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Reducing the Cloud Overhead and Latency for
Artificial Intelligence Applications Using Hybrid

Computing

Eromosele Idiagi Iriogbe
19242794

Abstract

In developing artificial intelligence (AI) applications which require high compute
resources for training deep learning and machine learning models, cloud is often
adopted. Using the cloud in this way offers some benefits, however some limitations
exist in terms of increased latency, privacy, reliability and computation overhead
on cloud servers. An alternate approach is to run AI-based applications on local
devices, but due to limited computing capacity of some local devices certain tasks
like training some deep learning neural network models cannot be efficiently done on
the everyday local devices, thus requiring the purchase of costly hardware which is
not feasible for every user. Therefore, dependence on the cloud sometimes cannot be
avoided. To address the limitations with each individual approach (local execution
or cloud execution) for certain implementations, hybrid computing is proposed. To
reduce the cloud computation cost and latency, a small portion of code is pushed to
the client device where the less computationally intensive tasks like deep learning
inference is carried out. This concept we refer to as hybrid computing. In this
work, a human emotion classification application is developed in a cloud server
based solution and a hybrid computing solution. The hybrid computing solution is
shown to reduce the cloud overhead and provide better scalability of the application,
enabling a larger number of users to utilise the service.

1 Introduction

Computation offloading has seen increased adoption in recent years. This can be at-
tributed to the numerous benefits which can be gained by transferring compute tasks
to more capable platforms. Some of these benefits include reduced operational costs,
enhanced performance and greater efficiency. Computation offloading to the cloud via
cloud computing received great adoption in this regard because of its inherent character-
istics such as on-demand self service, rapid elasticity, and broad network access. These
benefits led to quick adoption of the offloading of compute intensive tasks to the cloud.
In more recent years however, some potential drawbacks with offloading to the cloud have
been identified and more efficient computation approaches sought. These drawbacks af-
fect implementations requiring lower latency as well as those with network bandwidth
constrains.

To mitigate against these issues researchers have proposed frameworks which adopt
unique methods to determine if at all to offload, what to offload, and how to carry out the
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offloading. In some of these research efforts, local computation is adopted, whereas some
others favour offloading the the cloud. Whilst these approaches have their individual
benefits, they however posses individual limitations. For example, the cloud remains
the more compute-resource rich option than local devices for most applications, but is
affected by privacy issues for certain implementations. Offloading to the edge via edge
computing has also been adopted by some researchers, but this is also met with peculiar
challenges. As highlighted in Lin et al. (2019), issues with partitioning, task allocation,
and resource management originate because of the distributed and heterogeneous edge
computing environment. Therefore, identifying the ideal offloading approach for varied
use cases and applications remains an open research area.

The resource-intensive nature of machine learning applications have made them a suit-
able candidate for computation offloading with offloading to the cloud being increasingly
adopted. However, issues with this approach exist in terms of privacy, latency, reliabil-
ity and even the accrued monetary costs. With local computation, there is no need to
transfer input data across the network to the cloud hence ensuring reliability. Privacy
is also ensured with local execution as data is managed locally. However, the amount of
compute resources available locally is limited which can negatively impact accuracy and
increase computation time.

Therefore, an approach which draws upon the strengths of both local and cloud ex-
ecution while cutting out their individual limitations would be beneficial. This is what
the hybrid computing approach proposed in this work aims to achieve. To address the
identified issues, a hybrid computing approach which involves sharing the computation
between the cloud and the local devices is adopted. This is possible because today, smart
phones and personal computers (PCs) used on a day-to-day basis by individuals now
ship with central processing units which are much more powerful than those available
only a few years back. They also posses much greater memory capacity. Some of these
devices even posses graphical processing units. Often time, a large portion of these com-
pute resources are not fully utilised. Therefore, through the hybrid computing approach,
both the cloud and the local devices would be used efficiently thus ensuring privacy and
reliability is achieved without sacrificing on accuracy.

The hybrid computing approach proposed is tested over a machine learning applica-
tion performing real time emotion classification from human faces. To demonstrate the
effectiveness of this research, the emotion classification application is implemented with
both a cloud server solution and a hybrid computing solution and both are critically com-
pared. The deep learning model employed is trained over the facial emotion recognition
(FER-2013) dataset. In the hybrid computing solution, the trained model is transferred
to the local device and inference carried out locally, whereas in the cloud server solution
inference is done on the cloud server. From experiments carried out, through the hybrid
computing approach adopted, the emotion classification application is made available to
more users with reduced overhead on the cloud resources.

