

National College of Ireland
BSHCE

Software Development

2020/2021

Aaron Reilly

x17124719

x17124719@student.ncirl.ie

CompaniesUnite

Technical Report

1

Contents
Executive Summary ... 4

1.0 Introduction .. 5

1.1. Background ... 5

1.2. Aims ... 6

1.3. Technology .. 6

1.3.1 Java ... 6

1.3.2 JSON ... 7

1.3.3 ClearDB MySQL .. 8

1.3.4 JSP .. 8

1.3.7 Heroku .. 8

1.3.8 Eclipse .. 9

1.3.9 GitHub .. 9

1.4. Structure ... 10

1.4.1 System .. 10

1.4.2 Conclusion .. 10

1.4.3 Further Development or Research .. 11

1.4.4 References ... 11

2.0 System ... 11

2.1. Requirements .. 11

2.1.1. Functional Requirements .. 11

2.1.1.1. Use Case Diagram ... 11

2.1.1.2. Requirement 1 <Add Company Details> ... 12

2.1.1.3. Description & Priority .. 12

2.1.1.4. Use Case .. 12

2.1.1.5. Requirement 2 <Edit Company Details> ... 14

2.1.1.6. Description & Priority .. 14

2.1.1.7. Use Case .. 14

2.1.1.8. Requirement 3 <Delete Company Details> ... 16

2.1.1.9. Description & Priority .. 16

2.1.1.10. Use Case .. 16

2.1.1.11. Requirement 4 <Search Companies> .. 18

2.1.1.12. Description & Priority .. 18

2.1.1.13. Use Case .. 18

2

2.1.1.14. Requirement 5 <User Registration> .. 20

2.1.1.15. Description & Priority .. 20

2.1.1.16. Use Case .. 20

2.1.2. Data Requirements ... 22

2.1.2.1 ClearDB MySQL ... 22

2.1.2.2 JSON .. 24

2.1.3. User Requirements ... 24

2.1.4. Environmental Requirements ... 25

2.1.4.1 Heroku ... 25

2.1.4.2 ClearDB MySQL ... 26

2.1.4.3 Eclipse ... 26

2.1.4.4 Postman .. 26

2.1.5. Usability Requirements ... 26

2.1.5.1 Performance ... 26

2.1.5.2 Accessibility ... 27

2.2. Design & Architecture ... 27

2.3. Implementation .. 28

2.3.1 Login Controller .. 28

2.3.2 Modify Company List Controller .. 29

2.3.3 Register Account Controller ... 31

2.3.4 Login JSP ... 32

2.3.5 Modify Company List JSP ... 33

2.3.6 Company Search JSP .. 34

2.3.7 Company Form JSP ... 35

2.3.8 Accounts Register... 37

2.3.9 Web XML .. 38

2.3.10 Company Model Class .. 39

2.3.11 Companay Service .. 41

2.3.12 Company Resource .. 42

2.3.13 Account Model ... 43

2.3.15 Database Class ... 46

2.3.16 Update Company DAO ... 47

2.3.17 Account Details DAO .. 49

2.3.18 Hibernate.cfg.xml ... 49

2.4. Graphical User Interface (GUI) .. 50

3

2.4.1 Login Page .. 50

2.4.2 Register Company .. 50

2.4.3 Add New Company .. 51

2.4.4 Edit New Company ... 51

2.4.4 Register New Administrator Account .. 52

2.4.5 Search for Businesses ... 53

2.4.6 About Page ... 53

2.5. Testing ... 54

2.5.1 Unit Tests ... 54

2.5.2 Integration ... 58

2.5.3 End User Testing .. 62

2.6. Evaluation ... 68

3.0 Conclusions ... 69

4.0 Further Development or Research ... 70

5.0 References .. 70

6.0 Appendices .. 71

6.1. Project Plan ... 71

7.0 Objectives .. 73

8.0 Background ... 73

9.0 Technical Approach ... 73

10.0 Project Plan ... 74

11.0 Technical Details ... 76

12.0 Evaluation ... 76

12.1. Ethics Approval Application (only if required) .. 77

12.2. Reflective Journals .. 77

Reflective Journal (October) ... 77

Reflective Journal (November) ... 77

Reflective Journal (December) .. 78

Reflective Journal (January) .. 79

Reflective Journal (February) .. 79

Reflective Journal (March) .. 80

Reflective Journal (April) ... 81

12.3. Other materials used .. 81

12.3.1 Think Aloud .. 81

4

Executive Summary
Throughout the course of the pandemic, thousands of companies have been forced to shut
down as they don’t provide a particular service. Hospitality sector for example have been
impact the most financially.

There are many reasons why businesses are forced to shut down throughout the pandemic.
Some examples are:

• They’re sector of business is not considered essential.

• They’re unable to provide social distancing.

• Depending on the service they provide they could be considered not to open for a
long period of time.

Given the restrictions, we have seen some businesses adapt under these circumstances.

Businesses delivering they’re services to customer homes, whereas previously that wasn’t
the case. We’ve also seen a huge increase in food trucks and café trucks, in some cases
these maybe some new ventures for businesses but also brands are following in this
direction for their business to survive.

This project is a platform to help those looking to adapt under these new circumstances.
Providing customers with different methods of retrieving data. For example, customers can
use a web application or retrieve data through json format if they prefer.

Customers of this project are businesses who don’t provide the all the necessary services
required to stay open. Allowing them to find businesses/people in their area willing to work
together.

Examples would be.

• Food trucks or Café trucks looking for open area where they can park and provide a
service.

• Pubs looking for catering service who can set up shop quickly on their premises.

• Gastropubs and restaurants looking for delivery service to deliver their products to
customer homes.

Given the reasons mentioned above, I believe this project is necessary, as it gives businesses
a platform for surviving lockdowns.

One of the key benefits of this project is to bring businesses closer together. When the
pandemic is over, I think many businesses will change their approach and services.

5

1.0 Introduction
1.1. Background

Reason behind CompaniesUnite is the fact businesses have been forced to shut down
throughout the pandemic.

Businesses have been impacted in different ways some not as lucky as others. Just about all
businesses in the hospitality sector were forced to close their doors for a considerable
amount of time. Many of those businesses will never open their doors again, due to not
being able to withstand the money constraint over the past year.

Other businesses had the ability to serve outside and keep social distancing. This allowed
some businesses to open their doors at some stage in the last year. We have seen cases
where if a business did not serve food they had to completely shut down.

Businesses found it difficult to respond and adapt in very little time. Leaving them with no
option but to close. Over time we seen some business adapt to keep their business afloat.

CompaniesUnite is a platform which allows end users to see what services other businesses
are looking to provide in order to survive the pandemic.

Services are provided in two ways.

• Web application

• API Service

As mentioned, end users will have the ability to use certain functionality. There are two
types of users, Administrator and Normal User.

Administration Functionality

• Login to the platform to gain additional privileges.

• Ability to interact with the system through API

• Register new administrator accounts.

• Add new businesses to the database which will display on the platform.

• Remove businesses who wish not to be on the platform.

• Edit existing business, a business may change location or would like to update their
details to make their business more intriguing to others.

• Logout

6

Normal User Functionality

• Search for business by typing into a search box, search is conducted on two fields
Postcode and Sector. Postcode allows end users to see businesses in areas they’re
interested in, and sector if they know what services they need.

• About page provides a description of what we do also providing the end user with
the option to send information about the business they would like to be added to
the platform.

• Ability to view the full list of businesses.

1.2. Aims
Purpose of this project is to build a platform that provides businesses with the opportunity
to get their information added to our system. Allowing end users to view their interests
along with the skills or products they can provide to others. Helping businesses to adapt and
survive throughout the pandemic. Creating new relationships outside of their organisation.

Platform provides administrators with an API system, allowing them to interact with the
application or by API requests.

Customer data will be stored on the cloud platform Heroku using ClearDB MySQL. Ensuring
data is secure, along with availability provided by Heroku.

End users without the administrator privileges can only search and view businesses
interested working with others.

It’s not best practice to allow any user to interact with customer data. Ensuring security on
all business data as only admin users have the privilege to add/edit/remove data.

