National
College o
[reland

National College of Ireland

BSHCE
Software Development
2020/2021
Aaron Reilly
x17124719
x17124719@student.ncirl.ie

CompaniesUnite

Technical Report

Contents

N CTol U AV U oY1 0 =1 4
1.0 Ta] oo [T o1 o] o HU PRSP 5
00 I - 7T <=4 o 11T o PRSP 5
L2, AIMIS it e e a e s a s e e s s a e e e s e ba e e e sne 6
0 TR I Tol o [T] [T4V 2SR 6
0 TR0 R = V= PP PPN 6
LL3L2 JSON Lttt ettt ettt sttt et e s e st h bt e s be e s be e e s abe e s bt e e be e e ate e s bt e e bt e e anbeesabeeenbeenares 7
1.3.3 ClEArDB MYSQL ...veiiuiiieiiieiiee ettt st e ettt site e site e sbeeesabeesabeesbaeenseeesabaesseeesaseesnsasssseesaseesanes 8
LB S et he bt b e e b e e b et eh et e h et ea bt et e e bt e be e bt e abeeabeesheesaaesaneea 8
13,7 HEIOKU . ettt ettt e st s e st e sme e e s r e e e be e e ameeesaneesneeesanes 8
G T8 3 ol 11 Y USSRt 9
L.3L9 GITHUD ettt et sane e 9
Y ¥ ot (U =TT PP PPN 10
O Y1y = o o PRSPPI 10
14,2 CONCIUSION .ttt ettt ettt ettt et e st e s bt e st e e sabeesabe e e beeeseeesabeesabeeesneesnseesareeeneeenns 10
1.4.3 Further Development 0r RESEAICHcuviiiiiiec ettt e e e e e e 11
14,4 REFEIENCES ittt ettt ettt st e et e e st e e s bt e e bt e e sabeesabeesbaeesbbeesnbeesabaeennseenns 11
2.0 R =] 1 PSP O OO P PP PPPPPPPPPPPPPPPRE 11
000 O = o [811 =T o 0= o 3PNt 11
2.1.1. FUNCLioNal REQUITEMENTSuviiiii ettt e e e e e e e rra e e e e e e e annreees 11
2.1.1.1. USE CaSE DIAGIam c.cueeeiiiiiiiiiiiiiiiiiiiiireetrerererererererereeerereeeeseesetesetesesetereseseresereseseeeseeeeeeeees 11
2.1.1.2. Requirement 1 <Add Company Details>.........cccoccuvieiiiiiiiicciiee e 12
2.1.1.3. DESCIIPION & PriOrity.ciiiiicciiieiiiee ettt s e e e e s e s sbbee e e e e e s ssarbraeeeeesesnnnes 12
2.1.1.4. USE LS ottt ettt st e e e s e s e e 12
2.1.1.5. Requirement 2 <Edit Company Details>cccccviiiiiiiiiiiiiieee e 14
2.1.1.6. DESCIIPION & Priority.ciiiiieeciiiiiieeee ittt ettt e e e s s s rarre e e e e s s e s ssbraaaeeesesnnas 14
2.1.1.7. USE CaSE ittt e 14
2.1.1.8. Requirement 3 <Delete Company Details>.......cccuvvvveeiiiciiiiiee e 16
2.1.1.9. DT o g o o] T/ o e To T o Y 2SR 16
T e O R U £ < 5=] < PP PP 16
2.1.1.11. Requirement 4 <Search COMPANIES>....ccccccieiieiiiiieeiiieeeeeciee e esiee e erree e e ssraee e e sraeeeesanes 18
2.1.1.12. DeSCription & Priority..iiiiiiecciieieeeieieiciiieeee e s ssiite e e e e s s s sirere e e e e s ssarbneeeeseessnnsaneeeasssnnns 18
0 0 0t . TR U Y= =] TSP PO PP 18

2.1.1.14. Requirement 5 <User Registration>.......cccccviviiiiiiiiiiiieveveveveve e eeeeneeees 20

2.1.1.15. DeSCription & Priority .. e ic et eee e e eeeeeeeeeeeerararerrrerererenernraees 20
20,006, USE a8 et e bttt at bbbt b tb ittt bt btbtbnbatnrnrnne 20
2.1.2. (DL I (=T [T £=T0 01T oL £ PPN 22
2.1.2. 1 ClEarDB IMYSQLeeiuiiiieiiieieete ettt ettt st st ettt ettt e sb e sb e sbe e sme e smeesae e eaeeeaneene e 22
2.0.2.2 JSON ettt et b bbbt bt sh et e ae e s bttt e bt e b e be e beenheenheesanesaneeaee 24
2.1.3. 0L =Y Y= To [0 1 =T 0 =]) RS 24
2.1.4. Environmental REQUINEMENTSccuviiiiiiiie ettt e ree e e sree e s e e e e neeas 25
204 T HEIOKU ..ottt ettt sttt sttt b e b e b e b e sbeesae e sane s ane e 25
2.1.4.2 ClearDB IMYSQLcceiiiiuiieeiiiieeeesitee sttt e ettt e sttt e e st e e s sate e e s sbteeessabeeeesanbaeessntaeessbeeeesans 26
N 0 B ol [T 1Y TSP 26
B I 1y o 1 = o PP 26
2.1.5. Usability REQUITEMENTS .. .ciiiiiiiie ittt e s e e e s e e e sate e e s sabeeeeennneeas 26
2.1.5. 1 PIfOIMANCE .eouviiiieiiieiieeie ettt ettt ettt st ettt ettt e bt e b e bt e s meesbeesmeesaeesanesaneeane 26
N I Y00 A Yol of Y1y o1 1 4 U PS 27
2.2, DeSIigN & ArCNITECIUIE ...uiiiiiee et e e e et ree e e e e e e e e aare e e e e e e s ssnstbaeeeeaeeennnns 27
0. T [0 o1 1= o =T o1 = T o I PSR 28
0 701 B o -4 W o o d o [T PSPPSR 28
2.3.2 Modify Company List CONTIOIENceoiiiieieeiiee ettt e e e 29
2.3.3 Register ACCOUNT CONTIOIIEIcceeeiiiieeee e e e e e e e e e s e s snrraee e e e s 31
2.3 A LOGIN ISP ettt sttt et e b e bt e be e sbe e she e satesate e 32
2.3.5 Modify COMPANY LISt ISP ..ottt ettt e e e s svte e e s sba e e e satae e s sneeeeesbaeeeeans 33
2.3.6 COMPANY SEAICH ISP ...t e e et e e e et e e seata e e e sataeeeebeeeeeenbaeaeeans 34
2.3.7 COMPANY FOIM ISP ettt ettt e bt be e et e bebannaneee 35
2.3.8 ACCOUNTS REGIS O .. ittt babebabe e besesebebesesaseseeennnnnes 37
2.3.9 WD XIMIL ..ttt b e bt s h et sttt ettt e b e bt e be e nhe e sheesatesane e 38
2.3.10 CoMPANY MOAEI ClaSS....eiiiiiiiiiiiiiieeeiiiee ettt e e sttt e e sstee e e et e e e s sbteeessbaeeessntaeessseeeeesseeeenns 39
2.3.0] COMPANAY SOIVIC cuuuieieieeeeeeeeeeee ettt bttt bttt btbebsbsbababebebnnannnes 41
2.3.12 COMPANY RESOUICE ...uiiiieiieeeieiece st aa e bababasabesessbesesasesennnnnnnes 42
2.3.13 ACCOUNT MOAEN ...ttt ettt e sae e sab e s e s nee e saneesaneeeas 43
2.3.15 Database Classcccueerueersieeeiiieiieesitee sttt et sb e st e s be e e sabe e sare e s be e e saeeesabeeeareeeaneeesnreesneeeas 46
2.3.16 Update ComMPAany DADccccciiieiiiiieecciiee e eciieee e sttt eesstee e e seataeessestaeessseeeessnsaeeesnnsaeesssssesansns 47
2.3.17 AccoUNt DTS DAO ...c..eiiiieieeieeteetee ettt sttt e nne e 49
2.3.18 HIbernate.Cfg.XmMl...coo ettt e e et e e e et e e e eata e e e sbteeeeeabaeaeeans 49
2.4. Graphical User INterface (GUI)......coooouiiei ittt e et et a e e 50