1.1 Research Question

This project aims to answer the research question -
Can shared computation between the cloud and local devices through a

novel hybrid computing approach be a suitable means of reducing cloud over-
head for artificial intelligence applications?

The following objectives are derived to address the research question:
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• Investigate the state of the art in computation offloading.

• Design and implement an artificial intelligence application which performs hybrid
computing to reduce cloud overhead.

• Carry out suitable tests to evaluate the performance of the developed hybrid com-
puting system.

The main contributions of this research are:

• A cloud server based emotion classification application solution.

• A hybrid computing emotion classification application solution.

• Utilising hybrid computing to improve efficiency and enable a larger audience to
access and use an AI application.

This report is structured as follows. Section 2 presents related works, Section 3 de-
scribes the employed methodology, Section 4 discusses the design specification, Section 5
presents the implementation, Section 6 presents the evaluation, and in Section 7 conclu-
sions and future work are discussed.

2 Related Work

In recent years, computation offloading has been well-researched owing to the benefits
it offers. Different approaches have been adopted by researchers in determining what to
offload, how the offloading would occur, and where to offload to. Recent efforts in this area
are explored in detail in this section. Section 2.1 introducing computational offloading,
and presents general surveys carried out on recent research efforts in the area. Section 2.2
discusses the various approaches adopted by researchers to identify the optimal offloading
scheme. In Section 2.3, computation offloading of machine and deep learning to the edge
via edge computing is discussed. In Section 2.4, client-side machine learning and deep
learning is discussed alongside deep learning in browsers.

2.1 Computation Offloading

Computation offloading which is the transfer of part or all computation to another me-
dium for execution has been adopted in recent times for several reasons. Some of these
include empowering resource constraint devices, reducing execution costs (which could be
in terms of time, financial, energy etc). This section introduces computation offloading
and presents an overview of the recent efforts into computation offloading. Recent re-
search efforts into computational offloading to the edge are surveyed in Lin et al. (2019).
Edge computing is introduced by the authors as a possible solution to some issues that
arise with offloading to the cloud. One of such issues is the latency. Increased latency is
associated with computation offloading to the cloud because of the distance between the
end devices which generate data and the cloud. Edge computing is further discussed, and
its characteristics and challenges presented. The heterogeneous and distributed environ-
ment in which edge computing takes place results in unique challenges when offloading to
the edge is adopted. Some of these challenges are in terms of partitioning, task allocation
and resource management. To address these challenges, some technologies are proposed
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which would be beneficial such as blockchain and severless computing. The importance
of computation offloading to the edge is further buttressed using specific scenarios where
it is particularly beneficial for improved performance, for example, in cloud gaming and
real time streaming.

Similarly, Zheng et al. Zheng et al. (2020) discuss computation offloading to the edge
highlighting offloading scenarios, factors which affect offload decision, strategies adopted
in offloading and critical challenges with offloading to the edge. Program partitioning is
elaborated on as well as the identification of components which can be offloaded. Varied
offloading scenarios exist such as offload from IoT devices to the Cloud, offload from
edge nodes to the cloud, and offload from the cloud to end devices such as IoT devices
which is employed in applications which require extremely low response time, for example
video analytics. This work supports the idea that offloading from cloud to end devices is
beneficial for certain applications.

Computation offloading has experienced noticeable growth in significance in recent
years. Akherfi et al. Akherfi et al. (2018) capture this graphically through a repres-
entation of published papers where the words ”computation”, ”data offloading”, and
”offloading” were cited from 2004 to 2014. This can be seen in Figure 1. The author also
discusses mobile cloud computing (MCC) which is an integration of mobile computing
and cloud computing. The use of smart phones has grown exponentially in recent years
and today smart phones are used in gaming, healthcare, and e-learning domains. How-
ever, despite the increased compute capacity of smart phones today, they still experience
difficulty handling certain resource intensive tasks such as deep learning. Hence, the in-
creased adoption of offloading to more capable platforms. A highlighted challenge faced
by computation offloading frameworks developed for MCC is platform diversity which
originates as a result of the variations in smartphones operating systems and architec-
tures.

