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Abstract

Cloud-native microservices-based applications are increasingly deployed using
containers in the software engineering industry. When an application has massive
workload, Kubernetes automatically scales the microservices. Kubernetes’ default
algorithm leads to improper resource allocation, appearing in performance degrad-
ation of cloud-native applications as well as increased maintenance costs. By using
a custom controller, this paper concludes the appropriate number of instances for
containers. By reducing maintenance costs, the proposed algorithm preserves the
Quality of Service (QoS) of cloud-native applications. This study found that the
default Kubernetes algorithm is more expensive than the custom controller. The
maintenance cost of an application is reduced by almost 50% with custom control-
lers.

1 Introduction

Cloud computing is a favored technology for increasing efficiency and growing capacity.
Cloud-native is a discipline that relies on how applications are run and developed to take
an advantage of the cloud computing architecture. Cloud-native technologies enable the
industry to deploy and develop scalable applications in dynamic and modern environ-
ments. Containers, service meshes, orchestrators, microservices, and declarative APIs
allow loosely connected systems that are robust, observable, and manageable (Garces
et al.; 2020).

Cloud-native appears to become the defacto standard for the industry now a days.
According to the Cloud Native Computing Foundation (CNCF') recent study, ” production
practice of Cloud-Native projects has been increased higher than 200 percent in common
from December 2017”7 (Aderaldo et al.; [2019)).

The architectural procedure of microservices entails building the application as a set
of tiny services. Each one is self-contained and performs atomic functions. Multiple
microservices communicate with each other to respond to business service requests.

Microservices enables frequent and fast updates on production environment with a
low impact on the end-user side because they are self-governing components that can be
upgraded, deployed, restarted, scaled up, or scaled-down independently. Containerized
microservices are more efficient and more durable than virtual machine-based ones. The
instantiation of containers is as straightforward and agile as launching any operating
system (Pahl et al.f 2019)).

Scalability is the potential for an application or a resource to meet rising demand.
The ability to scale up and down of the resources is one of the most highlighted features



of cloud computing. The scaling system can be accomplished automatically. In the field
of cloud computing, auto-scaling algorithms are becoming more and more prominent to
maintain or increase the Quality of Service(QoS) (Jahan et al.f 2020).

Due to complex workload conditions, cloud computing poses difficult tasks such as the
optimal allocation of resources for a given pod which is known as ”autoscaling”. In com-
parison to other container orchestration tools, Kubernetes provides the most automatic
scaling mechanism, Horizontal and Vertical Pod Autoscaling (HPA and VPA). Since a
pod contains one or a few tightly coupled containers, it establishes the smallest deploy-
ment entity in Kubernetes (Balla et al.; 2020). Below figure [I| shows the structure of
Horizontal Pod Autoscaling by Kubernetes.
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Figure 1: Horizontal Pod Auto-scaling by kubernetes. (Balla et al.} 2020))

As an input, Kubernetes’ default algorithm measures the effectiveness of CPU utiliza-
tion and the number of active pods on the cluster. Furthermore, its output returns several
pods that are supposed to be deployed (Kubernetes (2021)). This algorithm calculates
the CPU usage is dependent on other processes. The cAdvisor tool contains CPU usage,
and it preserves the CPU usage in Vector U. Lastly, the algorithm determines how many
pods need to be deployed. Figure [2] shows the default Kubernetes algorithm (KHPA)
given by Kubernetes.

Algorithm 1 KHPA algorithm. It returns the number
{)f P()(l.‘\ Lo ‘)l—' (ll—'l)l()}'ﬁl

l!lpl..l‘.: { -"l""'l' v . Netdzve FPods
/ Target utilization and the set of active Pods

Output: 7 // The target number of Pods to deploy
1: while true do

2: for all ¢ € ActivePods do

3: I getRelativeCPUUtilization(7);

4- U=0Uuvu{U;}

5: end for

G- P =ceil{ suma( U ) Usarges );

= wait(+) // wait v seconds, the control loop period
=2: end while

Figure 2: Kubernetes horizontal pod autoscaler(KHPA)



1.1 Motivation

Nowadays, service-oriented architecture (SOA) and microservice architecture are con-
ventional methods of combining software applications. Developing these applications by
different teams makes them easy to maintain. Applications based on microservices are
more advantageous because their development method involves a well-defined structure of
interface through which requests from a microservice can be made of another microservice
(Suram et al.j 2018)).

