
Optimizing Continuous Deployment
Performance Using Multi-Level Thread

Parallelism

MSc Research Project

Cloud Computing

Dilip Singh
Student ID: x19208073

School of Computing

National College of Ireland

Supervisor: Jitendra Kumar Sharma

www.ncirl.ie

Optimizing Continuous Deployment Performance
Using Multi-Level Thread Parallelism

Dilip Singh
x19208073

Abstract

With the rapid growth of Agile software delivery trends Continuous Integration
and Continuous Deployment(CICD) has gained a wide adoption across IT organ-
izations. Continuous Integration and Continuous Deployment(CICD) are the basic
pillars of DevOps which enable rapid software deployment with quick feedback. It
also bridges the gap between operations and the developer team. Recent studies
show that adopting DevOps practices for software development sometimes creates
additional overhead for developers due to overly long build time. It becomes even
worse when waiting for a build to successfully finish gets fail. To overcome this
barrier, the paper emphasis improving Continuous Deployment(CD) performance
to reduce the application deployment makespan. The motive is to optimize the per-
formance of AWS Elastic BeanStalk using multi-level thread parallelism in Python.
I have used a custom script written in python 3.7 to invoke multiple threads for
deploying application files from the AWS S3 bucket to the AWS EC2 instance. The
entire software delivery can be improved while reducing the costs by lowering the
execution time for Continuous Deployment (CD). For the experiment, we have used
AWS cloud and evaluated various matrices such as execution time, CPU utilization,
a cost that occurred before and after optimization.

1

1 Introduction

Traditional software development techniques are insufficient to meet today’s corporate
needs Riungu-Kalliosaari et al. (2016). As the software market becomes more competitive,
companies devote more attention and resources to developing and delivering high-quality
software at a faster speed. Currently, software development has progressed to the point
where regular software upgrades are supplied concurrently without hampering software
use. All this was feasible due to DevOps Continuous Integration and Continuous Deploy-
ment(CICD) practices which enable efficiency, flexibility and speed Software Development
Life Cycle(SDLC). Previously the development team pushes new software versions into
production regularly, but the operations team blocks modifications to ensure software
stability and other problems. This method ensures greater software production stability.
In practice, however, this strategy results in a considerable wait between a software up-
date and deployment Leite et al. (2019). To overcome the problem of long delays DevOps
practices were introduced. ? proposed the notion of Continuous Integration (CI) in the
year 2010 expanded this concept into Continuous Delivery (CD) as a deployment pipeline
concept. The main advantages of CI methods are that they reduce risk and ensure that
software is bug-free and dependable, removing the barrier to frequent delivery. ?, defined
DevOps as “a set of practices intended to reduce the time between committing a change
to a system and the change being placed into normal production while ensuring high
quality”.

Continuous practices provide various benefits such as (1) Obtaining more frequent and
timely input from customers and the software development process; (2) releasing software
updates on a regular and consistent basis, resulting in higher customer satisfaction and
product quality; (3) CD strengthens the link between development and operations teams,
and many manual activities can be removed Shahin et al. (2017). Traditionally in software

Figure 1: Phases of DevOps

companies, two teams were formed (Developer team and Operation team) to developed
and monitor the performance of the software. But with the rising conflicts between
two teams during software development organization came up with the idea of DevOps.
Where only one team holds the accountability of both development and operations. In
the figure, various phases involved in DevOps are shown. The phases are as follows
(1)Plan, (2)Code, (3)Build, (4)Test, (5)Release, (6)Deploy, (7)Operate and (8)Monitor.
During the planning phase, the developer team along with various stack holders analyses

2

the market need and evaluates the functional and non-functional requirements. After
that, the next phase i.e code phase starts where the development team starts coding
and code integration takes place considering functional and non-functional requirements
discussed during the planning phase. On successful integration, the building is performed
on designed code. If the code successfully qualifies the build process then the various test
cases were formed to check the correct working of specified modules. After the test
phase, the software versioning is performed and a unique label is assigned to the qualified
software bundle. After which labeled software version is pushed into the deployment
phase to make it available for end-users. Even after the successful deployment of the
software into the production environment, its functionality is continuously monitored by
the same team (but now as an operation team) for any kind of run-time malfunction.
If any kind of malfunction is identified during time-time, the alert is the gene, rated and
again the whole cycle iterates.

Nowadays various automation tools were introduced to ease the DevOps practices
such as Jenkins, but with every, tool there are some limitations. In the proposed study,
I will analyze the advantages and disadvantages of employing DevOps in software devel-
opment. DevOps is used by many IT organizations for continuous software development.
The proposed research focuses on reducing the time required to deploy an application
during the continuous development (CD) phase. The AWS Elastic BeanStalk will be util-
ized to reduce the time required for continuous development (CD). The design of AWS
Elastic BeanStalk is outlined in this paper, and the factor responsible for application
deployment delays is addressed. Task parallelism is offered to reduce application deploy-
ment execution time. AWS Elastic BeanStalk incorporates the custom code. Threads
are used in the custom code to task-level parallelism. The suggested study is assessed
using AWS CloudWatch measurements for CPU use and execution time while deploying
applications with and without custom code.