Gt R oY= T - == RS 50

S =T =413 =T o e 110 o Y- [o1V 50
2.4.3 Add NEW COMPANY wrtiiiiitiiieiiiiieeeiieeeeeitieeeestteeessteeeesasteeeesssaeeesaseeessasseeesssssasessnssesessnseesesnns 51
2.4.4 EAit NEW COMPANY ..iiiiiiiiiiiiiiiiieeeiieeeeeiteeeeetreeesatreeesastaeesessteeesasssessassasesssstasessssssessssseesesnns 51
2.4.4 Register New Administrator ACCOUNTceiiiciiiiiiiiiieeeccitee e ecttee e e e sre e e e sere e e ssaraeeeenaeeeeas 52
2.4.5 SEAIrCh fOr BUSINESSES. ...cutiiiieieete ettt ettt ettt ettt et e b e bt e s bt e sae e smee st e eaeesaneene e e 53
B Gl A oo TN | =T - SRR 53

0 T <11 1o = OSSOSO PP PP P PP PPPPPPPPPPPPPPPPPRE 54
2.5 1 UNIETESTS tiiiiiiiiiiiiic ittt e s saa s e e 54

B0 B0 1 €= = - 1 [0 o PPN 58
0 T B =1 o B0 Ry i 1YY T o = RS PRP 62

2.6, EVAIUATION et e r e ae e e b e e ree s 68
3.0 CONCIUSIONS <.ttt ettt ettt et e st e e bt e sa b e e s bt e e at e e sabeesabeesabbeesabeesabeeeseeesaseesseeenaseenns 69
4.0 Further Development or RESEAICHuviii i e e e e 70
5.0 REFEIEINCES ...ttt et b e s bt e s bt e s ae e s ae e e ae e et e et e e be e beenbe e bt e nbeeaneas 70
6.0 PN o] 01T o 1o [T o] TSR 71
3 B o] o 1=t =1 - o PSR 71
7.0 (0] o T =Tot 417 TSR 73
8.0 2T T =04 o U 1o Vo EOU SR 73
9.0 Lol YT or= | I Y o] o o =Yoo H PSRRI 73
OO o o Y=ot o - o TSR 74
11.0 TeChNiCal DELAIIS ...eeeiuiieeiiieiee ettt ettt st s e e st e e ba e e sab e e sbeeesnbeesaneas 76
12,0 EVAIUGLION ceeeiiiiiieee e st b e e e nnees 76
12.1. Ethics Approval Application (only if required)cccceeecieeeeiciee e 77
12.2. ReflECtiVE JOUINAIS ...t st 77
Reflective JOUrNal (OCTODEI) ...cc.uiiie ettt ettt e e et e e e are e e e e ate e e e areeas 77
Reflective JOUrnal (NOVEMDET)ccuviiiiie ettt e e ee s ae e st e e e taeesnteesareeenes 77
Reflective JOUrNal (DECEMDEI).....cccuviiiiei ettt eeecre e e e e e esbbr e e e e e e eeesaareeeeeeeeennnsrnns 78
Reflective JOUINAl (JANUAIY) ..ueii ettt et e et e e et e e e e eaat e e e e abaeeeenraeeeennees 79
Reflective JOUrNal (FEDIUAIY) ...ttt et e et e e e ab e e e e abae e e enrs 79
Reflective JOUINAl (IMArCh)ouee ettt et e et e e et e e e bae e e eabaee e ennrs 80
Reflective JOUNAl (APFil) c..ee ettt ettt be e e ate e s be e sbae e ateesbaeeseeenens 81
12.3. Other Materials USEcc.eiiiiriiiieiieee ettt 81
12.3. 2 THINK AOUT ..t e e s e saneeenns 81

Executive Summary

Throughout the course of the pandemic, thousands of companies have been forced to shut
down as they don’t provide a particular service. Hospitality sector for example have been
impact the most financially.

There are many reasons why businesses are forced to shut down throughout the pandemic.
Some examples are:

e They're sector of business is not considered essential.
e They’re unable to provide social distancing.

e Depending on the service they provide they could be considered not to open for a
long period of time.

Given the restrictions, we have seen some businesses adapt under these circumstances.

Businesses delivering they’re services to customer homes, whereas previously that wasn’t
the case. We’ve also seen a huge increase in food trucks and café trucks, in some cases
these maybe some new ventures for businesses but also brands are following in this
direction for their business to survive.

This project is a platform to help those looking to adapt under these new circumstances.
Providing customers with different methods of retrieving data. For example, customers can
use a web application or retrieve data through json format if they prefer.

Customers of this project are businesses who don’t provide the all the necessary services
required to stay open. Allowing them to find businesses/people in their area willing to work
together.

Examples would be.

e Food trucks or Café trucks looking for open area where they can park and provide a
service.

e Pubs looking for catering service who can set up shop quickly on their premises.

e Gastropubs and restaurants looking for delivery service to deliver their products to
customer homes.

Given the reasons mentioned above, | believe this project is necessary, as it gives businesses
a platform for surviving lockdowns.

One of the key benefits of this project is to bring businesses closer together. When the
pandemic is over, | think many businesses will change their approach and services.

1.0 Introduction

1.1. Background
Reason behind CompaniesUnite is the fact businesses have been forced to shut down
throughout the pandemic.

