

National College of Ireland
BSHC in Computing

Cybersecurity
2020/2021

Tijesu Olalekan

X17347773
X17347773@student.ncirl.ie

Pene Test
Technical Report

1

Contents
Executive Summary ... 3

1.0 Introduction ... 3

1.1. Background .. 3

1.2. Aims .. 4

1.3. Technology .. 4

1.3.1. Development ... 4

1.3.2. Version Control ... 5

1.3.3. Testing .. 5

1.4. Structure ... 5

2.0 System .. 6

2.1. Requirements .. 6

2.1.1. Functional Requirements .. 6

2.1.1.1. [FREQ-1] <Check User's Privileges> .. 6

2.1.1.1.1. Description & Priority ... 6

2.1.1.1.2. Use Case ... 6

2.1.1.2. [FREQ-02a] <Port Scanning> ... 8

2.1.1.2.1. Description & Priority ... 8

2.1.1.2.2. Use Case ... 8

2.1.1.3. [FREQ-02b] <Port Scan: Multiple Targets> .. 10

2.1.1.3.1. Description & Priority ... 10

2.1.1.3.2. Use Case ... 10

2.1.1.4. [FREQ-03] <Password Sniffing> .. 12

2.1.1.4.1. Description & Priority ... 12

2.1.1.4.2. Use Case ... 12

2.1.1.5. [FREQ-05] <ARP Spoofing / Man in the middle attack> .. 13

2.1.1.5.1. Description & Priority ... 13

2.1.1.5.2. Use Case ... 14

2.1.1.6. [FREQ-06] <Password Cracker > .. 15

2.1.1.6.1. Description & Priority ... 15

2.1.1.6.2. Use Case ... 15

2.1.1.7. [FREQ-07] <SSH Brute force attack> ... 17

2.1.1.7.1. Description & Priority ... 17

2.1.1.7.2. Use Case ... 17

2

2.1.2. Environment Requirements .. 19

2.1.3. Reusability Requirements ... 19

2.1.4. Extensibility Requirements .. 19

2.1.5. Usability Requirements .. 19

3.0 Design & Architecture .. 20

4.0 Implementation .. 21

4.1.1. Port Scanner ... 21

4.1.2. Vulnerability Scanner ... 24

4.1.3. Password Sniffer ... 26

4.1.4. SSH Brute Forcer ... 29

4.1.5. Arp Spoofer / Man in the Middle Attack .. 30

4.1.6. Password Cracker .. 33

5.0 Graphical User Interface (GUI) ... 34

6.0 Testing .. 35

6.1.1. Unit Testing ... 35

6.1.2. End-User Testing .. 37

6.1.2.1. Port Scanner Testing ... 37

6.1.2.2. Vulnerable Banner Scanner Test ... 38

6.1.2.3. Password Sniffer ... 38

6.1.2.4. SSH Brute Forcer ... 38

6.1.2.5. Password Cracker .. 39

6.1.2.6. Arp Spoofer ... 39

7.0 Conclusions .. 39

8.0 References ... 40

9.0 Appendices .. Error! Bookmark not defined.

9.1. Project Plan ... Error! Bookmark not defined.

9.1. Ethics Approval Application (only if required) Error! Bookmark not defined.

9.2. Reflective Journals .. Error! Bookmark not defined.

9.3. Other materials used ... Error! Bookmark not defined.

3

Executive Summary
This document outlines the development, testing and evaluation process for a
Penetration testing tool called Pene Test. Pene Test is a Command-Line program
suite, with six programs that identify and exploit weaknesses in Web and network
systems.

Pene Test helps Penetration Testers with the Information gathering, Scanning and
Manuel Exploitation stages of a penetration test by providing useful tools to increase
efficiency by automating processes. A variety of functionality is given to the user;
Pene test enables the user to run scans on any target IP Address or Domain, and
return a list of open ports and banners on the target machine remotely, decrypt
passwords, initiate an SSH Brute Force attack and Man in the Middle Attack and
enables the user to capture username and password on a target machine.

The user interface will be simple to use to allow users of all experience levels to
interact with the application with ease and can be used on any Operating System.

1.0 Introduction
The purpose of this document is to outline and describe the technical details of Pene
Test. This system helps Penetration Testers find and exploit Web and Network
vulnerabilities faster and easier.

