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Executive Summary 
 

The purpose of the report is to present the steps taken towards creating a classical book 
recommendation system and then the results achieved from it. The report includes 
introduction, data description, methodology, analysis, results, and conclusions sections that 
cover every step of the project.  

The overall goal of the project is to create a book recommendation system – one that takes 
in input, data about modern books, and produces an output which would be classical book 
recommendations. The recommendations would be based on the similarity between the 
topics (and words) withing the books. Some of the main models used in the project include 
LDA, SOM and K-means. 
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1.0 Introduction 
 

1.1. Background 
I have always been interested in books (especially fiction) and writing, so it seemed like a good 
idea to try and incorporate that into my final year project. The idea that I came up with in the 
end was to gather and analyse data relating to books (such as reviews, descriptions, or text 
of the book itself) and use that to try and predict what kind of books someone would like 
(based on the books that the person already enjoyed).  

In terms of recommender systems, there are two main types – collaborative and content 
based. In many cases a hybrid of both types is used.  

Collaborative system is when the past interactions of any user with a product/item are what 
determines which products/items will be recommended to them. As an example, if I were to 
add a movie/show on Netflix to the list of things I plan to watch eventually, that would count 
as an interaction – I clicked on the movie, read the description, and then added it to the list. 
That signifies a clear interest. After many of such interactions, what I see as recommendations 
on Netflix changed significantly – for example, after watching a few Asian tv shows that my 
friends recommended, I now see a lot more of them at the top of the recommendations on 
Netflix.  

 Content based system is when the content of the product/item (such as, the description, 
genre, specifications, typical user profiles, etc.) is used to determine who is most likely to be 
interested in that product. For content-based systems, the additional information used can 
be either user-based (the specifications of the user, such as age group, gender, etc.) or 
content-based (genre of the product, description etc.). As an example, I often see a video 
recommended on YouTube where, at the bottom of the video, it says something like “viewers 
of ‘this other channel you watch’ also watch this channel”. That would count as content-based 
recommendation which bases its logic on other user’s profiles. The assumption is that if there 
is a large crossover of viewers from two different channels, then the viewers from channel 1 
are very likely to enjoy the content from channel 2 and vice versa. 

It is a content-based recommendation system that would be the most suitable for my type of 
project. The overview of the process that would be taken to reach the result (the 
recommendation system) is as follows; first will be the data gathering stage, including getting 
the book data for classical books and extracting summaries of modern books through an API. 
Then, the data gathered will be pre-processed and analysed, various topic modelling (LDA) 
and clustering (K-means, SOM) models will be applied. The recommender system itself will 
make use of LDA model to find topically similar books and then as a further step, a cosine 
similarity matrix will be used to find the similarity score of the books that fell within the same 
LDA topics. The final recommendations would then be based on the similarity scores between 
the books. 
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1.2. Aims 
The aim of the project is to create a content-based recommender system that would take 
in a list of books that a particular person likes, analyse them, and then recommend a few 
classical books for the person based on the results of the analysis. The recommendations 
would be based on the similarity of the content – the text of the books in the case of 
classical books, and the summaries in the case of modern books.  

Aim 1: gather the required data in terms of classical and modern books, pre-process it and 
prepare it for the analysis.   

Aim 2: Apply LDA or similar models to cluster and divide the books into separate groups 
that would be based on how similar the books are.  

Aim 3: Do some data visualisations for the data after the LDA model has been applied.   

Aim 4: Implement the recommender system by making use of the LDA and cosine 
similarity matrix.  

Aim 5: Create a user interface (UI) through R Shiny, write the final report about the 
project.  

 

1.3. Technology 
For the project, the languages that I will be making use of are R and, where needed, 
Python. The analysis and pre-processing steps will be carried out with R, while Python will 
be used in the cases where I would need to work with API’s (the Google Books API for 
getting the modern book data). 

R is a programming language used for statistical analysis, data mining and modelling, etc. 
It is typically used through an IDE (integrated development environment) such as R Studio. 
Python, in comparison, is more of a general-purpose programming language which can be 
used for many different things, including but not limited to data analytics.  

An API (Application Programming Interface) allows different applications to communicate 
with each other, it makes it possible to do things such as retrieving data from another 
application which is what I will be using the Google Books API for. By using the API, I’ll be 
able to source the data for modern books, data that will originate from the Google Books 
website.  

For the creation of the recommender system, it is NLP (Natural Language Processing) and 
text mining that I will be using. DTM’s (document-term matrix) will be irreplaceable for 
many parts of the project, it is used for indexing of words within documents (or books in 
this case). A DTM can be used in many ways, and in the case of text analytics and using 
mostly categorical data, it allows the data to be used with models that would typically 
only work with numerical data.  

NLP is something that allows computers to interpret our language (in the form of text-
based data) and then manipulate it as needed. NLP makes it possible for computers to not 
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only read text but also understand it, interpret it, and even hear it. It can be used for 
determining the parts of the text that are important, for running sentiment analyses to 
determine intent, for handling textual data and modelling of textual data in general.  

I will also be using Google Colab for execution of code, to by-pass some of the issues I 
encountered, such as not having enough RAM on my own device for some parts of the 
code to fully execute.  

