
A CloudFormation template using AWS
golden standards to avoid cascading failures

in hardware

MSc in Cloud Computing

Research Project

Arnauv Kaushik
x19231661

School of Computing

National College of Ireland

Supervisor: Jitender Kumar Sharma

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Arnauv Kaushik

Student ID: x19231661

Programme: MSc Cloud Computing

Year: September 2020

Module: MSc Research Project

Supervisor: Jitender Sharma

Submission Due Date: 16th August 2021

Project Title: A CloudFormation template using AWS golden standards to
avoid cascading failures in hardware

Word Count: 6893

Page Count: 18

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: ARNAUV KAUSHIK

Date: 16th August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



A CloudFormation template using AWS golden
standards to avoid cascading failures in hardware

Arnauv Kaushik
x19231661

Abstract

The world of IT has been revolutionized by introduction of cloud computing,
reason being that one does not need to invest enormous amounts of money to setup
a business today, the resources can be made readily available instead of waiting
for long, the biggest advantage of cloud impacts every commoner as well, the data
can be stored to cloud and can be viewed anywhere, this directly results in remote
access and data recovery. Apart from the cloud itself, the sub-technologies or the
applications of cloud computing such as AI and ML are taking on the industry
today by storm. However, with time and increase in the competition, getting
these on-demand IT services is no longer a stand-out feature, customers and client
today focus on non-functional requirements as well such as availability, reliability,
scalability etc. The main reason can be linked to user-experience as well and can
make or break a deal. In a quest to expand worldwide and to provide for a large
number of present and future clients, providers and expanding their datacenters in
terms of numbers. This results in them having large number of complex hardware
that need to communicate with one another almost all the time even when not
being used actively, this may result in cascading failures in case a core element fails
or shuts down abruptly. Currently, there is no single paper that covers all of the
main non-functional requirements combined with modern software practices such
as microservices, queues so as to use software as a shield to defend against any
possible failures arising due to hardware. This paper aims to use software best
practices to make a cloud-environment free of disruptions and hence providing the
much-needed user-experience that stands out in today’s market.

1 Introduction

We realize that cloud services are the consequence of suppliers having CDCs(Cloud Data
Centers) spread across a topographical region and giving end clients the IT-related ser-
vices with a pay-as-you-go model. There is nothing unexpected that these datacenters in
reality comprise of exceptionally interconnected frameworks which rely upon one another.
Also, in the greater part of the cases they are limited by interconnections and network and
communications. These interconnected frameworks clear a path for a worry in regard to
negative results if a significant segment stops abruptly because of whatever reason. This
worry merits featuring on the grounds that in specific cases, a falling arrangement of dis-
appointments may amount to an enormous disturbance of services which might be basic
in nature. This is the place where this paper comes in, this paper attempts to answer
whether we can abstain from cascading failures in hardware by utilizing programming

2



and design best practices or not. Cascading failures here allude to a cascading type of
influence or a chain reaction, wherein an occasion triggers a progression of events, for this
situation that is similar to one piece of an application coming up short and bringing about
failure of the application all in all. The expression ’using software best practices’ is used
to demonstrate a connection between the hardware and software, programming impacts
equipment as in for a client composing a code to cooperate with cloud benefits really calls
the devoted APIs and henceforth, we can write code to act against certain backend fail-
ures, using auto scaling to consistently keep an instance running is only one of numerous
potential ideas. Going to the implementation part, this paper admires the best program-
ming designs used to keep application segments promptly accessible just as inclined to any
kind of possible failures. At long last, services, for example, CloudFormation are viewed
as a way to arrange, oversee and modify code, we can without a doubt influence hardware
as far as progressing, repeating it. This paper targets utilizing a golden standard of prac-
tices in the event of a disaster, however, to utilize a similar in advance to keep away from
any opportunity of something similar. The essential inspiration to chip away at this point
is that dependability goes hand in hand with QoS or the Quality of Service which helps
in deciding a cloud provider standing among cloud suppliers. This paper endeavors to
and acknowledges the demand to differentiate different cloud service models to measure
contrasts and see the extent of including some other great practices to upgrade the model
further. The principal inspiration for utilizing the strategies, procedures and practices
came out as an after-effect of a procedure to admire the lead provider in cloud and cloud
services. AWS(Amazon Web Services) isn’t just at the top but manifolds ahead of other
contenders consolidated. Looking for an optimal engineering for programming projects,
this paper looks into specific standards and focuses referenced by Amazon itself, puts
them to test for their legitimacy, examination with next-in-line contender and looking
for any inadequacies. This paper focuses on the end clients, the ones who utilize the end
result cloud services without any respects to the backend working at all, moreover, it is
focused on for experts and understudies the same who manage cloud benefits and related
applications to any degree, the eventual outcomes can be observed by non-specialized
people too who are recently familiar to cloud or any of its sub-area. Concerning esteem
in the related innovation area, considering every referred to paper and accompanying a
brought together form of every best practice and tips makes this paper worth a read as
it dispenses with the need to examine further as far as another and imaginative way to
deal with accomplish high accessibility and accordingly unwavering quality. The base
subject itself merits assessing and plunging into on the grounds that client experience
goes inseparably with the assistance quality and a cloud’s customers may increment or
decline according to the verbal exchange dependent on cloud accessibility, the application
dependability and henceforth the Help Level arrangement. The approach(es) referenced
in this paper are doable enough dependent on the way that they are reasonable by an
expert and understudy the same. The essential justification this is that the essential
assistance referenced is AWS CloudFormation, which is an allowed to utilize adminis-
tration independent and has no additional expense to utilize separated from segments
produced from it. Besides, cloud suppliers give plentiful assets as far as documentation
and restrictive free utilization which cost nothing. A few instances of this incorporate
the free documentations present for AWS, GCP and AWS’ complementary plan which
gives one year of let loose use of specific services to a sensible amount, GCP gives a heavy
beginning entirety to investigate its cloud services. The paper is isolated into committed
segments which can be portrayed in a word beginning with section2 which is the writing