When autoscaling CPU computing resources, some methods may use static rules to in-
crease or decrease the containers. If the cloud-based applications have dynamic workloads,
then static rules do not support basic or static scenarios. The QoS (Quality of Service) of
the cloud-native applications could be negatively affected. Due to the default algorithm
of the Kubernetes(Horizontal Pod Autoscaling (KHPA)), large applications based on
microservices regularly suffer from resource under-provisioning or over-provisioning that
results in resource waste and performance degradation.

Due to the resource wastage, the maintenance cost of the application increases. Ac-
cording to the number of container instances, autoscaling must constantly allocate re-
sources appropriately. Because of this issue, a novel autoscaling algorithm is proposed in
this research to maintain the Quality of Service (QoS) of a cloud-native application by
reducing the cost.

1.2 Research Question

Can the Quality of Service (QoS) of the microservice-based applications be
maintained by reducing a cost using a custom controller for Kubernetes?

Cloud computing field is becoming more and more dependent on autoscaling al-
gorithms to guarantee the Quality of Services (QoS) of the cloud-native applications.
Due to complex workload conditions, it is difficult to determine how many pods a de-
ployed application should get, as well as how much autoscaling to perform. Through this
research an attempt is made to perform autoscaling by using kubernetes controllers. In
this research Kubernetes deployments are controllers that are providing updates for pods
and replica sets. Also, deployments describes a collection of identical, multiple pods with
no individual status.

This research helps to make decision of scaling up and down according to the requests
coming to the application. Depending on the target and current CPU utilization the next
pod has been scheduled through the custom controller of the Kubernetes cluster.

1.3 Structure Of The Paper

The remaining paper is designed as follows. Section |2 outlines the Related work linked
to the microservices autoscaling practicing Kubernetes. Section |3| manifests the method-
ology for achieving the intended approach. Section {4 gives the design specification of the
proposed approach. Section 5[ will give a detailed description of the implementation. and
Section [0] and [7] give the evaluation results and conclusion respectively.



2 Related Work

The research on Kubernetes and microservices is very active at the moment. There is
no denying that the use of cloud-native designs improves performance in almost every
application. The cloud is nearly being adopted across all IT industries.

2.1 Microservices Background
2.1.1 Microservice Architecture

There are several characteristics that all cloud-native applications share, as|/Gannon et al.
(2017) has stated. According to their research, the most recognized technique to build
an application is to showcase the tendency of an application is microservice architecture.
The computing standard splits the application into tiny pieces described as microservices,
which interact with each other via RPC or by requesting web services. In their investig-
ation, they describe the representation of cloud-native applications. They mention that
microservices are a type of cloud-native application that can be containerized or dy-
namically orchestrated. Extending the investigation by Toffetti et al. (2015), they are
examining how to combine administration abilities into cloud-based applications employ-
ing orchestration for achieving stable and stateless actions under functionalities that are
management-related by attaching cloud-native design patterns. Nonetheless, the dynamic
variations in the workload of the cloud-native application reduce the Quality of Service

(QoS).

2.1.2 Microservice Performance

On AWS, Pelle et al.| (2019) estimated the performance of a latency-sensitive cloud-native
application. They converge on the components that cause a delay in cloud-native ap-
plications because they have approached latency-sensitive applications. Cloud platform
latency increases as invocation times and data access times increase. Moreover, they
quoted that picking the appropriate cloud services concerning cloud-native applications
while they are being designed can reduce latency and improve overall performance. Like-
wise, For time-sensitive applications, Polona Stefanic et al. (2019) presented a framework
as element of their SWITCH project. In SWITCH, you can immediately create software
components using a docker-compose file and develop workflows and logic for applications.
Notwithstanding the appropriate service provider or tool being chosen, cloud-native ap-
plications are affected by an increase in workload, which degrades the performance of the
application.

2.2 Container state-of-the-art
2.2.1 Microservice Containerization

Virtual machines already controlled the cloud computing market, but Docker has ac-
complished prominence in the IT industry. Various investigations have been conduc-
ted to compare the performance of Docker and other technologies. Using genetic al-
gorithms, |(Guerrero et al.| (2018) implemented a microservice container allocation scheme
in cloud environments. To balance the load, reduce the network overhead, and ensure
service reliability, they have studied these methods. Also |Christina Terese Joseph and
Chandrasekaran| (2020)) advised that cluster stability and load balancing should be the
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purpose. These studies have proposed hybrid container allocation, which directs to the
ineffective allocation of resource allocation among container instances.