The platform provides customers with data on businesses with the same interest, allowing
them to communicate and work together. Given a business feels that their interests align
contact details is available on the platform.

1.3. Technology
Description on the technologies used for this project, listing some of the implementations
made with them.

1.3.1 Java
Java is the core programming language used for this project. Java classes developed in
this language include,

• Controller classes also known as Servlets.

7

• DAO Classes – Data Access Object used to connect to the database and create
the SQL statements to interact with the database.

• Model Classes – Classes are used to create object for when we look to interact
with the database. Annotations used here were @Entity, @Table, @Id and
@Column, allowing to interact with the correct schema, table, and fields on the
database.

• Resources – Developed to create the path when using API option. Setting the
media type to JSON. Here we set the HTTP methods type for each request GET,
POST, PUT and DELETE. Importing service class to use business logic available
there.

• Services – Provides functionality to the resources class. It’s the bridge to connect
to the DAO class allowing us to interact with the database. Providing us with the
ability to add, update or delete.

• Database connection class which is imported and used by multiple DAO classes.
It’s the class that connects to the hosted database on Heroku. The methods here
are used to establish the connection.

• Unit Tests – Junit tests were developed in Java and executed on Eclipse IDE.
Using assertEquals to ensure we are returning the values expected.

As the platform provides an API system, allowing request to manipulate the data, it was
decided to go with JAX-RS as its reliable.

JAX-RS gives support to web-services which isused for this project. It allows us to use
annotations and interfaces to make to easier and more robust in building the REST APIs.
Cosgrave , N., 2020. RESTfu l Web Se rvices – Part III (JAX-RS in a nu tshe ll). Topic 7,
pp .21,22,23,24,25,26.

1.3.2 JSON
The platform allows administrators to transfer and manipulate the customer data using
JSON (JavaScript Object Notation) format.

JSON seems to be the go-to for most IT companies these days as it’s easy to understand
and read.

JSON is considered to be a lightweight format, which is why I decided to use it for the
transferring of data for this project.

8

1.3.3 ClearDB MySQL
ClearDB MySQL through the Heroku platform provides the services of MySQL and more.
Our application can allow administrators to read, write and update and delete from the
MySQL database.

Providing the platform as a database as a service, ensuring the data is secure. Also
providing us with the comfortability of knowing we don’t have to deal with such things
as database servers, database failures and advance storage.

Additional benefits of using ClearDB MySQL are the free bandwidth along with the 24/7
support they provide. The cost of storing my data for this project is also very cheap
which is a nice benefit. (ClearDB Deve lope r Cen te r - Welcom e , 2021)

1.3.4 JSP
JSP (Java Server Pages) are used within this project as it provides us with the ability for
server-side programming. As JSP can use of Java API’s which we take advantage of to
connect to the database and provide search capabilities. Allowing end users to search
for companies through on the UI.

Our JSP files are built on top of our Servlets, as the two are in communication. Most of
the business logic is implemented in our Servlet classes, following best practices when it
comes to coding. (Tyson , 2019)

JSTL (Java Server Pages Standard Tag Library) is the JSP tag which allows the platform to
gain the functionality it provides. We used Core Tags and SQL Tags which allowed us to
connect to the hosted database. Along with other functionalities such as displaying and
quiring the data from the database. (JSTL Tutoria l, JSTL Tags Exam ple - Journa lDev, 2013)

HTML and Bootstrap are all used throughout the JSP files.

1.3.7 Heroku
Heroku are the cloud providers chosen to deploy the platform on. They provide a quick
and efficient service when looking to deploy a web application and a MySQL database.

Using ClearDB MySQL for the database, proved to be the right decision for me to make.

Heroku is extremely easy to use providing clear navigation to information on the
instances such as Resources, Deploy, Metrics, Activity, Access and Settings.

Platform details

• App Name: testprojectunite

• Region: Europe

• Stack: Heroku-20

9

• Framework: Heroku-maven-plugin

• Slug size: 147.2 MiB of 500 MiB

1.3.8 Eclipse
Eclipse IDE used to develop the maven web application, where we would import all the
necessary dependencies through our .pom file. They provide useful integration with
GitHub and Apache Tomcat. Tomcat was very useful throughout development phase,
providing us with a HTTP web server allowing us to review our latest changes
immediately on the browser.

1.3.9 GitHub
GitHub became very important throughout this project, a couple of times I’d have to pull
the previous project again. It is a version control platform which allows us to store our

10

project code. Luckily after pushing regular commits to the remote project repository, there
was always a backup version available.

GitHub is great for keeping track of the updates made for each commit, which makes it easy
to find the changes made. If I got some major issues after a couple of updates on my local
project. I found comparing my local copy against the working remote branch very useful.
Saved me a lot of time if I wanted to get back to when the program was working.

1.4. Structure
1.4.1 System
In the System section of this report, we cover the project requirements for both functional
and non-functional. In detail we provide each of the functional requirements by using use
case diagrams, scope, and description.

Additional areas covered in this section are data requirements where we discuss how we
integrate ClearDB MySQL into our system.

Other topics discussed are user requirement, environmental requirements, and usability
requirements.

Design and Architecture discusses the overall structure of the system and how everything is
connected and importance of each instance.

Implementation we list important java classes and JSP files, we provide a clear description
followed by a screenshot under the description.

Graphical User Interface similar layout to the implementation section, we provide a
description of each web page and explain why it’s there and how its needed to provide the
full application.

Testing we cover different types of testing, each of which are very important. Three types of
testing covered are Unit, Integration and End User Tests. We must prove what we’re
delivering is valid and tested for end users.

We discuss our evaluation of the project, covering different topics such as tests ran, Think
Aloud techniques taken by end users.

1.4.2 Conclusion
We discuss in detail the advantages and disadvantages of the project. Issues faced with JSP
not importing CSS or JavaScript as expected. Also covering some of the strengths and
limitations of the project itself.

11

1.4.3 Further Development or Research
This section we discuss possible further developments that can be implemented in the
future. Discussing the problems faced during the integration of JavaScript and possible
newer frameworks such as Angular and REACT.

1.4.4 References
We list all necessary references used for this document, along with research used for the
implementation of the application itself.

2.0 System
2.1. Requirements

2.1.1. Functional Requirements
This section lists the functional requirements in ranked order.

2.1.1.1. Use Case Diagram
The use case diagram below details an overview of the functional requirements.

12

Figure 1: CompaniesUnite Use Case Diagram

2.1.1.2. Requirement 1 <Add Company Details>
2.1.1.3. Description & Priority
This use case describes how administrators can access the system and add
important company data. Which in turn will be displayed to the public. This use
case priority was set to critical as it covers the core functionality of the
application.

2.1.1.4. Use Case
ID

UC02

Scope

The scope of this use case is to add company information which later can be
retrieved by end users.

Description

This use case allows the administrator to add a company’s details to the
database.

Use Case Diagram

13

Figure 2: Add Company Use Case

Flow Description

Precondition

The administrator must be logged into the application using their registered
account.

Activation

This use case starts when a user begins to write information in the form based on
their company to the database.

Main flow

1. The user begins to fill out the form with company information (See E1)
2. The user presses the save button (See A1)
3. The system writes the information for that company to the database.
4. The user is brought to list of companies including the newly added

company.
5. The system responds with company information.

Alternate flow

A1: <User fails to fill in mandatory fields>

14

1. The user unsuccessfully entered data to all mandatory fields.
2. The system will prompt a message telling the user which fields need to be

filled in.
3. The user will then add to the mandatory fields.
4. The use case continues at position 2 of the main flow.

Exceptional flow

E1: <Server responds with failure>
5. The system will display a message if the system fails to write to the

database.
6. The user will refresh the system.
7. The use case continues at position 1 of the main flow.

Termination

The system returns the user to the login page.

Post condition

The system stores the data sent to the server on the database.

2.1.1.5. Requirement 2 <Edit Company Details>
2.1.1.6. Description & Priority
This use case describes how administrators can edit company details. This can
only happen by the request of that company. Companies might decide they
haven’t added enough details to be considered and try make themselves look
more valuable.

This use case covers important functionality by providing the customer with the
ability to change their detail at their wish. Priority of this use case is high.