audit, which covers research that started this paper, let it work as far as investigating
the subject, ebb and flow situation, difficulties and shows light to conceivable solution(s)
alongside the exploration specialty, which contains the significance of the examination
papers.Section3 is named ’Exploration strategies and details’, which talk about the game
plan, they display certain designs and reprimand them to assess for existing and missing
focuses identifying with accessibility and applications having the option to bounce back
from a failed part. We additionally move our concentration towards CloudFormation, a
brief into followed by a brief look at code expected to carry out our designs being referred
to. This is trailed by a brief of our testing approach that is trailed by Gantt chart for the
examination proposition’s execution. At long last, section4 finishes up the paper while
bringing up significant places of thought and looking at the models being referred to head
on against every single significant segment assuming it fails.

2 Related Work

In this section we will discuss the previous research relating to cascading failures in
hardware and software and cloud reliability. Now a days most of the organisations are
adapting cloud services. Some of the basic features provided by cloud such as reliability,
scalability etc are key attraction and reason for the rapid adaptation of cloud services.
Providing good performance and standards are vitals aspect of the cloud providers, this
can be achieved by collective smooth service of back-end and front-end services. The
appearance of cascading failures in cloud services can result in a huge scale of interrup-
tion and degradation of the quality of service. This disruption might affect and violate
SLAs or Service Level Agreements with the organisations. In below section we will see in
details of previous research on different topics. In section 2.1 we will review the research
with Reliability in cloud computing services, in section 2.2 we will review the previous
research with Cascading failures in software and hardware and in section 2.3 we will re-
view previous research to understand why AWS is selected for this research.

2.1 Reliability in Cloud Computing

The cloud service providers have attracted a huge scale of possible organisations with
flexibility and many offerings. The pay-as-you-go model, flexible subscription and any-
time support services have helped the organisations to handle efficient cost, time and
other business challenges. The research paper Buyya et al. (2018), highlights how the
features provided by cloud services has attracted possible business, but at the same time
it has emerged challenges in terms of scalability, reliability, security, sustainability etc.
This paper discusses the existing challenges, as well as future aspects of these with cloud
services. The paper presents a manifesto related to issues with present cloud service pro-
vider, which can be analyzed for future cloud computing. This shows that improvement in
reliability of cloud computing services is very vital aspect. The research paper Tian et al.
(2020) proposes a framework by combining the identification of the risk and proactive
actions follow up for advancement in efficiency and reliability of cloud computing services.
The paper describes the failure in cloud services as inevitable, but understanding these
failures such as fault tolerance and their recovery we can improve the cloud service. The
proposed framework is first made to understand these failures and integration of failure



risk prediction in cloud services. Further a tree based model is implemented for predict-
ing risks in cloud failure, with integration of cloud failure risk and the tree based model.
Further to test the framework a case study from google cluster is considered, with storage
of operational data containing volume of 400GB for twenty-nine days consecutively. The
research paper Mesbahi et al. (2018), highlights how the reliability and high availability
are vital concern for cloud computing service providers. According to this paper these
two characteristics are very important to maintain the customer trust and satisfaction
towards the cloud service. The paper presents a study which has covered all the aspects
of challenges and problem in cloud computing service. This was achieved by analysing
four questions that are ’What?’, ’Where?’, ’How?’ and ’When?’.