1.1 Motivation

Speed up the deployment time of AWS Elastic BeanStalk using custom code written in
Python 3.8 which multi-level level parallelism to deploy the application. The main aim is
to provide fine-grained performance to Elastic BeanStalk to enhance the overall CI/CD
experience during software development.

1.2 Research Question

The main objective is to reduce the time required for deploying and application in cloud
infrastructure. Analyzing and finding the existing limitations of AWS Elastic BeanStalk
and optimize it to achieve fine-grained performance. Hereby this research proposal solves
the following question:

Can makespan of Continuous Deployment(CD) be improved by implementing multi-
level thread-based parallelism using python for different cloud providers e.g. Amazon
Web Services(AWS)?

1.3 Report Structure

Section 2 describes the related work conducted in the area of DevOps and agile software
development. It describes the limitations and solutions of each area for various research-

3

ers. Section 3 describes the steps and required configuration to optimize the performance.
Section 4 elaborates the existing model, proposed model, code sample and environment
setup steps. Section 5 and 6 show the implementation and evaluation matrices used to
compare the performance of Elastic BeanStalk with and without integration of custom
code. Finally, section 7 describes the conclusion and future scope of the proposed model.

2 Related Work

This section elaborates various research related work in Continuous Deployment(CD).
This section is divided into four parts 2.1 Review on DevOps, 2.2 Review on Continuous
Deployment, 2.3 Analysis of related work.

2.1 Review on DevOps

There has been an increased interest in DevOps, which necessitates identifying the chal-
lenges, practices, and tools needed to enhance the performance of CICD. A systematic
review on the existing issues in DevOps from 2004 to 2016 was conducted by Shahin et al.
(2017). Their study identified thirty techniques and tools that could assist in improving
DevOps practice. The author utilized various search methods, search terms, data sources,
inclusion and exclusion criteria, selection of relevant studies, and comprehensive data col-
lection. Search methods were carried out through six libraries such as IEEE Xplore, ACM
Digital Library, Springer, Wiley Online Library, Science Direct, and Scopus by using an
automatic search method. A paper that is published in two different publishers and ad-
dresses the same issue should be rejected if it appears to address the same issue. After
analyzing the paper author found the techniques that can increase the performance of
CICD are (1) decreasing build and test time of Continuous Integration(CI), (2) enhan-
cing accessibility and understanding in build and test scenarios of CI, (3) facilitation of
semi-automated tests, (4) identifying errors and flaws in CI, (5) resolving security and
compatibility issue while deploying pipeline, and (6) increasing dependency on the reli-
ability of deployment methods. Researchers identified several critical factors to consider
when performing continuous practices, such as testing, team awareness and operations,
design principles, appropriate infrastructure, and customers.

Software testing procedures that are efficient and reliable are important because of
system complexity and global competition. Before releasing the software, thousands
of test cases are executed in manual testing. Tests must be thoroughly and efficiently
carried out to ensure that the systems are properly tested. In Flemström et al. (2018)
author, propose that ordering test cases before automating them can minimize test effort,
assuming reuse sections of test cases have also been automated. Using a case study
from a major Swedish vehicle manufacturer, the author analyzed multiple approaches to
prioritization.

The research survey by Leite et al. (2019) discusses the benefits and challenges of
DevOps. Several Finland software companies were interviewed for this survey. By im-
plementing DevOps practice, the author observed that the software can be released more
frequently and also tested more thoroughly. During analysis, there are challenges relating
to communication structures, diverse development and working environments. There was
a finding that DevOps is not appropriate for all organizations.

Development and IT Operations collaborate more effectively through DevOps prac-
tices. A tool called filling-the-gap (FG) is presented in Perez et al. (2015). The FG tool

4

provides performance information to the developer, thereby enhancing and automating
the software delivery process. In this tool, two things are accomplished: (1) providing
a Quality-of-Service (QoS) model, and (2) providing at-runtime application behavior re-
ports to developers. The tool consists of three components, namely: runtimes for FG,
monitoring history databases, and design runtimes for FG. The FG tool records and
analyses the data after application deployment to provide a QoS model. In FG design,
estimation routines execute to fetch monitoring data from monitoring databases to up-
date the application. Configuration and deployment are the first steps in the workflow
for the FG tool. To launch configuration, deploy and configuration users interact with
FG Design-time components. The time component analyzes the application behavior at
runtime based on the configuration of FG Design and provides the application results
along with the details regarding the application performance.