A mathematical equation was developed that scales the cloud containers to maximize
computing resource use and to reduce the response time by Zhang et al. Zhang et al.
(2019). By continuing the work that is involved with Zhang et al. (2019), Pérez et al.
(2018) developed an algorithm for determining a proper container for each task and fur-
thermore migrated it to AWS Lambda. Response times were lowered while ensuring QoS
requirements were met with their proposed approach. For task mapping to the appropri-
ate containers, Pérez et al. (2018)) also devised a container-based task scheduling policy.
It reduced the processing time and response time for the tasks, while more efficiently
utilizing resources. In this study, the primary objective is to minimize the processing
time, which results in the delay, but the algorithms are limited to the AWS Lambda
service provided by AWS.

2.2.2 Container Orchestration

Containerization provides the benefit of dividing an application into self-managed pack-
ages that can be managed anywhere, as well as dividing the dependencies of these pack-
ages. Development cycles become extra agile by using containers. Docker is the most
extensively used container in cloud computing, despite the fact that there are many
potential implementations. The building blocks for microservice systems are clusters
of containerized service instances. fault-tolerant, distributed, and highly available are
important aspects of the containers. In [Khan| (2017), they present abilities that con-
tainer orchestration tools should incorporate. In their research, they outlined a design
for recognizing key mechanisms for methods to implement container orchestration and
orchestration frameworks. They have also described recommended and openly available
orchestration platforms in their approach. The research in Khan| (2017) and Jawarneh
et al.| (2019)) designates that compared to other competing orchestration tools, Kuber-
netes outperforms Docker Swarm, Apache Mesos, and Mesosphere for the deployment of
complex applications. These analyses tried to fulfill the gap in deciding an orchestration
tool that is most suited for IT managers. The researchers conclude that Kubernetes
works best for deploying complex applications, whereas other orchestration tools work
best for simpler ones.

On the other hand, orchestration tools may be useful for applications that require
a lot of computing power, allowing a quicker response time and improved QoS. We will
orchestrate containers with Kubernetes for this study since it is more performing for
complex applications. Using Kubernetes to automate cloud-native applications will be
described in the following section.

2.3 Autoscaling Microservices

In auto-scaling, resources are dynamically provisioned based on changes in applications
or environments. This is particularly useful during periods of high workload. There are
several challenges in autoscaling, and the researcher proposes a taxonomy for web applica-
tions. An autoscaling survey has been proposed by [Thai et al.| (2018]), the survey covered
scaling approaches, resource estimation, threshold-based metrics, and container-based
multi-tier application scaling and autoscaling. For building Bag-Of-Task applications in
the public cloud, the Verma and Balaj (2021]) presents a resource optimization taxonomy



and survey.

Rossi et al.| (2020) In their research, the author looked at autoscaling approaches,
including the building of auto-scaling algorithms. As per their findings, Kubernetes
Horizontal Pod autoscaling functions as a threshold-based reactive controller that adapts
the necessary resources by an application via a closed-loop. |Jindal et al.| (2017) The
possibilities of Kubernetes autoscaling were exhibited, and the researchers found that the
autoscaling approach did not produce a higher performance based on CPU and memory
use. They did not, however, explore the influence of other indicators on microservice-
based applications under severe demand.

In this research conducted by Yin et al.| (2018), the author looked at a number of
performance measures for multi-layered cloud applications. According to the findings,
CPU utilization is a suitable metric if the features of microservices are consistent, but
it degrades the performance of input/output heavy microservices when the workload
varies. The influence of absolute vs relative measurements in microservice autoscaling
was discussed by the researcher. They stated that absolute indicators like CPU usage
allow for more exact choices on CPU-intensive applications than the relative metrics used
by the default Kubernetes autoscaling method. However, they only looked at the effect
of CPU-intensive microservices and ignored the other metrics.