The paper Alam et al. (2018), proposes an evaluation model for evaluation of reli-
ability in cloud services, using effective manner. As we know reliability is one of the
main aspect of cloud service provider for good customer satisfaction. To improve this as-
pect from cloud computing service provider, the paper proposes an evacuation model for
improvement of reliability in cloud computing services. For implementation of the pro-
posed evacuation model, the author understands and highlights the strategies involved
in cloud failures. The paper also considers other failures from different type of domain
applied in cloud environment for a proper and thorough evaluation of cloud reliability in
the services. The paper has implemented the proposed evaluation model by execution
of the failures, and the results of this research is communicated using simulation. The
paper Li et al. (2020), proposes a creation strategy based on gray Markov chain with
dynamic replica. Multiple data replicas can be created from multi replica strategy. This
will eventually introduce improvement with the availability of data and service quality
of the data. But at the same time the Data Nodes required for this implementation are
limited in number as compared to the demand presented by the user. And hence, due to
increase in data replication the load on data storage is increased. To resolve this issue the
paper has proposed a creation strategy based on gray Markov chain to achieve dynamic
replica. As per the paper, whenever there is requirement of new replicas, these replicas
are created in DataNodes which impact the load balancing of the cloud service provider.
Hence, by keeping this in mind the author has proposed a Fast Non-dominated Sorting
Genetic algorithm for strategies involved in the replica placement. In conclusion the pro-
posed experiments have shown effectiveness in handling the challenge of load balancing
due to data replica placements.

The paper Cui & Li (2020), proposes a system movement space and mapping the-
ory for system to study the significant movement in process in system and the change
in the reliability. The system structure of IoT is enhancing towards complexity, which
is impacting reliability in the cloud services and is emerging as concern for the users.
The paper describes the reliability, and faulty in process and big data for industries in
engineering. The author here presents a theoretical basis of explanation or the methods
for the study in IoT reliability. Two methods namely System Movement Space (SMS)
and System Mapping theory (SMT) are proposed. As we know for any cloud service
cloud data center is critical and hence the characteristics related to cloud data center
such as infrastructure, and reliability service is very vital for a proper service delivery.
The paper Li et al. (2021), proposes a hierarchical colored generalized stochastic petri net
to bridge or reduce the gap between the existing work and reality. As discussed above
the cloud data center are very vital for any cloud services hence, it directly impacts the
reliability factor. The proposed framework evaluates the reliability service by the sim-



ulation of Monte Carlo. The proposed modeling and simulation are implemented over
the cloud data center of insurance company and the strategies applied by them for cost
management related to operation, maintenance and configuration of the cloud data center.

The paper Mahmoud et al. (2018), presents an approach for service based develop-
ment of software application. The increase in bandwidth , reliability and accessibility is
enhancing the developers to select the cloud service SaaS, but they face a challenge of
version control and management of discoveries in software development. To bridge this
gap the proposed approach was built with distributed service. The implementation and
result of this approach is described in this paper. An SLA-based approach for achieving
reliability in private cloud is proposed in the paper Malatpure et al. (2017). In the im-
plementation of the proposed approach the author examines how the reliability of SLAs
are formulated, identification of the customer key and usage of accelerated testing for
validating the implementation. For proper validation of the model the author has cre-
ated a private cloud SaaS. In conclusion the author shows the result of the simulation
using the Microsoft Azure development cycle, while describing the analysis over the issue
of reliability surfaced in the process of implementation. In any cloud platform we have
observed that the infrastructure of Cloud-management has played a significant role as
cloud computing stacks. The high availability feature of cloud management is stated as
one of the crucial requirement by the paper Liu et al. (2014). But at the same time the
infrastructure of cloud management shows high complexity. The paper states that a very
small amount of focus was done with quantitative analysis of cloud management avail-
ability however, many research has been done for increase in reliability and availability.
The paper proposes a method for availability benchmark for a new cloud management
infrastructure. This was achieved by implementation of measurement method over cloud
customer or provider. The paper Benchara & Youssfi (2021), proposes a method for
clustered distribution of HPC models over medical image processing. The paper high-
lights the challenge such as communication cost, which impacts the scalability of the
cloud service. The proposed approach of K-mean method is performed within a team of
micro-services under distributed services by HPC. The previous research shows how reli-
ability has impacted the cloud service provider and the research in this field to evaluate
the challenge and mitigate the existing issue.