Google Colab is a web-based IDE that can be used with either Python or R languages. It 
provides access to resources such as GPU’s and RAM, which can be very useful in many 
different situations. In my case, it allowed me to make use of more RAM than my own 
device had, therefore executing parts of code (and models) with bigger data samples than 
I would have been able to use otherwise. 

 

1.4. Structure 
The document structure is as follows: section 1 is the introduction to the overall project, 
section 2 describes and summarises the data that is to be used, section 3 is about the 
methodology followed to handle the data, section 4 is the analysis of the data that 
includes some visualisations, section 5 contains the results.  

Following that, section 6 is for the conclusions, section 7 for future work, 8 for references 
and 9 for appendices (including initial project proposal and reflective journals). 
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2.0 Data 
 

2.1 Classical Book Data  
 

The data for classical books was sourced from the Project Gutenberg website.  

R package called ‘gutenbergr’ was used for the sourcing of the data as it provides many 
functions for doing so. Some of the functions that can be used with the ‘gutenbergr’ package 
are outlined and summarised in table 1 below.  

To summarise the gutenbergr package, it helped me to gather data such as the Gutenberg id 
(each book has a unique one), authors, subjects of each book, language of the book, text, etc. 
The data gained was saved into csv files for usage later in the project.   

 

Table 1 Gutenbergr package functions 

 

 

Only the data that was suitable for the project was saved – one of the main requirements 
being that the book had to have a downloadable text and it had to fall within one of the many 
‘fiction’ genres. At the same time, only books that were marked as being in English were kept.  

The filtered “gutenberg_subjects” and “gutenberg_works” datasets were merged to take 
advantage of the fact that both had some of the attributes that I would be needing but not 
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all of them. After merging, the relevant attributes were moved into a new, final table that 
would become the dataset that I would use in the project the most. Table 2 visualises the final 
dataset of classical books. 

Table 2 Final Classical Books Dataset 

 

 

2.2 Modern Book Data 
 

Sourcing the data for modern books was a bit more tedious – requiring to first manually 
compile a list of ISBN numbers that could then be used with the Python code to extract the 
data (such as title, author, summary) from the Google Books API. The ISBN numbers used 
were for some of the top books from recent years (from around 2020-2010). Table 3 
summarises the final modern books dataset. 

Table 3 modern Books Dataset 

 

 

In most cases, the books had more than one ISBN number but not all of them were recognised 
by Google Books API. In some cases, the first ISBN number I tried did work, but oftentimes it 
did not – which meant I had to insert a different version of the ISBN number for the specific 
book and hope that the second one will work. Although it did not happen with a large portion 
of the books, in some cases I still did need to go through more than 5 ISBN numbers before I 
found one that was recognised.  

The summaries gained were short – only a couple of sentences, none exceeding even 50 
words. In addition, some of them were not useful at all – with summaries that gave no 
indication on what the book was about. With the dataset of approximately 500 modern books 
with summaries that I had created however, even if only half proved to be useful that would 
still be enough for the current scale of the project. 
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3.0 Methodology 
 

The methodology used for the analysis of the data was KDD (knowledge discovery in 
databases) which has several distinct steps – selection of the data, pre-processing, 
transformation, data mining, interpretation/evaluation. The main goal of using this 
methodology is to find useful information or patterns within the data. 

• Dataset Selection and Description 

The first step of KDD, the data selection, was described in more detail in section 2 of the 
report. To summarise it, the data used was the book data from the Project Gutenberg website 
and modern book data sourced from the Google Books API.  

 

• Pre-processing and Transformation 

After gathering all the necessary data (on both classical and modern books), further pre-
processing and transformation steps followed. Besides the steps done earlier (such as filtering 
books by subject and combining datasets), more needed to be done for the datasets to be 
ready for modelling.  

For classical books, downloading the book text was necessary. After that, the pre-processing 
and transformation steps done for both datasets (classical and modern books) were relatively 
the same.  

For the textual data to be more accurate during modelling stages, clean-up of the text was 
needed. Stopwords were removed and TF-IDF (Term Frequency Inverse Document 
Frequency) was used to drop the least relevant words.  

It was only after removal of stopwords and TF-IDF that a DTM (document-term matrix) was 
made with the remaining words, which was to be used for each of the models further in the 
project.  

 

• Data Mining and Evaluation 

The very first and main model used in my project was the LDA (Latent Dirichlet allocation) 
which is a topic modelling technique that assigns words to different topics. Through this 
method, the books themselves can also be assigned to different topics – in this way, the books 
that fall within the same topic are bound to be somewhat similar. For the sake of comparison 
K-means and SOM (self-organising maps) clustering algorithms were also used and the 
comparison itself was done using the Jacquard Distance method.  

The last part of the project was to make a recommendation engine. The process of making 
the content-based recommendation system was simple (in terms of approach) but relatively 
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effective as it made use of the LDA model (the assigned topics) and recommended books 
based on how similar the classical books were to the ‘favourite’ books of the user.  

For creation and testing of the recommendation system, a dummy user was made by taking 
a randomised sample of n books from the list of modern books. The n value can be replaced 
with any number and the code would still work as the essential parts of the code used for 
loops instead of having a fixed value for the number of favourite books. 

 

3.1 Implementation 
 

Due to RAM limitations (even after moving the code to Google Colab), the classical book 
dataset was split into 5 parts and all the models were done with all 5 of the splits.  