1.1. Background
For my final year project, I wanted to create something that sparked my interest and
would be of utility. I began by researching areas related to my specialisation that I felt
could satisfy these desires. Throughout my years, I’ve always loved seeing hackers in
movies and how much utility they provide to the mission, and how they can do both
good or bad, and this directed my research as well as my specialization choice
(Cybersecurity) in a somewhat bias direction and my research led me to Penetration
testing.

In my research, I found that penetration testing has become an important segment of
any comprehensive application and network security strategy(and not just in high
stake missions in movies). However, it hasn’t always been treated as so, and more
like an afterthought or as a box-ticking exercise for regulatory purposes. But now with
the recent introduction of GDPR in the EU and the notable sanction associated, many
organisations have been prompted to invest more in securing their systems,
incentivizing more penetration tests.

This guided the aim of this project: Devising a tool that could help penetration tester
do their jobs more efficiently in the areas of Reconnaissance, Scanning, Gaining
control and maintaining access to a network.

4

1.2. Aims
The project aims to develop an application that can assist Penetration testers in
the Scanning and Reconnaissance Stage and the Exploitation stage of a
Penetration test. The application will provide functionality enabling the user to

• Scan for open ports and retrieve information about the services on those open
ports

• Decrypt Passwords encrypted with SHA1, SHA256 or MD5
• Initiate an SSH Brute force Attack
• Initiate a Man in the Middle Attack
• Sniff Passwords: Record target usernames and passwords

1.3. Technology
1.3.1. Development

PYTHON

Pene test is developed exclusively with python, to drive all functionality and features. I used
python because of its similarities to java and its ease of use. Python is a general-purpose, object-
oriented programming language like java, but its high-level interpretation makes python easier
to understand.

It also supports packages and modules, allowing for code reusability and code modularity.

PYCHARM

PyCharm is an Integrated Development Environment(IDE) development by JetBrains used
specifically for python, I used this because it offers a wide range of tools to assist with my
productivity, error handling and boost my code quality. It also integrates with GitHub making my
workflow more fluid.

ATOM

An open-source code editor developed by GitHub for macOS, Microsoft Windows and Linux. I
used this when GitHub commit conflicts arose because it highlighted the areas of conflict
allowing me to choose which commit I would like to continue with.

SCAPY

Scapy is a packet handling python module, used to forge and decode packets of various code
protocols, capture packets, send packets on the wire, match requests and replies. (The Scapy
community, no date). Scapy is used in Pene Test to create ARP packets needed to initiate the
Man-in-the-Middle Attack and to capture usernames and passwords on target machines.

5

IPy

A python module, used for comfortable parsing and handling IPv4, IPv6 address and network
notations(IPy · PyPI, no date). This helped in validating IP addresses the user inputted when using
the application.

1.3.2. Version Control

GITHUB

I used GitHub, a web-based code repository, for version control and to manage my code easily. I
used it to keep track of changes and backups. Allowing me to revert code when problems occur.

A link to the Final Commits of this Project can be accessed here

1.3.3. Testing

UNITEST

Unitest is a python Unit testing framework. Unitest allowed me to demonstrate assertions about
how my code is intended to work, by testing sections of my code, it brought my attention to
areas I would need to make changes.

KALI LINUX

Used in this project as a target machine for testing attacks in my attack environment. It’s an
open-source, Debian-derived Linux distributions design for digital forensics and Penetration. (Kali
Linux | Penetration Testing and Ethical Hacking Linux Distribution, no date)

ACUNETIX Vulnerable Websites

Acuntetic Vulnerable Websites acted as a target machine when simulating attacks in my attack
environment. Acunetix host intentionally vulnerable web applications that may be used for
manual penetration test and educational purposes.

1.4. Structure
Provide a brief overview of the structure of the document and what is addressed
in each section.

Part 2 – System

This section explains all the requirement used for the project, outline each
functional requirement that Pene Test is capable of. Describing each requirement
with a use case to illustrate how the user interacts with the system, and
explaining how the system functions.

https://github.com/TjTheGeek/Pene-Test

6

Part 3 - Design and Architecture

This section provides an overview of the application. It outlines with a class
diagram the relationship between the components of the application.