2.2 Cascading failure in software and hardware

Addressing cascading failure in cloud services are very important, as it grows with time
and the impact becomes very huge. Cascading failures are the failures which gradually
grows with time and in can lead to system failure and enhancing the probability of the
system portion failure as well. The research paper Babalola et al. (2016), proposes an
adaptive multi-agent algorithm system, whose technique can be implemented over the
cascading failures with facing any loss. The paper highlights the nature and complexity
of cascading failures in the cloud service providers and how these failure lead to a huge
monetary loss in cloud computing services. The proposed approach is compatible with
system of various size. The approach uses a combination of mathematical heuristically
combined selection of sensitivities. For implementation of this research a real-time cas-
cading issue was faced and resolved using the proposed approach. The issue of cascading
failure tends to cause many challenges such as SLA violations, and monetary disruption
etc. The research paper Wang et al. (2018), proposes a CFRS that is Cascading Fail-



ure Resilience System which comprises of three methods that are namely, VM backup
set placement (VMset), Overload-Avoidance VM Reassignment (OAVR) and Dynamic
Oversubscription Ratio Adjustment (DOA). The paper highlights that in any cloud ser-
vice, due to cascading failure any physical machine is impacted then, the workload gets
transferred to to different physical machine so that the process continues. But at the
same time the new physical machine which has suddenly received workload due to cas-
cading failure in another machine faces overloading. To resolve this the paper proposed
Cascading Failure Resilience System is implemented. The result of the paper shows that
the proposed approach has shown good performance with multiple domain failure and
workload balance of physical machine due to cascading failures.

The research paper Xing (2020), presents the methodologies for reviewing the cascad-
ing failure and the impact over the reliability of cloud services and IoT. As mentioned
above cascading failures are the issues whose outbreak is elongated with time, that is if
one failure is occurred a second failure is triggered. So to understand the reason and the
steps to resolve these cascading failure the paper highlights the reasons and the behavior
shown by them. This paper further proposes mitigation solutions for the outbreak of
cascading failure.

Similarly, the paper Liu et al. (2012), proposes a protection scheme with a wide area
based multi agent system for prevention of voltage instability induced due to cascading
failure. The paper highlights that in any cloud service, due to cascading failure any
physical machine is impacted then, the workload gets transferred to to different physical
machine so that the process continues. But at the same time the new physical machine
which has suddenly received workload due to cascading failure in another machine faces
overloading. In the proposed approach external relays and controllers work efficiently as
per the cascading failure resolution. The result is presented by simulation, which shows
that the proposed strategy is very effective and provides a good performance for stability
of induced cascading failures. The paper Lan et al. (2010), highlights the evaluation of
credibility in software and testing in software. According tot the author this has evolved
as a theoretical challenge, and this issue needs to be addressed sooner, because of the
complex and large structure of software. The paper discusses the results obtained in some
of the experiments, and concludes that the credibility of executing software with less test
cases provide a better performance and a critical node guarantee.

2.3 Why AWS

For implementation of this research experiment, we had to select a cloud service provider
which would elaborate the challenge and adapt to the market with best practices. So
here in this section we will review some research papers which will help us understand
and select the best public cloud service provider. The research paper Kamal et al. (2020),
highlights how the selection of suitable cloud service provider has emerged as a challenge.
This papers presents a comparison between the computational service, storage and in-
frastructure provided by leading cloud service providers globally. For this the paper has
selected three cloud computing service providers that are Microsoft Azure, Amazon Web
Services and Google Cloud Services. Different aspects such as services, flexibility, price,
advantages and other features are elaborated for all the three cloud computing service
provider. By the comparison from all these aspects the paper concludes that AWS was
resulted in leading, whereas Microsoft azure has shown good performance in SaaS and



GCP is enhancing its leading service PaaS in Google Cloud platform. Similarly, the re-
search paper van Vliet et al. (2013) highlights the relience and reliability in AWS services.
According to the paper there are various factors impacting the reliability of any cloud
provider, but the most vital sapect is resilience. A process of recovery from any disrup-
tion occurred in workload due to infrastructure or services is known as Resilience. To
achieve this the cloud service provider need to acquire the on demand computer service
dynamically and mitigate the present disruption occurred in the service. The research
paper Kantaria et al. (n.d.), highlights how and why selection of AWS environment is
better than choosing any other cloud service provider such as Azure or GCP. The paper
addresses all topics from creation to final implementation with the cloud services. This
article focuses on the challenges and benefits of using AWS than other cloud service pro-
vider.

Similarly in paper Campbell (n.d.), vital components of automated AWS infrastruc-
ture are explained by the author. The author has presented deep analysis in terms of
infrastructure and the driving concept of API and also covers the benefits in terms of
reliability, agility and life-cycle automation of infrastructure. The paper also describes
the how the new architecture presented are reliable and flexible. The author describes
regarding the security and reproducibility of these services, with addition of DevOps.
The in-depth description of AWS CloudFormation such as Sceptres, toposphere, Terra-
form etc is also defined. The technological aspects as well as the organisational aspects
are very nicely depicted in this paper and explains why the tooling solutions of AWS as
services to customer is best in all terms. The paper Wittig & Wittig (2018), acknow-
ledges the currently present and running AWS services and provides us an insight of
the steps taken by AWS for resolution of the issue related to storage and its solutions.
The author highlights the limitations and challenges in using an on-premise data center,
which includes the necessity of resources and maintenance of the resources, cost limita-
tions and challenges. Management of all these challenges in an on-premise data center
creates a dilemma for the organisation, and helps us understand the benefits of using
AWS services for resolution of all these issues and challenges. A step by step workflow of
implementation of AWS service cloudformation is described and how it helps us overcome
these challenges. The AWS best practices are explained and analysed across the existing
issue of On-premise data center. The author presents an insight of cloudformation and
its characteristics of maintaining consistency in implementation of infrastructure in AWS
platform. As we know if any issue is presented to the developer they will have there own
way of handling and resolving the issue. To improve and omit this discrepancy and con-
fusion in later phase, the author proposes a CloudFormation template. These previous
paper has provided us the reference for adoption of AWS to understand and progress
in the research. Hence, for implementation of this research we have used AWS as cloud
service.