The main part of the pre-processing was the removal of stopwords. In addition to removing 
the already existing stopwords, common names and a customised stopword list (including the 
less common names found in the classical books) were also removed.  

The TF-IDF (Term Frequency Inverse Document Frequency) method was used to determine 
the relevance of the words that remained, only words that had a TF-IDF score of more than 
what was the average were kept.   

TF-IDF is a method that evaluates the importance of each word within a document in relation 
to a set of documents. For this, it uses two measures; first one is the number of times a word 
appears within a document and then the inverse document frequency of the same word 
across the full set of the documents. The TF-IDF scoring is useful for ruling out the words that 
appear in a document often but are still not relevant for the analysis – if a specific word 
appears often not within one document but within many (or all) of them, then the TF-IDF 
score would be lower.  

In the case of my project, the documents are instead books (book text), but the process is still 
the same. By using TF-IDF before a document term matrix (DTM) is made, it will become less 
likely that unimportant words (ones that would be useless for further analysis) will remain. 
After each of the words was given a TF-IDF score, the average score was taken and only the 
words that had a score above the average were kept.  

Although the initial list of classical books was split into 5 samples, those samples still proved 
to be too big for some of the models to finish with the available RAM. To bypass the issue, 
instead of using a full sample, I instead randomly sampled a thousand books from each of the 
5 datasets and used those for the modelling. Which means that in total, there were 5 sets of 
one thousand classical book titles that were then used for all the models.  

After the words below the average TF-DF score were removed, a DTM (document term 
matrix) was made. A DTM is a sparse matrix that describes the frequency at which words 
occur within the set of books. Sparce matrix means that within the DTM, there would be many 
values of 0.  
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Table 4 below visualises a small part of a matrix, where the columns (numbers 1,2,3) 
represent the different books and the rows (a unique word on each of them) represent the 
words that exist within the books, all sorted in alphabetical order.  

The intersections between the rows and columns represent how many times the word (from 
the row chosen) appeared within the text of a book represented by a specific column. For 
example, from table 4, the word ‘abandon’ can be found 8 times in text 1, and 0 times in texts 
2 and 3. 

Table 4 Small part of a word matrix 

 

 

Using DTM, three different models were implemented – LDA, K-means, SOM.  

LDA (Latent Dirichlet Allocation) is a topic modelling technique that discovers topics within a 
collection of documents (books) and then assigns each of them towards a particular topic. 
The underlying concept is that LDA treats documents as mixture of topics and each topic as a 
mixture of words. That allows the documents to overlap with each other in terms of a topic 
instead of each one being treated as a separate topic. Each document, or book in this case, 
can have more that one topic within its content, however it was the most prevalent of the 
topics that was in the end assigned for each of the books to represent them.  

For LDA modelling, there was a value of ‘k’ that could be assigned, which would correspond 
to the number of topics the LDA model would produce at the end. After trying out a few 
different values for the number of topics for the LDA model, I settled on 9 as that seemed to 
bring back the most consistent results.  

The same number of clusters was to be used for the K-means and SOM (self-organising map) 
models as well, just to have consistency between the three models.  

The final csv file containing the titles of the classical books and the LDA topics assigned for 
each of them was saved for later use. A sample of such can be seen in table 5 below. 
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Table 5 LDA topics sample 

 

Clustering is a very common data analysis technique that is used for the exploration of data 
and to get a grasp on the structure of the data. It identifies groupings of data based on how 
similar the different data points (or in the case of this project, books) are.  

Kmeans is a clustering algorithm that takes in a value of ‘k’, corresponding to the number of 
clusters it should identify (the value of k, as mentioned above, was kept at 9 throughout the 
project). Each data point belongs to only one cluster and, the data points within the same 
cluster, tend to be more related/similar to each other than data points in other clusters.  

Table 6 below visualises the final csv document output, containing the titles and the K-means 
cluster numbers. 

Table 6 Sample of Kmeans Clusters 

 

The SOM (Self-organizing map) model is also used for clustering and exploration of data. It 
can be considered as a type of artificial neural network which is trained through unsupervised 
learning. For SOM model, first a grid must be defined and then the SOM model plots and sorts 
(clusters) the data points on the grid.  

As a post-SOM-processing step, k-means was executed by using SOM results, producing a 
dataset of book titles with a SOM cluster topic assigned for each of them. Table 7 is an 
example of how the final .csv file with SOM clusters would look like. 
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Table 7 SOM clusters example 

 

 

In a separate file, the same type of pre-processing and modelling was done with the list of 
modern books and their summaries.  

It was the data extraction of the modern books instead that was very different from the 
processes that were done to the classical books dataset. The extraction of the summaries, 
using the Google Books API, was done using Python and referencing multiple tutorials and 
google books API documentations. The data extracted in the end was the titles, authors, and 
summaries of the books. There was more data that could have been extracted, however I 
deemed it unnecessary (things such as page count, language, etc).  

The recommendation system, as a final step of the project and the one that would contribute 
the most towards achieving the aims of the project, was done last. The main steps of how the 
recommendation system was implemented can be seen in image 1. Below the image, each of 
the steps will be explained in more detail. 
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Image 1 Step-by-step of Recommendation System's process 

Step 1. The dataset of the modern books was imported, containing attributes such as title, 
summary, author.  