Part 4 - Implementation

This section provides a detail description of the main function used in this
application.

Part 5 - Design and Architecture

This section contains screenshots of Pene test’s functionality from the end user
perspective.

Part 6 - Testing

The section describes the unit test and end user test, that were used to evaluate
Pene test. It contains screenshots of test scripts and the end user procedural
check list.

2.0 System
2.1. Requirements

2.1.1. Functional Requirements
This section lists the functional requirements in ranked order. Functional
requirements describe the possible effects of a software system, in other
words, what the system must accomplish. Other kinds of requirements (such
as interface requirements, performance requirements, or reliability
requirements) describe how the system accomplishes its functional
requirements. Each functional requirement should be specified in a format
similar to the following:

Short, imperative sentence stating highest-ranked functional requirement.

2.1.1.1. [FREQ-1] <Check User's Privileges>
The heading of this section should read, e.g., “Requirement 1: User
registration” or “Requirements 1: Participant takes test”

2.1.1.1.1. Description & Priority

The System will only allow users with root privileges to run the application. It has
a high priority because it determines if the user can use the application.

2.1.1.1.2. Use Case
Each requirement should be uniquely identified with a sequence number
or a meaningful tag of some kind.

7

Scope

The scope of this use case is to check the user’s system privilege, to
determine if access can be granted to use the application

Description

This use case describes the steps involved in determining if the user can
use the application

Use Case Diagram

Flow Description

Precondition

User has root privileges

Activation

This use case starts when the <User> runs the application

Main flow

1. The system identifies the user’s privilege [See 1A, 1B]
2. The system Displays option menu if the user has root privileges

Exceptional flow

1B: Application closes
1. If the user isn’t running as root the application terminates

Termination

The system presents the next main menu

Postcondition

The system goes into a wait state

8

2.1.1.2. [FREQ-02a] <Port Scanning>
2.1.1.2.1. Description & Priority
The port scanning feature enables the user to scan any number of
target IP addresses for open ports and return banner information
containing the services running on that port.

2.1.1.2.2. Use Case
Each requirement should be uniquely identified with a sequence number
or a meaningful tag of some kind.

Scope

The scope of this use case is to scan one IP address, at the ports
specified.

Use Case Diagram

Flow Description:

Precondition

<Tester> is at menu options

Activation

<Tester> Chooses to run the Port Scanner function

Main flow

1. <Tester> Inputs one IP address, one or more port numbers and
how long to scan at each port (Timeout)

9

2. Validates the IP address, checks whether to scan specific ports or a
range of ports. [See 2A, 2B]

3. The system attempts to connect with the target and retrieve banner
information

4. If a connection is made to the target the system displays the banner
and the corresponding port. [See 4A]

Alternate flow

2A: Convert Domain to IP address

1. <Tester> May enter a domain name i.e., www.whatever.com
2. The System finds the IP address of the site, so it can be

used in the code.

4A: Print Port only

1. The system may connect to the target, but no vulnerable
banner could be retrieved.

2. System displays that the port is open

Exceptional flow

2B: Invalid input
1. If the user inputs an incorrect IP or domain that could be

converted to an IP, or invalid port number and time

2. The system displays an error message “'Input error Try Again'

3. System returns <Tester> to step 1. To re-enter whatever input
was invalid

Termination

System asks the user if they would like to continue using the application or
Exit the application.

Postcondition

The system waits for response

10

2.1.1.3. [FREQ-02b] <Port Scan: Multiple Targets>
2.1.1.3.1. Description & Priority

The port scanning feature enables the user to scan any number of target
IP addresses for open ports and return banner information containing the
services running on that port.

This is a high priority, the main functions here are used in the Vulnerability
Scanner.

2.1.1.3.2. Use Case
Scope

The scope of this use case is to enable the user to scan multiple IP
addresses, at the ports specified

Use Case Diagram

Flow Description:

Precondition

The <Tester> is at menu options.

Activation

<Tester> Chooses to run the Port Scanner function.