3 Research Methodology

In this section, we will firstly focus on the research question. Then we will direct some
possible approaches towards reaching the goal. Because it is important to justify why a
particular method is better than others, this same argument has a dedicated subsection
as well.In section 3.1, we give a quick recap to the research question before exploring



how to get towards a path to it.Section 3.2 is about the approach, being the basic step
and also the initial one, it is very important to have a plan of action and this is what
is described herein.After the approach, we see discuss about some alternatives choices
applicable for the research paper, this is better described in section 3.3, this particular
section also explain why a particular alternative stands out from others and thus leads
other aspects in this paper.

3.1 Recap of research question

A quick recap of the research question is that we seek a method to synchronize hard-
ware using software and also impose best-practices recommended.Manipulating hardware
through software is a required concept in modern times as both components can be con-
trolled using one of them, in doing so, all attention is focused on a single component and
hence this increase of focus will reduce the margin for error by avoiding the need to focus
on hardware and software individually and configure both to work in sync.

3.2 Approach

Regarding the approach which directly affects the question is the use of ’infra as a code’
methodology which perfectly fits the description and use-case for this research.This meth-
odology enables manipulating hardware components using software. Any code written
needs a clarification of what components are required based on the use-case, when this
script is run, the relevant components of script call the relevant APIs and at the data-
centre level, the resulting hardware components are spun up and/or revised. Public cloud
providers as well as several third parties have their personal alternatives to this. A few
alternatives widely popular are Iac Tools list (n.d.) :

• AWS CloudFormation - As the name suggests, this is a cloud service provided
by Amazon Cloud Services. herein we write what are called as ’templates’, these
templates can provision huge collections of hardware and third-party services as
well, all this can be updated, deleted as a single unit. Moreover, this is not limited
to a particular user or geographical region, the template can comprise of multiple
accounts spread across multiple regions.

• Terraform - One of the offerings from Hashicorp, Terraform is an open source tool
that primarily uses a Command-line Interface(CLI) to enter lines of code and then
use to work on APIs of many cloud services. Its main advantage is that it is not at
all specific to any particular cloud provider.

• Google Cloud Deployment Manager - An offering of the Google Cloud Platform,
this services enables us to automate creation of stacks that have Google’s cloud
services as its components, using a single template, we can make various services
work together.

• Azure Resource Manager - Azure from Microsoft provided this offering under Azure
DevOps so as to provision and maintain various components under one single roof.
Numerous components can be handled simultaneously by mentioning the type and
relevant parameters after their provision.

It is visually evident that all of these services and tools can get the job done.In the very
next section, we see what to pick over others and why.



3.3 Alternative choices

It is very important to select the best possible choice by comparing the available options
at hand. Referring to sources such as [Misc Ref 2] :

• Regarding the choice, AWS Cloudformation is a clear choice.Not only because AWS
being the clear cloud provider to be considered, but also because CloudFormation
is perfect in case of AWS-specific services and some third-party add-ons. Terraform
from Hashicorp is the second best competitor because of its flexibility, it removes
the cloud-specific restriction. Still, AWS CloudFormation has an upper hand be-
cause it can be used single-handedly to work on more than 350+ services [Misc
ref 2], that too from a single point of origin, a single template defining everything
needed.
In this research paper, the advantage of using CloudFormation is enormous and
unparalleled to any other alternative. The initial research follows AWS-defined
standards to achieve an application made and deployed with best practices in mind.
Being in the AWS environment for the entire procedure, right from start with only
help the cause of this paper.
Choice of method, its limitations.
The method chosen is to consider the mostly used AWS services and combine them
in a single template, this way, a single template can be used by most individu-
als, companies to get a head-start in setting up their application environments.
The only limitation clear is that as the number of services increases, so does the
complexity and the responsibility to make them all work together and adjust the
parameters accordingly.

Advantage in the market

• The official AWS website may have some initial basic templates for users to try, but
there is a need to have enterprise-level or templates. to be available for individuals
and companies to make use of.