The concept of DevOps involves development (Dev) and operations (Ops) team col-
laborating more frequently. Such integration is driven by the need to continuously adapt
enterprise applications (EAs) to provide variations in the business environment. De-
velopment and operations of software are known collectively as DevOps. In Brunnert
et al. (2015) the author describes the operations, resources, and processes that facilit-
ate consistency, an important quality attribute of software systems. The study outlines
performance-based DevOps integration activities using measurement and model-based
techniques. The author discusses ways to improve performance during the lifecycle of
a software system and provides resources for doing so. It was discovered that the com-
patibility of the different methods and approaches is a vital aspect of all collaborative
activities.

The software industry depends heavily on the development and operation of its soft-
ware. DevOps is a fundamental component of their business. Artač et al. (2016) pro-
posed a DevOps Quality-of-Service(QoS) enhancement method utilizing a DICER tool.
The DICER tool consists of two modules (1) the modeling environment and (2) the de-
ployment service. The deployment element can be dragged and dropped on the modeling
environment dashboard and properly configured. ModaClouds4DICE has been imple-
mented using MODACloudsML in the proposal. The MODACloudsML programming
language outlines how multi-cloud applications will be deployed and provisioned. Once a
user submits their initial model, the tool automatically transforms it to a TOSCA model.
MODACloudML can be easily extended to support deployment models on top of TOSCA
by extending the language. REST APIs are used to retrieve TOSCA blueprints from the
front-end service. It simplifies the deployment procedure by allowing users to drag and
drop files. With deployment service, a simple web browser can be used to run it, but the
tool is designed to be integrated into large, complex DevOps workflows.

The author of cites inproceedings2 describes a security-centered DevOps approach.
In the paper, the security controls were handled by a toolkit. The author used source
code evaluation to secure the project. Integrating security into the DevOps process is the
first step. In the production environment, however, additional features should be intro-
duced, since more resources are needed to identify, detect, and respond to threats. The
author identifies the main challenge to developing continuous integration and continuous
development as the lack of automated, goal-oriented acceptance tests.

DevOps implementation poses some security issues. These issues need to be ad-
dressed quickly. PROMOTHEMEE-II was presented by Rafi et al. (2020) as a model
to prioritize and develop a taxonomy to identify and classify DevOps security factors.
PROMOTHEMEEE-II is based on the analysis of alternatives against each criterion in

5

pairs. The phases in PROMOTHEMEE-II include normalizing the decision, comparing
alternatives pairwise, calculating preference functions, calculating aggregate preference
functions, calculating net outranking flow, and prioritization. From the results of the
prioritization process, it was discovered that the absence of automation tools, security
manual testing, and performance configuration were the primary security concerns in
DevOps. - The study contributes to the understanding of ambiguity and vagueness as-
sociated with DevOps implementation to improve and streamline continuous software
development.

Author Laukkarinen et al. (2017) discusses how DevOps affects medical device de-
velopment. The research examines how to use IEC 62304 and IEC 82304 standards for
clauses in DevOps. The IEC 62304 standard applies to medical devices that contain hard-
ware from the manufacturer whereas the IEC 82304 standard applies to health software
that executes on general-purpose equipment. Based on the experimental analysis, the
author determined that IEC 62304 clauses related to software unit testing and software
deployment were the primary obstacle to DevOps adoption. However, clauses regarding
the repeatability of software development practices and deployments benefited DevOps.
For DevOps, the post-market reporting clause of IEC 82304 posed an obstacle.

Many areas involve security issues, especially critical infrastructures like the national
health system. To provide the best software and services to citizens, security processes,
procedures, and resources are needed. It is not yet clear how security should be incor-
porated into the DevOps pipeline. Author Larrucea et al. (2019) the author discusses
security management in the DevOps pipeline. Source code analysis is the first step in
integrating protection into the DevOps process it must be performed during the integra-
tion phase. In research, real-life scenarios of the healthcare industry are used. An author
points out steps to improving security in a sophisticated DevOps environment. The fact
that malicious code contained inside files has been linked to some of the most severe
security breaches is a major consideration. In this article, the author examines a DevOps
approach of integration that includes security steps. During the DevOps pipeline, the
security controls were managed using a toolkit. DevOps is becoming more secure through
introducing protection into the process, but other features should be addressed later, such
as in the production environment where there is a need for more resources to identify,
detect, and stop threats.

Guerriero et al. (2015), presented SPACE4Cloud. SPACE4Cloud provides model-
driven QoS and capacity allocation during cloud deployment, optimized at the design
time. Java was used to implement the SPACE4Cloud environment. To perform the
experimental analysis, EC2 instances are used with varying workloads and virtual ma-
chines (VMs). Upon deployment into MODACloud, SPACE4Cloud creates an optimiz-
ation model for the application. By the end of the paper, the author argues that the
proposed strategy achieves better performance at a time interval of 5 minutes.