Figure 1: Number of computation and data offloading papers. Source Akherfi et al.
(2018)
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2.2 Approaches Adopted Towards Optimal Offloading

To arrive at an optimal offloading decision, different approaches have been adopted by
researchers. In this section these approaches are reviewed. Research carried out by Yu
et al. Yu et al. (2017) in the field of mobile edge computing (MEC) aimed to reduce the
system cost in terms of network resource usage associated with computation offloading.
Considering existing offloading schemes such as the random offloading scheme (what to
offload is chosen randomly by the mobile device), the total offloading scheme (offloading
all components), no offloading scheme (complete local execution) and the multi-label
linear classier-based offloading scheme, they develop a deep supervised learning (DSL)
algorithm to determine the ideal offload decision. The proposed system outperforms
the schemes mentioned earlier over the experiments conducted by reducing the system
cost considerably. Whereas their work aims to reduce system cost in terms of network
resource usage, Chakrabarti et. al Chakrabarti et al. (2020) looked to mitigate the latency
associated with real-time classification in an edge offloading environment. In their work,
a Markov Decision Process(MDP)-based framework is proposed. To minimize network
latency and maximize classification accuracy, they employ a token bucket to control
the transmission to the edge device. To evaluate the framework, the ImageNet image
classification benchmark Russakovsky et al. (2015) is utilised.

As often time offloading involves some form of performance trade-off between different
metrics, Karim and Prevost (2017) proposes a framework which employs decision tree
algorithm to decide if computation on a mobile device needs to be offloaded to the cloud.
In the developed system the offload decision is taken as a binary classification problem,
with user input, network conditions and the available device resources being considered.
An image processing software is used to test out the developed system. A different
approach is taken in Yao et al. (2020) where the large proportion of time which data
transfer between local and edge devices consumes is addressed by the Deep Compressive
Offloading framework proposed by the authors. Deep learning and compressive sensing
theory are employed in the framework, with the process involving encoding the data to
be offloaded into minute pieces, transmitting those pieces and then decoding them at the
edge server. DeepCOD, an offloading system is developed by the author and through the
system end-to-end latency is effectively decreased while accuracy is sustained with a loss
of at most 1%. An observed drawback with the proposed system is that with decreased
network transmission time, computation overhead increased on mobile devices.

To determine the ideal location to offload to between a near fog/edge node, a neighbour
fog/edge node or the cloud server, a deep learning based framework is proposed in Alelaiwi
(2019). The future response time is predicted by the framework and using the calculated
response time, the offload location is decided by selecting the node which returns the
least response time. MATLAB is used to simulate the proposed model.

2.3 Offloading Machine and Deep Learning to the Edge

Offloading machine learning tasks to the edge has been adopted by researchers to em-
power mobile devices as well as other resource constrained devices to carry out these tasks.
This section explores these efforts. Li et al. Li et al. (2019) looked to exploit device-edge
synergy to enhance deep neural network inference. They proposed the Edgent framework
and tested it over an image recognition task. To reduce computing latency, adaptive
DNN partitioning and DNN right-sizing are adopted in the framework. A drawback with
the Edgent framework is that to achieve lower latency, accuracy is sacrificed. However,
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in a more recent effort, the Cogent framework is proposed by Shan et al. Shan et al.
(2020) and it successfully reduced the service latency without adversely impacting accur-
acy. Similar to the work carried out in Li et al. (2019), the Cogent framework looks to
enhance deep neural network inference on devices with limited compute capacity. The
frameworks consist of two distinct stages which are the pruning and partition stage, and
the containerized deployment stage. In the developed architecture, inference is done on
edge devices in close proximity to the local device.

Another similar research is carried out in Dey et al. (2019) where an optimal offloading
system for the deep learning inference stage to edge servers is developed by the authors.
However, in their work, the partitioning algorithm considers the available network band-
width and the load on the local devices in determining the partition point. Offloading
machine learning inference to edge servers is also proposed in Yang et al. (2019). The
author proposes partial offloading of inference computation to edge servers in a bid to
decrease the overall time consumed when carrying out convolutional neural network in-
ference on mobile devices. Workload batch processing is done on graphical processing
unit (GPU) on the edge server which from experiments carried out decreased the average
inference time.