2.1.1.7. Use Case
ID

UC03

Scope

The scope of this use case is to edit the customer data which later can be
retrieved by other users.

Description

This use case allows the administrators to edit their details to the database.

Use Case Diagram

15

Figure 3: Edit Company Use Case

Flow Description

Precondition

The user must be logged into the application using their registered account.

Activation

This use case starts when a user clicks the edit option on the main administrator
page.

Main flow

6. The user presses the edit button (See E1)
7. The user begins to fill out the form with company information (See A1)
8. The system writes the information for that company to the database.
9. The administrator is brought to list of companies including the newly

updated company.
10. The system responds with company information.

Alternate flow

A1: <User fails to fill in mandatory fields>
8. The user unsuccessfully entered data to all mandatory fields.
9. The system will prompt a message telling the user which fields need to be

filled in.
10. The user will then update the mandatory fields.

16

11. The use case continues at position 7 of the main flow.

Exceptional flow

E1: <Server responds with failure>
12. The system will display a message if the system fails to display the form.
13. The user will refresh the system.
14. The use case continues at position 6 of the main flow.

Termination

The system returns the user to the login page.

Post condition

The system stores the updated data sent to the server on the database

2.1.1.8. Requirement 3 <Delete Company Details>
2.1.1.9. Description & Priority
This use case describes how administrators can delete company details. If in the
case a company chooses to no longer stay on the platform. A request will be sent
to the administrator to remove them from the platform. Several reasons why a
company may wish to be removed.

For example

• Found a match and successfully got what they needed from the platform.

• No longer have use for the platform, they may have to shut their doors
for good.

• Decide they don’t want their information out in the public.

This use case is extremely important as it covers concerns of the customer
and core functionality making this highly important. Priority of this use case is
high.

2.1.1.10. Use Case
ID

UC04

Scope

The scope of this use case is to delete customer information which is no longer
needed.

Description

17

This use case allows the administrator to delete a company’s details when
requested by that company from the database.

Use Case Diagram

Figure 4: Remove Company details Use Case

Flow Description

Precondition

The user must be logged into the application using their registered account.

Activation

This use case starts when a company wishes to have their details remove from
the platform.

Main flow

11. The administrator Delete when successfully logged in.
12. The system removes the information for that company from the database

(See E1)
13. The administrator is brought to list of companies (See A1)
14. The system responds with that company no longer available on the list of

companies.
Alternate flow

A1 : <User fails to delete details>
1. The user unsuccessfully deletes the company data.
2. The user will retry the delete option.
3. The use case continues at position 12 of the main flow.

Exceptional flow

18

E1 : <System Fails to Remove Details>
4. The system will display a message telling the user there has been an

error.
5. The user will check to see if their data is no longer available by querying.
6. The use case continues at position 11 of the main flow.

Termination

The system presents the administrator with a warning if they wish to remove the
data.

Post condition

The system removes data from the database.

2.1.1.11. Requirement 4 <Search Companies>
2.1.1.12. Description & Priority
This use case explains how the end user can query the database and search for
companies. There are two fields on which the end user can search from. Option
to search by postcode if distance causes and issue for them. Also, they can search
by sector, allowing them to see all businesses within the sector they’re interested
in. The priority of this ticket is high.

2.1.1.13. Use Case
ID

UC05

Scope

The scope of this use case is to provide the ability to search for businesses within
a postcode they enter or a sector they wish to enter.

Description

This use case describes how users can search for businesses by postcode or
sector.

Use Case Diagram

19

Figure 5: Search for Companies through postcode or sector Use Case

Flow Description

Precondition

User is not required to be logged into the application.

Activation

This use case starts when a user types a postcode or sector into the search field.

Main flow

15. The user enters the postcode or sector they’re interested in (See A1)
16. The user presses Enter to search (See E1)
17. The system identifies the postcode or sector the user entered.
18. The system returns the list businesses based on the postcode or sector

entered.
19. The platform returns all businesses within that postcode or sector to the

user.
Alternate flow

A1 : <No companies in that postcode>
7. The system responds with no businesses in the list (blank page)
8. The use case continues at position 15 of the main flow.

Exceptional flow

20

E1 : <Server Error>
9. The system responds with a message.
10. The user will be required to enter a postcode or sector.
11. The use case continues at position 17 of the main flow.

Termination

The system presents with full list of businesses.

Post condition

The system provides the details of the business within the postcode or sector.

2.1.1.14. Requirement 5 <User Registration>
2.1.1.15. Description & Priority
This use case explains how administrators can create an account through
registration.

On login the username and password credentials will be compared to the ones
we have stored on the database. Given a successful match the administrator will
be granted access to the application. This use case is high priority as the
administrator needs an account to login to use the application.

2.1.1.16. Use Case
ID

UC01

Scope

The scope of this use case is to allow administrators to create an account and
gain access to the system.

Description

This use case describes how the administrators can register and sign into the
system.

Use Case Diagram

21

Figure 6: Register Account Use Case

Flow Description

Precondition

The administrator must have access to the internet to create an account.

Activation

This use case starts when a user clicks registration option.

Main flow

20. The system will provide the administrator with the option to create an
account (See E1)

21. The administrator will be required to enter in the user credentials for
their account.

22. The system will add and store new user credentials to the database.
23. The system will prompt the user to login (See A1)
24. The user will enter their new credentials.
25. The system will confirm if they are valid credentials or not by comparing

what is stored in the database.
26. The system will grant the user access and redirect them to a form they

need to fill in.
Alternate flow

22

A1: <Wrong user credentials>
12. The user has entered the incorrect credentials.
13. The system will continue to show to login page.
14. The use case continues at position 24 of the main flow.

Exceptional flow

E1: <User already stored in the database>
15. The user tries to register with credentials already stored in the database.
16. The system returns a message stating the user already exists.
17. The use case continues at position 21 of the main flow.

Termination

The system presents the administrator with the login page.

Post condition

The system stores new credentials in the database.

2.1.2. Data Requirements
2.1.2.1 ClearDB MySQL

All business and account details are stored remotely on ClearDB MySQL on Heroku.

Administrators will have the ability to Add, Update and Delete business information along
with Account Details. All business data will be visible on the platform UI, where end users
can search for the business location or their sector depending on what they choose.

Screenshot of the hosted database on Heroku below.

Available below is a screenshot is the MySQL Heroku database. As you can see the schema
name matches that of the hosted database shown in the previous screenshot.

Live company data is displayed when running the highlighted SQL query.

23

Screenshot below shows the admin table in our hosted database you can see the
relationship between the two tables with the companyId.

24

2.1.2.2 JSON
JSON is the format we will use for transferring our data. Administrators can also use
Postman which will return business data in JSON format if they’re just interested in the data
and not the UI.

2.1.3. User Requirements
The purpose of CompaniesUnite application is to provide businesses and others looking to
venture into new professional areas with options to adapt to the current problems they’re
facing due to the pandemic.

Providing end users with a list of companies who share the same interests and are willing to
work with others.

In this case the only major requirement is for the end user to have access to the internet,
along with some interest in growing relationships outside of their organisation.

25

The end user can search the list by entering a postcode or by sector.

If sending their details to the administrators, they are required to be patient in the case they
wish to have their details removed.

Users will need to be ok with having their data stored in ClearDB. Updates to the database
should be visible on the application immediately.

The application will allow administrators to Add, Update and Delete businesses information
on the hosted database at their request.

Each user will have the ability to query for companies in a particular area or their sector.

2.1.4. Environmental Requirements
2.1.4.1 Heroku
This project will be hosted in the cloud using Heroku. By hosting this project in the cloud, we
can ensure availability, portability, security and more. Below are the deployments made for
this project to Heroku.

26

2.1.4.2 ClearDB MySQL
ClearDB should be always running online if we want to display the data to the end user. If
we have a case where Heroku fails to provide data online, it’s a Critical issue which should
be addressed immediately.

Screenshot below show some details of the ClearDB instance used for this project.

2.1.4.3 Eclipse
Eclipse IDE proved to very useful IDE the integration with Apache and Github saved some
time as I have experience with this IDE in the past. Java POJO Classes, Database Connection
Class, Servlets, and JSP files were all implemented using this IDE.