Step 2. The dataset of the LDA topics assigned for the modern books was imported, containing 
two attributes: title and LDA topic number.  

Step 3. The two datasets were merged into one, now having 4 attributes (title, summary, 
author, LDA topic number).  

Step 4. The dataset with top 5 words for each of the LDA topics (gained from modern books) 
was imported.  
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Step 5. The top words for each of the topic were merged into a single cell (for example, top 5 
words of topic 1 went into one cell, top 5 words from topic 2 into another cell, etc.). Then, 
those top words were merged with the modern book dataset, using LDA topic number as the 
common value. The result was a dataset where, each modern book had an extra attribute 
assigned to them – that attribute contained the top words corresponding to the LDA topic 
assigned for the book. 

Typically, that would not be an essential step, however in many cases the summaries that the 
modern books had were very short and insignificant which made me think that it may be a 
good idea to add a few of the top words that related to the LDA topic they were assigned. In 
this way I was trying to make sure that the modern book summaries would not become 
completely ‘insignificant’ within the whole process of getting the recommendations.  

Step 6. A sample user was created on this step. An n number of modern books from the 
dataset gained after step 5 were added into a separate dataset. The books contained in this 
sample user dataset are replacing what would typically be a user’s liked book list.  

Step 7. The classical book dataset (a sample of one thousand books) was imported, their text 
downloaded, and pre-processing started. Only the text and title attributes are kept.  

Step 8. The classical books dataset and the books contained within the sample user dataset 
were merged into one dataset. Only two attributes remain in this dataset: title and text.  

Step 9. Further pre-processing is done with the merged dataset, such as splitting the text into 
single words and applying the TF-IDF method to remove the words with the TF-IDF score 
below average.  

Step 10. A document term matrix(dtm) is done with the fully pre-processed and cleaned 
dataset.  

Step 11. The dtm is used to create an LDA model.  

Step 12. LDA topics are extracted from the LDA model, creating a dataset with two attributes: 
title and LDA topic assigned to the book.  

Step 13. The sample user’s liked books (the ones that were merged with classical books in 
step 8) are extracted into a separate dataset to check what LDA topics were assigned to them. 

Step 14. Based on what LDA topics were assigned to the user’s liked books, the classical books 
with matching LDA topics are extracted into a new dataset for further use. For example, if 
there were 3 books in the sample user’s liked books, one with an LDA topic of 3 and the other 
two with the topic 6, then all the classical books containing topics 3 and 6 would be put into 
the new dataset.  

Step 15. The words correlating to each of the books are added back in, essentially merging 
the dataset from step 9 and the dataset from step 14, while keeping only the book titles 
present in the dataset from step 14.  
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Step 16. A dtm (document-term matrix) is done again, this time with the dataset from step 
15 which is smaller than before (because of the fact it contains only the classical books that 
had the same topic as one of the user’s favourite modern books).  

Step 17. A cosine similarity matrix is done with the second dtm, it gives similarity scores for 
each of the books, and it is the main thing that will decide what books manage to get into the 
final recommendations.  

Step 18. Each of the books within the user’s favourites list go through a for loop and the 5 
classical books with the highest similarity score are put into a ‘recommendations’ dataset. 
The for loop continues until there are no more books in the user’s favourites list.  

For example, if there were 3 books in the favourites list, the for loop would go though the 
code 3 times and by the end the ‘recommendations dataset would have 15 (3x5) books in it.  

Step 19. The books in the recommendations list are sorted based on their similarity score and 
the top 5 with the highest similarity score are kept for the final recommendations. 

 

3.2 Important R functions Used 
♦ Read.csv() 
♦ Write.csv() 
♦ Subset() 
♦ Merge() 
♦ As.data.table() 
♦ Sample_n() 
♦ Set.seed() 
♦ Rbind() 
♦ Group_by() 
♦ Filter() 
♦ Count() 
♦ Cast_dtm() 

♦ LDA() 
♦ Tidy() 
♦ Arrange() 
♦ Top_n() 
♦ Ungroup( 
♦ As.matrix() 
♦ Order() 
♦ Slice() 
♦ Kmeans() 
♦ Mutate() 
♦ Somgrid() 
♦ Som() 

3.3 Important R Packages Used 
♦ Gutenbergr() 
♦ Curl() 
♦ Dplyr() 
♦ Ggplot2() 
♦ Data.table() 
♦ Tm() 
♦ Topicmodels() 
♦ Tidytext() 
♦ Tidyr() 

♦ Stringr() 
♦ Scales() 
♦ Reshape2() 
♦ Rmarkdown() 
♦ Tidyverse() 
♦ Factoextra() 
♦ Kohnen() 
♦ Shiny()
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3.4 R Shiny 
 

At the very end, R Shiny was used for creating a simple user interface (UI) through which the 
recommendation system could be explored. The UI can be seen in image 2 below and the 
features of it are explained below the image. 

 

Image 2 UI of the recommendation system 

The sidebar in the UI contains 3 fields with values that can be changed by the user: the number 
of modern books within the favourite’s list; the number of classical books to perform the 
analysis on; the number of LDA topics (the value of k for the LDA model). The default values 
were kept low to reduce the load time as, with bigger values (especially in terms of classical 
books), it would take longer for the results to load.  