Businesses have been impacted in different ways some not as lucky as others. Just about all
businesses in the hospitality sector were forced to close their doors for a considerable
amount of time. Many of those businesses will never open their doors again, due to not
being able to withstand the money constraint over the past year.

Other businesses had the ability to serve outside and keep social distancing. This allowed
some businesses to open their doors at some stage in the last year. We have seen cases
where if a business did not serve food they had to completely shut down.

Businesses found it difficult to respond and adapt in very little time. Leaving them with no
option but to close. Over time we seen some business adapt to keep their business afloat.

CompaniesUnite is a platform which allows end users to see what services other businesses
are looking to provide in order to survive the pandemic.

Services are provided in two ways.
e Web application
e APl Service

As mentioned, end users will have the ability to use certain functionality. There are two
types of users, Administrator and Normal User.

Administration Functionality
e Login to the platform to gain additional privileges.
e Ability to interact with the system through API
e Register new administrator accounts.
e Add new businesses to the database which will display on the platform.
e Remove businesses who wish not to be on the platform.

e Edit existing business, a business may change location or would like to update their
details to make their business more intriguing to others.

e Logout

Normal User Functionality

e Search for business by typing into a search box, search is conducted on two fields
Postcode and Sector. Postcode allows end users to see businesses in areas they’re
interested in, and sector if they know what services they need.

e About page provides a description of what we do also providing the end user with
the option to send information about the business they would like to be added to
the platform.

e Ability to view the full list of businesses.

1.2. Aims
Purpose of this project is to build a platform that provides businesses with the opportunity
to get their information added to our system. Allowing end users to view their interests
along with the skills or products they can provide to others. Helping businesses to adapt and
survive throughout the pandemic. Creating new relationships outside of their organisation.

Platform provides administrators with an API system, allowing them to interact with the
application or by API requests.

Customer data will be stored on the cloud platform Heroku using ClearDB MySQL. Ensuring
data is secure, along with availability provided by Heroku.

End users without the administrator privileges can only search and view businesses
interested working with others.

It’s not best practice to allow any user to interact with customer data. Ensuring security on
all business data as only admin users have the privilege to add/edit/remove data.

The platform provides customers with data on businesses with the same interest, allowing
them to communicate and work together. Given a business feels that their interests align
contact details is available on the platform.

1.3. Technology
Description on the technologies used for this project, listing some of the implementations
made with them.

1.3.1 Java
Java is the core programming language used for this project. Java classes developed in
this language include,

e Controller classes also known as Servlets.

e DAO Classes — Data Access Object used to connect to the database and create
the SQL statements to interact with the database.

e Model Classes — Classes are used to create object for when we look to interact
with the database. Annotations used here were @Entity, @Table, @Id and
@Column, allowing to interact with the correct schema, table, and fields on the
database.

e Resources — Developed to create the path when using API option. Setting the
media type to JSON. Here we set the HTTP methods type for each request GET,
POST, PUT and DELETE. Importing service class to use business logic available
there.

e Services — Provides functionality to the resources class. It’s the bridge to connect
to the DAO class allowing us to interact with the database. Providing us with the
ability to add, update or delete.

e Database connection class which is imported and used by multiple DAO classes.
It’s the class that connects to the hosted database on Heroku. The methods here
are used to establish the connection.

e Unit Tests — Junit tests were developed in Java and executed on Eclipse IDE.
Using assertEquals to ensure we are returning the values expected.

As the platform provides an API system, allowing request to manipulate the data, it was
decided to go with JAX-RS as its reliable.

JAX-RS gives support to web-services which isused for this project. It allows us to use
annotations and interfaces to make to easier and more robust in building the REST APIs.
Cosgrave, N., 2020. RESTful Web Services — Part Il JAX-RS in a nutshell). 7opic 7,
pp.21,22.2324,2526.

1.3.2 JSON
The platform allows administrators to transfer and manipulate the customer data using
JSON (JavaScript Object Notation) format.

JSON seems to be the go-to for most IT companies these days as it’s easy to understand
and read.

JSON is considered to be a lightweight format, which is why | decided to use it for the
transferring of data for this project.

1.3.3 ClearDB MySQL
ClearDB MySQL through the Heroku platform provides the services of MySQL and more.
Our application can allow administrators to read, write and update and delete from the
MySQL database.

Providing the platform as a database as a service, ensuring the data is secure. Also
providing us with the comfortability of knowing we don’t have to deal with such things
as database servers, database failures and advance storage.

Additional benefits of using ClearDB MySQL are the free bandwidth along with the 24/7
support they provide. The cost of storing my data for this project is also very cheap
which is a nice benefit. (ClearDB Developer Center - Welcome, 2021)

1.3.4 JSP
JSP (Java Server Pages) are used within this project as it provides us with the ability for
server-side programming. As JSP can use of Java API's which we take advantage of to
connect to the database and provide search capabilities. Allowing end users to search
for companies through on the UL.

Our JSP files are built on top of our Servlets, as the two are in communication. Most of
the business logic is implemented in our Servlet classes, following best practices when it
comes to coding. (Tyson, 2019)

JSTL (Java Server Pages Standard Tag Library) is the JSP tag which allows the platform to
gain the functionality it provides. We used Core Tags and SQL Tags which allowed us to

connect to the hosted database. Along with other functionalities such as displaying and
quiring the data from the database. (JSTL Tutorial, JSTL Tags Example - JournalDev, 2013)

HTML and Bootstrap are all used throughout the JSP files.

1.3.7 Heroku
Heroku are the cloud providers chosen to deploy the platform on. They provide a quick
and efficient service when looking to deploy a web application and a MySQL database.

Using ClearDB MySQL for the database, proved to be the right decision for me to make.

Heroku is extremely easy to use providing clear navigation to information on the
instances such as Resources, Deploy, Metrics, Activity, Access and Settings.

Platform details
e App Name: testprojectunite
e Region: Europe

e Stack: Heroku-20

e Framework: Heroku-maven-plugin

e Slugsize: 147.2 MiB of 500 MiB

O Personal ¢ > testprojectunite

Overview Resources Deploy Metrics Activity Access Settings

Installed add-ons @Eludfpthiy Configure Add-ons &

ClearDB MySQL [Ignite
macs Cleardb-rectangular-78676

i

Dyno formation &Rt Configure Dynos (@

his app is using free dynos

web java $JAVA_OPTS -jar webapp-runner.jar $WEBAPP_RUNNER_OPTS.. ON
Collaborator activity Manage Access (#
®17124719@student.ncirl.ie ¢) 16 deploys

1.3.8 Eclipse
Eclipse IDE used to develop the maven web application, where we would import all the
necessary dependencies through our .pom file. They provide useful integration with
GitHub and Apache Tomcat. Tomcat was very useful throughout development phase,
providing us with a HTTP web server allowing us to review our latest changes
immediately on the browser.