2.2 Review on Continuous Deployment

Software development using Continuous Integration (CI) offers several benefits, including
the development of high-quality software. However, many practices can optimize continu-
ous integration. Zampetti et al. (2020), expose bad practices experienced by the developer
when performing continuous integration. In total, 79 different CI bad smells were com-
piled and classified into 7 categories. Bad smells can be classified into the repository,
infrastructure selection, build process organization, build maintainability, quality assur-

6

ance, and delivery process. There was an insufficient build time for the commit phase,
inappropriate build environment clean-up, use of monolithic builds, unnecessary tests in
the build process, and a lack of notification mechanisms. A bad repository smell res-
ults from a poor repository organization and inappropriate use of version control systems
(VCS). Infrastructure choice bad smell happens when CI pipelines are set up with irrelev-
ant hardware and software components. Most bad smells occur because of the improper
configuration of the CI pipeline, such as using monolithic builds in the wrong place. A
build script malfunction leads to the build phase problem. Quality-of-Service(QoS) can
be optimized by improving testing and statistical analysis before merging the branch.
The configuration of the test coverage threshold, as well as the lack of clear separation
between the test suits and the test activities, impacts QoS. Storage artifacts are account-
able for bad smells associated with delivery, such as an improper deployment strategy.
In a production environment, the bad smell can affect the software release.

Continuous Integration (CI) is a process for integrating code frequently. To avoid
break builds and delays in getting fast feedback, it’s essential to ensure that sufficient
testing is performed on code. A cost-efficient continuous integration algorithm was pro-
posed by Elbaum et al. (2014). When it comes to continuous integration, the author
emphasizes two factors: continuously selected tests(RTS) and test case selection(TCP).
When TCP is used, test cases are put in an appropriate order. When RTS is used, test
cases that are important to run are selected for execution. A time window and RTS
were created to track recent executed test cases. Based on Google’s large data sets, an
empirical study was conducted to determine how the RTS technique could significantly
improve continuous testing’s overall cost-effectiveness. With TCP techniques, developers
can significantly reduce the feedback time in CI, allowing them to address problems more
quickly. An experimental setup is based on the Google Shared Dataset of Test Suits Res-
ults (GSDTSR) which consists of 3.5 million test suits. In the algorithm, test cases are
selected based on their prioritization, which is informed by previous test failure history.
Test cases that fail will be executed first rather than being repeated after every successful
one, which will save time.

Using DevOps, the software can be developed more quickly and efficiently. A long
build cycle in Continuous Integration (CI) is one of the factors that slow down the De-
vOps process. The Continuous Integration phase could be optimized by making changes
to the build test. A technique is presented by Marijan et al. (2018) that includes fault-
and risk-based test case identification, as well as prioritization, to achieve a low runtime.
Test cases that are most relevant to the code change and the risk functionality are sig-
nificant in reducing runtime. Using a test optimizer, the author proposed selecting the
appropriate tests from the test case database for updated code. As soon as the build
phase is complete, a log file containing all test case results, i.e. pass or fail, will be
created. Test cases will be retested if they fail. Code is deployed in a production envir-
onment after passing a successful test case. As soon as the application is deployed into
the production environment, the monitoring process will begin, which will monitor it. It
will update the operational log if there is an operational failure. If the developer provides
an upgrade path to the optimizer, it will check the previously failed test cases from both
operational logs and test logs during the patching phase. With the implementation of
this log and the running of only critical and failed test cases, the build execution time has
been slashed. On implementing the proposed technique, Cisco video conferencing system
was used for experimental analysis and resulted in a 35% reduction in execution time.

Danglot et al. (2019) suggests that developers improve the overall test cases suite

7

written by engineers to improve continuous integration(CI) stages of DevOps. DSpot
is the name of their proposed system. DSpot is a tool that automates the Test Case
Optimizer process for Java Unit Testing, based upon Tonella’s and Xie’s algorithms.
Test cases written by developers can be improved by the proposed tool. To integrate the
improved test cases into the main code branch of the test code, developers receive them as
patch requests or pull requests. Ten real-world open-source software projects are used to
develop 40 real-world unit test cases for the spot. The author found that by adding new
assertions and triggering new behavior, 26 of 40 test cases could be improved. The author
provided improved test cases developed by DSpot for 10 open-source software projects.
13/19 developers accepted the proposed improvement test case. DSpot is capable of
automatically optimizing test cases for real-world large Java applications after tests were
done with DSpot.

Lehtonen et al. (2015) discuss metrics that are suited for supporting continuous deliv-
ery and deployment using a comparative case study on a project of a mid-sized software
company. Based on the tested data, the author investigates new metrics that describe the
pipeline’s properties. Information gleaned from metrics is used to enhance pipelines and
related processes. When considering continuous delivery methodologies, the throughput
of a pipeline was measured on how quickly functionality is delivered to an end-user before
deployment. In the proposal, the author presented metrics on features per month (FPR),
releases per month (RPR), and the fastest possible feature lead time.