Main flow

1. <Tester> Inputs more than IP address separated by a ‘,’, one or
more port numbers and time limit to scan on each port (Timeout)

2. Validates each IP address, checks whether to scan specific ports or
a range of ports.

11

3. The system attempts to connect with each <Target> and retrieve
banner information.

4. If a connection is made to the target the system displays the banner
and the corresponding port.

Alternate flow

2A: Convert Domain to IP address

1. <Tester> May enter a domain name i.e., www.whatever.com
2. The System finds the IP Address of the site, so it can be

used in the code.

4A: Print Port only

1. The system may connect to the target, but no vulnerable
banner could be retrieved.

2. The system displays that the port is open.

Exceptional flow

2B: Invalid input
1. If <Tester> inputs any of invalid IPs or any domain couldn’t be

converted to an IP, or an invalid port number or time limit to
scan.

2. The system displays an error message “'Input error Try Again'

3. System returns <Tester> to step 1. To re-enter whatever input
was invalid.

Termination

The system asks the user if they would like to continue using the
application or Exit the application.

Postcondition

The system waits for response

12

2.1.1.4. [FREQ-03] <Password Sniffing>
2.1.1.4.1. Description & Priority

The Password Sniffing feature filters network traffic for TCP packets
containing a Username and password.

This is a high priority because it’s a main function of Pene Test.

2.1.1.4.2. Use Case
Scope

The scope of this use case is to enable the user to input an interface they
are connected to and filter the network traffic for packets containing
usernames and passwords.

Use Case Diagram

Flow Description:

Precondition

1. <Tester> Must have root privileges
2. <Tester> must be at the main menu
3. <Tester> Must be connected to the same network as the target

machine

Activation

<Tester> chooses the Password Sniffer function.

13

Main flow

1. <Tester> Inputs valid Interface i.e., en0
2. The system starts scanning for packets with Username and

passwords fields
3. The system displays the Username, password, and packet

information.

Exceptional flow

2A: Interface not found
1. <Tester> Entered an invalid network interface
2. The system displays an error message “Not a valid interface”

3. Use case returns to step.1 and enters a valid interface

Termination:

The system asks the user if they would like to continue using the
application or Exit the application.

Postcondition

The system waits for response

2.1.1.5. [FREQ-05] <ARP Spoofing / Man in the middle attack>
2.1.1.5.1. Description & Priority

ARP Spoofing is where a malicious actor intercepts packets on a network
between hosts by impersonating both the sender and receiver, rerouting
packets through their machine. Hence the name “Man in the middle attack.

Usually, the malicious actor impersonates 1 host and the router and
appears to both as the other i.e. To the router it’s host 1 and to host 1 it’s
the router.

The Arp spoofer allows the user to spoof many hosts and one router.

This is a high priority because it’s a main function of Pene Test.

14

2.1.1.5.2. Use Case
Scope

The scope of this use case is to enable the user to spoof one target and
one router.

Use Case Diagram

Flow Description:

Precondition

<Tester> is at the main menu

Activation

This use case starts when <Tester> selects the ARP Spoofer function

Main flow

1. <Tester> Enters IP address for the Target and Router
2. The System Validates of the IP’s are valid
3. The System craft an ARP request packet to get the MAC addresses

from the <Router> and the <Host> machine.
4. The system sends an ARP response packet to the <Host> and

<router>, spoofing the targets.

15

Exceptional flow*

2A: Invalid input
1. The system displays an error message “'Input error Try Again' and

returns FALSE

2. Use case restarts at step 1.

Termination

The system doesn’t stop keeps sending spoof packets, until user ends the
application.

The system asks the user if they would like to continue using the
application or Exit the application.

Postcondition

The system waits for response

2.1.1.6. [FREQ-06] <Password Cracker >
2.1.1.6.1. Description & Priority

The password cracker allows the user to decipher an MD5, SHA1 and
SHA256 password, by inputting a list of unencrypted passwords and the
encrypted password. The system hashes the each password in the list
with the same hash as the encrypted password and compares the hash to
the encrypted password to find a match and prints the corresponding
unencrypted password

This is a high priority because it’s a main function of Pene Test.

2.1.1.6.2. Use Case
Scope

The scope of this use case is to enable the user to crack an MD5, SHA1,
and SHA 256 encrypted password with a list of unencrypted passwords.

16

Use Case Diagram

Flow Description:

Precondition

<Tester> is at the main menu

A file containing a list of unencrypted passwords must be created.