With the default values it takes a couple of minutes, but the larger the sample of classical 
books that is to be used, the longer it would take for the results to be displayed.  

The main section of the UI contains the 3 sets of the results: at the very top a summary of the 
classical books dataset that is to be used (including only the number of books specified by the 
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user in the sidebar); Below that are the modern books contained in the favourites list – the 
number of books in the list correspond to the number chosen by the user in the sidebar.  

The very last section of the results is the recommendations themselves with the similarity 
score displayed alongside them. With smaller classical book samples used the similarity score 
would, more often than not, be small as well. The larger the classical book sample the more 
likely it is for the similarity score to be higher, however the computation time would be longer 
then as well. 

 

3.5 Things That Did Not End Up in The Final Version of the Project 
 

At one point during the process of working on the project, Goodreads was considered as an 
option for extracting book summaries and reviews. Goodreads is a website where people can 
rate and review the books they have read and it has an extensive database of all kinds of 
books – fictional and not, recent, and old. There was not a specific reason for dropping 
Goodreads from the project, besides the couple restrictions they had with their API and the 
fact that Google Books API was more straightforward to work with.  

In the same way, Amazon book reviews were once under consideration for analysing the 
modern books. Just like with Goodreads, the idea was dropped for the same reason – the 
Google Books API was more straightforward, which was better for the project overall as I did 
not want to spend weeks of time just gathering the data when the end goal is analysing book 
data and not just sourcing it.  

SVD (singular value decomposition) is yet another thing I have looked into. SVD is a technique 
for decomposing a matrix into many component matrices which can help discover some 
useful or interesting features of the initial matrix. Although I have researched and even coded 
up some SVD methods, in the end those did not contribute towards the final results of the 
project (the recommendations).   
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4.0 Analysis 
 

Throughout the process of implementation, various results were produced – many of them in 
the form of images. In this section those results will be discussed and, where needed, 
compared.  

 

4.1 Word Cloud 
From the Document term matrix (DTM) a word cloud of classical books was produced, 
containing some of the top words within the sample of books (image 3). 

 

Image 3 Classical books Word Cloud 
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Since the size of the image is quite big, the smaller words can be hard to see so I have cropped 
a few parts out and enlarged them so the words can be seen more clearly. (Images 4, 5, 6). 

 

Image 4 

 

Image 5 
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Image 6 

For the sake of comparison, I have also made two separate word clouds – one with only the 
default stopwords and common names removed (image 7), and another one that also 
removes the stopwords from a custom list I made (image 8). 

 

Image 7 



 

23 | P a g e  
 

 

Image 8 

There is one clear difference between the two images – one of them contains a lot more 
words that would be useless for topic modelling/analysis. In image 7 for example, there are 
words such as “thou”, “replied”, “chapter”, “de”, etc. that do not exist in image 8, once further 
refinement with stopwords is complete.  

Overall, although refining stopword removal can be seen as a small step, it was nonetheless 
an important one as it would then make the topic modelling more accurate (because there 
would be less of the common words that would drive the similarity up).   
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4.2 Top Words per Topic 
 

Using the LDA model, top 5 words per topic (with 9 topics in total) were extracted. Once again, 
for comparison, first are the results with the default stopwords removed (images 9, 10, 11) 
and then with further custom stopwords removed (images 12, 13, 14). 

 

Image 9 

 

Image 10 

 

Image 11 
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To interpret the images: Each block contains top 5 words relating to a specific topic 
(numbered 1 to 9 and labelled at the top of the block). On the y-axis the top 5 words are 
displayed, while the x-axis represents how often the word appeared within the topic. 

 

Image 12 

 

Image 13 

 

Image 14 

In the first 3 images, there are still words that do not make the topics any clearer – such as 
“de”, “ter”, “ye”, etc. while the latter three images make the topics a lot clearer to see with 
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words such as “sea”, “officer”, “war”, “boat”, “camp” etc. Table * below visualises the key/top 
words of the 9 topics and provides an interpretation for each.  

Table 8 interpretations of topics 

 

Although some of the interpretations for the topics ended up the same, the more nuanced 
topics within the books would most likely not be – for example topic 1 would be more about 
the whole family such as parents, kids, relatives, etc. while topic 7 is more likely to be oriented 
around a newer family – a wife and a husband, their relationship, possibly parenthood at 
some stage.  

Topics 3 and 5 had similar keywords (and interpretations) as well and although it is hard to 
know specifically how those would differ from just looking at the keywords, some guesses can 
still be made. One of them could be related to sea travel, while the other one about fishing 
which would, in the end, result in a lot of sea-related words.   

Topic Keywords Interpretation
1 mother, aunt, house, father, children Family oriented
2 earth, ship, space, planet, city Sci-fi
3  water, boat, ship, sea, fire Maritime
4 war, army, officer, soldiers, officers War/military
5 Boat, deck, sea, ship, water Maritime
6 God, father, lord, mother, brother God/religion
7 father, mother, heart, god, wife Family
8 money, house, school, car, street School oriented
9 horse, uncle, trail, road, camp Adventure
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4.3 SOM, LDA, Kmeans models 
 

After running the three models (SOM, LDA, Kmeans), some visualisations were done to 
better see the topic distribution. 