An agile development approach has made software delivery more efficient by using
Continuous Integration and Continuous Development (CICD). According to Arachchi
and Perera (2018), introduces a new approach to CICD that consists of four optimiza-
tion phases, including benchmarking, load testing, scaling, and provisioning. To mon-
itor the abnormal behavior of the product, Nagios was used to monitor the Jenkins CI
server, Git repository, Nexus repository with Ansible automation, and Jenkins CI server
with Git repository was used for implementing pipelines. Tests were conducted by a
simple software application built on XML. A benchmark phase includes first assessing
the production environment’s capabilities and limitations, and afterward, evaluating the
product’s benchmark level. The CI server initiates benchmarking and load-testing of
APP4 using it as the benchmark server. Benchmarking and load testing are carried out
to identify any performance issues with the new product. Based on the benchmark level,
a scaling factor was used to determine new requirements for the software. In the next
phase, provisioning is done, which is not mandatory. It was determined that each phase
would take 20 minutes to complete after the performance analysis. The system became
unstable when the load reached 100 percent. The response time of the system improves
when scaled according to benchmarks. Accordingly, test benchmarks have demonstrated
that the system continues to process the same amount of load when software is updated.

Dlugi et al. (2015), developed a CI plug-in for Jenkins that implements a model-based
performance change detection process. The proposed model generates the resource pro-
files based on successful build tests. A resource profile demonstrates how a transaction
moves between control and resources. Artifacts are stored as the resulting resource pro-
files. Every time a new release of the software is released, a resource profile is generated.
Resource profiles were also used to compare the performance of the previously examined
application versions. The resource profile compactor analyzes the control flow to find the
reason for a performance regression found during the performance test. Based on the
proposed model, a visual report and a listing of methods are generated for performance
metrics.

8

As DevOps is gaining traction and being adopted by many organizations, it is possible
to integrate DevOps CICD with high-performance resources. Author of Sampedro et al.
(2018) explains how CICD can ease challenges of software management for HPC (High-
Performance Computing) resources. The authors explain how Summit is deployed in
the HPC environment and why it uses tools such as Jenkins. Software deployment and
continuous integration are performed with Jenkins, an open-source automation tool. A
variety of configuration styles are supported. The pipeline has been used in the paper
since it is easily integrated into a version control system. A containerized application
called Singularity makes it possible to conduct reproducible research through mobility
across compute resources. As a central location for managing singularity images, the
singularity registry service was adapted from the cloud service Singularity Hub. Registries
such as Singularity Registry provide local storage optimization and on-site authentication.
Multiphase flow with interphase exchanges (MFiX-Exa) at exascale are presented for
experimental analysis. National Energy Technology Limited(NETL) created MFiX, a
computational fluid dynamics(CFD) model. As part of the CICD pipeline, Jenkins pools
the code commits for MFiX-Exa. Jenkins begins CI jobs with a singularity registry.
According to the results of the CICD, HPC workflow practices can further increase the
likelihood of developing high-quality, reliable software.

2.3 Summary of related work

Developers and operators use DevOps to efficiently create and deploy applications and
receive feedback rapidly. In Shahin et al. (2017), Leite et al. (2019), Laukkarinen et al.
(2017) and Rafi et al. (2020) authors elaborate the existing tool, challenges and practices
such as testing time for CI, deployment time while performing CD, security testing and
lack of automation in DevOps. According to Leite et al. (2019), DevOps is not suitable
for every organization to optimize CI performance. Further, Zampetti et al. (2020) un-
covered problems while performing CI in DevOps. In Perez et al. (2015), Artač et al.
(2016) and Dlugi et al. (2015) contribute to improving DevOps through automation and
ensuring Quality-of-Service(QoS). By reducing execution time and cost, the Arachchi and
Perera (2018), Elbaum et al. (2014) and Marijan et al. (2018) authors researchers improve
continuous integration and continuous deployment. In my research, I will examine the
existing challenges in continuous deployment, with a focus on improving the execution
time in DevOps. Reduced CD execution time will also reduce deployment costs.

9

3 Methodology

This paper tries to optimize the performance of Continues Deployment lifecycle of soft-
ware by reducing the time required to deploy software. The Amazon Web Service(AWS)
platform is used to optimize performance. By injecting the custom code inside the AWS
Elastic BeanStalk instance. Although AWS provides Elastic BeanStalk to fully auto-
mate the process of the CI/CD sometimes it requires time to fully deploy the software
into production. The GitHub act as an application source provider which will trigger
the custom code script to reduce the deployment time. AWS CodePipeline is used to
provide connectivity between GitHub and Elastic BeanStalk. AWS CodePipeline is used
to capture the time required by each phase during application deployment.