Activation

This use case starts when <Tester> selects the Password Cracker
function

Main flow

1. <Tester> Enters the encrypted password(s), a file of passwords and
selects a hash algorithm

2. The System Validates user’s inputs
3. The System hashes each password in the file, and compares the

hash to the encrypted password, and finds a match

Exceptional flow

2A: Handling Invalid Input
1. <Tester> Entered an invalid file path
2. The system displays an error message “File not found”

3. Use case returns to step 1. Inputs Encrypted Password, and
password list.

17

3A: Password is not found
1. If the password is found in the file

2. The system displays a message that the password wasn’t found.

Termination

The system asks the user if they would like to continue using the
application or Exit the application.

Postcondition

The system waits for response

2.1.1.7. [FREQ-07] <SSH Brute force attack>
2.1.1.7.1. Description & Priority

The system enables the user to attempt access to a target machine using
the SSH protocol. The system tries to log in with many passwords from a
password list until a successful connection is made.

This is a high priority because it’s a main function of Pene Test.

2.1.1.7.2. Use Case
Scope

The scope of this use case is to enable the user to launch an SSH Brute
Force Attack at a target machine.

Use Case Diagram

18

Flow Description:

Precondition

<Tester> is at the main menu

A file containing a list of encrypted passwords must be created.

Activation

This use case starts when <Tester> selects the SSH Brute force function

Main flow

1. <Tester> Enters the target machine’s Ip address, username, and
path to a list of passwords

2. The System Validates the user’s inputs.
3. The system attempts to log in to that target machine attempting

each password until successfully connected.
4. <Target> Grants Access
5. The system displays the username and password that connected

successfully.

Exceptional flow

2A: Invalid Inputs
4. <Tester> Entered an invalid file path or IP Address
5. The system displays an error message

6. Use case returns to step 1. To re-enter invalid information

3A: Access denied
1. <Target> Denies access because the System finds no valid

password
2. System prints ‘Password not found’

Termination

1. System asks the user if they would like to continue using the
application or Exit the application.

Postcondition

The system waits for response

19

2.1.2. Environment Requirements
A stable network connection is recommended to allow the use of particular features in the
application and ensure optimal results.

2.1.3. Reusability Requirements
Reusability helps to make sure the application and any updates can be delivered most
efficiently and effectively, minimising the need to change to the same code in many
locations. By reusing functions from other modules less code needs to be written and
changes and bug fixes can be centralised.

2.1.4. Extensibility Requirements
The scale in which this application can reach is large, so extensibility is a key requirement.
Many tools and attacks can be added in the future and allowing the application to grow in
functionality by expanding the collection of tools and attacks, the application can provide
more value to penetration testers.

2.1.5. Usability Requirements
The usability requirement of this application is that it should be runnable on Windows,
macOS and Linux systems, allowing a wide range of users to use the application.

Also, the application should be user friendly, allowing ease of use for users of all skill levels.

Some features require a list file. Information must be written in a list format e.g

 xxxxx

 xxxxx

 xxxxx

20

3.0 Design & Architecture

The above shows the structure of Pene test. Each function of Pene test was
developed separately and the main function acts as the central node inheriting
each class’s data members and methods. The user runs the main class, which
accesses the information from the function they would like to use.

For user interface, colour was added to draw the uses attention to important
information.

Green is for requesting input

Yellow for asking questions

Red for Input error and Warnings

21

4.0 Implementation
This section describes the main functions used to develop Pene Test.

Pene test comprises of 6 Classes:

1. Port Scanner
2. Vulnerability Scanner
3. SSH Brute Forcer
4. Password Cracker
5. ARP Spoofer
6. Password Sniffer

4.1.1. Port Scanner
The Port Scanner feature enables the user to scan any number of target IP
addresses for open ports and return banner information containing the
services running on that port.

1. The Port Scanner comprises 5 functions.

22

2. The scan_port() function is the main algorithm for this class. The function
arguments are an IP Address, a port number and a timeout number.

The function starts by creating the needed to initiate a connection with a target
machine. The timeout determines how long the connection stays open, and then
a connection to the target at a specific port is made

The except statement catches any error with the connection. Usually one should
specify exactly what exception, however, it isn’t necessary here because if
there’s isn’t a connection made the result is irrelevant.