• These templates can be uploaded at a dedicated site to be bought or can be used
to sell at AWS marketplace and other related places.

Advantages of IaaC

• The key advantage here is that developers won’t need to focus on setting up the
infrastructure, they can focus on software components better.

• For those involved in infra services, having infra-as-a-code saves them creating
everything from scratch, they will just be needing to configure how the components
will behave and interact.

• This will in general be a boost to initial stages on the software development lifecycle.

• Any changes required are done on a single template file. There is no need to
chase after individual components and worry what’s wrong like in a monolithic
application.



Other Aspects AWS Well-architected Framework
The main idea is to make any existing application ready to be up-to date with modern
tools and technology, keeping in mind any possible issues and be ready beforehand with
a relevant solution/work.
This template can be seen as one that lays down an application environment for the
application.Then, a mere configuration can get things up and running.

AWS Well-architected Tool is a tool provided by AWS that enables anyone to line-
up better with the AWS Well-architected framework. The tool lets anyone input their
current workload and matches them against what is the AWS golden-standard. There are
five main pillars which contribute together to form an ideal application workload, there
as follows :

• Operational Excellence

• Security

• Reliability

• Performance Efficiency

• Cost Optimization

Each pillar has a dedicated set of questions to be answered, most of the questions have
four to five options, based on the choices made, the tool gives a report status of what
pillars are standing at risk and thus need to be worked upon. Pillars needing immediate
attention are categorised as ’High Risk’. Figure 1 shows a short and simple summary of
a demo workload entered. It accurately shows how many questions answered were away
from the best practice advised. The total question count is 52, spread almost equally
across all five pillars mentioned above.

Figure 1: AWS Well-architected tool

4 Design Specifications

This section tells about the main design involved. The design goes hand-in-hand with the
main idea. As it is clear by now, the implementation revolves around an AWS cloud setup
and that too having the CloudFormation template at its heart. The design specifications
have the CloudFormation service containing a stack template. Other than this, we have
a dedicated S3 bucket that is used to store templates made. The initial design has only
these two components and this is what basically takes to build any scale of hardware
stack, this is the power of CloudFormation. After a successfull implementation and thus
after the template runs, there can be any number of individual and duplicate cloud
components, all that totally depends on the template chosen/created by the user.



4.1 Why AWS?

”Why AWS” is a fair and valid question. There is a straightforward answer to this:

AWS has a bigger market reach and more people can relate to cloud services/technologies
via AWS. AWS is the clear winner in terms of working standards, principles and even
best-practices as discussed in the related work. A wider audience can be reached when
talking in terms of AWS technologies compared to other cloud-providers.

The main components include CloudFormation, obviously, the research revolves around
this service, this is a key component as this ’infra as a code’ service is what acts as a link
between hardware and software. S3, The Simple Storage Service can be used for a variety
of use-cases. S3 can be used to store CloudFormation templates, can be used to store
application code, moreover, can be used as a code-versioning mechanism as well. One of
the most common use-case is using S3 for storage and backup. S3 is a core component
to make any application multi-AZ and hence more available and reliable.

5 Implementation

The implementation part is not limited to running a CloudFormation template, setting up
the components is a key requirement for success. The configuration manual associated
with this paper is the go-to regarding the implementation part.The easier path would
have been to use any existing CloudFormation template and then use it by modifying
certain parameters. This would not have been helpful as the main idea is to include as
many as cloud services as possible to make developers and infrastructure team free from
any sort of provisioning apart from basic parameter and credentials setting.
The core steps include :

• logging in to the AWS Management Console.

• Creating a stack template from scratch from CloudFormation service page.

• Running the template.

• Filling in the required parameters as required for individual components.

6 Evaluation

Aim:
The main aim is to make any software environment reliable by making it safe from any
issues that may be an obstacle to a good user experience. Complex datacenters having
tightly coupled components are highly prone to cascading failures if something bad were
to happen.

State-of-the-art :
Infra as a Code(IaaC) or Infra as Code(IaC) is not a standard practice. CloudFormation
is considered a risky service because it can spin up huge stacks of expensive hardware that
too at a multi-region level for several accounts at once. Even though the service itself is
free, users pay for the components spun up using CloudFormation. Any random template
picked up online may have a complex structure and thus result in high cost usage. Because



of this, a template that is checked and under-control can have lots of users engaging and
modifying it only to customize or enter private credentials and parameters.

6.1 Experiment1 - focusing on Elastic Beanstalk

The first experiment/trial was to use a template focusing on Elastic beanstalk. The steps
were identical to the ones mentioned in the Configuration Manual. This trial did not
turn out to be successful, the main result is always visible right after we create stack and
then run it by customizing the various components. As seen in figure 2, when the stack
was in creation, several internal errors resulted in complete rollback of the same, the final
message also read rollback completed.This error is very common or the most common
one in case a stack is not built.

