanan and L. Fan,, 2017. Applied Machine Learning predictive

analytics to SQL Injection Attack detection and prevention. Lisbon, Portugal, IEEE, pp. pp.

1087-1090.

Siraj, V. F. a. A., n.d. Applications of Machine Learning in Cyber Security, USA: IEEE.

Swarnaprabha Patil, Prof. Nitin Agrawal, 2015. Web Security Attacks and Injection- A Survey.

International Journal of Advancements in Research & Technology, February.4(2).

Wikipedia, 2021. SQL injection. [Online]

Available at: https://en.wikipedia.org/wiki/SQL_injection

[Accessed 23 08 2021].

William G.J. Halfond, Jeremy Viegas, and Alessandro Orso, n.d. A Classification of SQL

Injection Attacks and Countermeasures, s.l.: Gatec.edu.