If a connection is made the get_banner() function is called, the function
responsible for retrieving the banner as bytes. If this is successful the
scan_port() prints the open port and banner information. If no banner is retrieved
then the function displays that the open port only.

Finally, the socket is closed, freeing the resources allocated to maintain it.

NOTE: Connection times vary due to longer timeouts increase the scan’s
accuracy. If the time given is too short, the port scanner may return that an open
port is closed.

3. The checkIP() function validates and converts domains to IP Addresses.
IP() is from the IPy module, that accepts an IP address and converts it to
IPv4 format, it accepts IPv4 or IPv6 addresses. If the conversion is
successful then it’s already an IP address and the function returns the IP

23

address without changing it.

If successful then the input is treated as a domain and the system using
the socket.gethostbyname function attempts to get the corresponding IP
address, and if both are unsuccessful then it’s an invalid entry.

4. The Scan1() function scans one target at one or more specific ports.
These port numbers are stored in a Port Array. i.e. 1, 25, 100, 80

The ScanRange() function scans between a range of ports i.e. from 1 to 5

Note: Not between one and five. The +1 in the range function makes sure it scans the
upper bounds.

24

4.1.2. Vulnerability Scanner

The Vulnerability Scanner is similar to the Port Scanner, this class imports the
CheckIP and getBanner function from the port scanner, however, there are
slight changes with the Scan1() and Scan range() function.

1. The Scan 1 and scan range function instead of displaying the results the
function appends the results in an array, containing the ports and the
banners present on those ports, which are later compared to the banners
in Testers File.

25

2. Nonetype() is responsible for removing and None types in the array
results. These none types are present when the scanPort function doesn't
return a banner for a port, and Scan1 or Scan Range function tries to
append to the resultsOfScan array.

The remove method only removes the first appearance of None, in the
array, so to make sure all None types are removed, a while loop is used,
which continues removing None until there are no more.

3. The Scan port function is similar to the Port scanner version, however, we
just return the banner and port.

26

4. The Code below compares the banners found, to banners in the file and
prints the Banner and the port was found on.

4.1.3. Password Sniffer

27

Overview of Password Sniffer•

1. The sniff() function imported from Scapy is responsible for accessing
packets from the network interface and applying the pkt_parser()
function.

2. The pkt_parser() is the filter function, it looks for packets that have the
TCP, RAW and IP layer, which are TCP packets that may contain
target login.

The pkt_parser() prints the whole packet if any credentials are found,
even if only one because the other credential may be in the packet
under an unrecognised field, and it may still be of use to the tester.

28

3. Once a suitable TCP packet is found, the pkt_parser() function applies
the get_login_pass() function which looks for username and password
fields in the body of the packet.

29

If any credentials are found be it a username or password it returns the
results.

4.1.4. SSH Brute Forcer

 Overview of methods and import in SSH Brute forcer

1. After validating all users inputs, the SSH Brute forcer tries each password

from the file, attempts to make a connection. Threading is used to allow
multiple passwords to be tested simultaneously.

2. Below shows how the connection is made:

30

The SSH Client establishes a secure and authenticated connection. The
AutoAddPolicy(), generates the key created for secure encrypted
communication.

Then a connection is made to the target machine using the target IP
address, port, username and password.

If a successful connection is made, the username and password are
printed and the stop flag is raised and the program ends, if no connection
is made nothing happens.

4.1.5. Arp Spoofer / Man in the Middle Attack
The main functions and imports used.

31

1. The getMacAddress() function crafts an ARP request packet meaning we
are asking other machines something and it is sent on the broadcast layer,
to every host on the network.

For the ARP packet we need:

1. The type of packet - Either an ARP request or an ARP response/ either
an asking or telling packet.

2. The IP address of the receiver(destination) machine.
3. The Hardware address of the receiver machine.
4. The IP address of the sender(source) machine.
5. The Hardware address of the sender machine.

Scapy is used to create and send these packets.

This function is used to get the mac address for the specified targets and
router. The srp() function sends an Arp request packet on the Data link
layer of the network asking. and saves the lists of responses. The ARP
request packets ask for information about the host with the specific IP
address.