2.4 Machine Learning and Deep Learning on the Client-side

Computation on the client-side has been investigated by researchers based on their use
cases and requirements. A review of these research efforts to carry out machine learning
and deep learning on end devices (client-side) are discussed in this section.

Guo Guo (2018) carried out an empirical study of mobile deep inference. In the
research work, the inference performance of the cloud is compared with that of a local
device over three convolutional neural networks (CNNs). The performance of the cloud-
based deep inference is compared with the on-device inference using a benchmark object
recognition Android application. Deep learning driven mobile apps are categorized by
the author into those employing cloud based inference and those employing on-device
inference. The CPU or GPU of a mobile device is used to carry out inference tasks using
CNN models that are stored on the device in on-device inference. In contrast however,
models trained on cloud servers are used in cloud-based inference. Not surprisingly, from
experiments conducted, the cloud-based approach out performs the on-device approach by
at least 6 times. In addition, the battery consumed by the on-device approach accounted
for twice that consumed by the cloud approach. The author therefore infers that the
range of applications where on-device inference can be applied to are limited. A hybrid
computation approach where the cloud and the mobile device both share the computation
is however not considered in this work and this could be uniquely beneficial.

There exist some benefits to local inference, that is, carrying out inference on end
devices such as mobiles and laptop computers and not solely on the cloud. A research
carried out by Wu et al Wu et al. (2019) discusses this. In their work, how machine
learning is applied at Facebook is discussed along side the approaches Facebook has
adopted to enable machine learning inference on the end devices the Facebook application
is run on. Some benefits looked to be gained by this include a reduction in inference time
as well as a reduced dependence on fast and stable network connectivity. However, some
technical challenges exist with carrying out inference on end devices so certain tools
and optimizations are utilized to mitigate them. Microarchitecture specific performance
tuning, weight compression, and quantization are some techniques employed to address
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the aforementioned technical challenges. The study also reveals that on mobile, because
of systems heterogeneity, it is difficult to port code to co-processors and as such inference
is done mostly in CPUs.

In Ran et al. (2017), an Android application which carries out real-time object detec-
tion is developed by Ran et al. Trade-offs between battery usage, latency, and classifica-
tion accuracy are presented when local object detection is done or when a remote server
with more compute capacity is used. In their work, the offload decision is affected by
factors such as a change in network bandwidth, change in the size of the neural network
model, and a change in device battery level. As with some earlier reviewed work, a hybrid
computation approach is not considered by the researchers, as computation is either done
locally, or if a decision to offload is arrived at, completely on the remote server.

To address latency and privacy concerns that exist in the area of mobile health, Dai
et al. Dai et al. (2019) develop an application which does inference on the mobile device
using a pre-trained CNN model. They test the application over a dataset of skin cancer
images using a CNN model earlier trained over 10,015 images of skin cancer. When new
images are supplied to the application, computation is done locally without a need for
the images to be transferred over a network. This approach, in addition to the benefits
of reduced latency and improved privacy, enables the application to work even when a
network connection is not present.

A different approach is adopted by Teerapittayanon et. al Teerapittayanon et al.
(2017) to reduce communication cost. In their work, they propose a distributed deep
neural network (DDNN) involving the end device, edge devices, and cloud servers with
increasing neural network layers in the listed order. They train a single DNN model and
map sections of it across these levels and enable early exit points.

Today, deep learning can be carried out in browsers. Ma et al. Ma et al. (2019) explore
in detail, deep learning is browsers. In their work, they survey what currently can and
what currently cannot be achieved when carrying out deep learning in browsers, and
compare the performance of different deep learning tasks when run in browsers and when
run on native deep learning platforms. They postulate that deep learning in browsers
offers an advantage over native platforms when devices with integrated graphic cards
are used. This owes to the fact that native deep learning frameworks require standalone
graphic cards for acceleration whereas both integrated and standalone graphic cards can
be accessed when browsers are used. Another advantage which carrying out deep learning
in browsers offers is the mitigation of cross-platform portability challenges. By developing
web applications, artificial intelligence (AI) driven applications would not need to be
maintained across different platforms.