Figure 2: Security group configuration

The initial step includes setting up the AWS Elastic BeanStalk and locating the
instance created by Elastic BeanStalk and SSH into it. The custom code is written in
python 3.7 and utilizes concurrent features to enable thread-level parallelism. With the
help of thread-level parallelism, multiple files of applications deploy concurrently. The
custom code is injected inside Elastic BeanStalk after SSH into the instance.

3.1 Material and Equipments

Using Amazon Web Service(AWS), this paper optimized the performance of Continuous
Deployment(CD). As shown in figure ??, by modifying the assigned security group in-
bound traffic rule i.e by allowing SSH rule. This will allow us to SSH into the Elastic
BeanStalk instance to inject the custom code.

3.2 Sample Data

The sample application written in PHP is used to test the performance of AWS Elastic
BeanStalk before and after injecting the custom code. For experimental purpose, various
application size was used such as 1MB, 5MB, 10MB and 15MB.

10

4 Design Specification

This section describes the design specification of the proposed research work. Sub-section
3.1, elaborates the existing system problem. In sub-section 3.2, the proposed System
Architecture flow is explained.

Figure 3: Existing System Architecture Amazon (n.d.)

As shown in figure 3, the internal architecture of AWS Elastic BeanStalk consists
of Initial steps, Configure, Deploy. The initial phase begins with downloading the ap-
plication zip package followed by running commands for extracting the application and
prebuild hooks. The next phase is Configure phase, in this phase application configura-

11

tion and proxy were set up. This phase includes running build file commands, configuring
proxy overrides, container commands(if any), and finally running pre-deploy hooks. On
successful completion of the above phase, the final phase begins i.e Deploy. In this phase
profile, proxy overrides effects and post-deploy hooks take place. In the proposed re-
search, we are going to focus on configuring the phase of Elastic BeanStalk by triggering
our code during the pre-deploy phase.

4.1 Proposed System

Figure 4: Proposed Research Architecture

Figure 4 depicts the proposed system architecture. The proposed system emphasis
towards Continuous Deployment(CD) phase of application development. Whenever a de-
velopment team commits a code change in the GitHub repository it will trigger the AWS
Code pipeline which will sync the application source code from GitHub to the AWS S3
bucket. After that, the application package goes to the build server which will test the
application against desired build case. If the application bundle successfully passes the
build case then it will proceed further for deployment else it stops further deployment of
the application. Build server responsible for code compilation, unit test, style checker and

12

many more. After a successful build, the build server will create another repository inside
AWS S3 which contains all the application files ready for deployment. Now the actual
Continuous Deployment(CD) phase begins. In the CD phase, AWS Elastic BeanStalk
will manage and deploy the application automatically. On the successful deployment of
an application, Elastic BeanStalk provides the unique URL through which the deployed
application can be accessed by end-users. In this process of CI and CD, the proposed sys-
tem will improve the capability of AWS Elastic BeanStalk by injecting custom code inside
the Elastic BeanStalk instance internal schema. The custom code was written in python
3.7 and the import concurrent feature library. Using a concurrent feature library enables
thread-level parallelism in python. Concurrent features library provides asynchronous
execution of a task with threads using ThreadPoolExecutor 1 further map function maps
the source location(AWS S3 build the application) and destination location(Elastic Bean-
Stalk instance). Irrespective of the application platform the developed custom code can
be integrated with any application to decrease the application deployment duration.

5 Implementation

To implement the proposed research work, I have used Amazon Web Services(AWS)
cloud. For performing CICD, AWS Elastic BeanStalk is used. The Elastic BeanStalk
automatically creates an EC2 instance to deploy the application. In research, the main
task is to finding and penetrate inside the Elastic BeanStalk EC2 instance. To penetrate
inside Elastic BeanStalk instance we need to modify the existing security group as shown
in figure 2. After modifying the security group we will SSH direct using the web interface.
After penetrating the inside instance we will do some internal configurations such as:

Figure 5: GitHub sample project structure

1https://docs.python.org/3/library/concurrent.futures.html

13

https://docs.python.org/3/library/concurrent.futures.html

• Installing python 3.8, Boto3 and Git Clone the custom python code which will
enable thread-level parallelism.

• We need to create a script(.sh) file at /root directory and make execute the custom
code python file.

• As shown in figure 5, we need to create a repository called .extension in our applic-
ation code and place a .config file. Config file will trigger the script file inside the
EC2 instance to further run the python file.

As shown in figure 6, the configuration file which will trigger the python script for
application deployment during deploy phase. The file has .config extension and contains
command require to run a script(.sh) file which was penetrated inside Elastic BeanStalk
instance.

Figure 6: Configuration file to trigger python script

The figure 7 shows the custom code script written in python 3.8 which utilizes various
libraries such as boto3, concurrent.features and os. The concurrent.features library en-
ables thread-level parallelism with the help of ThreadPoolExecutor and further executes
threads using the map() method.