The hwsrc is the mac address of the machine sending the corresponding
ARP response packet for the testers ARP request packet saying “I have
that IP address, here's my information”. This is how the program gets the
mac address for the targets and router.

32

2. The spoof function creates malicious packets using information from step
2 to spoof the router and target.
The program crafts two ARP response packets used to impersonate the
target and router. The list of Ip addresses and corresponding Mac
addresses are saved in an Arp table, this function affects that table.
In the ARP table on the target machines, there should be two hosts with
the same hardware address, the router and the tester's machine.

The program impersonates the host by sending a packet from the tester’s
machine and saying it came from the router’s IP, and vice versa, but
keeping the hardware address as the tester’s machine.
This is done by changing the psrc(IP of the sender) field for packets for the
router as targets Ip, and the router’s IP address in packets to the host.

Note: The mac address is the tester's machine, and is automatically set.

3. The spoofed packets in step 2 are sent indefinitely, hence the while True
statement.

Here the program sends these packets to the hosts and router every 2
seconds, this is necessary to maintain the changes in the ARP table. This
is achieved using an exponential decaying equation.
2 divided by the number of hosts(not including the router) needed to be
spoofed.

Example: If 1 target needs to be spoofed the program will wait 2 seconds
before sending another set of spoof packets. 2/1 = 2.
If 4 targets are being spoofed the program will wait for a ½ second each,
maintaining that each target is spoofed every ½ second totalling a round
trip of 2 seconds. To ensure optimal results a max of 20 hosts are
recommended.

NOTE: The user must run a port forwarding command, so the packets are
sent to the router, else the targets won’t be able to access the internet
making

33

4.1.6. Password Cracker
1. Overview view

2. The path Import is used to verify and access the user’s inputted file

location.

3. The hashlib import is used in the crack function to hash each password
in the password list and compare them to the hash to be decrypted.
Decrypting can be done for SHA1, SHA 256 and MD5 hashes.

34

5.0 Graphical User Interface (GUI)
1. The main menu. Here user selects a function using numbers 1-6.

2. PortScanner results

3. Vulnerability Scanner

35

6.0 Testing
6.1.1. Unit Testing

To test my scripts I will use test scripts where possible to test functions that we’re
written in a testable way. I will also test my scripts from the end-user perspective.

Below are 5 test scripts used to test

Results for all test.

1. I tested the CheckIp function in the port Scanner, in below is the test for the
input localhost, the CheckIP() function should return true if its an IP address
or has been converted. I printed it just to make sure.

36

2. To check that invalid IP address:

3. Check if a vulnerable can be attained from a port:

4. This tests if the hash function words, for md5, sha1, and sha 265. I hashed
the word Helloworld online and I put the word Helloworld in a test file list, to
see if it could find it.

37

5. This tests if the Mac address can be retrieved. So Input a mac address and
hardware address of my router

6.1.2. End-User Testing
The End User test was conducted at the final stage of the applications
development, to verify the application functions as expected. Each program
was tested individually, from the users perspective. Below are the steps take.

