~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc in Cloud Computing

Dilip Singh
Student ID: x19208073

School of Computing
National College of Ireland

Supervisor: Jitendra Kumar Sharma

Configuration Manual

Dilip Singh
x19208073

1 Introduction

1.1 Purpose of the document

Based on the requirements of the NCI Research project, this Configuration Manual is
completed. This document describes the software tools and settings required to optimise
the AWS Elastic BeanStalk performance.

1.2 Document structure

Section Purpose

General Information The experimental environment setup is ex-
plained in this module, which explains the
requirements for project.

Setup prerequisites For development and update of the solution,
this module describes steps necessary for set-
ting up the development environment.

Deployment procedure The deployment procedure for a proposed
model is described in this module
Validations This module describes the requirements for

validating the success of the deployment of
the solution

2 General Information

2.1 Objective

The objective of this research work is to optimize the application deployment time of
AWS Elastic BeanStalk using custom script. The script was written in python 3.8 and
utilizes concurrent.features library to enable thread level parallelism. With the help of
thread level parallelism the application files will get deployed simultaneously.

2.2 Architecture requirement

AWS services required for building a Composite model are described in this section.

1

2.2.1 AWS Elastic BeanStalk

AWS Elastic BeanStalk service is required to deploy the application code and optimise
the performance of it. The Elastic BeanStalk is used to inject the custom script to enable
thread level parallelism [1]

2.2.2 AWS Simple Storage Service(S3)

AWS 83 is used for storing application source during application deployment with custom
code P

2.2.3 AWS CodePipeline

AWS CodePipeline service is used to establish a pipeline connectivity between GitHub
repository where application code is stored and AWS Elastic BeanStalk ﬂ

2.2.4 AWS CloudWatch

AWS CloudWatch is used for continuous monitoring of deployed application and to record
the application deployment without custom codd]

2.2.5 AWS Elastic Cloud Compute(EC2)

The AWS EC2 instance is used to deploy the application and further inject the custom
code inside it

2.2.6 GitHub

GitHub repository is used as application source provider while deploying it without cus-
tom code.

2.3 Required Skill

It is assumed that you already have a basic understanding of Amazon Web Services before
reading this guide. The user must also be familiar with the Python language to create
functions and understand the code.

'https://aws.amazon.com/elasticbeanstalk/
’https://aws.amazon.com/s3/
3https://aws.amazon.com/codepipeline/
“https://aws.amazon.com/cloudwatch/
Shttps://aws.amazon.com/ec2

https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/s3/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/ec2

3 Development Environment Requirement

3.1 Code Repository
Please refer to the zip file I have submitted in the ICT solution.

3.2 Programming language required
e Python Version 3.8
e Boto3

e Shell scripting

3.3 Creating Elastic BeanStalk Environment

Before deploying application we need to create a AWS Elastic BeanStalk environment.
Below are the steps required to create an BeanStalk instance.

e Navigate to AWS Elastic BeanStalk service and click on ’create a new environment’
button.

e Select the environment tier i.e. Web server environment and click next.

e Now provide the environment details such as application name, environment name,
application platform type and application code (default sample application) and
click on ’create environment’ button as shown in figure [1}

Elastic Beanstalk Environments
All environments C Create a new environment
Q 1 @
Applicati Dat Last
Environment name A Health ¥ ppiication ate as . URL v Running versions
name v created v modified v
2021-08- 2021-08- Thesiscodenormal-
X Thesis-Code- 15 15 env.eba-gq4p7ijt.us- code-pipeline-162904
Th di L-
esiscodenormatenv @ Normal 15:28:21 16:53:39 cast- 22fh25467b1754a86¢
UTC+0100 uTC+0100 1.elasticbeanstalk.com
2021-08- 2021-08- Thesiscodeparallelism-
Thesiscodeparallelism- @ Thesis-Code- 15 15 env.eba-hadmjzbd.us- code-pipeline-162905
env Parallelism 15:27:48 21:08:26 east- €16c22015c23a894d4
UTC+0100 uTC+0100 1.elasticbeanstalk.com