Figure 7: Code snippet of custom code written in python 3.8

14

6 Evaluation

The section compares four case studies for application deployment with custom code and
without custom code. The evaluation was conducted on PHP applications of size 1MB,
2MB and 5MB respectively. The execution time graph is used to represent the difference
between application deployment with thread-level parallelism and without thread-level
parallelism.

6.1 Case Study 1 for 1MB file without custom code

As shown in figure 8, the deployment of a 1MB PHP application using AWS Elastic
BeanStalk is 1 minute and 43 seconds. The sample application consists of four PHP files
named index.php, connect.php, home.php and issuebooks.php. During deployment of
application AWS Elastic BeanStalk copies application files one by one from AWS S3 to
BeanStalk EC2 instance. which is time-consuming and also incurred additional cost to
the user.

Figure 8: 1MB PHP application deployment without custom code

15

6.2 Case Study 2 for 1MB file with custom code

The figure 9 represents the application deployment using custom code which enables
thread level parallelism. It can be seen that time required to deploy PHP application of
1MB was 0.397 seconds.

Figure 9: 1MB PHP application deployment with custom code

6.3 Case Study 3 for 5MB file without custom code

The figure 10 represents the application deployment without usage of custom code. It
can be seen that time required to deploy PHP application of 5MB was 1 minute and 56
seconds.

Figure 10: 2MB PHP application deployment without custom code

16

6.4 Case Study 4 for 5MB file with custom code

The figure 11 represents the application deployment using custom code which enables
thread-level parallelism. It can be seen that time required to deploy a PHP application
of 5MB was 0.992 seconds.

Figure 11: 2MB PHP application deployment with custom code

6.5 Discussion

The graph 12 depicts the difference between deployment time for a PHP application of
size 1MB, 2MB and 5MB. The time required for deploying an application without custom
code was 1 minute and 43 seconds whereas with thread-level parallelism the time was
0.397 seconds. The execution time for deploying 5MB applications without custom code
was 1 minute and 56 seconds and in 0.992 seconds with custom code. It can be observed
that for small application size there was drastic change whereas when we keep increasing
application size the time difference increases gradually.

Figure 12: Application deployment time for various size of application

17

7 Conclusion and Future Work

This paper introduces task-level parallelism to decrease the time required during applic-
ation deployment. This paper believes that the existing performance gap in application
deployment in DevOps has gained a significant performance boost with custom code.
The paper efficiently uses AWS S3 and AWS EC2 instances to improve the AWS Elastic
BeanStalk performance. Comparing the result by the implementation of custom code
and without code on various application sizes (1MB, 5MB, 10MB, 15MB) shows a drastic
change in time duration. In research, it was found that due to thread-level parallelism
the application files deployed parallelly from AWS S3 to Elastic BeanStalk instance which
had resulted in saving time for the development team. To this aim, the research focuses
on:

• Introduce platform-independent thread-level parallelism code.

• The usage of AWS CloudWatch for continuous monitoring of resource performance
and tracking the time for application deployment.

Due to resource modification restrictions by AWS, this proposed researchable to evaluate
the small analytic performance. Future work comprises reducing the time more efficiently
for a large application. Also, various kinds of cloud storage can be used to optimize the
performance and find the more suitable model for decreasing deployment time.

References

Amazon (n.d.). Extending Elastic Beanstalk Linux platforms. (accessed: 2021, April 2).
URL: https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/platforms-linux-
extend.html

Arachchi, S. A. I. B. S. and Perera, I. (2018). Continuous integration and continuous
delivery pipeline automation for agile software project management, 2018 Moratuwa
Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, pp. 156–161.

Artač, M., Borovšak, T., Di Nitto, E., Guerriero, M. and Tamburri, D. A. (2016). Model-
driven continuous deployment for quality devops, Proceedings of the 2nd International
Workshop on Quality-Aware DevOps, QUDOS 2016, Association for Computing Ma-
chinery, New York, United States, p. 40–41.
URL: https://doi.org/10.1145/2945408.2945417

Brunnert, A., van Hoorn, A., Willnecker, F., Danciu, A., Hasselbring, W., Heger, C.,
Herbst, N., Jamshidi, P., Jung, R., von Kistowski, J., Koziolek, A., Kroß, J., Spinner,
S., Vögele, C., Walter, J. and Wert, A. (2015). Performance-oriented devops: A research
agenda.

