
Advancement in data locality during data
retrieval using community mapping of fog

nodes

MSc Research Project

Cloud Computing

Sonia Suhas Ghongadi
Student ID: 20104707

School of Computing

National College of Ireland

Supervisor: Prof. Vikas Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Sonia Suhas Ghongadi

Student ID: 20104707

Programme: Cloud Computing

Year: 2021

Module: MSc Research Project

Supervisor: Prof. Vikas Sahni

Submission Due Date: 16/08/2021

Project Title: Advancement in data locality during data retrieval using com-
munity mapping of fog nodes

Word Count: 837

Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Advancement in data locality during data retrieval
using community mapping of fog nodes

Sonia Suhas Ghongadi
20104707

1 Introduction

Configuration manual consists of a detailed, step-by-step installation of dependencies, lib-
raries, packages required for project implementation. This manual describes the installa-
tion of different libraries and packages that were required to build this project. It is shown
that to implement the proposed algorithm, it required the various node.js libraries such as
’uuid’ to create community hash, message broker queue service ’AMPQHelper(RabbitMQ)’
for data transfer and sensor-fog node connection establishment, and ’peerjs’ for peer to
peer connection between fog nodes. This manual will help to analyze the brief details of
community mapping of fog nodes to improve the data locality and the impact on latency
and response time. This research project is implemented on the local machine(HP Pavil-
ion).

2 Prerequisites and Configurations of System

To design and evaluate the proposed algorithm, following tools and setup is required:

1. Software Tools and dependencies

• Operating System : Ubuntu 20.04.2 LTS

• Integrated Development Environment : Visual Studio Code (Visual Studio
Code (n.d.))

• Node.js module

2. Hardware Specifications:

• System Type: 64-bit, x-64 based processor

• Processor : Intel® Core™ i7-1065G7 CPU @ 1.30GHz × 8

• Specifications : 8GB Memory, 512GB SSD

To implement this research project, multiple libraries and dependency packages were
required. The detailed installation of libraries is described as following:

1



2.1 Message Passing Queue Service - AMPQHelper

To establish the connection for data transfer between sensors and fog nodes, as well as
between fog nodes and fog nodes to cloud server, we have used the RabbitMQ message-
passing queue service named as ’ampqlib’ (AMQP 0-9-1 library and client for Node.JS
(n.d.)) install this library, use the command as shown in following Figure 1. It has
installed all the required libraries to establish the connection between sensors and fog
nodes.

Figure 1: Installation of AMPQLib

2.2 Winston for logging

This tool is used for logging details. Please run the mentioned command as shown in
following figure2.

Figure 2: Installation of Winston

2



2.3 Community Hash Generator : uuid

Once the community is generated, we have assigned the hash value to each community
for identification and uniqueness. To do the same, we have used the node.js module
named as ’uuidv4’(UUIDV4 (n.d.)) where v4 stands for Version 4 which generates the
random string hash values. To install the uuidv4 library, write the highlighted command
as shown in the following Figure 3.

Figure 3: Installation of uuidv4

2.4 Enable the connection and open data channels

As stated earlier, RabbitMQ is used for communication between devices and various
queues are created for data transfers. RabbitMQ is maintained by the docker community
(RabbitMQ (n.d.)). RabbitMQ stores the data based on the node name which is the
hostname by default. So, while running the daemon, need to specify the hostname to
keep the track of data and not to get the random hostname.

To start the queues and open the data channels for devices, need to run highlighted
command in below screenshot 4.

Figure 4: Start RabbitMQ

3



2.5 Project Setup

Once RabbitMQ is started, run the following command to start the project:

Figure 5: Start the execution

Further, to reset the queue between each run, need to run following commands:

• Find the queue name: Get the name of container ’docker ps, this will print out a
table, look for NAMES and copy it.

Figure 6: Find the queue name

• Add the queue name in the command as shown in below screenshot.

Figure 7: Run for respective container

• Reset the queue with the following commands as shown in below screenshot:

4



Figure 8: Reset the RMQ

3 Project Implementation

This sections states the code snippet for respective objectives.

3.1 Configurations

Configurations are mentioned as shown in following. While taking the experiments,
can modify this file based on the requirement and change the behaviour of device and
environment.

Figure 9: Configurations

3.2 Creating the fog infrastructure

To build the fog environment, this research has designed a class named as ’FogServer’
that creates fog nodes with the use of different configurations and register the instance to
cloud. Further, with the help of RabbitMQ helper, it will capture the data from sensors
as shown in following snippet of code 10.

5



Figure 10: Creating fog environment(FogServer.ts)

3.3 Cloud Server

Figure 11: Creating cloud server(CloudServer.ts)

6



Figure 12: Creating cloud server(CloudServer.ts)

3.4 Connection establishment between Fog nodes and IoT

As mentioned earlier, this research has used the RabbitMQ helper library to transfer the
data from IoT to Fog nodes. As shown in the following snippet of code 13 that shows the
implementation of data generated at IoT device and sending the data to the fog nodes.

7



Figure 13: Connection establishment between fog nodes and IoT(AMPQHelper.ts)

3.5 Community Creation

Figure 14: Community Creation

8



3.6 Data Synchronization

Figure 15: Data Synchronization)

9



3.7 Traditional Approach

Figure 16: Traditional Approach

10



3.8 Results

Figure 17: Generated Output

References

AMQP 0-9-1 library and client for Node.JS (n.d.).
URL: https://www.npmjs.com/package/amqplib

RabbitMQ (n.d.).
URL: https://hub.docker.com//rabbitmq

UUIDV4 (n.d.).
URL: https://www.npmjs.com/package/uuidv4

Visual Studio Code (n.d.).
URL: https://code.visualstudio.com/download

11


	Introduction
	Prerequisites and Configurations of System
	Message Passing Queue Service - AMPQHelper
	Winston for logging
	Community Hash Generator : uuid
	Enable the connection and open data channels
	Project Setup

	Project Implementation
	Configurations
	Creating the fog infrastructure
	Cloud Server
	Connection establishment between Fog nodes and IoT
	Community Creation
	Data Synchronization
	Traditional Approach
	Results