 

 

Image 15 Kmeans cluster Distribution 

 

Image 15 shows the Kmeans model cluster distribution, with 9 existing clusters. Each different 
symbol (shown in the legend on the right side) represents the different topic and each of the 
books from the sample ran have one symbol attached to it – one that corresponds to the topic 
that was assigned to it. Many of the books were assigned to topic 2 in the case of this 
particular book sample, which is why there is a bigger orange cluster on the left side of the 
graph. 
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Image 16 is the training progress of the SOM model, it shows how, with each new iteration, 
the books within a cluster became more and more similar to each other. The model was run 
through 100 iterations, however as seen in the image, by 60th iteration around 80% of the 
reduction to the mean distance between units (books) had happened. That means that even 
if the model were to be reduced to 60 iterations, the resulting clusters would be 
approximately 80% more accurate than if there was only 1 iteration. 

 

Image 16 SOM model Training Progress 

 

To compare the three models, I have made bar charts for the results gained (cluster 
distribution) after running the three models on the same sample of 100 books. The bar charts 
can be seen in images 17, 18, 19 below.  

The x-axes on the images represent the cluster (numbered 1 to 9 for the total of nine clusters), 
while the x-axis represents the number of books that fell within/were assigned that topic. 



 

29 | P a g e  
 

 

Image 17 SOM cluster distribution 

 

Image 18 Kmeans cluster distribution 
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Image 19 LDA cluster distribution 

 

By simply looking at the three images, it can be determined that the Kmeans model would be 
the least accurate while the LDA would be the most accurate.  

That conclusion is based on the overall distribution of books between the topics and, although 
in some cases there may be a lot of books that fall within the same topic, it is unlikely that 
with an accurate model a bar chart such as that of the Kmeans model would appear.  

After checking the results in the table format, it became clear that the Kmeans model assigned 
1 book to each of the clusters besides topic 2 which gained all the rest of the books.  

The SOM model’s cluster distribution looks a lot better when compared to Kmeans, however 
overall, the LDA model has the most even distribution and therefore I would be more likely 
to trust the accuracy of its results.  

 

Table 9 below is a side-by-side comparison of 5 classical books and what topics they were 
assigned to within each model. The results were taken from the tables that were produced 
after the three models were run on a classical book sample of one thousand books.  

Overall, the Kmeans model assigned all five to one cluster, SOM to two and the LDA model 
had a total of 4 clusters for the 5 topics. 
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Table 9 Cluster Assignment comparison 
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5.0 Results 
 

For the recommendation system, a sample user was created with a list of 5 favourite modern 
books which would then be used to get the classical book recommendations. Table 10 
presents the list of the favourite books.  

Table 10 Sample User's Favourite Books 

 

The code was run 5 times, each time with a new sample of 1 thousand books, producing 5 
sets of recommendations (Tables 11, 12, 13, 14, 15). The results are in the format of a title 
followed by a similarity score – the similarity score is based on how similar the content within 
the classical book is to the content (summary) of the modern books within the sample user’s 
favourites list. 

Table 11 Sample 1       Table 12 Sample 2 

 

Table 13 Sample 3 

 

Table 14 Sample 4 
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Table 15 Sample 5 

The final 5 recommendation from the samples were then combined at the end to get the 5 
recommendations with the highest similarity scores (Table 16). 

 

Table 16 Results from samples combined 

A similarity score of 1 would mean that the books are identical, while a score of 0 would mean 
that they have nothing in common. As seen from the results in tables 5 – 10, some of the 
classical books had a similarity score of 0.2, while many others were in the range between 
0.19 – 0.15. Overall, having a 0.2 similarity score would mean that 20% of the words within 
the classical book match the words within one of the modern books in the favourites list. And 
that 20% is without the existence of stopwords (that would be common among all the books) 
and with less relevant words reduced through TF-IDF, which would have reduced the 
similarity somewhat.   

Knowing whether the recommendations are reasonably accurate is not easy though – the 
only thing that can be done is looking at what the books are about and deciding from that. 
Looking at the summaries and reviews for the modern books and the 5 classical books in table 
14, a few clear themes (genres) can be seen between the two – romance, family, adventures, 
some mysteries, and fantasy mixed in as well though more on the side of the modern books. 
As far as can be seen from that type of a check, the recommendations did seem to be valid. 
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5.1 Testing 
 

Some testing was done to check how well the models and the recommendation system work. 
The test cases are outlined below.  

1. LDA Model – Topic assignment consistent 
Description: With the same set of books used for the LDA model, those books should be 
assigned into the same clusters of topics.  

Precondition: The set of books went through the pre-processing steps and a dtm was made 
from them. 

Assumption: The same set of books is used. 

Testing Steps:  

a. Install and load the required packages. 
b. Load in the classical book dataset. 
c. Set.seed(20) and then subset a number of books to be used for the testing. 
d. Run the code for downloading the book text. 
e. Run the code for pre-processing and stopword removal. 
f. Run the TF-IDF code.  
g. Create a DTM (document-term matrix). 
h. Run the code for building the LDA model with 9 topics (k=9).  
i. Extract the topics assigned for the books, one main topic for each classical book. 
j. Save the results. 
k. Repeat multiple times and compare the results.   

Expected result: The books should be assigned to the same topic clusters each time the code 
is executed.  

Actual result: As expected. 