Using the containerization approach, created an efficient scheduling policy. |Casalic-
chio (2019) policy’s principal objective is to decrease processing time. Their policy is used
as a monitoring approach to locate an acceptable resource for finishing the execution in
the shortest amount of time and installing the microservices container. Their study aids
in the distribution of load across all resources and the effective utilization of resources.
This technique, on the other hand, can assist in load distribution, but only for a limited
number of pods or resources. This method may minimize response time and enhance the
Quality of Service if each pod has achieved its maximum CPU use.

2.4 Allocation of Pods using Kubernetes

Kubernetes is one of the most suited options for resource allocation in cloud-native ap-
plications to improve QoS. In|Al-Dhuraibi et al.| (2017, the author proposed a technique
for allocating enough resources to satisfy the growing demands of cloud-native applic-
ations. Autonomic Cloud Computing resource scaling is the technique, which utilizes
a constant value for a collection of resource-level measures including CPU usage. The
workload can be categorized as light or heavy depending on whether the resource need
exceeds the predetermined value. Only Virtual Machines are supported by this resource
scaling architecture.

Complex cloud-native apps, on the other hand, cannot be created on tiny servers or
workstations with low capabilities. In 7, the ELASTICDOCKER, framework was offered
by the researchers as the first device to dynamically provide vertical elasticity to docker
containers. Their strategy is based on IBM’s MAPE-K guidelines (Monitor, Analyse,
Planning, Execute, Knowledge). ELASTICDOCKER adjusts the amount of CPU and
RAM allotted to each container based on the application workload. As vertical elasticity
is restricted by the machine’s capacity, ELASTICDOCKER executes live container mi-
gration when there are insufficient resources. Their quoted method surpasses Kubernetes’
elasticity by 37.63%. Their solution, however, is reliant on particular functions, such as
Linux’s CRIU (Checkpoint Restore In Userspace) capability. The proposed method is
not adaptable to all operating systems.



Pelle et al. (2019), the author described an auto-scaling technique for containerized
applications that employs an adaptive feedback controller to dynamically scale necessary
resources. EcoWare agent component should be loaded in each VM to complete this re-
search. The Ecoware agent manages the container-specific data, such as CPU Utilization.
This component is also in command of launching and terminating containers in VMs, as
well as modifying resource allocations. This autoscaling approach, however, is only suit-
able for online apps. In addition, deploying an ECoWare agent for each container adds
to the overhead. The challenge of scheduling containerized microservices across several
Virtual Machines was explored in |Al-Sharif et al. (2017)). Their strategy was to minimize
overall traffic and turnaround time for the full end-to-end operation.

Bhamare et al.|(2017)) In their technique, scheduling is accomplished by ranking, which
focuses on optimal resource usage by ordering activities according to their computing
needs. Both studies, although, failed to handle dynamic resource delivery. Static resource
provisioning may result in unexpected failures.

2.5 Comparative Analysis Of The Algorithms

Reference Algorithm/ Approach Advantages Limitations
Framework
An in- Measured the ex- Not fitting for
Tl APMT novative ecution 'of auto I/O conc§ntrated
strategy for scalers with a new microservices
et _al. Frame- _ luti
(2017) work measuring solution
autoscaler
perform-
ance.
ACCRS Advanced Reduced Power This frame-
Frame- fault  dis- and Cost con- work supports
Al- . .
. work closure for sumption only Virtual
Sharif . :
improv- Machines.
et _al. ing the
1
(2017) Utilization
level
Casalicchiol| KHPA- Introduced Early prediction Limited only for
(2019) A algorithm of workload static workload
for  auto-
scaling
This Custom Autoscaling Reduce cost Supports only
Re- Control- microservice- for maintain- CPU  intensive
search ler  for based ing Quality of microservices
auto- application Service(QoS)
scaling

Table 2.1: Comparative analysis of the algorithms.




3 Methodology

The methodology of this research is discussed in this section. The process flow of research
is described in [3.1] and gives the overview of tools and technologies used in this
research.

This study contributes to the state-of-the-art performance evaluation of autoscaling
containers practicing CPU-intensive workloads. To eliminate resource waste or applica-
tion failure, an autoscaling solution is provided in this study. For managing the contain-
erized workloads Kubernetes an open-source platform is used in this study.