2.5 Research Niche

Through the review of literature, it is evident that computation offloading can be em-
ployed in diverse scenarios to meet diverse requirements. The viability of computation
offloading has made it a well researched area in recent years with authors proposing vari-
ous approaches to it in addressing a range of applications and scenarios. Table 1 provides
a summary of some of the offloading frameworks proposed in the reviewed literature,
comparing and contracting them.

Through computation offloading, resource-constrained devices are empowered to more
efficiently carry out compute intensive tasks. Machine learning is a classic example of
a compute intensive task which has enjoyed the benefit of computation offloading. Ap-
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Reference Paper Title Method Merit Limitation

Yu et al.
(2017)

Computation
offloading
for mobile
edge com-
puting: A
deep learning
approach

DSL algorithm
to determine
optimal offload
decision in a
MEC environ-
ment in order
to reduce net-
work resource
utilization

Reduces
network
resource
usage and
out-performs
random,
total, and
no offloading
schemes

System cost
is considered
only in terms
of network
resource
usage

Karim and
Prevost
(2017)

A machine
learning
based ap-
proach to
mobile cloud
offloading

Framework using
decision tree al-
gorithm consider-
ing network con-
dition, device re-
sources and user
input. Offload
is between mo-
bile device and a
cloud server

Considers
a variety
of factors
in mak-
ing offload
decision

Does not
consider the
potential
benefits
of sharing
computation
between
the mobile
device and
cloud server

Yao et al.
(2020)

Deep com-
pressive
offloading:
speeding
up neural
network in-
ference by
trading edge
computation
for network
latency

Deep Compress-
ive Offloading
framework to
address large pro-
portion of time
consumed during
data transfer
to edge device.
Developed Deep-
COD offloading
system

Decreases
end-to-end
transmission
latency with
accuracy loss
of at most
1%

Approach
resulted in
increased
computation
overhead on
the mobile
devices

Li et al.
(2019)

Edge AI:
On-demand
accelerating
deep neural
network
inference
via edge
computing

Edgent frame-
work exploiting
device-edge syn-
ergy to enhance
deep neural net-
work inference
by reducing com-
puting latency.
Adopts adaptive
DNN partition-
ing and DNN
right-sizing

Framework
successfully
reduced
computing
latency

Sacrifices
accuracy to
achieve lower
compute
latency

Table 1: Comparison of Offloading Frameworks
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proaches adopted in the reviewed literature include offloading to edge servers, offloading
to cloud servers, and on-device computation. These individual approaches however have
advantages and disadvantages which pertain to each of them. Also reviewed is deep
learning in browsers which is proposed as a solution to cross platform portability chal-
lenges. Therefore, an approach which can pull together the advantages of the different
approaches adopted towards carrying out machine learning tasks today such as total of-
floading to the cloud or edge, and on-device computation, whilst effectively cutting out
their individual limitations would be advantageous. This is what the hybrid computing
solution developed in this work achieves. In this work, the cloud server and the end
device share the computation and to mitigate against cross platform portability issues,
the web browser is used.

3 Methodology

Artificial intelligence (AI) based applications which requires high computation resources
for training deep learning and machine learning models often time utilize cloud services.
However, along with advantages there exist some limitations associated with cloud com-
puting services such as increased latency, accrued financial costs, and privacy concerns
for certain implementations. An alternate solution for AI-based applications is to run
on local devices, but due to limited computing capacity of local hardware devices, high
computation tasks such as training certain deep learning and machine learning models
over large datasets is often time not feasible, making reliance on the cloud sometimes
necessary. Therefore, to reduce cloud computation overhead a portion of computation is
pushed to the client device where the less computational intensive tasks such as Inference
is then done. The above concept, is referring to as hybrid computing. In this work, we
are using two different approaches for performing the computation. They are:

• Cloud server based solution

• Hybrid computing solution (Offloading computation to client-side )

For real-time applications, the cloud server based solution will induce high network
usage and huge server costs for computing. To demonstrate this, in this work we have
developed a real-time emotion classification application. The developed application util-
izes a pre-trained deep neural network model. In this section, we discuss the design
methodology.