2.1.4.4 Postman
Postman used for our integration testing, ensuring the integration over multiple java classes
while the data is being used as agreed. Confirming the major functionalities work by
sending HTTP methods such as GET, POST, PUT and DELETE.

Administrators can also use this to add, update and delete company data quicker.

2.1.5. Usability Requirements

2.1.5.1 Performance
For this project performance is guaranteed, using the Dyno Type seen in the screenshot
below. We are given 512 MB of Memory (RAM), CPU Share 1x, Compute of 1x-4x.

It’s enough at this moment for the purpose of this project.

If the decision is made to continue this project and add new features, Dyno type can be
easily upgraded. For now, the Dyno type in use meets our usability requirements.

We have set our instance up in the EU, which provides less latency given our location.

27

2.1.5.2 Accessibility
Having hosted the application in Heroku cloud, we can ensure the hardware required to run
the software is available when needed. Given that this is a project, we’re using the free
dynos option which can sleep. In the case of where there is no web traffic for 30 minutes
the sleep will be set to yes. It provides the accessibility required at this time.

2.2. Design & Architecture
Separation of Concerns (SoC) was decided as a design pattern for Java project. Learning
this design pattern in the Web Services and API Development module I was keen to use
the material I was learning in the college.

Resource packages containing the classes used for building the paths using the API
option, also importing the service class implementation. Allowing for the interaction
with the database using different HTTP methods and JSON requests.

Our JSP files were used for server-side programming, getting the full use of Java API’s.
JSP files are built on top of our servlets, where a lot of the business logic is located.

Throughout the development of this project our data was stored on MySQL. While
looking to deploy the project on the cloud, realising all the data will need to be
migrated.

Heroku platform provides ClearDB MySQL, while also using Heroku in our Cloud
Computing module it was decided to go with Heroku over AWS. All functionality is
deployed successfully which is brilliant.

28

Overview of the hardware architecture

Figure 6: CompaniesUnite hardware architecture diagram

2.3. Implementation
2.3.1 Login Controller

Login Servlet class takes in the username and password entered through the Login.jsp.
Checking if the username and password are valid by connecting to the Account Details DAO
class.

We validate by creating an object of account details DAO using the validate method
available in this class. We take in the username and password and pass the account object
into the validate method. If that username and password are stored in the database as seen
in the if statement.

If the username and password are valid the Administrator will be brought to the Modify
Company List Controller. Else if the username and password doesn’t exist in the database
and are not valid, they will remain at the login page.

29

2.3.2 Modify Company List Controller
Modify Company List servlet is developed to handle a couple of different interactions with
the application. By using a switch statement, depending on the action taken through our JSP
file we’ll run the method assigned to that case in the servlet. We can call different actions in
our JSP file.

On line 22 we create an object of type UpdatedCompanyDAO, giving us the functionality to
interact with the database.

List of interactions with the database we can do from this servlet are listed below.

• Insert Company

• Update Company

• Delete Company

Within the switch statement are methods that also have no interaction with the database
such as “/new” and “/edit”. These methods display the forms necessary for us to add or
update to the database.

30

31

2.3.3 Register Account Controller
Account Servlet class creates an object of type AccountDetailsDAO, which provides us with
the ability to use their methods such as registerAccountDetails(). Line 57 we use this
method passing the account object as a parameter. Which contains the new administrator
account details, allowing for the registration of that new account.

It’s required the administrator enters data to all necessary fields. Providing a successful
insertion of a new administrator account the end user will be redirected to the list of
companies’ page. Line of code for this is outside the try catch on line 62.

WebServlet annotation is set to (“/register”), if you go to accountregister.jsp you can see we
use the same path.

32

2.3.4 Login JSP
Within this JSP we have our Login form, also we import a header and footer.

As you can see on line 13 we are using the action “request.getContextPath()” with /Login
path appended at the end. This allows us to get the requested servlet in this case it’s the
Login servlet. Providing a connection between the servlet and JSP gaining the functionality
the Login Servlet provides.

33

2.3.5 Modify Company List JSP
Provides the UI with the ability to see full list of businesses and their information. Which is
all retrieved from the hosted database.

Other options provided by this JSP are:

• Add New Company

• Edit Company Details

• Delete Company Details

On line 19 you can see the getContextPath() /new is matching that of the switch statement
in the ModifyCompanyList Servlet. Which means if this button is clicked, the method
showNewForm() under “/new” in the switch statement is executed, which provides us with
the company form JSP.

34

(JSP - Standard Tag Libra ry (JSTL) Tu toria l - Tu toria lspoin t, 2021)

2.3.6 Company Search JSP
As you can see, we’re importing the java libraries into this JSP file. These imports on line 1
and 2 allow us to write the code in the jsp file for connecting and filtering the data in the
hosted database.

Line 40 we pass in what the end user searched as a parameter assigning to the variable
result. Result is then used in the SQL query to filter the data in the database, whether a
postcode or sector has been entered.

35

(JSP 6 CRUD - Search Data , 2017)

2.3.7 Company Form JSP
This file interacts with the ModifyCompanyList Servlet, line 18 and 21 allows us to display
which form the end user wants. We know if the company form is not null, the user is looking
to update company details.

36

Using the actions on line 18 and 21, the switch statement in the servlet mentioned will
execute the corresponding method.

We are also calling the live data from the hosted database. As when an edit happens we
display the data already stored on the database.

37

2.3.8 Accounts Register
Account register JSP file provides the connection with account servlet class. Using
“/register” path we know this page should be displayed.

All fields are set to required, once save is clicked the account details will be added to the
hosted database.

38

2.3.9 Web XML
We set the welcome file to the companySearch.jsp file, this is how the home page is set up
for end users to see the list and search if needed. Within the file we list our servlet name
and URL patterns.

39

2.3.10 Company Model Class
Using the separation of concerns, we created a model package to store all our model
classes.

Company model class we use annotations to define the @Entity, @Table, @Id and
@Column. Allowing the class to connect and interact with the correct table. These
classes are also known as POJO classes Plain Old Java Objects. Variables used to store

40

data listed in the bullet points below. Cosgrave , N., 2020. RESTfu l Web Services – Part III
(JAX-RS in a nu tshe ll). Topic 7, pp .21,22,23,24,25,26.

• companyId – This is used to identify business by a unique id.

• companyName – Variable is used to store the company name.

• address – Variable is used to store the address of the company.

• postcode – Here we will store the postcode where users will later be able to
search businesses by postcode. Allowing them to see businesses close by

• sector – Variable is used to store the sector in which the business specialises in.
Later users of the application will be able to query based on sector.

• details – Variable is used to store any additional information the business would
like others to see.

41

2.3.11 Companay Service
As we continue to follow the separation of concerns design, it was decided to create a
service package. Here we will store our java service classes which will have the services we
would like to use.

Service classes will later be called by our resource classes. This class was implemented to
provide the ability to use the system through API requests.

42

2.3.12 Company Resource
Within our resource class we have annotations such as @GET @POST @PUT @DELETE
@Path @Consumes @Produces.

@GET @POST @PUT @DELETE are developed to allow us to make HTTP requests

@Path used to specify specific paths needed for the request to work.

@Consumes @Produces developed to specify the type of request we would like to consume
or produce. Cosgrave , N., 2020. RESTfu l Web Se rvices – Part III (JAX-RS in a nu tshe ll). Topic 7,
pp .21,22,23,24,25,26.

We also create an object of our company service class so we can use the service logic which
helps interact with the database.

43

2.3.13 Account Model
Account model class implementation is developed to allow us to create objects necessary to
interact with the hosted database.

Available in the screenshot shown are annotations such as @Entity, @Table, @Id,
@ManyToOne and @JoinColumn. These allow us to pass data to the correct database also
making a many to one relationship between two tables. Class also contains variables,
constructors, getters & setters.

44

45

46

2.3.15 Database Class
Database connection class used in multiple DAO classes. Establishing a connection with the
hosted database by stating the URL, Username and Password.

Code on line 19 & 20 shows how we establish that connection to the database using
DriverManager.