1.3.9 GitHub
GitHub became very important throughout this project, a couple of times I'd have to pull
the previous project again. It is a version control platform which allows us to store our

project code. Luckily after pushing regular commits to the remote project repository, there
was always a backup version available.

GitHub is great for keeping track of the updates made for each commit, which makes it easy
to find the changes made. If | got some major issues after a couple of updates on my local
project. | found comparing my local copy against the working remote branch very useful.
Saved me a lot of time if | wanted to get back to when the program was working.

1.4.Structure

1.4.1 System

In the System section of this report, we cover the project requirements for both functional
and non-functional. In detail we provide each of the functional requirements by using use
case diagrams, scope, and description.

Additional areas covered in this section are data requirements where we discuss how we
integrate ClearDB MySQL into our system.

Other topics discussed are user requirement, environmental requirements, and usability
requirements.

Design and Architecture discusses the overall structure of the system and how everything is
connected and importance of each instance.

Implementation we list important java classes and JSP files, we provide a clear description
followed by a screenshot under the description.

Graphical User Interface similar layout to the implementation section, we provide a
description of each web page and explain why it’s there and how its needed to provide the
full application.

Testing we cover different types of testing, each of which are very important. Three types of
testing covered are Unit, Integration and End User Tests. We must prove what we’re
delivering is valid and tested for end users.

We discuss our evaluation of the project, covering different topics such as tests ran, Think
Aloud techniques taken by end users.

1.4.2 Conclusion

We discuss in detail the advantages and disadvantages of the project. Issues faced with JSP
not importing CSS or JavaScript as expected. Also covering some of the strengths and
limitations of the project itself.

10

1.4.3 Further Development or Research

This section we discuss possible further developments that can be implemented in the
future. Discussing the problems faced during the integration of JavaScript and possible
newer frameworks such as Angular and REACT.

1.4.4 References
We list all necessary references used for this document, along with research used for the
implementation of the application itself.

2.0 System

2.1. Requirements

2.1.1. Functional Requirements
This section lists the functional requirements in ranked order.

2.1.1.1. Use Case Diagram
The use case diagram below details an overview of the functional requirements.

CompaniesUnite

“zincludes== ify i
=2 Verify Log in

Return Login
Errar

Create account

Admin

Add/Edit'Remove
Company Details

Customer

Search for companies

11

Figure 1: CompaniesUnite Use Case Diagram

2.1.1.2. Requirement 1 <Add Company Details>

2.1.1.3. Description & Priority

This use case describes how administrators can access the system and add
important company data. Which in turn will be displayed to the public. This use
case priority was set to critical as it covers the core functionality of the
application.

2.1.1.4. Use Case
ID

uco2
Scope

The scope of this use case is to add company information which later can be
retrieved by end users.

Description

This use case allows the administrator to add a company’s details to the
database.

Use Case Diagram

12

Add Company Details

Click Add New
Company

Admin

Enter Company
Detailz

Figure 2: Add Company Use Case

Flow Description

Precondition

The administrator must be logged into the application using their registered
account.

Activation

This use case starts when a user begins to write information in the form based on
their company to the database.

Main flow
1. The user begins to fill out the form with company information (See E1)
2. The user presses the save button (See A1)
3. The system writes the information for that company to the database.
4. The user is brought to list of companies including the newly added

5.

company.
The system responds with company information.

Alternate flow

A1: <User fails to fill in mandatory fields>

13

1. The user unsuccessfully entered data to all mandatory fields.

2. The system will prompt a message telling the user which fields need to be
filled in.

3. The user will then add to the mandatory fields.

4. The use case continues at position 2 of the main flow.

Exceptional flow

E1: <Server responds with failure>
5. The system will display a message if the system fails to write to the
database.
6. The user will refresh the system.
7. The use case continues at position 1 of the main flow.

Termination
The system returns the user to the login page.
Post condition

The system stores the data sent to the server on the database.

2.1.1.5. Requirement 2 <Edit Company Details>

2.1.1.6. Description & Priority

This use case describes how administrators can edit company details. This can
only happen by the request of that company. Companies might decide they
haven’t added enough details to be considered and try make themselves look
more valuable.

This use case covers important functionality by providing the customer with the
ability to change their detail at their wish. Priority of this use case is high.

2.1.1.7. Use Case
ID

uco3
Scope

The scope of this use case is to edit the customer data which later can be
retrieved by other users.

Description
This use case allows the administrators to edit their details to the database.

Use Case Diagram

14

Edit Company Details

Admin

Update Company
Dietails

Figure 3: Edit Company Use Case

Flow Description

Precondition

The user must be logged into the application using their registered account.
Activation

This use case starts when a user clicks the edit option on the main administrator
page.

Main flow
6. The user presses the edit button (See E1)
7. The user begins to fill out the form with company information (See A1)
8. The system writes the information for that company to the database.
9. The administrator is brought to list of companies including the newly

updated company.
10. The system responds with company information.
Alternate flow

A1: <User fails to fill in mandatory fields>
8. The user unsuccessfully entered data to all mandatory fields.
9. The system will prompt a message telling the user which fields need to be
filled in.
10. The user will then update the mandatory fields.

15

11. The use case continues at position 7 of the main flow.

Exceptional flow

E1: <Server responds with failure>
12. The system will display a message if the system fails to display the form.
13. The user will refresh the system.
14. The use case continues at position 6 of the main flow.

Termination
The system returns the user to the login page.
Post condition

The system stores the updated data sent to the server on the database

2.1.1.8. Requirement 3 <Delete Company Details>

2.1.1.9. Description & Priority

This use case describes how administrators can delete company details. If in the
case a company chooses to no longer stay on the platform. A request will be sent
to the administrator to remove them from the platform. Several reasons why a
company may wish to be removed.

For example
e Found a match and successfully got what they needed from the platform.

e No longer have use for the platform, they may have to shut their doors
for good.

e Decide they don’t want their information out in the pubilic.

This use case is extremely important as it covers concerns of the customer
and core functionality making this highly important. Priority of this use case is
high.

2.1.1.10. Use Case
ID

uco4
Scope

The scope of this use case is to delete customer information which is no longer
needed.

Description

16

This use case allows the administrator to delete a company’s details when
requested by that company from the database.

Use Case Diagram

Delete Company
Cretails

Click Delete

Admin

Figure 4: Remove Company details Use Case

Flow Description

Precondition

The user must be logged into the application using their registered account.
Activation

This use case starts when a company wishes to have their details remove from
the platform.

Main flow

11. The administrator Delete when successfully logged in.
12. The system removes the information for that company from the database
(See E1)
13. The administrator is brought to list of companies (See A1)
14. The system responds with that company no longer available on the list of
companies.
Alternate flow

A1 : <User fails to delete details>
1. The user unsuccessfully deletes the company data.
2. The user will retry the delete option.
3. The use case continues at position 12 of the main flow.