3.1 Cloud Server Based Solution

In the cloud server based solution, computation and data transfer dependency of the
application is placed on the cloud server. On the client end, the user will grant access
to their device’s camera or the web-cam associated with local device and the application
will identify the emotion in real-time. For the server based system, WebRTC 1 is used to
send and receive video stream between the Web browser and the cloud server. Inference
is done using the deep learning model which is saved on the cloud server.

As the video stream is transmitted to and from the cloud server, there is much network
utilisation and good internet connection is required. As the application is completely

1https://webrtc.org/
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dependent on the cloud for all computation, the application can run on devices with low
compute capacity, but where there is low network bandwidth, much latency is observed.
The architecture of the cloud server based solution is shown in Figure 2.

Figure 2: Server Based Solution

3.2 Hybrid Computing Solution

In the hybrid computing solution, rather than complete dependency on the cloud server,
the trained deep learning model from the cloud server is transmitted to client end in
JSON format. Model transfer from the cloud server to client end is one-time process.
Once the model is transferred to client end, the inference tasks can be performed at
client end itself. In the hybrid computing approach, the high computational task such as
training the deep learning model on large volume of image data is performed at server
end and the inference task which is less compute intensive is performed at client end.

Figure 3: Proposed Hybrid Approach
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Overall, using hybrid computing approach, when a user accesses the application, a
one-time connection from server end to client is established and after successful establish-
ment of the connection, the trained deep learning model is transmitted to the respective
client. Once the model is transferred to the client end, it is used to carry out the infer-
ence. The emotions of the user over the video is classified. This approach greatly reduces
the computational overhead on the cloud server, reduces amount of network bandwidth
consumed, also avoids the latency which results from transmitting large data over the net-
work. The approach is simple yet effective, as the developed application works effectively
even when there is low network bandwidth.

3.3 System Components

In this section, the system components are discussed.

• Application Users : The application users access the application using their
computing devices such as smartphones, laptop or tablet. As it is a Web application,
it is run in a Web browser and no additional installation is required on the users
device. In order to utilise the application, the user’s device has to have a camera
as well as a stable internet connection.

• WebRTC : In order to enable real-time communication capabilities for the applic-
ation, WebRTC is used. WebRTC stands for Web Real-time Communication, an
open-source project and it is a collection of several APIs and protocols. WebRTC
is available on major browsers and it enables the application to capture and stream
video media.

• Cloud Server : Cloud server refers to a cloud instance. This could be provided
by a public cloud provider like Amazon Web Services, Google Cloud, or Microsoft
Azure. The cloud server is connected with cloud storage, in a two-way communic-
ation. The large volume image dataset used for training deep learning models is
stored on the cloud storage. In case of server-based system cloud server will also
perform the inference task.

4 Design Specification

In this section the design specification of the emotion classification application is dis-
cussed. The overall architecture for training the deep learning model is shown in Figure
4.
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Figure 4: Training the Deep learning model for Emotion Classification

The pre-trained deep learning model is then used in the application to classify emo-
tions. In the first instance, the application identifies the human face from the video data
and then the emotions are classified by analysing the human face.

4.1 Dataset Collection

In this step, the FER-2013 (Facial Emotion Recognition) 2 dataset for performing emotion
classification is collected. The main labels for emotions are ’Fear’, ’Angry’, ’Happy’,
’Disgust’, ’Sad’, ’Surprise’, ’Neutral’. The dataset contains grayscale images of faces with
size of 48 X 48 pixel. The training set contains 28709 examples and testing set contains
3589 examples.

4.2 Data Augmentation & Pre-processing

In order to improve the classification accuracy, data augmentation and pre-processing
plays an important role. In this process, we are applying certain techniques such as image
mirroring, rotation of images from different angles, changing the images to different light
conditions. Data pre-processing step also includes the mapping of the images with the
correct labels.

4.3 Model Training & Feature Engineering

We train a CNN model created by combining VGG blocks and Inception blocks. The
model has approximately 3 million parameters and is able to classify 7 emotions with an
accuracy of 63%. The model utilizes 9 convolutional layers, 5 max pooling layers and
3 dense layers. The model has been trained over 25 epochs. Rectified linear activation
function (ReLu) is used as the activation function. The implementation is carried out
using TensorFlow functional API

2https://www.kaggle.com/msambare/fer2013
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4.4 Model Evaluation

The model has been trained over 25 epochs. Accuracy and loss score has been calculated
for analysing the performance of the model. The fine tuning of the hyper-parameters
also has been performed. The result obtained for training and validation set before hyper
parameter tuning and after hyper-parameter tuning are shown in Figure 5, Figure 6,
Figure 7 and Figure 8.