Driver Manager provides a basic service for JDBC drivers, using the get method it provides
all we need to do is pass in the url, username and password as parameters. If successful and
no exceptions are caught, we then return that connection. (MySQL :: MySQL Connector/J 8.0
Deve lope r Guide :: 7.1 Connecting to MySQL Using the JDBC Drive rManager In te rface , 2021)

Classes that import this connection

• Account Details DAO

• Company List DAO Impl

• Update Company DAO

47

2.3.16 Update Company DAO
This Data Access Object Class contains multiple methods which interact with the hosted
database.

List of interactions with the database

• Inserting company information
• Selecting a company by Id
• Selecting all companies in the database
• Deleting a company by identifying it using its unique id

At the top of the class, we declared the constants for each query, writing the SQL while
adding in the placeholders “?” for the values that will be entered later through the
application.

All methods must access the database before interacting with it. Described previously in
section 2.3.15 the implementation of the database class is used by multiple classes.

We created an object of that class on line 24. Then in each method within the try we use
that object to use method getConnection2() providing the connection needed.

48

The Insert company method uses the company object as a parameter, using the get
methods through object “company”.

We’re able to assign the data to each field name listed in the SQL query then running the
execute update. Allowing the insertion of the new data to the hosted database.

The remaining methods all take a very similar approach.

Delete method uses the Id of the company to identify the company details to be removed.

49

2.3.17 Account Details DAO
Account details DAO class provides the functionality of connecting to the hosted database.

Class contains the registerAccountDetails method which is the logic for the registering of
administrator accounts.

Validate method provides the logic for when a user tries to log into the application. It checks
the database to ensure username and passwords are valid and are already stored on the
database.

2.3.18 Hibernate.cfg.xml
Provides the connection to our ClearDB MySQL for API functionality. We import the
connection details within this file to our CompanyDAO class. Allowing us to add, update,
retrieve and delete data on the host database through API requests.

50

2.4. Graphical User Interface (GUI)

2.4.1 Login Page
Administrators can only log into the system if their details are stored in the database,
gaining access to CRUD functionalities.

2.4.2 Register Company
Given administrators log in successfully, they are brought to the page below. Allowing them
to add, edit or delete companies from the platform. They have the ability to navigate to
Registration to add new administrators to the database.

51

2.4.3 Add New Company
Clicking add new company shown in the previous screenshot, the administrator will be
presented with this form. Filling all form fields the administrator will successfully insert the
company data to the hosted database.

2.4.4 Edit New Company
If the administrator is tasked to update some business details, they are presented with this
page. Please note previous details are displayed in the text boxes. Administrators have the

52

privilege to update any of these fields. Once save is clicked the application will show new
updates immediately.

2.4.4 Register New Administrator Account
Administrators can be added to the system through the application. Once details have been
entered to all available fields and save is clicked then the new account details will be stored
in the hosted database. Allowing the new administrator to access the system.

53

2.4.5 Search for Businesses
This page is available to the public, businesses or people can visit the application without
the need to login and search for businesses in an area that suits them or by a sector
entering in the search box.

2.4.6 About Page
About us page provides a description of the goal CompaniesUnite have set out. Also
explaining what happens when a customer sends data through the form if they wish to
display their information on the application.

54

2.5. Testing
Testing is a very important phase when developing an application. Ensuring there are no
major issues blocking customers using the application provide great comfortability. We
executed on three different types of testing, unit, integration, and end user testing.

Unit Tests

Unit tests were developed using Eclipse IDE, creating a new unit test case for each of the
model classes was simple enough.

In the project explorer you can find JUnit Test Case option. Providing us with the dialog
box to add test packages and test classes, allowing us to link test classes with the java
classes keeping naming convention in sync.

As the model java classes are used a lot for creating objects while inserting,
manipulating, retrieving, and deleting data from our hosted database. It made sense to
get unit test coverage on company and account model classes.

Integration Tests

Postman is a tool widely used across the industry; many companies use the tool for
integration testing.

Showing through API requests the interactions between java classes model (POJO),
Service, Resource, DAO, and database connections.

We can confirm through all this interaction, data is returning as expected along with
adding, updating, and deleting through all the classes mentioned.

Sending these requests and receiving their responses we can confirm the integration
tests are being covered.

End User Tests

End user test proved to be very important on our initial run we seen one or two features
weren’t working as expected. By executing the tests over and over after each update we
ensured that all tests are now passing. The goal here is to mimic the customers
behaviour to catch any issues they might come across.

2.5.1 Unit Tests
Unit tests below confirm the code for our accounts class is working as expected. This
class is important for when the administrators want to create new admin accounts. We
are testing the getter methods from the accounts class.

55

Comparing the expected result with the actual result, by doing an assertEquals() we can
determine if the test is a pass or fail.

Account Unit Test Class

56

Account Unit Test Results

Results shown in the screenshot below, all tests passed as expected.

(JUnit - Plug with Eclipse - Tu toria lspoin t, 2021)

57

Company Unit Test Class

Unit tests below confirm the code for our company class is working as expected. This
class is important for when the administrators want to add new or update existing
companies to the database. We’re testing the getter methods from the company class.

Comparing the expected result with the actual result, by doing an assertEquals() we can
determine if the test is a pass or fail.

58

Company Unit Test Results

Results shown in the screenshot below, all tests passed as expected.

2.5.2 Integration
Integration testing were executed using a tool called Postman. Confirming the java classes
and business logic are working as expected while integrating with the database.

Ensuring our company model class along with other java classes such as our data access
object classes, which are used to create SQL queries and send the prepared statement to
the database when a connection is secured covering the full integration.

We covered the major integration tests using Postman.

Integration tests executed are:

• Retrieve all Companies
• Add New Company
• Update Existing Company
• Delete Company by ID

59

2.5.2.1 Get all Companies
Get all Companies test covers the fact the user can retrieve data from the hosted database.

URL Metho
d

Header Value

http://localhost:8080/CompanyUnite/JAXRS/project/c
ompanies

GET Conten
t-Type

application/js
on

60

2.5.2.1 Add New Company
Add New Company integration test covers the overall integration of java classes and the
database while inserting new company data. Using details below, along with a json request
body shown in the screenshot, we confirmed company data is added to the system.

URL Metho
d

Header Value

http://localhost:8080/CompanyUnite/JAXRS/project/c
ompanies

POST Conten
t-Type

application/js
on

61

2.5.2.1 Update Existing Company
Update Existing Company integration test covers the overall integration of java classes and
the database while updating existing company data. Using details below, along with a json
request body shown in the screenshot, we confirmed company data is updated on the
system.

URL Method Header Value
http://localhost:8080/CompanyUnite/JAXRS/projec
t/companies/{companyId}

PUT Content-
Type

application/
json

2.5.2.3 Delete Company by ID
Delete Company by ID integration test covers the overall integration of java classes and the
database while allowing for customer data to be removed when requested. As seen no
request body is required for this test, just the details provided below.

URL Method Header Value
http://localhost:8080/CompanyUnite/JAXRS/proj
ect/companies/{companyId}

DELETE Content-
Type

application/js
on

62

2.5.3 End User Testing
As mentioned in the brief description, end user is extremely important stage to sign off. As it
shows the application is working as expected.

It provides us with what the customer experiences, not only is it an important stage, but it’s
also very important we understand how the customer uses the application.

If we don’t know how the end user will interact with the application, our test cases are not
valid. After reviewing how 5 different people use the application. The test cases reflect how
the end user will interact with the application.