Figure 2: CFN fail

6.2 Experiment2 - Multiple services

The first experiment/trial and final trial had a few numbers in between, the final trial
was the one which resulted in multi cloud-services from a single template. The steps were
identical to the ones mentioned in the Configuration Manual. This trial turned out to be
successful, many trials ran good for individual components but the real issue was to make
different cloud services co-exist and be initiated from a single CloudFormation template.
The approach was simple and pretty straight-forward, to start with one cloud service in a
CloudFormation template and then keep incrementing a service count, continuous testing
was necessary to recognize what service was not being setup the correct way.



Figure 3: CFN Success

Eventually, a template was right enough to make some of the cloud services co
exist. This particular combination is a treasure house for any application develop-
ing/maintenance team. The stack created from this template not only had components
such as EC2, S3, Elastic beanstalk, RDS co-exist, but also to carry Application load bal-
ancers, auto-scaling group. This is what is a positive outcome and this has paved way for
further research, a quest to add more and more services without hampering pre-existing
ones and contributing towards making an application more reliable thus improving the
user experience.

6.3 Discussion

• Experiment1 made it very clear from the start that the cloud services, their com-
ponents need to be in-line with relevant parameters for things to go well.If not, then
there will always be a failure in creation of the stack, although the stack was in
process of creation, because of incorrect parameters, the entire process was rolled
back by the AWS backend.

• Reaching the final test run wasn’t a couple of steps from Experiment1. The main
strategy was to make sure each and every single component would run separately
using its personal parameters and script. Then, the components were added to a
single template but one at a time. Regular testing was identical to unit testing and
integrated testing. The testing was made at an incremental level, meaning that
after each and every increment of a new service, the template was run to make sure



the integrated result until now runs smooth and as per expectations. The final test
was judged as passed only when all services in the template were running and with
desired features. An example of this is that the EC2 service was judged fine only
when auto-scaling was found working.

• As pointed before, the template running is not the end goal, the main key is to
make sure the application deployed on this template has changed the way the
application would have reacted previously to any internal or external irregularities.
The approach here is to use random testing, and we know the core component
for an environment is the instance used to run and deploy the application. The
best practice in case of instances is to ensure auto-scaling to meet any CPU usage
and load-balancing to manage/divert any workload. To check, auto-scaling, we
deliberately shut down an instance and see what happens next. Please note that
the auto-scaling policy was mentioned in the template itself, where the minimum
amount of instances running at any time was declared to 2.

Figure 4: ASG1

In figure 4 we can see there are four EC2 instances running in the account.The instance
which will be deleted to test auto-scaling has been renamed to tobedeleted1.

Figure 5: ASG2

In figure 5 we select the instance and terminate it.
In figure 6 we confirm that the target instance in shutting down, moreover, a new

instance has been spun up automatically and is moving towards the usual running state.
In figure 7 although we see five instances, the target instance is in terminated state

and hence we can ensure there are four instances. The relevant point here is that there
are still two instances running that came out of running the CloudFormation stack.



Figure 6: ASG3

Figure 7: ASG4

6.3.1 Improvements

There is always a scope for improvement. In today’s competitive world, average practices
are rapidly becoming out-of-date. For this research, improvement is a clear need in case
of failed experiment, but there is also room for improvement in case of the successful
experiment discussed above. One can deep dive within existing cloud services to be able
to configure them in more detail and hence have a better control on these services. A
second one would be to add more services to existing stack.Finally, trying both will be the
best option, adding more cloud services to the stack and that too having more detailed
control over services will make most of the tiring provision over by running a simple
template.

7 Conclusion and Future Work

This research proposes that there exists a need to use hardware and software in a syn-
chronous way to avoid and be prepared in case of any calamity that may harm an ap-
plication environment’s smooth functioning.

The future work would be to add more and more cloud services possible while making
sure they can co-exist. in a template successfully. Cloud services such as AWS Lambda
and API Gateway are widely used today as serverless is picking up its pace in the market
and so is consumption of internal and external APIs. A recommended future work would
be to have a template using serverless services of Lambda and have API Gateway to
consume APIs for an application. A point worth noting is that in case of API Gateway,



the parameters will be very critical and API calls and parameters and prone to human
error and need accurate values/parameters to work.

A future template with more added services and having a granular access to associated
components would definitely save a lot of time for infrastructure and development teams.
Provisioning resources using a single template, being able to treat huge hardware stacks
as a single entity, would save precious time in software development lifecycle, leaving
room to focus on DevOps, best practices and even application maintenance.

References

Alam, A. B., Haque, A. & Zulkernine, M. (2018), Crem: A cloud reliability evaluation
model, in ‘2018 IEEE Global Communications Conference (GLOBECOM)’, IEEE,
pp. 1–6.