 

2. SOM Model – Topic assignment consistent 
Description: With the same set of books used for the SOM model, those books should be 
assigned into the same clusters of topics.  

Precondition: The set of books went through the pre-processing steps and a dtm was made 
from them. 

Assumption: The same set of books is used. 

Testing Steps:  

a. Install and load the required packages. 
b. Load in the classical book dataset. 
c. Set.seed(20) and then subset a number of books to be used for the testing. 
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d. Run the code for downloading the book text. 
e. Run the code for pre-processing and stopword removal. 
f. Run the TF-IDF code.  
g. Create a DTM (document-term matrix). 
h. Define the SOM grid. 
i. Run the code for building the SOM model. 
j. Run the post-processing steps, using Kmeans to divide the SOM results into 9 clusters 

(k=9). 
k. Extract the topics assigned for the books, one main topic for each classical book. 
l. Save the results. 
m. Repeat multiple times and compare the results.   

Expected result: The books should be assigned to the same topic clusters each time the code 
is executed.  

Actual result: As expected.  

 

3. K-means Model – Topic assignment consistent 
Description: With the same set of books used for the K-means model, those books should be 
assigned into the same clusters of topics.  

Precondition: The set of books went through the pre-processing steps and a dtm was made 
from them. 

Assumption: The same set of books is used. 

Testing Steps:  

a. Install and load the required packages. 
b. Load in the classical book dataset. 
c. Set.seed(20) and then subset a number of books to be used for the testing. 
d. Run the code for downloading the book text. 
e. Run the code for pre-processing and stopword removal. 
f. Run the TF-IDF code.  
g. Create a DTM (document-term matrix). 
h. Run the code for building the Kmeans model with 9 topics (centers=9).  
i. Extract the topics assigned for the books, one main topic for each classical book. 
j. Save the results. 
k. Repeat multiple times and compare the results.   

Expected result: The books should be assigned to the same topic clusters each time the code 
is executed.  

Actual result: As expected.  

4. Recommendation system – final recommendations 
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Description: There should always be 5 final recommendations, no matter how many books 
within the user’s favourites list.  

Precondition: There are multiple sample users with different number of books within their 
favourites list.  

Assumption: The same code is being used for the recommendation system, without any 
adjustments.  

Testing Steps:  

a. Install and load the required packages. 
b. Load in the modern and classical books datasets. 
c. Follow the pre-processing steps for the modern books dataset.  
d. Create multiple users by subsetting a different number of modern books to their 

‘favourites list’.   
e. Set.seed(20) and then subset a number of books to be used for the testing. 
f. Run the code for downloading the book text. 
g. Combine the datasets for the classical books and the modern books from one of the 

user’s favourites list.  
h. Run the code for pre-processing and stopword removal. 
i. Run the TF-IDF code.  
j. Create a DTM (document-term matrix). 
k. Run the code for building the LDA model with 9 topics (k=9). 
l. Extract the topics assigned for the books, one main topic for each classical book. 
m. Extract the classical books that were assigned the same topic as one (or more) of the 

books from the favourites list.  
n. Re-combine the extracted books with the words that were contained in each of the 

books, using a ‘word_counts’ table produced during previous steps. 
o. Create a 2nd DTM, this new one containing only the books that had the same topics as 

the books in favourites list + the books from the favourites list.  
p. Run the code for creating a similarity matrix.  
q. Loop through the results, extract the top 5 recommendations for each of the books in 

favourites list.  
r. Sort the results, taking the top5 recommendations that have the highest similarity 

score.  
s. Print out and save the results. 
t. Repeat for each of the multiple users created at the start, each one containing a 

different number of favourite books.  

Expected result: There should be 5 final recommendations each time.   

Actual result: As expected.  

5. Recommendation System – Shiny UI – Adjusting the number of books in favourites 
list 
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Description: When a user changes the number for the number of books within the favourites 
list, the output of the UI should reflect that.  

Precondition: The Shiny app is running and the results with default values are displayed. 

Assumption: The Shiny app is working with no errors; the default values can be changed.   

Testing Steps:  

a. The Shiny app is running, and the results are loaded in.  
b. Check the sidebar for the default value, there should be a number 2 under the favourite 

books section.  
c. Check the main section of the app, under the heading “Sample User’s Favourites” there 

should be 2 books displayed.  
d. Change the number of favourite books in the sidebar (change the ‘2’ to any other 

number). 
e. Wait for the results to load. 
f. There should be the same number of books under the “Sample User’s Favourites” as 

the number entered in the sidebar.  

Expected result: The results in the main section of the UI match the values inputted in the 
sidebar.  

Actual result: As expected.  

 

6. Recommendation System – Shiny UI - Adjusting the number of books in classical 
books list 

Description: When a user changes the number for the number of books within the classical 
books list, the output of the UI should reflect that. 

Precondition: The Shiny app is running and the results with default values are displayed. 

Assumption: The Shiny app is working with no errors; the default values can be changed.   

Testing Steps:  

a. The Shiny app is running, and the results are loaded in.  
b. Check the sidebar for the default value, there should be a number 20 under the classical 

books section.  
c. Check the main section of the app, under the heading “Summary of the sample 

dataset”, there will be various blocks of information. 
d. Check the first row, second column, which is named ‘title’, the ‘Length:’ valuer under it 

should correspond to the default value (20).  
e. Change the number of classical books in the sidebar to a different number than the 

default.  
f. Wait for the results to load. 
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g. Check the same place as before in the main section of the UI, the ‘Length:’ value should 
be the same as the number inputted by the user.  