Exceptional flow

17

E1 : <System Fails to Remove Details>
4. The system will display a message telling the user there has been an
error.
5. The user will check to see if their data is no longer available by querying.
6. The use case continues at position 11 of the main flow.

Termination

The system presents the administrator with a warning if they wish to remove the
data.

Post condition

The system removes data from the database.

2.1.1.11. Requirement 4 <Search Companies>

2.1.1.12. Description & Priority

This use case explains how the end user can query the database and search for
companies. There are two fields on which the end user can search from. Option
to search by postcode if distance causes and issue for them. Also, they can search
by sector, allowing them to see all businesses within the sector they’re interested
in. The priority of this ticket is high.

2.1.1.13. Use Case
ID

uco5
Scope

The scope of this use case is to provide the ability to search for businesses within
a postcode they enter or a sector they wish to enter.

Description

This use case describes how users can search for businesses by postcode or
sector.

Use Case Diagram

18

Search Company
Details

Click Company List

Enter
FPostocode/Sector

Jzer

Figure 5: Search for Companies through postcode or sector Use Case

Flow Description
Precondition

User is not required to be logged into the application.

Activation

This use case starts when a user types a postcode or sector into the search field.

Main flow

15. The user enters the postcode or sector they’re interested in (See Al)

16. The user presses Enter to search (See E1)

17. The system identifies the postcode or sector the user entered.

18. The system returns the list businesses based on the postcode or sector
entered.

19. The platform returns all businesses within that postcode or sector to the
user.

Alternate flow

A1 : <No companies in that postcode>
7. The system responds with no businesses in the list (blank page)
8. The use case continues at position 15 of the main flow.

Exceptional flow
19

E1 : <Server Error>
9. The system responds with a message.
10. The user will be required to enter a postcode or sector.
11. The use case continues at position 17 of the main flow.

Termination
The system presents with full list of businesses.
Post condition

The system provides the details of the business within the postcode or sector.

2.1.1.14. Requirement 5 <User Registration>

2.1.1.15. Description & Priority
This use case explains how administrators can create an account through
registration.

On login the username and password credentials will be compared to the ones
we have stored on the database. Given a successful match the administrator will
be granted access to the application. This use case is high priority as the
administrator needs an account to login to use the application.

2.1.1.16. Use Case
ID

ucol
Scope

The scope of this use case is to allow administrators to create an account and
gain access to the system.

Description

This use case describes how the administrators can register and sign into the
system.

Use Case Diagram

20

O/

Register account and Login

Create Account

Enter username and

T

Administrator

Y

password

Login to the system

Figure 6: Register Account Use Case

Flow Description

Precondition

The administrator must have access to the internet to create an account.

Activation

This use case starts when a user clicks registration option.

Main flow

20.
21.
22.
23.
24.
25.

26.

The system will provide the administrator with the option to create an
account (See E1)

The administrator will be required to enter in the user credentials for
their account.

The system will add and store new user credentials to the database.
The system will prompt the user to login (See A1)

The user will enter their new credentials.

The system will confirm if they are valid credentials or not by comparing
what is stored in the database.

The system will grant the user access and redirect them to a form they
need to fill in.

Alternate flow

21

A1: <Wrong user credentials>
12. The user has entered the incorrect credentials.
13. The system will continue to show to login page.
14. The use case continues at position 24 of the main flow.

Exceptional flow

E1: <User already stored in the database>
15. The user tries to register with credentials already stored in the database.
16. The system returns a message stating the user already exists.
17. The use case continues at position 21 of the main flow.

Termination
The system presents the administrator with the login page.
Post condition

The system stores new credentials in the database.

2.1.2. Data Requirements

2.1.2.1 ClearDB MySQL
All business and account details are stored remotely on ClearDB MySQL on Heroku.

Administrators will have the ability to Add, Update and Delete business information along
with Account Details. All business data will be visible on the platform Ul, where end users
can search for the business location or their sector depending on what they choose.

Screenshot of the hosted database on Heroku below.

‘Community Edition Dev & Production Edition Security How to Connect

& heroku_298fc475a99a62d Other EU-West Online ignite Sat May 08 2021 12:35:56 UTC N/A

Available below is a screenshot is the MySQL Heroku database. As you can see the schema
name matches that of the hosted database shown in the previous screenshot.

Live company data is displayed when running the highlighted SQL query.

22

@A ProjecHeroku x

‘ile Edit View Query Database Server Tools
S8l e S8EEEE R &
Navigator - s
SCHEMAS o
2, [Fiter objects |
¥ ! heroku_298fca75a99a62d

v B Tables

» B account_details
» B company_details
B Views
B stored Procedures
ED Functions

Seripting Help

PO .. RO

EH FFAQ B G O umoi0mowm

1e

<

YL

| Result Grid | FH 4% Fiter Rows: |

HE& 4 Eb i | seor/import: B § | wrep ol Content: T8

company_details 2 x

companyld companyName address postcode sector details
b |1 DeliveryService2 santry di1 Delivery Interested in providing delivery service for othe...
5 MobileCatering Dublin dity centre d4 Catering Mobile catering service, looking to provide cater...
6 Company8 Crumiin Dublin D2 Delivery Looking to provide delivery service for companies
8 Tom's Wings Food Truck Dublin City Centre d2 Hospitality Food Truck looking for open space, in Dublin Git...
3 Cafe Truck glasnevin pi1 Hospitality ~Need to rent space, in a busy area
0 GASTROFAKE London SW100AD Hospitality ~Need to link up with a delivery service to deliver...
11 DeliverServiceFake London SW110AD Delivery Looking to provide a delivery service in the Lon...
12 Best Cafe On Wheels Howth D13 Hospitality ~ Need space with high footfall to rent
13 Greek Food Truck Grafton Street D2 Hospitality Looking to rent space in the dity centre
14 Bakery Truck Phisboro D1 Hospitality Need to rent space from 8am - 2pm
15 EasyDrinks Main Street D1 Hospitality ~ Looking to team with a delivery service who can...
. [}]

Output
Administration Schemas
7 Action Output S
IR ORMBHON s e s
= Time Action Message
account_details company_details account_details account_details - Table account_details - Table
o

Apply

men

-—

Table Name: [Fompany_detais | schema: heroku_298fca7
- i T =
Charset/Collation: |Utf8 | |utfs_bin | engne: InnoDB
Comments:
Column Name Datatype PK NN UQ B UN ZF Al G Default/Expression
! companyld INT(11) MM 00040
2 companyName VARCHAR(45) O 0O00000400d
> address VARCHAR(45) O 000000
> postcode VARCHAR(45) O 000000
» sector VARCHAR(45) O 000000
o details VARCHAR(200) O 000000
OO0O0000oao
Column Name: Data Type:

Screenshot below shows the admin table in our hosted database you can see the

relationship between the two tables with the companyld.