6.1.2.1. Port Scanner Testing
Features Description Status
Input IP Address or
Domain

Detects multiple
inputs, and converts
domains to IP’s

PASS

Input port number Detect if user wants a
range of ports or
specific ports

PASS

Input timeout checks for a number PASS
Scan targets Returns the open and

closed ports, and
prints banners if they
exist

PASS

38

6.1.2.2. Vulnerable Banner Scanner Test

Features Description Status
Input IP Address or
Domain

Detects multiple
inputs, and converts
domains to IP’s

PASS

Input port number Detect if the user
wants a range of
ports or specific ports

PASS

Input timeout Check if the input is a
number

PASS

Input banner file Detect if the file
exists

PASS

Scan targets and find
banner in file

Checks the banner
exists in the file

PASS

Display Results Closed Port and
Open ports are
displayed

PASS

6.1.2.3. Password Sniffer
Features Description Status
Check Interface Detect if an interface

is valid
PASS

Scan for Username
Passwords

Detect TCP packets
that contain
passwords

PASS

Display Results Found password or
username displayed
with packet

PASS

6.1.2.4. SSH Brute Forcer
Features Description Status
Check Target IP
addresses

Detects multiple
inputs, and converts
domains to IP’s

PASS

Checks user’s
inputted File

Check’s if the file is
valid

PASS

Connection to target
is made

Attempt each
password until
success

PASS

Display Results Once a connection is
made, the username
and password are
printed

PASS

39

6.1.2.5. Password Cracker
Features Description Status
Check Hash Inputs Detect and save

each hash.
PASS

Checks user’s
inputted File

Check’s if the file is
valid

PASS

Hash passwords
from file

The system can take
password from file
and hash it

PASS

Hash successfully
found

Users input has
found in the file pf
password

PASS

Display results Display Hash in
plaintext

PASS

6.1.2.6. Arp Spoofer

Features Description Status
Get Mac address for
targets and router

Create a packet a
find to mac address

PASS

Craft and send Arp
packets

Create Malicious
packets and spoof
the targets

PASS

Maintain spoof Keep sending
spoofed packets
indefinitely

PASS

7.0 Conclusions
Looking at each aim set for this project and how it assists penetration testers, it’s of
my opinion that each objective set to be achieved was achieved. Pene Test proves
it’s capable of assisting penetration testers by providing useful tools for Information
gathering, Scanning and Manuel Exploitation.

The easy to use user interface of Pene Test, I believe sets Pene Test apart from
many applications using the command line. With added colours and highlights Pene
Test helps draw the user attention to important results, reducing the confusion many
CLI application bring, allowing users of different skill levels to still find the application
useful and helpful.

With additional time and resources features such as the Port Scanner, Password
cracker and Packet sniffer can be greatly improved, increasing their accuracy and
functionality.. Also, a keylogger and backdoor feature, could be developed but with
that said overall I am pleased with the current stage of Pene Test.

40

8.0 References
IPy · PyPI (no date). Available at: https://pypi.org/project/IPy/ (Accessed: 27 July
2021).

Kali Linux | Penetration Testing and Ethical Hacking Linux Distribution (no date).
Available at: https://www.kali.org/ (Accessed: 27 July 2021).

The Scapy community, P. B. and the S. (no date) Scapy, Scapy. Available at:
https://secdev.github.io/ (Accessed: 27 July 2021).

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.3.1. Development
	1.3.2. Version Control
	1.3.3. Testing
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. [FREQ-1] <Check User's Privileges>
	2.1.1.1.1. Description & Priority
	2.1.1.1.2. Use Case
	2.1.1.2. [FREQ-02a] <Port Scanning>
	2.1.1.2.1. Description & Priority
	2.1.1.2.2. Use Case
	2.1.1.3. [FREQ-02b] <Port Scan: Multiple Targets>
	2.1.1.3.1. Description & Priority
	2.1.1.3.2. Use Case
	2.1.1.4. [FREQ-03] <Password Sniffing>
	2.1.1.4.1. Description & Priority
	2.1.1.4.2. Use Case
	2.1.1.5. [FREQ-05] <ARP Spoofing / Man in the middle attack>
	2.1.1.5.1. Description & Priority
	2.1.1.5.2. Use Case
	2.1.1.6. [FREQ-06] <Password Cracker >
	2.1.1.6.1. Description & Priority
	2.1.1.6.2. Use Case
	2.1.1.7. [FREQ-07] <SSH Brute force attack>
	2.1.1.7.1. Description & Priority
	2.1.1.7.2. Use Case
	2.1.2. Environment Requirements
	2.1.3. Reusability Requirements
	2.1.4. Extensibility Requirements
	2.1.5. Usability Requirements
	3.0 Design & Architecture
	4.0 Implementation
	4.1.1. Port Scanner
	4.1.2. Vulnerability Scanner
	4.1.3. Password Sniffer
	4.1.4. SSH Brute Forcer
	4.1.5. Arp Spoofer / Man in the Middle Attack
	4.1.6. Password Cracker
	5.0 Graphical User Interface (GUI)
	6.0 Testing
	6.1.1. Unit Testing
	6.1.2. End-User Testing
	6.1.2.1. Port Scanner Testing
	6.1.2.2. Vulnerable Banner Scanner Test
	6.1.2.3. Password Sniffer
	6.1.2.4. SSH Brute Forcer
	6.1.2.5. Password Cracker
	6.1.2.6. Arp Spoofer

	7.0 Conclusions
	8.0 References