Test
Case
ID

Test Case
Objective

Steps Expected
Result

Actual
Result

Stat
us

TC_0
1

Login
Successfu
lly

1. Go to url:
https://testprojectunite.herokuapp.com/
2.Add username - johnsmith
3.Add password - johnsmith123
4.Click login

Login
Successfu
lly

Logged in
Successfu
lly

Pass

TC_0
2

All fields
Required
for
Registrati
on

1. Go to url:
https://testprojectunite.herokuapp.com/register
2. Leave each field blank at a given time

• First Name
• Last Name
• Username
• Password
• Phone

Fields
display
warning
if left
blank

Top blank
field
displays
warning

Pass

https://testprojectunite.herokuapp.com/
https://testprojectunite.herokuapp.com/register

63

• Email
8. Click Save

TC_0
3

All fields
Required
for
entering
company
details

1. Go to url:
https://testprojectunite.herokuapp.com/new
2. Leave each field blank at a given time

• Company Name
• Address
• Postcode
• Sector
• Details

7. Click Save

Fields
display
warning
if left
blank

Top blank
field
displays
warning

Pass

TC_0
4

Edit
Company

1. Go to url:
https://testprojectunite.herokuapp.com/edit?co
mpanyId=13
2. Edit Company Name
3. Edit Address
4. Edit Postcode
5. Edit Sector
6. Edit Details
7. Click Save

Company
details
display
updated
informati
on when
saved

Company
details
displayed
the new
edited
informati
on

Pass

TC_0
5

Delete
Company

1. Go to url:
https://testprojectunite.herokuapp.com/list
2. Go to the last Company on the list
3. Click Delete

Company
is deleted
from the
platform
and the
database

Company
removed
from the
system
complete
ly

Pass

TC_0
6

Search
Postcode

1. Go to url:
https://testprojectunite.herokuapp.com/company
Search.jsp
2. Search for an available postcode on the list of
companies

Compani
es within
matching
postcode
should
display
on the
applicatio
n

Expected
businesse
s
returned
when
matching
postcode
was
entered

Pass

TC_0
7

Search
Sector

1. Go to url:
https://testprojectunite.herokuapp.com/company
Search.jsp
2. Search for an available sector on the list of
companies

Compani
es within
the same
sector
should
display
on the
applicatio
n

Expected
businesse
s
returned
when
matching
sector
was
entered

Pass

TC_01 Results

End user logged in successfully as we are brought to the list of businesses. We can also
see the features such as Add New Company, Edit and Delete which are provided to only
admins after a successful login.

https://testprojectunite.herokuapp.com/new
https://testprojectunite.herokuapp.com/edit?companyId=13
https://testprojectunite.herokuapp.com/edit?companyId=13
https://testprojectunite.herokuapp.com/list
https://testprojectunite.herokuapp.com/companySearch.jsp
https://testprojectunite.herokuapp.com/companySearch.jsp
https://testprojectunite.herokuapp.com/companySearch.jsp
https://testprojectunite.herokuapp.com/companySearch.jsp

64

TC_02 Results

Shown in the screenshot below we can see the warning “Please fill out this field” where
we left Last Name blank and tried to save all the other details. We ran this test on each
field to ensure that all fields are required when writing to the database.

TC_03 Results

65

We ran this test on all company fields, leaving one field blank at a time. Shown below in
the screenshot we can see the warning “Please fill out this field” when Address field is
left blank as the admin tries to save all other details.

TC_04 Results

If you look at the screenshot shown in TC_01, we update the company with ID 1 which
has a Company Name of “DeliveryService2”. Presented in the screenshot below, we
update the Company Name to be “DeliveryService3”.

In the second screenshot below we now see the name of the company with ID1 has a
Company Name of “DeliveryService3”.

This shows a successful update, we ran this edit test on all fields available, each field
updated as expected.

66

TC_05 Results

This test is very important, if the customer no longer wants their details on the system,
they should be removed immediately.

Shown in the screenshot below we delete company with ID number 45.

• Company Name – Pizza Food Truck

67

• Address - Meath

• Postcode – M11

• Sector – Food

• Additional Information – Need to rent open space

Available in the screenshot below is an updated list after the delete is made.

We can see there is no longer a company with an ID of 45 or any of the other details
provided in the bullet points.

This shows the test case successfully passed the end user testing.

TC_06 Results

Searching will be used a lot by the end users, allowing them to get the details they’re
looking for a lot quicker.

Some businesses may not want to deal with others outside of their town or city.
Providing the end users to search by surrounding postcodes.

Seen in the screenshot, we entered in postcode D1, all the businesses displayed that are
in D1, along with D11 and D13.

68

TC_07 Results

Another search option is the sector the customer is interested in. Seen in the screenshot
below Delivery is entered, showing businesses in this sector only.

2.6. Evaluation
Evaluating the system was reached by executing different techniques of testing.

Executing unit, integration, and end user tests, prove to be a wide range of coverage
when evaluating the system. Shown in the screenshots above all unit tests were
executed successfully, covering isolated parts of the code.

Integration tests provided us with more comfortability in our evaluation by covering
interaction over multiple Java classes, along with generating SQL queries and connecting
to the database. Postman was very useful to test all of the integration as a whole
ensuring the functionality is working as expected.

69

End user tests were extremely useful, by replicating how the customer will interact with
the application. We could be sure the application behaves as expected. Customer will
see no major issues as end user tests covered all major functionalities.

3.0 Conclusions
We cover advantages and disadvantages, along with strengths and limitations to the project.

Advantages of companiesUnite project is providing a platform for people who wish to adapt
and survive the current restrictions. Encouraging building new business relationships
outside of your organisation. Easy to use web application, with the ability to use API for
faster interaction with the database. Some advantages personally were the skills I gained.
For example, getting stronger at Java. Completing difficult tasks using JSP files. Deploying a
full web application on Heroku while using a deployed version of MySQL. Implementing
college curriculum into my project. Getting exposure to how full end to end applications are
integrated. Using Bootstrap for designing the GUI. Creating a project that could actually help
people in the future. Getting familiar with new tools such as Postman and putting them into
practice. Providing potential customers with the opportunity to adapt to the issues forced
on us due to the pandemic.

Disadvantages of the companiesUnite project little or no resources, hosted on a free dyno
type on Heroku which sleeps when their inactivity for 30 minutes. Unable to import
JavaScript or CSS file like I wanted into the JSP file. This was the biggest disadvantage as I
found it out later in the project life cycle. Seen in the screenshot below there is a bug which
I was unable to resolve. Forced to use HTML required tags to have some sort of form
validation. I really wanted to integrate JavaScript into this project. Issue I faced trying to
design the application using CSS and Javascript, I would receive this Failed to load resource:
the server responded with a status of 404 () by trying a simple import like <link
rel="stylesheet" href=”css/style.css" type="text/css"/>

Strengths of the companiesUnite project, real time updates reflected on the application. JSP
files work well with Servlets allowing for smooth communication. Server-side code was very
useful for the search feature. Project is hosted on Heroku, providing availability and

70

security. Project was created to help people, which might entice others to get behind and
support.

Limitations are the fact we have a cheap set up when it comes to instances on the cloud as
there is no money invested. Minimum security set up, just the basics provided by Heroku.

4.0 Further Development or Research
Given the opportunity arose and the benefits of additional time for the project. I’d may have
considered a newer framework such as Angular or REACT for the frontend.

MySQL for the database done the job it needed, integrating the database into the cloud,
wasn’t as tough as I thought it would be originally.

MongoDB is being used a lot in the modern applications, a lot of the big companies uses it.
Given I decide to continue the project, I’ll consider using different frameworks.

At the beginning of the project, I wasn’t familiar with a lot of frameworks and what would
best suit me. Deciding to go with what I knew some companies use and languages thought
by the college.

For example, using the whole API option, is widely used in the insurance industry. This was
covered in the Web Services API module. My goal was to use what I learnt from the college.

Provided there were additional resources, I would look to host the applications on more
secure machines. Ensure better performance once the funding was available.

Direction I would like to take the project would be including a lot of new features to
enhance the application. Get feedback from other people, see if they have any interesting
ideas.

I would go with the new frameworks out there; I’d have to spend some time getting familiar
with them.

Ensure I choose the right cloud platform for this project, get the best security, performance,
and availability my resources allow.

5.0 References
Cleardb .com . 2021. Clea rDB Developer Center - Welcome. [on line] Availab le a t:
<h ttps://www.cleardb .com /deve lope rs/p la tform /overview> [Accessed 27 April 2021].

Tu toria lspoin t.com . 2021. JSP Tutoria l - Tutoria lspoint. [on line] Availab le a t:
<h ttps://www.tu toria lspoin t.com /jsp /index.h tm > [Accessed 12 February 2021].