The highest accuracy obtained for FER-2013 dataset before hyper parameter tuning
is 61.24% over the validation set. On the other accuracy obtained over the training set is
63.27%. On calculating the training and validation loss, the values obtained after train-
ing the models are 0.9786 and 1.052 before performing hyper-parameter tuning. It has
been found that on increasing the number of epoch the accuracy was increasing and in
an inversely proportional manner the loss was found to be decreasing.

Figure 5: Accuracy Score (Before Parameter Tuning)

Figure 6: Loss Score (Before Parameter Tuning)

After performing the hyper-parameter tuning improvements are found in the per-
formance score. The highest accuracy obtained after hyper-parameter tuning for training
and validation set is found to be 68.36% and 63.39% respectively. Over every epoch the
accuracy was found to be increasing. On the other hand, on comparing the loss score
after hyper-parameter tuning it is found that, over every epoch the loss score decreased.
The loss score obtained after 25 epoch for training and validation set is 0.83 and 1.07
respectively.
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Figure 7: Accuracy Score (After Parameter Tuning)

Figure 8: Loss Score (After Parameter Tuning)

It is observed that that hyper-parameter tuning helps to improve the performance
of the model. After successfully training the model, the model is saved in the cloud
server storage. In this way, we have successfully trained the model for development of
the application which classifies 7 different emotions of human faces in the real-time.

5 Implementation

5.1 Cloud Server Based Solution

In order to acquire the media streams from the camera the WebRTC MediaStream API is
utilized. For security reasons, the browser only provide the data through encrypted https
connections. We are utilizing the ngrok 3 for creating a secure https tunnel to access our
application. In transferring data from the local device to the server, the aiortc library 4 is
used. In order to perform the image processing, OpenCV- Python library 5 has been used.
All the operations such as extracting the face, resizing, rotation, mirror operation can be
performed with OpenCV-python library. For face detection Haar-cascade algorithm 6 is
utilized. For inference, we are using TensorFlow 2.5. Rendering is done using OpenCV
drawing functions 7

3https://ngrok.com/
4https://aiortc.readthedocs.io/en/latest/
5https://docs.opencv.org/4.5.2/
6https://docs.opencv.org/3.4/db/d28/tutorial cascade classifier.html
7https://docs.opencv.org/3.4/d6/d6e/group imgproc draw.html
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5.2 Hybrid Computing Solution

In the hybrid computing based solution some functionalities and use of libraries are same
as the cloud server solution. However, as the architecture is different the method of
implementation also differs. In the hybrid computing architecture, we convert the saved
model into JSON using TensorFlow.js converter. Inference is run in the client’s browser
using the model assets which are fetched using Tensorflow.js model loading API. Same as
with the server based solution, WebRTC MediaStream API is for media streaming and
ngrok has been used in order to establish a secure https tunnel. In the hybrid computing
architecture transfer of video stream is not required, as we are locally processing the
input. In order to process the image, ml5.js library 8 has been used which is used to
recognise the face. In the inference process, the input is taken from the pixeled of canvas,
the conversion to gray-scale images and resizing is managed by TensorFlow.js library.
The input is fed to the model and the inference run. For rendering Canvas API is used.

Figure 9: Classification of Different Emotions (Mobile Device)

8https://github.com/ml5js
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Figure 10: Classification of Different Emotions (Laptop Computer)

The application can run on any modern browser whether on a mobile phone, laptop,
or tablet. The application identifies the emotion from the human face in the real-time.
The core difference between the server and hybrid based approach lies in where inference
is run. In cloud server based solution, the inference takes place at the cloud server.
Whereas, in the hybrid computing approach the inference takes place at client machine.
Emotion classification on the application is shown in Figure 10 and Figure 9.

6 Evaluation

As the application is cloud-based it can be served to as many users depending on the
resource availability of the cloud server. In this section, the CPU utilisation and network
bandwidth utilisation on the cloud server for the complete cloud server solution and the
hybrid computing solution is evaluated, and results from the experiments carried out are
presented. In the experimental setup, the cloud server has 16GB of RAM, 4 cores (8
logical processors), and a base speed of 2.4GHz.