Figure 1: Elastic BeanStalk environment creation

3.4 Configuring security group

On successful creation of AWS Elastic BeanStalk we will locate the BeanStalk instance
and modify its security group. Since, we don’t get any SSH key from Elastic BeanStalk
to access its instance. Hence, we will modify the security assign to the instance to get

web based SSH access. Steps are as follows:

e Navigate to EC2 service and search for instance having suffixed named of Elastic

BeanStalk environment name.

e Now, click on instance id and navigate to 'Security’ tab. Click on security group

assigned to instance and edit the inbound traffic rule.

e Add SSH rule and source address as 0.0.0.0/0 (it will allow access to instance from

anywhere) as shown in figure

e click on ’save rule’ button and try connecting with instance using EC2 instance

connect option as shown in figure [3]

Edit inbound rule:

bound rules control the incoming

Inbound rules info

Security group rule 1D Type info

59r-0221047423183¢269 s

59r-042967622810¢710 R

Add rule

Groups §-0d7238fa2b654c273 - awse!

tack-AWSEBSecurityGroup-INEDIPAOTQQSB > Editinbound rule

g traffic that's allowed to reach the instance.

Protocol Portrange Source info Description - optional Info
nfo nfo

v custom v | Q Delete
0000/0 X

v custom v | Q Delete

sg-
09972ec65873100
9

i-0166257¢9173e4350 (Thesiscodeparallelism-env)

Figure 3: Elastic BeanStalk instance interface

3.5 Uploading application source code to AWS S3

Due to resource restriction by AWS we cannot modify the AWS Elastic BeanStalk envir-
onment directly. Therefore, we will upload the application source code in AWS S3 bucket
and manually check the application deployment time. Below are the steps for uploading
application file to AWS S3:

e Navigate to AWS S3 service and click on ’Create Bucket” button.

e Now enter the bucket name(must be unique), allow all public access and click on
"Create Bucket’ button.

e After successful creation of bucket we will upload the application code inside it as
shown in figure [4

Amazon S3 testpythonO my-app/

my-app/
Objects Properties
Objects (18)

Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [7] to get a list of all objects in your bucket. For others to access your objects, you'll need to
explicitly grant them permissions. Learn more [2

Actions v H Create folder
[Upload

Q i @
Name a Type Vv Last modified v Size v Storage class v
O cartphp php August 15, 2021, 20:55:24 (UTC+01:00) 7.0KB Standard
@ change-password.php php August 15, 2021, 20:55:24 (UTC+01:00) 5.8 KB Standard
@ dashboard.php php August 15, 2021, 20:55:24 (UTC+01:00) 6.9 KB Standard
O edit-medicine.php php August 15, 2021, 20:55:24 (UTC+01:00) 7.5KB Standard
@ forgot-password.php php August 15, 2021, 20:55:24 (UTC+01:00) 4.4KB Standard
B gulpfilejs js August 15, 2021, 20:55:24 (UTC+01:00) 856.0 B Standard
O includes/ Folder -

O index.php php August 15, 2021, 20:55:25 (UTC+01:00) 4.4 KB Standard
@ invoice-search.php php August 15, 2021, 20:55:25 (UTC+01:00) 6.7 KB Standard

Figure 4: AWS S3 bucket interface

3.6 Creating AWS CodePipeline
Following are the steps required for creating AWS CodePipeline.

e Navigate to AWS CodePipeline service and click ’Create Pipeline’ button and enter
the pipeline name.

e In next interface select the source provide i.e. GutHub Version 1 and select the
application repository without containing .ebextension directory.

e Now skip the build phase step and select the deployment provider i.e. AWS Elastic
BeanStalk and select the deployment environment.

e Review the pipeline configuration and wait for pipeline to be created. As shown in
figurdh] the pipeline is created