71

Tyson, M., 2019. Wha t is JSP? Introduction to JavaServer Pages. [on line] InfoWorld . Ava ilab le a t:
<h ttps://www.in foworld .com /article /3336161/what-is-jsp-in troduction-to-javase rve r-pages.h tm l>
[Accessed 10 February 2021].

Tu toria lspoin t.com . 2021. JSP - Standard Tag Libra ry (JSTL) Tutoria l - Tutoria lspoint. [on line]
Availab le a t: <h ttps://www.tu toria lspoin t.com /jsp /jsp_standard_tag_libra ry.h tm > [Accessed 18
February 2021].

Journa lDev. 2013. JSTL Tutoria l, JSTL Tags Example - Journa lDev. [on line] Availab le a t:
<h ttps://www.journa ldev.com /2090/jstl-tu toria l-jstl-tags-exam ple> [Accessed 22 February 2021].

Dev.m ysql.com . 2021. MySQL :: MySQL Connector/J 8.0 Developer Guide :: 7.1 Connecting to MySQL
Using the JDBC DriverManager Interface. [on line] Availab le a t:
<h ttps://dev.m ysql.com /doc/connector-j/8.0/en /connector-j-usagenotes-connect-
drive rm anager.h tm l> [Accessed 17 January 2021].

h ttps://m ym oodle .ncirl.ie /p luginfile .php/127662/m od_resource /con ten t/0/Week5.RESTfu l%20We
b%20Services%20III%20JAX-RS%20in%20a%20nutshe ll.pdf [Accessed 8 Decem ber 2020].

Tu toria lspoin t.com . 2021. JUnit - Plug with Eclipse - Tutoria lspoint. [on line] Availab le a t:
<h ttps://www.tu toria lspoin t.com /jun it/ jun it_p lug_with_eclipse .h tm > [Accessed 2 April 2021].

You tube .com . 2017. JSP 6 CRUD - Sea rch Da ta . [on line] Availab le a t:
<h ttps://www.you tube .com /watch?v=W4D1TVGd7UA> [Accessed 03 March 2021].

6.0 Appendices
This section should contain information that is supplementary to the main body of the report.

6.1. Project Plan

https://mymoodle.ncirl.ie/pluginfile.php/127662/mod_resource/content/0/Week5.RESTful%20Web%20Services%20III%20JAX-RS%20in%20a%20nutshell.pdf
https://mymoodle.ncirl.ie/pluginfile.php/127662/mod_resource/content/0/Week5.RESTful%20Web%20Services%20III%20JAX-RS%20in%20a%20nutshell.pdf

72

National College of Ireland

Project Proposal

Companies Unite

01/11/2020

BSHCE

Software Development

2020/2021

Aaron Reilly

x17124719

x17124719@student.ncirl.ie

Contents
1.0 Objectives .. 73

2.0 Background ... 73

3.0 Technical Approach ... 73

4.0 Project Plan ... 74

73

5.0 Technical Details ... 76

6.0 Evaluation ... 76

7.0 Objectives
The goal for this project is to build an API system that helps companies stay open
throughout the pandemic. The application will be built in java while stored in the cloud. This
app will provide companies the visibility to other interested companies. On this app they
can find companies that best match their needs and that are more suitable.

1. Provide companies a platform where they can unite

2. Increase company interaction by providing a stable system

3. Enhance other companies understanding on the help available

4. Implement a way for companies to quickly find help they need

5. Encourage company to company engagement

6. Create a teamwork environment amongst competitors

7. Platform to be stored in the cloud

8.0 Background
During the pandemic, many companies had to shut down. In some cases, they had to shut
down completely as they could not afford to fund through the pandemic. Many companies
had the ability to serve outside and keep social distancing. We have seen cases where if a
place did not serve food they had to completely shut down. This happened on more than
one occasion also, seeing many people lose jobs and family businesses. Companies Unite is
an application which will help those companies, allowing them to react dynamically to the
situation. There are companies out there that can help others and provide a service,
whether that is providing food to a local pub or even an open space to a restaurant if the
only option is to serve outside. On this application companies can provide information on
services they provide along with help they need. Some companies might want to just help
maybe they have a big open area they could rent to other companies.

9.0 Technical Approach
To provide customers with a stable and effective platform the approach I am looking to take
for this project is an API system to transfer data. This will be developed in the programming

74

language java, requests and responses used for the transferring of data will be in JSON
format. Data to be stored in MySQL database where the application will query that stored
data. For the frontend I am planning on outputting to a form where I will use html and
JavaScript. This platform will be stored in the cloud as this module is in semester 2.

10.0 Project Plan

75

76

11.0 Technical Details
Approach for the frontend is to use the following

• JavaScript – provide feedback to the customer after an action has been taken.

• HTML – Structure the UI here we will create the form and login page

• CSS – Design the UI using CSS to improve on the UI

Backend programming language

• Java - Core programming language

Database Management System

• MySQL – Using this we can store the data and make modifications to the data

Storage

• Cloud Services – Heroku is the provider used to host the project.

12.0 Evaluation
This project will use mock data, where customers can be replicated with fake data. This data
will contain information about help they need. Junit will be used for unit testing running
tests against the java code. Integration testing, I would like to follow the BDD (Behaviour
Driven Development) process using cucumber here I will create feature files explaining the
behaviour with the integration code running in the background. Functional testing will
happen when the UI is available, this may be a manual process, if time allows, I would like to
automate those tests with selenium.

77

12.1. Ethics Approval Application (only if required)
12.2. Reflective Journals

Reflective Journal (October)
• Student name: Aaron Reilly

• Programme: BSHCSD4 – Software Development Stream

• Month: October 2020

My Achievements
For the month of October my achievements were successfully submitting my project proposal. Also, I
have made a good start on my CA’s for Mobile Applications, Strategic Management & AI modules.

The main issues I faced
The main issue I had this month was getting familiar to Teams and doing everything online. This is
my first semester online, its very new to me. At the beginning, I was missing the start of some
classes just because I was not sure how to get there. Lecturers use Teams differently, setting up
groups and working within a team on Teams.

My Reflection
As I have little or no time at all, I decided to log into my account early before work and play around
with Teams just to become more comfortable with it. Now I have a really good understanding on
how to use teams, its no longer an issue. Only issue I have now is my mic won’t work which means I
can talk to others I need to type everything.

Intended Changes
Now that I have been logging on earlier than before, I’m using that time on CA’s to take pressure off
later. Coming into November I plan to focus more on Data Application Development & API modules.
I plan to resolve my mic issue this week.

Reflective Journal (November)
• Student name: Aaron Reilly

• Programme: BSHCSD4 – Software Development Stream

• Month: November 2020

My Achievements
For the month of November my achievements were successfully submitting CA’s for Mobile
Applications, Strategic Management, API and Data Application Development.

78

The main issues I faced
The main issue I had this month was on my CA1 for Data Application Development. I found it very
difficult to find datasets online that I could use for the CA. The delay put on a lot of pressure right
before submission. I never had deal with data in that way, which left me unsure if the data would be
enough for the CA. Other difficulties were the fact I never used R before. Also, the documentation
was a lot. I never had used IEEE format before and its referencing. It would have been good to go
over some examples.

My Reflection
I could have managed my time better and been more decisive in choosing what datasets to work
with for the Data Application Development CA. Then I could have spent more time on the more
interesting parts of the CA, rather than rushing at the end.

Intended Changes
CA2 is similar but with python, I plan to decide on the dataset a lot earlier and get an early start on
the CA. Hopefully this will take off more pressure around the time of submission.

Reflective Journal (December)
• Student name: Aaron Reilly

• Programme: BSHCSD4 – Software Development Stream

• Month: December 2020

My Achievements
Achievements for December were successfully submitting CA’s for AI, Mobile Applications, Data
Application Development. My main achievement for this month was delivering the mid-point
presentation. As a lot was needed to get done for this, given the deliverables for other modules.

The main issues I faced
The main issues I had this month was delivering my CA for Data Application Development. The main
issue I had with Data Application Development was writing python programs, having no practical
experience with that programming language.

My Reflection
I feel we could have covered more practical work during the semester. Maybe I could have spent
more time on Python courses in my own time before starting the semester.