In this research, a custom controller is created to achieve better performance and
maintain the Quality of Service of the microservice-based application. The custom con-
troller is responsible for dynamically managing and scaling the pods depending on the
containerized workload. Those pods will be scheduled depending on the requests coming
towards the server. The controller acts upon the standard resources of Kubernetes. The
below diagram shows the system architecture of the Kubernetes. Figure |3 shows all the
standard components of kubernetes cluster.

Master

APl Server

Controller

thb ) Docker Hub
Description Image Reposito

(YAML file)
- T " N
4

Scheduler

e T ’ :
) | | ||| |

POD POD POD POD

POD
Description
(YAML file)

[ Container runtime (Docker) ] Container runtime (Docker) ]

cen | |

1 » kubelet Node Node

Figure 3: Components of the kubernetes cluster. (Lin et al.; 2019)

3.1 Process flow of research

An Amazon Web Services t3.2xlarge instance was used for all operations carried in this
study. This microservice-based cloud-native application has been downloaded from the
Kubernetes website (Kubernetes; 2021). A docker container is used to deploy the applic-
ation, which is developed in PHP. There is one microservice inside the application that
performs computing-intensive computations for the application.

The Kubernetes cluster has been created using ”Kubeadm” and then the dockers
are utilized to containerize the microservice. The microservices are deployed on the
Kubernetes cluster and later the demanded number of pods has been generated using
the custom controller. The load generator has been given by Kubernetes to generate the
load on the application.

The following figure [4] shows the process flow of the research.




AWS t3.2xlarge
Build a microservice- Create a kubemetes Create a containerized : i Calculate the required Autoscale the pods
o . i ) Deploy the microservice i Stop the load
based application luster using kubeadm mircoservice number of pods Horizontally
Load Generator Generjate the load on
microservice

t

Repeat for the next experiment

Figure 4: Process Flow Of The Research

3.2 Tools and Technologies Used In Research

This study was conducted on an instance of AWS EC2 t3.2xlarge (Ubuntu). Kuber-
netes HPA (Horizontal Pod Autoscaler) was used for deployment and autoscaling.
The microservice-based application is developed in PHP language to perform the com-
puting intensive operations.

To carry out the research in this study, following technologies and tools have been
used:

e Kubernetes : This research uses the latest version of Kubernetes (1.18). There
are one master node and two worker nodes in a kubernetes cluster.

e Kubeadm : A Kubernetes cluster is installed with Kubeadm in this study. A
cluster can be bootstrapped using Kubeadm. All configuration files provided by
Kubernetes can be accessed through Kubeadm..

e Kubectl : Kubernetes cluster commands can be given with the Kubectl tool.
A deployment of the application has been made possible by Kubectl. In addition,
Kubernetes logs are provided by Kubectl.

e Docker : Containerization of microservices is done with Docker. The version of
Docker used in this study is 20.10.6. Containers are used to store microservices.
Containers will be scheduled as pods.

e PHP-Apache : Apache is the web server that handles requests and process them
via HTTP. PHP-Apache enables dynamic content creation with PHP.



3.3 Assessment Carried Out In This Research

A total of three experiments is conducted to obtain consistency in the results of the evalu-
ation of the custom controller. Dedicated time frames of two minutes, eight minutes, and
fifteen minutes are used for evaluating the 3 experiments after the workload is generated.
It has been examined here whether Kubernetes autoscaler is scheduling the necessary
number of pods or not. Validation takes place against the default Kubernetes(KHPA)
algorithm. Observations were made based on the current and target CPU utilization.

4 Design Specification

The specification used for designing this project is discussed in this section. proposed
Specification of the system is described in [4.1] gives the description of proposed
architecture of the system and gives the architecture of custom controller.

4.1 Proposed Specification Of The System

As part of this research, Docker lightweight containers are being used. When microservices
are containerized, they can be restarted after failing or when they are updated. An orches-
tration tool named Kubernetes is used in this research to manage containers’ operations
and deployments. Containers inside the cluster are managed by Kubernetes. Three VMs
are used to run a Kubernetes cluster on the AWS cloud. In this experiment, Network
Time Protocol (NTP) has been used to achieve asynchronous communication between the
nodes in the cluster. The following table 3| and table 2 shows the hardware specifications
for kubernetes cluster and Virtual machine respecitvely.

Kubernetes Cluster
Instance AWS Config=t3.2xlarge
Operating System Ubuntu Version = 20.04
Orchestration tool Kubernetes Version = 1.18
Container engine Docker Version = 17.09

Table 2: Required configuration for the cluster.