Babalola, A. A., Belkacemi, R. & Zarrabian, S. (2016), ‘Real-time cascading failures
prevention for multiple contingencies in smart grids through a multi-agent system’,
IEEE Transactions on Smart Grid 9(1), 373–385.

Benchara, F. Z. & Youssfi, M. (2021), ‘A new scalable distributed k-means algorithm
based on cloud micro-services for high-performance computing’, Parallel Computing
101, 102736.

Buyya, R., Srirama, S. N., Casale, G., Calheiros, R., Simmhan, Y., Varghese, B., Gelenbe,
E., Javadi, B., Vaquero, L. M., Netto, M. A. et al. (2018), ‘A manifesto for future
generation cloud computing: Research directions for the next decade’, ACM computing
surveys (CSUR) 51(5), 1–38.

Campbell, B. (n.d.), ‘The definitive guide to aws infrastructure automation’.

Cui, T. & Li, S. (2020), ‘System movement space and system mapping theory for reliab-
ility of iot’, Future generation computer systems 107, 70–81.

Iac Tools list (n.d.), https://www.nexastack.com/en/blog/best-iac-tools. Ac-
cessed: 2021.

Kamal, M. A., Raza, H. W., Alam, M. M. & Su’ud, M. M. (2020), ‘Highlight the features
of aws, gcp and microsoft azure that have an impact when choosing a cloud service
provider’, International Journal of Recent Technology and Engineering (IJRTE) .

Kantaria, M., Basilaia, G. & Chokhonelidze, G. (n.d.), ‘Development of the cloud services
(aws) courses for the higher education institutions in georgia’.

Lan, W., Zhou, K., Feng, J. & Chi, Z. (2010), Research on software cascading failures, in
‘2010 International Conference on Multimedia Information Networking and Security’,
IEEE, pp. 310–314.

Li, C., Song, M., Zhang, M. & Luo, Y. (2020), ‘Effective replica management for im-
proving reliability and availability in edge-cloud computing environment’, Journal of
Parallel and Distributed Computing 143, 107–128.

https://www.nexastack.com/en/blog/best-iac-tools


Li, X.-Y., Liu, Y., Lin, Y.-H., Xiao, L.-H., Zio, E. & Kang, R. (2021), ‘A generalized
petri net-based modeling framework for service reliability evaluation and management
of cloud data centers’, Reliability Engineering & System Safety 207, 107381.

Liu, X. X., Qiu, J. & Zhang, J. M. (2014), High availability benchmarking for cloud
management infrastructure, in ‘2014 International Conference on Service Sciences’,
IEEE, pp. 163–168.

Liu, Z., Chen, Z., Liu, C., Sun, H. & Hu, Y. (2012), Multi agent system based wide
area protection against cascading events, in ‘2012 10th International Power & Energy
Conference (IPEC)’, IEEE, pp. 445–450.

Mahmoud, Q., Andrusiak, I. & Altaei, M. (2018), Toward a reliable service-based ap-
proach to software application development, in ‘2018 IEEE 20th Conference on Busi-
ness Informatics (CBI)’, Vol. 1, IEEE, pp. 168–177.

Malatpure, A., Qadri, F. & Haskin, J. (2017), Experience report: Testing private cloud
reliability using a public cloud validation saas, in ‘2017 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW)’, IEEE, pp. 56–56.

Mesbahi, M. R., Rahmani, A. M. & Hosseinzadeh, M. (2018), ‘Reliability and high avail-
ability in cloud computing environments: a reference roadmap’, Human-centric Com-
puting and Information Sciences 8(1), 1–31.

Tian, Y., Tian, J. & Li, N. (2020), ‘Cloud reliability and efficiency improvement via
failure risk based proactive actions’, Journal of Systems and Software 163, 110524.

van Vliet, J., Paganelli, F. & Geurtsen, J. (2013), Resilience and Reliability on AWS:
Engineering at Cloud Scale, ” O’Reilly Media, Inc.”.

Wang, H., Shen, H. & Li, Z. (2018), Approaches for resilience against cascading fail-
ures in cloud datacenters, in ‘2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS)’, IEEE, pp. 706–717.

Wittig, M. & Wittig, A. (2018), Amazon web services in action, Simon and Schuster.

Xing, L. (2020), ‘Cascading failures in internet of things: review and perspectives on
reliability and resilience’, IEEE Internet of Things Journal 8(1), 44–64.


	Introduction 
	Related Work
	Reliability in Cloud Computing
	Cascading failure in software and hardware
	Why AWS

	Research Methodology
	Recap of research question
	Approach
	Alternative choices

	Design Specifications
	Why AWS?

	Implementation
	Evaluation
	Experiment1 - focusing on Elastic Beanstalk
	Experiment2 - Multiple services
	Discussion
	Improvements


	Conclusion and Future Work