23

A ProjecHercku x
File Edit View Query Datsbsse Server Tools Scripting Help

S8 o S8EEE @ &
Navigator company_details account_details SQLA

ScHEMAS * mBFFAOB Lmtto 1000rows ~ | g | ¥ @ (1] (3]
Q [Filter objects] 1 e SELECT * FROM heroku_298fca75a99a62d.account_details; A
vE ;‘mkn_lﬂfmﬁiﬁiﬂd 2 ® INSERT INTO heroku_298fc475a99a62d.account_details (companyId, first_name, last_name, username, password, phone, email) VALUES (disi
v B Tables 1
» B account_details . m
»] company_detais cul
?'F Views ‘
31 Stored Procedures
B Functions > o
Result Grid | €% Fiter Rovs: | Edt @4 b Ei | exportfimport: B {8 | Wrep Col Content: TR a
accountid companyld first name last_name username password phone emai =
» 1 1 John Smith Johnsmith johnsmith123 0975644 johnsmith@fakeemail.com Grd
2 1 Sarzh Foley sfoley sfoley123 5976755 sfoley@fakeemail.com
3 s Bob Sndar bobsin bobsin123 0686875 bobsin@fakeemai.com
4 5 Stephen Johnson stepJohn Idsikfaa 0823905802 stepJohn@fakeemai.com P
5 6 Rachel Smith raefakeaccount sdagfas 4323432 raefakeaccount @fakeemail Editor
6 6 carl Paul carPaul rPaul 32466243 carPaul@fakeemai.com
7 6 Thomas Corcoran thomasCor thomasCor 4678474 carPaul@fakeemai.com
. o oy
Trpes
account_details 1 account_details 6 x Apsly Rever Conte
Output
Administration Schemas
7l Action Outout -
= Table Name: \bccwnt,detmls Schema: heroku_298fc475a299a62d
e
6 Charset/Collation: utfd ~ | |utf8_bin ~| Engine: InnoDB v
Comments:
Column Name Datatype PK NN UQ B UN ZF Al G Default/Expression
accountld INT(11) % O Ood O
& companyld INT(11) O 00000040
» first_name VARCHAR(45) O 0O00000O4d
> last_name VARCHAR(45) O 000000
» username VARCHAR(45) O 000000
> password VARCHAR(45) O 000000
» phone VARCHAR(45) O 000000
» email VARCHAR(45) O 000000

2.1.2.2 JSON

JSON is the format we will use for transferring our data. Administrators can also use
Postman which will return business data in JSON format if they’re just interested in the data
and not the Ul.

2.1.3. User Requirements
The purpose of CompaniesUnite application is to provide businesses and others looking to
venture into new professional areas with options to adapt to the current problems they’re
facing due to the pandemic.

Providing end users with a list of companies who share the same interests and are willing to
work with others.

In this case the only major requirement is for the end user to have access to the internet,
along with some interest in growing relationships outside of their organisation.

24

The end user can search the list by entering a postcode or by sector.

If sending their details to the administrators, they are required to be patient in the case they
wish to have their details removed.

Users will need to be ok with having their data stored in ClearDB. Updates to the database
should be visible on the application immediately.

The application will allow administrators to Add, Update and Delete businesses information
on the hosted database at their request.

Each user will have the ability to query for companies in a particular area or their sector.

2.1.4. Environmental Requirements
2.1.4.1 Heroku
This project will be hosted in the cloud using Heroku. By hosting this project in the cloud, we
can ensure availability, portability, security and more. Below are the deployments made for
this project to Heroku.

Latest activity All Activity @
O ¥17124719@student.ncirl.ie: Deployed @.8.1-SHAPSHOT
f Today at 10:38 AM - v21
) ¥17124719@student.ncirl.ie: Build succeeded
-] Today at 10:37 AM - View build log
O ¥17124719@student.ncirl.ie: Deployed @.8.1-SHAPSHOT
f May 10 at 7:58 AM - v20

) *x17124719@student.ncirl.ie: Build succeeded
-] May 10 at 7:57 AM - View build log

@ ¥17124719@student.ncirl.ie: Deployed @.8.1-SHAPSHOT

May 10 at 7:50 AM - v19

) *x17124719@student.ncirl.ie: Build succeeded
-] May 10 at 7:50 AM - View build log

O ¥17124719@student.ncirl.ie: Deployed @.8.1-SHAPSHOT
f May 8 at 9:01 PM -v18

) *x17124719@student.ncirl.ie: Build succeeded
-] May 8 at 9:01 PM - View build log

@ ¥17124719@student.ncirl.ie: Deployed @.8.1-SHAPSHOT

May 8 at 8:35 PM - v17

25

2.1.4.2 ClearDB MySQL

ClearDB should be always running online if we want to display the data to the end user. If
we have a case where Heroku fails to provide data online, it’s a Critical issue which should
be addressed immediately.

Screenshot below show some details of the ClearDB instance used for this project.
Dev & Production Edition | Security | How to Connect

@ heroku_298fcd75a89a62d Other EL-West Online ignite Sat May 08 2021 12:35:56 UTC NIA

2.1.4.3 Eclipse

Eclipse IDE proved to very useful IDE the integration with Apache and Github saved some
time as | have experience with this IDE in the past. Java POJO Classes, Database Connection
Class, Servlets, and JSP files were all implemented using this IDE.

2.1.4.4 Postman

Postman used for our integration testing, ensuring the integration over multiple java classes
while the data is being used as agreed. Confirming the major functionalities work by
sending HTTP methods such as GET, POST, PUT and DELETE.

Administrators can also use this to add, update and delete company data quicker.

2.1.5. Usability Requirements

2.1.5.1 Performance
For this project performance is guaranteed, using the Dyno Type seen in the screenshot
below. We are given 512 MB of Memory (RAM), CPU Share 1x, Compute of 1x-4x.

It’s enough at this moment for the purpose of this project.

If the decision is made to continue this project and add new features, Dyno type can be
easily upgraded. For now, the Dyno type in use meets our usability requirements.

We have set our instance up in the EU, which provides less latency given our location.

26

Q) Personal ¢ > testprojectunite

Overview Resources Deploy Metrics Activity Access Settin

Free Dynos Change Dyno Type

2.1.5.2 Accessibility

Having hosted the application in Heroku cloud, we can ensure the hardware required to run
the software is available when needed. Given that this is a project, we’re using the free
dynos option which can sleep. In the case of where there is no web traffic for 30 minutes
the sleep will be set to yes. It provides the accessibility required at this time.

2.2.Design & Architecture

Separation of Concerns (SoC) was decided as a design pattern for Java project. Learning
this design pattern in the Web Services and APl Development module | was keen to use
the material | was learning in the college.

Resource packages containing the classes used for building the paths using the API
option, also importing the service class implementation. Allowing for the interaction
with the database using different HTTP methods and JSON requests.