Virtual Machine
vCPU 8
Memory 32GiB
Network Performance upto 5 gbhps
Cost $0.3341/ hr

Table 3: Required configuration for the Virtual machine.
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4.2 Proposed Architecture Of The System

In order to use a Kubernetes cluster, there is a need to install the kubeadm package. In
this study, kubeadm 1.19 was used. The version of kubectl 1.21 is installed in order to
run the command throughout the cluster. There are two worker nodes and one master
node in a Kubernetes cluster. Containers have been used in the worker node so that pods
can be organized. Component etcd maintains the cluster state between the master and
the worker node.

The master node contains three components, such as Controller Manager, API
server, Scheduler. Managing Kubernetes core functions lies with the controller man-
ager. Controlling Kubernetes pods and moving them from a shared state to a desired
state is the responsibility of the controller. When changes are needed, the Kubernetes
controller makes the necessary requests. Microservices and pods are configured and veri-
fied with the API server. Kubernetes policies are stored in a scheduler.

A worker node consists of Docker, proxy system, and Kublet. Kublet is the
communication protocol between the master and worker nodes. By virtue of its role in
managing the master node’s state, the Kublet also administers pods according to the
pod specification provided by the master node in PodSpec. Following figure |8 shows
the high level architecture of the overall system.

Kubernetes Cluster \
Web Master Node
application Microservice Pr— Worker Node

Docker container

.—)-
Scheduler

Custom Controller

Pod

AN

Figure 5: High Level Architecture Of System

4.3 Architecture of proposed custom controller

In this research, an attempt is made to write a custom controller to schedule the required
number of pods to overcome resource wastage and website crashes. The system has been
designed in a way that each pod contains only one container, and each container appears
as a microservice. Based on the number of pods that are currently running inside the
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cluster, the custom controller takes action. There is a component called Kube-controller-
manager. YAML in the Kubernetes cluster. Cluster state is monitored by Kube-controller-
manager. The kube-controller-manager guarantees that the new replica of an application
pod is built when one of the pods is missing from an application.

The Kube API server must be used to change the cluster’s state if any changes need
to be made by the custom controller. It enables interaction with other components as
a fundamental management component. YAML files of Kube-API server communicates
with the custom controller through API. To control replicas, the parameters in the YAML
file are transferred to the Kube-API server, and then to the Kube-controller manager.
Next, the Kube-API server informs the custom controller to start or create new pods.

Next, then Kube-proxy authorizes pods in a cluster to communicate internally and
externally. Individually pod holds its IP address linked with it. Kube-proxy uses the IP
address to shift the traffic to the pods from the cluster. Consequently, when the load on
the application increases, the Horizontal Pod Autoscaler automatically scales up or down
according to the actions taken by the custom controller.

5 Implementation

The implementation of the research is discussed in this section. It is described in[5.1| that
the autoscaler is implemented in the custom controller, and in that the control loops
are implemented in the custom controller.

5.1 Implementation of Autoscaler

Algorithm 1 Autoscaling Algorithm for resource allocation.
Input: Total Pods,Total CPU_Usage_Value,Total CPU _target_value;
Output: Total_Pods, = Total number of pod to be scheduled.
Total_Pods; = sum(pod0,podl,.....Podn)); // Calculates the total number of pods
running in cluster
Size_of_cluster = Total_Pods.length;
Total CPU_target_value = fetch_target_CPU(); // API call for fetching the target CPU
Total CPU_Usage_Value = fetch_current_usage();  // API call for fetching the current
CPU usage.
if  Size_of-cluster > 0 &6  Total CPU_Usage_Value >  (Size_of_cluster
«Total _C'PU _target_value) then
for i in Total_Pods do
Total_Pods,, = Total_ CPU_Usage_Value / Total_ CPU_target_value // Calculate
the total number of pods.

end
end

In many studies (Khazaei et al.;|2020),(Wang et al.; 2017) and (Cardellini et al.} [2016]) its
been observed that, even under predictable bursting workload scenarios when examining
the dynamics of the underlying computing environment, microservice-based applications
enter into an unstable state with slight inconstancy. One critical cause of this situation

12



is taking numerous autoscaling operations during a heavy workload scenario this causes
further auto-scaling burden, which renders the system into uncertain state.