Expected result: The results in the main section of the UI match the values inputted in the 
sidebar. 

Actual result: As expected.  
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6.0 Conclusions 
 

For the project overall, it was a good thing to have a big enough dataset of classical books to 
analyse, though on the opposite side of that was the lack of data on modern books – the 
summaries were very short and quite lacking. The RAM limitations also impacted the project 
as the models and recommendations could only be done on approximately one thousand 
books at a time instead of using the full 13 thousand classical book dataset. The results, 
because of that, would have been impacted somewhat because, with more books to work 
with, the final recommendations could have turned out better.  

All in all, by making use of the good things and finding ways to overcome the issues that arose, 
the project was completed, the aims were achieved, and the end results were good for the 
current scale of the project.   
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7.0 Further Development or Research 
 

With more time and/or resources, there are many ways in which the recommendation 
system could be improved. First, it would already be an improvement if the code could be 
executed with the whole 13 thousand of classical books.  

Besides that, having a bigger list of modern books in addition with better/longer summaries 
(or even some reviews for each of the books to further supplement the summaries) would 
contribute towards better and more accurate final recommendations.  

Another improvement that could be made with more time would be to maybe create 
something like an actual system through which users could log in and set up their favourite 
books list which would then be the one used for making classical book recommendations. 
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9.0 Appendices 
 

9.1. Project Plan/Proposal 
Objectives 
The main objective is to create a recommender system that would take in a person’s reading 
preferences which would be analysed and then a classical book would be recommended 
based on the analysis.  

The recommender system would be either stand-alone or an add on to the existing amazon 
recommender system.  

Background 
I have always been interested in books (especially fiction) and writing, so it seemed like a good 
idea to try and incorporate that into my project. What I came up with in the end was to gather 
some data relating to books (such as reviews, descriptions, or text of the book itself) and use 
that to try and predict what kind of books a specific person would like.   

Technical Approach 
The approach to the project will firstly include a lot of reading and research – into the KDD 
methodology, machine learning, natural language processing, text analytics, recommender 
systems, etc.  

Then, the second step will be to source the data – such as, using the Goodreads API to source 
the data related to book reviews, or the Project Gutenberg for the data on classical books.  

Lastly, all that will be left is to use the sourced book data to build the recommender system.  

Technical Details 
The project will be mainly using R and Python.  

In terms of R, some of the main packages used will be gutenbergr, dplyr, tm, etc.  

Evaluation 
The system will first be tested by me – I will be trying to see if the classical books I get 
recommended are ones that I would be interested in.  

I will be testing to see if the recommendations are valid. For example, if two people were to 
have identical book preferences, would the system recommend the same type of book? If 
not, would those recommended books at the very least be both valid as recommendations 
for both people? 

At the end, I will be asking some acquaintances/family/friends to try out the system and see 
if the book they get as a recommendation is something they would want to read. 
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Project Plan 

 

 

9.2. Reflective Journals 
 

October 
During the month of October, the main thing I did was thinking about the ideas for the project 
I want to make. This included doing research, then deciding on the idea and then doing more 
research on the specific idea.  

Around the end of October, I started writing up the project proposal.  

November 
The deadline for the project proposal was the 8th of November, therefore the first week of 
the month was spent on finishing up the proposal.  

The rest of the month was spent developing the idea further and doing research into various 
things that could contribute towards the overall project. Some of those things included KDD, 
text mining, text analysis, NLP (natural language processing), machine learning, recommender 
systems, Api’s (more specifically available api’s for websites such as goodreads and Project 
Gutenberg).  
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December 
The month of December is when I finally moved on from research and started working on 
some code.  

I extracted the data from the Project Gutenberg website by using R package Gutenbergr, and 
then proceeded to pre-process and clean up the data to the point where only the data I would 
need for the project was left.  

Using this data, I made some visualisations to be used for the report and presentation for the 
mid-upload which is due on the 22nd.  

February 
Started working on topic modelling for classical books and sourcing the list of the modern 
books (with summaries for each of the books). 

Started doing LDA on smaller samples of books (approx. 20 at a time) to make sure the code 
works as required. 

March 
Moved all the code to Google Collab to overcome some of the hardware issues I had in 
relation to insufficient RAM. 

Ran bigger samples (1000 books, then 1500 books) through the LDA code and produced 
visualisations for the top terms for several different topics. 

Removed names from the list of words to make sure they do not show up in the final images 
then ran the samples again (5 different samples). 

Made a custom stop word list for each of the 5 instances of the samples to further remove 
words that do not help in determining the final topics. 

Kept increasing the list of the modern/more recent books to make sure I get some definitive 
results with the topic modelling. 

April 
Implemented SOM and K means clustering on the same books as the LDA topic modelling for 
the sake of comparing the results. Started working and nearly finished the recommendations 
part of the system where, taken a sample user with several favourite books from a list of 
modern books, five classical books would be generated at the end as a recommendation. The 
recommendations are based on both, the topics assigned by the LDA and then similarity score. 

Worked a bit on the report, test cases, visualisations. 

May 
Finishing up with the code, documentation, video presentation. 
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