Our JSP files were used for server-side programming, getting the full use of Java API’s.
JSP files are built on top of our servlets, where a lot of the business logic is located.

Throughout the development of this project our data was stored on MySQL. While
looking to deploy the project on the cloud, realising all the data will need to be
migrated.

Heroku platform provides ClearDB MySQL, while also using Heroku in our Cloud
Computing module it was decided to go with Heroku over AWS. All functionality is
deployed successfully which is brilliant.

27

Overview of the hardware architecture

—>

HTTF Reguest

<5

Feszponse

Figure 6: CompaniesUnite hardware architecture diagram

2.3. Implementation
2.3.1 Login Controller

Remote Server N
Request
Web <:|
Databhase
Server MySQL
Response
i J

Login Servlet class takes in the username and password entered through the Login.jsp.
Checking if the username and password are valid by connecting to the Account Details DAO

class.

We validate by creating an object of account details DAO using the validate method
available in this class. We take in the username and password and pass the account object
into the validate method. If that username and password are stored in the database as seen

in the if statement.

If the username and password are valid the Administrator will be brought to the Modify
Company List Controller. Else if the username and password doesn’t exist in the database

and are not valid, they will remain at the login page.

28

14 @debServlet("”/Login"™)
15 public class LoginController extends HttpServlet {
£ private static final long serialVersionUID = 1L;
private AccountDetailsDAD accountDetailsDAO = new AccountDetailsDAO();

protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
Auto-generated method stub
response.getWriter().append(”Served at: ").append(request.getContextPath());
}

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
String username = request.getParameter("username");
String password = request.getParameter("password");

Account account = new Account();
account.setUsername (username);
account.setPassword(password);

try {
if (accountDetailsDAD.validate(account)) {
response. sendRedirect("ModifyCompanylist™);
} else {
response.sendRedirect("Login.jsp");
} catch (ClassNotFoundException e) {
e.printStackTrace();
}

2.3.2 Modify Company List Controller
Modify Company List servlet is developed to handle a couple of different interactions with
the application. By using a switch statement, depending on the action taken through our JSP
file we'll run the method assigned to that case in the servlet. We can call different actions in
our JSP file.

On line 22 we create an object of type UpdatedCompanyDAO, giving us the functionality to
interact with the database.

List of interactions with the database we can do from this servlet are listed below.
e |nsert Company
e Update Company

e Delete Company

Within the switch statement are methods that also have no interaction with the database
such as “/new” and “/edit”. These methods display the forms necessary for us to add or
update to the database.

29

18 @WebServlet("/")
19 public class ModifyCompanylList extends HttpServlet {

20
21
22
23
245
25
26
27
285
29
38
31
32
33
345
35
36
37
38
39
40
Tl
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
50
60
61
62
63
64

private static final long serialVersionUID = 1L;
private UpdateCompanyDAD updateCumpanyﬂﬂDﬂ

public void init() {
updateCompanyDAD = new UpdateCompanyDAO();
}

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, I0Exception {
doGet(request, response);

}

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, I0OException {

String action = request.getServletPath();

try {
switch (action) {
case "/new":
showNewForm(request, response);
break;
case "/insert":
insertCompany(request, response});
break;
case "/delete":
deleteCompany(request, response);
break,
case "/fedit":
showEditForm(request, response);
break;
case "/update":
updateCompany (request, response);
break;
default:
listCompanies(request, response);
break;
}
} catch (SQLException ex) {
throw new ServletException(ex);
3

30

private void showNewForm(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
67 RequestDispatcher dispatcher = request.getRequestDispatcher(”companyForm.jsp™);
8 dispatcher.forward(request, response);

}

private void insertCompany(HttpServletRequest request, HttpServletResponse response) throws IOException, SQLException {

72 String companyName = request.getParameter("companyName");

String address = request.getParameter("address"});

String postcode = request.getParameter("postcode™);

String sector = request.getParameter("sector”);

String details = request.getParameter("details"});

Company newCompany = new Company(companyName, address, postcode, sector, details);

updateCompanyDAD. insertCompany (newCompany);

response.sendRedirect("1ist™);

}

private void deleteCompany(HttpServletRequest request, HttpServletResponse response) throws SQLException, IOException {
int companyld = Integer.parselnt(request.getParameter("companyId”));
updateCompanyDAQ.deleteCompany (companyId);
response.sendRedirect("1ist™);

}

private void showEditForm(HttpServletRequest request, HttpServletResponse response) throws SQLException, ServletException, IOException {
int companyId = Integer.parselnt(request.getParameter("companyld”));
Company existingCompany = updateCompanyDAQ.selectCompany(companyld);

1 RequestDispatcher dispatcher = request.getRequestDispatcher(”companyForm.jsp™);

32 request.setAttribute("company”, existingCompany);

3 dispatcher.forward(request, response);

4 }

96= private void updateCompany(HttpServletRequest request, HttpServletResponse response) throws SQLException, IOException{
g int companyld = Integer.parselnt(request.getParameter("companyld”));

String companyName = request.getParameter(”companyName");

String address = request.getParameter("address”);

String postcode = request.getParameter("postcode™);

191 String sector = request.getParameter("sector™);

182 String details = request.getParameter("details”);

Company updateCompany = new Company(companyld, companyName, address, postcode, sector, details);
updateCompanyDAO . updateCompany (updateCompany);
response. sendRedirect("1ist");

private void listCompanies(HttpServletRequest request, HttpServletResponse response) throws SQLException, IOException, ServletException E]
List<Company> listCompanies = updateCompanyDAQ.selectAllCompanies();

1 request.setAttribute("listCompanies”, listCompanies);

1 RequestDispatcher dispatcher = request.getRequestDispatcher("modifyCompanylList.jsp");

11 dispatcher. forward(request, response);

2

]

2.3.3 Register Account Controller
Account Servlet class creates an object of type AccountDetailsDAO, which provides us with
the ability to use their methods such as registerAccountDetails(). Line 57 we use this
method passing the account object as a parameter. Which contains the new administrator
account details, allowing for the registration of that new account.

It’s required the administrator enters data to all necessary fields. Providing a successful
insertion of a new administrator account the end user will be redirected to the list of
companies’ page. Line of code for this is outside the try catch on line 62.

WebServlet annotation is set to (“/register”), if you go to accountregister.jsp you can see we
use the same path.