Developer Tools CodePipeline Pipelines
Pipelines info Create pipeline
Q 1 &

Name Most recent execution Latest source revisions Last executed

Source - e16c2201 [Z: Update

thesis-test S ded
esis-test © Succeede dbconnection.php

11 hours ago

Figure 5: AWS Elastic BeanStalk environment interface

3.7 Configuring and injecting custom code inside instance

After successful SSH into instance we will inject our custom code stored in GitHub
repository. Below are the steps for configuring:

e Inside instance navigate to root directory by typing ’cd /’

Now git clone the custom code repository using command ’git clone url’

On successful git clone, move the custom code file at / directory. The code snippet
is shown in figure [0]

Now create an executable script file named 'run.sh’ and type the script shown in
figure [7]

Finally install the Botod libaray using command ’sudo pip3 install boto3’.

main-code-thesis.py

import boto3

import os

import time

import concurrent. futures

def (directory):
s3_resource = boto3. ('s3")
bucket = s3_resource. ('testpython@') # name of our bucket
for obj in bucket.objects. (Prefix = directory): # for-loop will iterate all files i
if not os.path. (os.path. (obj.key)): # check if there is directory or not
[(os.path. (obj.key)) # make directory if not exist
bucket. (obj.key, obj.key) # save all files to ngnix server path

(OH
t1 = time.

size = (1200, 1200)

direct = [
my=app

with concurrent. futures. () as executor:
executor. (downloadDirectoryFroms3, direct)

t2 = time. ()

(f'Finished in {t2-t1} seconds')

if __name__ == '__main__ ':

0

Figure 6: Custom code snippet

[J
4P runsh
1 |isbing

code-normal.py && v /my—app/* /var/www/html && rf /my-app

Figure 7: Executable script snippet

4 Validation

e To run the experiment simulation without custom code. Navigate to GitHub and
edit/update any application file and click ’'commit’ button. On successful code
commit AWS CodePipeline will automatically start deploying the application in
Elastic BeanStalk environment as shown in figure [8

e Now to run the experiment simulation with custom code SSH into BeanStalk in-
stance as explained in section . Type ’./run.sh’ to execute the run.sh script.
The script will trigger the custom code and start application deployment process

as shown in figure [9

Pipeline execution: 3842dbea

Execution summary [Copy pipeline execution ID } [View revisions
Status Started Completed Duration
© Succeeded 4 hours ago 4 hours ago 1 minute 43 seconds

Trigger
CreatePipeline - root [4

Latest action execution message

Visualization

Actions
Action name Stage name Status Action provider
Deploy Deploy © Succeeded AWS Elastic Beanstalk
Source Source @ Succeeded GitHub (Version 1) &

Started

4 hours ago

4 hours ago

Completed

4 hours ago

4 hours ago

Duration

1 minute 37 seconds

4 seconds

Figure 8: Application deployment without custom code

Amazon Linux 2 AMI

This EC2 instance is managed by AWS Elastic Beanstalk. Changes made via SSH
WILL BE LOST if the instance is replaced by auto-scaling. For more information
on customizing your Elastic Beanstalk environment, see our documentation here:

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-ec2.html

-172-31-92-98 ~]# cd /
[root@ip-172-31-92-98 /1# ./run.sh
Finished in 0.3979944120001164 seconds
‘/my-app/connect.php’ -> ‘/var/www/html/connect.php’
‘/my-app/home.php’ ‘/var/www/html/home.php’
‘/my-app/index.php’ -> ‘/var/www/html/index.php’

‘/my-app/issuedbooks.php’ -> ‘/var/www/html/issuedbooks.php’

[root@ip-172-31-92-98 /1# |}

Figure 9: Application deployment with custom code

	Introduction
	Purpose of the document
	Document structure

	General Information
	Objective
	Architecture requirement
	AWS Elastic BeanStalk
	AWS Simple Storage Service(S3)
	AWS CodePipeline
	AWS CloudWatch
	AWS Elastic Cloud Compute(EC2)
	GitHub

	Required Skill

	Development Environment Requirement
	Code Repository
	Programming language required
	Creating Elastic BeanStalk Environment
	Configuring security group
	Uploading application source code to AWS S3
	Creating AWS CodePipeline
	Configuring and injecting custom code inside instance

	Validation