In this research along with the adaption control loops(Explained in the , the
autoscaler is designed in such a way that, if the CPU utilization is reached to the given
Total_ CPU_Usage_Value ( In this study 50% of target CPU_utlization is used) such as
50% and if there are two containers running which has average CPU-Utilization of 40%
and 45% respectively, so while autoscaling the pods will be calculating as follows :

= [(40% + 45%) / 50%)] = 50%/85% = 1.7 ~ 2.

So the 2 pods are required to scale up. The proposed autoscaler requires Total Pods,
Total_ CPU _Usage_Value ,Total_ CPU _target_value. The API from API_Server returns the
total value of utilization of the CPU and the current value of the CPU. Algorithm
shows the pseudo code inside the custom controller.

5.2 Implementation of control loops for the custom controller

Kubernstes Orchestrator J

|

User request from microservices of cloud-native
application

I

[ Fetch target CPU utilization from YAML files of J

microservice using APl

MNo Does cloud native Mo
application requesting
rrrrrrrrr

Is running pods = O

Allocate the first container instance to the
Calculate the target CPU usage microservice

l

[ Fetch the current usage of CPU by every pod ‘

[ Calculate the cluster size :|

Is Current usage of CPU =
(clustersize = Target CPU)

Is Current usage of CPU =
(clustersize = Target CPU)

Scale up the number of containers by calculating number of Scale down the containers by and terminate the
pods and alllocate the resource unnecessary container instances

l

( R L

A

Figure 6: Flow diagram of custom controller
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Adaption of the control loops plays a major role in implementation of this research. A
controller’s adaptation interval is defined as the minimum period within two consecutive
adaptation operations over time. It is also called as ’Control Loops’ of the controller. In
the execution environment, the adaptation interval is kept longer than the time taken
to start up a container instance. Adaptation decisions were made when a system is
quite steady. The entire system continues to run smoothly, even in the heavy workload
scenario.

6 Evaluation

6.1 Performance Evaluation

The performance of the custom controller is evaluated through a series of experiments.
The values and comparisons is done against the default horizontal pod autoscaler al-
gorithm. During the experimentation process, each experiment was repeated three times
to obtain the exact number of pods and to verify the results in order to have greater
validity. As a result, each experiment was run three times. A t3.2xlarge instance and a
Kubernetes cluster running 1.18 were used in the evaluations and experiments. Calcula-
tions are then performed after the load has been generated. After generating the load,
all observations were taken after two, eight, and fifteen minutes.

A load is generated on the application once it is ready to handle requests in all the
experiments. Observations have been noted after generating the workload. The target
CPU utilization was set to 50%, which means when the CPU utilization of one pod reaches
50%, an autoscaling decision should be made, and an extra pod should be scheduled to
handle the further workload. To schedule the pods, the minimum replica count is set to
was one, and the maximum count was set to ten. It has been verified that the replica
count of the autoscaler is zero during each experiment since Kubernetes replicas take
time to stabilize. Furthermore, the command "kubectl get pod’” has confirmed that there
should only be one pod running before the generation of the workload, both after each
experiment has been run and before each experiment has been run. Since the current
deployment (application) is running on only one pod, 'kubectl get hpa’ shows the output
that one pod is running.

6.2 Experiment 1

The first experiment is observed after the two minutes of workload generation. After two
minutes the CPU usage was reached to the 18% and the target cpu usage was 50%. At
this time only one pod was running since the application is deployed on the same pod.
according the algorithm inside the controller. The comparison of the results between
default kubernetes algorithm and custom controller is shown in below table [4]

Using the algorithm inside the custom controller, the number of pods required to
handle the workload should be as follows:

TOtalpods = (18% / 50%) = 0.36 ~ 0.
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Number of pods scheduled after 2 minutes

Default Kubernetes Custom Controller
HPA
5 0

Table 4: Result comparison after experiment one

6.3 Experiment 2

After eight minutes of workload generation, the second experiment is observed. After
eight minutes, the CPU usage reached 106%, while the target CPU usage was 50%. Below
table [b| compares the results of default Kubernetes algorithm and custom controller.

Number of pods scheduled after 8 minutes

Default Kubernetes Custom Controller
HPA
7 2

Table 5: Result comparison after experiment two

Totalpeas = (106% / 50%) = 2.12 ~ 2.