6.1 Experiment 1/ Cloud Server-based Solution

From the cloud server based solution’s architecture discussed in earlier sections, it is
clear that the video data is transferred to the cloud server and inference is performed at
the server end. After inference is performed, the video data is transmitted back to the
client end. In this manner, two-way communication between the server and the client
is taking place where the client is transmitting data to the server and the server again
is transmitting data back to the client. Network utilisation is occurring at both client
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end and server end. As inference is carried out on the server, the CPU utilisation of the
server increases as the number of users of the application increases. The graph shown
in Figure 11 represents the relationship between the CPU utilization and the number of
users.

Figure 11: CPU Utilization in Server Based System

From the graph it can be observed that the CPU utilisation increases as the number
of users increases. When the emotion recognition application is serving a single user, the
CPU utilization of the server is found to be 40%, and as more users are connected, this
increases, reaching up to 82% when 5 users are connected. Upon adding more number
of users, the application crashed as the cloud server stopped responding to the requests.
Therefore, with the cloud server-based approach, the emotion classification application
served at the maximum 5 users.

Figure 12: Network Bandwidth Usage in Server Based System

17



On observing the network bandwidth utilisation with respect to the number of users,
it has been observed that as the application works in the real-time environment, the net-
work bandwidth is continuously utilized as continuous data transmission is taking place
between the client and server. The line graph shown in Figure 12 represents a relationship
between the number of users and network bandwidth usage. On analysing the graph it is
to be observed that as the number of users are increasing the network bandwidth utiliza-
tion is also increasing in a linear manner. Additionally, when the application is executed
using the server based approach, there is observable latency in the emotion classification
because of the round trip time from the client device to the server and back again.

6.2 Experiment 2/ Hybrid Computing Solution

The architecture of the hybrid computing solution is discussed in earlier sections. In the
hybrid approach, the client establish a one-time connection with the cloud server and in
response the cloud server offloads a small portion of code to the client end. When the
cloud server offloads the model to client end, small amount of network utilization takes
place. Once the model is transmitted to client end, inference can be performed at client
end, without dependency on the server. Therefore, using the hybrid computing approach,
it is observed that the CPU utilisation remains relatively constant even as the number
of users increased. There is no notable increase in the CPU utilisation as the number of
users connected increased up to 10 users.

As for the network utilisation, this also remains relatively constant and low on the
server as only when application users initially access the application is a small portion
of code offloaded to their device. There is also little or no observed latency in emotion
classification on the hybrid computing solution.

6.3 Discussion

From the experiments carried out on the cloud server and hybrid computing solutions
developed, it is evident that the hybrid computing solution produced better results.
Through the hybrid solution, emotion classification can be performed in the real-time
with much lower latency. The cloud server network bandwidth utilization and CPU util-
ization is also found to remain relatively low and constant. Using the Hybrid computing
approach, the application can be served to a greater number of users unlike with the
cloud server solution where the number of users who can effectively use the application
at a particular time is small. These results confirm that the hybrid computing solution
greatly reduces the overhead on the cloud server and makes the emotion classification ap-
plication available to a larger number of users. Using the hybrid computing approach, the
overhead on cloud servers can be reduced without compromising on the services provided
by the application.

7 Conclusion and Future Work

In this work we investigate the viability of a hybrid computing approach which involves
offloading some computation to the client side to reduce cloud overhead in artificial intelli-
gence applications. To achieve this we have investigated recent development in computa-
tion offloading, designed and implemented a real time emotion classification application,
and carried out suitable tests of the hybrid computing approach. Classification of human
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emotions using deep learning is computationally intensive. Usage of the application by
multiple users at the same time, generates huge workload on the cloud server. In order
to reduce the cloud overhead, hybrid computing is used. Using the hybrid computing
method, the application can be served to more number of users without an overhead on
the cloud resources. This way, the cloud is used for the compute intensive model training,
however, deep learning inference is done on local devices. As demonstrated, for real time
applications the hybrid computing approach proves to be the optimal solution. In future
work, more real time applications can be developed and the performance using the hybrid
computing approach compared against the cloud server based approach.
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