Danglot, B., Vera-Pérez, O. L., Baudry, B. and Monperrus, M. (2019). Automatic test
improvement with dspot: a study with ten mature open-source projects, Empirical
Software Engineering 24(4): 2603–2635. CoreRank: A, JCR Impact Factor: 3.156.
URL: https://doi.org/10.1007/s10664-019-09692-y

18

Dlugi, M., Brunnert, A. and Krcmar, H. (2015). Model-based performance evaluations
in continuous delivery pipelines, Proceedings of the 1st International Workshop on
Quality-Aware DevOps, QUDOS 2015, Association for Computing Machinery, New
York, Unites States, p. 25–26.
URL: https://doi.org/10.1145/2804371.2804376

Elbaum, S., Rothermel, G. and Penix, J. (2014). Techniques for improving regression
testing in continuous integration development environments, Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2014, Association for Computing Machinery, New York, NY, USA, p. 235–245.
CoreRank: A*.
URL: https://doi.org/10.1145/2635868.2635910

Flemström, D., Potena, P., Sundmark, D., Afzal, W. and Bohlin, M. (2018). Similarity-
based prioritization of test case automation, Software Quality Journal 26(4): 1421–
1449. CoreRank: C, JCR Impact factor: 1.460.
URL: https://doi.org/10.1007/s11219-017-9401-7

Guerriero, M., Ciavotta, M., Gibilisco, G. P. and Ardagna, D. (2015). Space4cloud: A
devops environment for multi-cloud applications, Proceedings of the 1st International
Workshop on Quality-Aware DevOps, QUDOS 2015, Association for Computing Ma-
chinery, New York, Unites States, p. 29–30.
URL: https://doi.org/10.1145/2804371.2804378

Larrucea, X., Berreteaga, A., Santamaria, Izaskun”, e. A., O’Connor, R. V. and Messnarz,
R. (2019). Dealing with security in a real devops environment, Systems, Software and
Services Process Improvement, Springer International Publishing, Edinburgh, United
Kingdom, pp. 453–464.

Laukkarinen, T., Kuusinen, K. and Mikkonen, T. (2017). Devops in regulated software
development: Case medical devices, 2017 IEEE/ACM 39th International Conference
on Software Engineering: New Ideas and Emerging Technologies Results Track (ICSE-
NIER), Buenos Aires, Argentina, pp. 15–18.

Lehtonen, T., Suonsyrjä, S., Kilamo, T. and Mikkonen, T. (2015). Defining metrics for
continuous delivery and deployment pipeline, Proceedings of the 14th Symposium on
Programming Languages and Software Tools, Finland, pp. 16–30.

Leite, L., Rocha, C., Kon, F., Milojicic, D. and Meirelles, P. (2019). A survey of devops
concepts and challenges, ACM Comput. Surv. 52(6). CoreRank: A*, JCR Impact
Factor: 7.990.
URL: https://doi.org/10.1145/3359981

Marijan, D., Liaaen, M. and Sen, S. (2018). Devops improvements for reduced cycle
times with integrated test optimizations for continuous integration, 2018 IEEE 42nd
Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan,
pp. 22–27.

Perez, J. F., Wang, W. and Casale, G. (2015). Towards a devops approach for software
quality engineering, Proceedings of the 2015 Workshop on Challenges in Performance
Methods for Software Development, WOSP ’15, Association for Computing Machinery,

19

New York, NY, USA, p. 5–10.
URL: https://doi.org/10.1145/2693561.2693564

Rafi, S., Yu, W., Akbar, M. A., Alsanad, A. and Gumaei, A. (2020). Prioritization
based taxonomy of devops security challenges using promethee, IEEE Access 8: 105426–
105446.

Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L. E., Tiihonen, J. and Männistö, T.
(2016). Devops adoption benefits and challenges in practice: A case study, in P. Ab-
rahamsson, A. Jedlitschka, A. Nguyen Duc, M. Felderer, S. Amasaki and T. Mikkonen
(eds), Product-Focused Software Process Improvement, Springer International Publish-
ing, Trondheim, Norway, pp. 590–597.

Sampedro, Z., Holt, A. and Hauser, T. (2018). Continuous integration and delivery
for hpc: Using singularity and jenkins, Proceedings of the Practice and Experience on
Advanced Research Computing, PEARC ’18, Association for Computing Machinery,
New York, NY, USA.
URL: https://doi.org/10.1145/3219104.3219147

Shahin, M., Ali Babar, M. and Zhu, L. (2017). Continuous integration, delivery and
deployment: A systematic review on approaches, tools, challenges and practices, IEEE
Access 5: 3909–3943.

Zampetti, F., Vassallo, C., Panichella, S., Canfora, G., Gall, H. and Di Penta, M. (2020).
An empirical characterization of bad practices in continuous integration, Empirical
Software Engineering 25(2): 1095–1135. CoreRank: A, JCR Impact Factor: 3.156.
URL: https://doi.org/10.1007/s10664-019-09785-8

20

	Introduction
	Motivation
	Research Question
	Report Structure

	Related Work
	Review on DevOps
	Review on Continuous Deployment
	Summary of related work

	Methodology
	Material and Equipments
	Sample Data

	Design Specification
	Proposed System

	Implementation
	Evaluation
	Case Study 1 for 1MB file without custom code
	Case Study 2 for 1MB file with custom code
	Case Study 3 for 5MB file without custom code
	Case Study 4 for 5MB file with custom code
	Discussion

	Conclusion and Future Work