6.4 Experiment 3 (Complex one)

After fifteen minutes of workload generation, the third experiment is observed. The CPU
usage has reached to 250% after fifteen minutes and the target CPU usage was 50%.
Below table [6] compares the results of the default Kubernetes algorithm and custom
controller. .

Number of pods scheduled after 15 minutes

Default Kubernetes Custom Controller
HPA
1 5

Table 6: Result comparison after experiment fifteen

TOtalpods = (250% / 50%) =5.

For the application to run and handle this complex workload, five pods were needed.
According to the default Kubernetes algorithm, only 1 pod was scheduled and 5 pods
were scheduled by the custom controller, as expected.
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6.5 Discussion

After generating the workload, three experiments were conducted on various durations,
and at every stage, the results invariably vary.

During the first experiment, there was no need to schedule an additional pod, and
auto-scaling was not needed; one pod was sufficient to handle the workload. Kubernetes’
default scheduling algorithm has scheduled four extra pods which were unnecessary in
this scenario. In this scenario, if the Quality of Service (QoS) of the application needs
to be maintained, there is a need to pay the extra cost of four extra instances. However,
the custom controller does not make a decision about autoscaling since the current CPU
usage is below the target CPU usage. Due to the adaptability of the control loops, this
is possible with custom controllers.

During the second experiment, the CPU utilization was 106%, which meant the third
pod was necessary to handle the extra workload, yet Custom Controller only calculated
two pods, and default Kubernetes calculated seven. In both cases, the results are not
ideal since the Kubernetes algorithm requires the cost of four additional instances when
there was only a need for three. By not calculating the third pod, the custom controller
is unable to handle the workload.

During the third experiment, CPU usage reached 250%. This means that this complex
workload condition required a total of 5 pods. Default Kubernetes schedules only one
pod, which was definitely causing the performance of the application to degrade due to it
being incapable of handling the workload. However, the custom controller has scheduled
the precise number of required pods so that the application’s Quality of Service(QoS)
remains intact.

The below figure shows the comparison between pods scheduled by Custom controller
and Kubernetes horizontal pod autoscaler algorithm.

Pods scheduled by KHPA VS Custom Controller
10 I Custom
Controller

8 H KHPA
]
|
& 6
s
Z
E 4
=

2

0

2mins Bmins 15mins
Duration

Figure 7: Pods scheduled by custom controller Vs. KHPA

One instance(t3.2xlarge) used in this project costs $0.3341/hr. If we consider the
application is up for 8 hours in a day, then ideally in normal workload condition there is
a need to pay 3 dollars. The calculation is as follows.
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$0.3341 * 8 = $2.6728 ~ $3

The below graph shows the cost comparison graph of KHPA VS Custom Controller.

Cost required by KHPA VS Custom Controller

10 I Custom
Controller
8 H KHPA

Cosl in dollars

2 m
]
2mins Bmins 15mins

Duration

Figure 8: Cost Comparison between custom controller Vs. KHPA

This graph compares the costs between KHPA and Custom controller when work-
loads are generated for two minutes, eight minutes, and 15 minutes, respectively. KHPA
incurred a higher cost than what is incurred with a custom controller.

7 Conclusion and Future Work

An application can be scaled up or down automatically based on the amount of traffic it
generates. In heavy workload conditions, autoscaling makes the application scalable and
sustainable. Currently, cloud computing is booming with microservice-based cloud ap-
plications. Docker can be used to containerize microservices. Containerized microservices
can now be autoscaled with Kubernetes.

Kubernetes Horizontal Pod Autoscaling (KHPA), the default algorithm proposed
by Kubernetes, causes resource overprovisioning and underprovisioning, leading to high
maintenance costs and performance degradation. By using a custom controller which
makes the autoscaling decisions and schedules the pods, this research attempts to solve
the issue of inefficient pod allocation to applications. Pods in this application can be
calculated using the algorithm in the custom controller, which lowers maintenance costs.
Default Kubernetes algorithm has been observed to be more expensive than custom con-
trollers in this study.

Since replicas take some time to stabilize, this problem can be considered in the future,
and thus accurate pod calculations in every scenario will be possible. In addition, the
algorithm inside the custom controller can be enhanced for memory and storage intensive
microservices so that it will support all type of microservices in the future.
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