79

Intended Changes
Be more prepared before starting a semester, get a good understanding on what will be delivered in
each module.

Reflective Journal (January)
• Student name: Aaron Reilly

• Programme: BSHCSD4 – Software Development Stream

• Month: January 2020

My Achievements
For the month of January my achievement was successfully migrating my codebase from NetBeans
to Eclipse. Being able to connect the application to a MySQL database. The program can now ADD,
UPDATE, DELETE and RETRIEVE data from a MySQL database.

The main issues I faced.
The main issue I faced this month was trying to connect my project using NetBeans to a MySQL
database. Having searched for examples on the web, looking on stack overflow and other sites.
Unfortunately, I couldn’t get it to work. Given I have more experience with Eclipse I decided to
migrate my project to Eclipse.

My Reflection
Making the decision to move to Eclipse proved to be the right decision as I can now interact with a
MySQL database. Maybe I shouldn’t have waited to migrate at the end of the month. I believe I
spent too much time trying to stay with NetBeans rather than using Eclipse.

Intended Changes
Spend more time at the beginning of the project researching and deciding on what tools I should use
throughout the project.

Reflective Journal (February)
• Student name: Aaron Reilly

• Programme: BSHCSD4 – Software Development Stream

• Month: February 2020

My Achievements
For the month of February my achievement was getting more familiar with eclipse. Have some UI
available for my project using JSP and Servlets. My main achievement was being able to read data

80

from the database and displaying it on the UI. Setting this up took a lot of time and effort which is
why I have this as my main achievement. I would have liked to spend more time on the code or
designing the UI.

The main issues I faced.
The main issue faced for the month of February was trying find a way to use both my machine-to-
machine code along with UI implementation while interacting with MySQL database all in the same
project.

My Reflection
Looking at how long I spent trying to get everything to work together, probably should have picked
easier technologies. JAX-RS we covered in our modules which was fine but assuming we would be
covering the UI and how they all link together was what I spent a lot of time on.

Intended Changes
Know more about the technologies I decide to use for projects, I knew I would be interested in these
but was not aware of how difficult I’d find setting up the project or finding the necessary jar files in
order to make the project work.

Reflective Journal (March)
• Student name: Aaron Reilly

• Programme: BSHCSD4 – Software Development Stream

• Month: March 2020

My Achievements
For the month of March my achievements were successfully submitted Usability Design and
Distributed Systems CA’s. Distributed System RPC CA was difficult but, in the end, I was happy with
what I got done. Even though it was difficult I found the assignment very interesting.

The main issues I faced.
The main issue faced for the month of March was not getting to spend as much time on my project
as I would have liked. We had a lot of CA’s due for this month, which took up most of my time.

My Reflection
Overall, I’m happy with my performance this month. Completing all assignments in time, could have
managed my time better and worked on my project more.

81

Intended Changes
Better time management, even though I’m happy with what I got done this month. I feel with better
time management I could have spent more time on my project.

Reflective Journal (April)
• Student name: Aaron Reilly

• Programme: BSHCSD4 – Software Development Stream

• Month: April 2020

My Achievements
For the month of April my achievements were successfully submitting Cloud Computing CA’s.
Working on a ruby on rails project was interesting and new to me, never used it before. Deploying
the project on Heroku proved to be challenging. Other achievements were adding search and CRUD
functionalities to my project.

The main issues I faced.
The main issue faced for the month of April was creating my own gem for my ruby on rails cloud
computing CA. Unfortunately, I was unable to get the functionality working when it was deployed to
Heroku. I did present the functionality on my local environment.

My Reflection
Would have liked to spend more time on my project. Happy, with what I achieved given the time
spent on the project this month.

Intended Changes
Spend all my time on the project now that all the modules are completed.

12.3. Other materials used
12.3.1 Think Aloud
Think aloud is a very popular technique it’s one of the techniques we covered in this semester for
our usability design module.

Through this technique we can get a full understanding on the end users’ interaction with our web
application.

Task Name / Number Edit Company Information / TC_04
Task Goal Edit existing company details
Start & End Times 15:34 – 15:37

82

Expected / Ideal Behaviour The end user will successfully edit a company’s detail
Actual Behaviour Company details updated successfully
Notes / Comments End user took a bit of time to decide what they should update
Anything additional Should have suggested an update before executing the technique

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.3.1 Java
	1.3.2 JSON
	1.3.3 ClearDB MySQL
	1.3.4 JSP
	1.3.7 Heroku
	1.3.8 Eclipse
	1.3.9 GitHub

	1.4. Structure
	1.4.1 System
	1.4.2 Conclusion
	1.4.3 Further Development or Research
	1.4.4 References

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2. Requirement 1 <Add Company Details>
	2.1.1.3. Description & Priority
	2.1.1.4. Use Case
	2.1.1.5. Requirement 2 <Edit Company Details>
	2.1.1.6. Description & Priority
	2.1.1.7. Use Case
	2.1.1.8. Requirement 3 <Delete Company Details>
	2.1.1.9. Description & Priority
	2.1.1.10. Use Case
	2.1.1.11. Requirement 4 <Search Companies>
	2.1.1.12. Description & Priority
	2.1.1.13. Use Case
	2.1.1.14. Requirement 5 <User Registration>
	2.1.1.15. Description & Priority
	2.1.1.16. Use Case
	2.1.2. Data Requirements
	2.1.2.1 ClearDB MySQL
	2.1.2.2 JSON

	2.1.3. User Requirements
	2.1.4. Environmental Requirements
	2.1.4.1 Heroku
	2.1.4.2 ClearDB MySQL
	2.1.4.3 Eclipse
	2.1.4.4 Postman

	2.1.5. Usability Requirements
	2.1.5.1 Performance
	2.1.5.2 Accessibility

	2.2. Design & Architecture
	2.3. Implementation
	2.3.1 Login Controller
	2.3.2 Modify Company List Controller
	2.3.3 Register Account Controller
	2.3.4 Login JSP
	2.3.5 Modify Company List JSP
	2.3.6 Company Search JSP
	2.3.7 Company Form JSP
	2.3.8 Accounts Register
	2.3.9 Web XML
	2.3.10 Company Model Class
	2.3.11 Companay Service
	2.3.12 Company Resource
	2.3.13 Account Model
	2.3.15 Database Class
	2.3.16 Update Company DAO
	2.3.17 Account Details DAO
	2.3.18 Hibernate.cfg.xml

	2.4. Graphical User Interface (GUI)
	2.4.1 Login Page
	2.4.2 Register Company
	2.4.3 Add New Company
	2.4.4 Edit New Company
	2.4.4 Register New Administrator Account
	2.4.5 Search for Businesses
	2.4.6 About Page

	2.5. Testing
	2.5.1 Unit Tests
	2.5.2 Integration
	2.5.2.1 Get all Companies
	2.5.2.1 Add New Company
	2.5.2.1 Update Existing Company
	2.5.2.3 Delete Company by ID

	2.5.3 End User Testing

	2.6. Evaluation

	3.0 Conclusions
	4.0 Further Development or Research
	5.0 References
	6.0 Appendices
	6.1. Project Plan

	7.0 Objectives
	8.0 Background
	9.0 Technical Approach
	10.0 Project Plan
	11.0 Technical Details
	12.0 Evaluation
	12.1. Ethics Approval Application (only if required)
	12.2. Reflective Journals
	Reflective Journal (October)
	My Achievements
	The main issues I faced
	My Reflection
	Intended Changes

	Reflective Journal (November)
	My Achievements
	The main issues I faced
	My Reflection
	Intended Changes

	Reflective Journal (December)
	My Achievements
	The main issues I faced
	My Reflection
	Intended Changes

	Reflective Journal (January)
	My Achievements
	The main issues I faced.
	My Reflection
	Intended Changes

	Reflective Journal (February)
	My Achievements
	The main issues I faced.
	My Reflection
	Intended Changes

	Reflective Journal (March)
	My Achievements
	The main issues I faced.
	My Reflection
	Intended Changes

	Reflective Journal (April)
	My Achievements
	The main issues I faced.
	My Reflection
	Intended Changes

	12.3. Other materials used
	12.3.1 Think Aloud