31

15 @ebServlet("/register")

16 public class AccountController extends HttpServlet {

17 private static final long serialVersionUID = 1L;

18

19 private AccountDetailsDAD accountDetailsDAO = new AccountDetailsDAO();
20

alls protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
22
23 //Add the accounts to request object
24 response.getWriter().append(“Served at: ").append(request.getContextPath());
25
26 //Get dispatcher
27 RequestDispatcher dispatcher = request.getRequestDispatcher("/accountregister.jsp™);
28 //Forward the req and res objects
29 dispatcher.forward(request, response);
d }

e
/

* @see HttpServlet#doPost(HttpServletRequest request, HttpServletResponse response)
i
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {

String firstName = request.getParameter("firstName");
String lastName = request.getParameter("lastName");
String username = request.getParameter("username");
String password = request.getParameter("password”);
String phone = request.getParameter("phone");

String email = request.getParameter("email");

System.out.println("firstName"+firstName);
System.out.println("lastName"+lastName);
System.out.println("email"+email);

Account account = new Account()
account.setFirstName(firstName)
account.setlLastName(lastName);
account.setUsername(username) ;
account.setPassword(password);
account.setPhone(phone) ;
account.setEmail(email);

try {
accountDetailsDAD. registerAccountDetails(account);
//accountDetailsDAD. registerAccountDetails(accountDetails);
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

response.sendRedirect("Login.jsp");

2.3.4 Login JSP
Within this JSP we have our Login form, also we import a header and footer.

As you can see on line 13 we are using the action “request.getContextPath()” with /Login
path appended at the end. This allows us to get the requested servlet in this case it’s the
Login servlet. Providing a connection between the servlet and JSP gaining the functionality
the Login Servlet provides.

32

1 L%@ page language="java" contentType="text/html; charset=IS0-8859-1"

2 pageEncoding="I50-8859-1"%>
3 <IDOCTYPE html>

A% <html>

5% <head>

<meta charset="I50-8859-1">

<title>Login</title>

8 <link href="css/bootstrap.css” rel="stylesheet" type="text/css">
9 <script defer src="password.js"></script>

18 </head>

11 <¥@ include file="leastPrivilegeHeader.jsp"%>

125 <body >

138 < m id="form" action="<¥=request.getContextPath()%>/Login" method="post">

14=<div class="container">

15 ¢ediv id="error"></div>

16% ¢div class="row">

17 <div class="col-Lg-3">»</div>

18= <div class="col-sm-6 col-xs-12">

19 <div class="jumbotron">

20 <hl class="text-center”>Login Page</hl>

21

228 <div class="form-group”>

23 <label class="control-Label"” for="username">Username</label>
24 <input id="username” type="text" name="username” placeholder="Username"” required>
25 </divs

265 <div class="form-group"”>

27 <label class="control-label"” for="passwrord">Password</label>
28 <input id="password" type="text" name="password” placeholder="Password"” required>
25 <fdivs

38 <input type="checkbox" name="remember"> Remember Me?

31

»

328 <div class="pull-right":

<button type="submit” class="btn btn-outlining-warning”>Login</button:
tton type="reset” class="btn btn-outlining-dark">Close</button>

16 <fdiv>

</div>

8 <div class="col-md-3"></div>
30 ¢fdivy

@ </div>

42 </form>

44 <script type="text/javascript” src="js/bootstrap.js"></script>
5 <script type="text/javascript” src="js/jquery.js"></script>

< /body>

include file="footer.jsp™%>

2 </html>

ol

2.3.5 Modify Company List JSP
Provides the Ul with the ability to see full list of businesses and their information. Which is
all retrieved from the hosted database.

Other options provided by this JSP are:
e Add New Company
e Edit Company Details
e Delete Company Details

On line 19 you can see the getContextPath() /new is matching that of the switch statement
in the ModifyCompanyList Servlet. Which means if this button is clicked, the method
showNewForm() under “/new” in the switch statement is executed, which provides us with
the company form JSP.

33

1 k%@ page language="java” contentType="text/html; charset=IS0-8859-1"

<¥taglib uri="http://java.sun.com/jsp/jstl/core” prefix="c" %>

<link href="https://unpkg.com/bootstrapid.5.8/dist/css/bootstrap.min.css™ rel="stylesheet” type="text/css">

¢<h3 class="text-center":Register Company</h3>

<a href="<¥=request.getContextPath()%:>/new” class="btn btn-success”>Add

<table border = "1" class="table table-striped table-bordered™>

<c:forEach items = "${listCompanies}” var = "companyDetails™:

value="¢{companyDetails.
value="${companyDetails.
value="${companyDetails.
value="${companyDetails.
value="%${companyDetails.
value="%${companyDetails.

<tdy<a href="edit?companyld=<c:out

/ <a href="delete?companyId=<c:

2 pageEncoding="I150-8859-1"%>

4 <!DOCTYPE html>

5% ¢<html>

6% <head>

7 <meta charset="I50-8859-1">

8 <title>Company List</title>

qQ

18 </head>

11 <¥%@ include file="adminHeader.jsp"%>
125 <body »

L3

L4s <div class="container">

L5

(3 <hr>

17= ¢«div class="container text-left":
L8

19%

18 New Company
11 <fdiv>

12

|~

145 <tr class="thead-dark">
5 <th>ID</th>

6 <th:Name</th>

7 <th>Address</th>

18 <th>Postcode</th>
19 <th>Sector</th>

18 <th>Additional Information</th>
11 <th>Modify/Delete</th>
32 <ftr>

138

4= <trs

15 <td»<c:out

16 <td»<c:out

37 <td»<c:out

18 <td><c:out

19 <td>»<c:out

18 <td»<c:out

11

128

13

4 <ftr>

15

16 ¢<fc:forEach>

17 <[table>

18 <fdiv>

50
5

</body>

<%@ include file="footer.jsp"%>
</html>

companyId}"” [»</td»
companyName} " /></td>
address}"” [></td>
postcode}” /></td>»
sector}”™ /»</td>
details}” /»</td>

value="${companyDetails.companyId}' /»">Edit
out value="${companyDetails.companyId}' />">Delete</td>

(JSP - Standard Tag Library (JSTL) Tutorial - Tutorialspoint, 2021)

2.3.6 Company Search JSP
As you can see, we're importing the java libraries into this JSP file. These imports on line 1
and 2 allow us to write the code in the jsp file for connecting and filtering the data in the

hosted database.

Line 40 we pass in what the end user searched as a parameter assigning to the variable
result. Result is then used in the SQL query to filter the data in the database, whether a
postcode or sector has been entered.

34

|5 companySearchjsp &2
1 <¥@page import="java.sql.*" %>
2 <¥@page import="java.sql.Connection" %>
3 <¥@ page language="java" contentType="text/html; charset=I50-8859-1"
A pageEncoding="150-8859-1"%>
5 <!DOCTYPE html>
62 <html>
7= <head>
8 <meta charset="I50-8859-1">
9 <title>Company List</title>
18 <link href="https://unpkg.com/bootstrap@4.5.8/dist/css/bootstrap.min.css" rel="stylesheet" type="text/css">
11 </head>
12 <%@ include file="LeastPrivilegeHeader.jsp"%>

13= <body>

14

158 <div class="col-md-4 mb-2">

168 <form action="" method-"get">

17 <input type="text" class="form-control"” name="search"” placeholder="Search postcode or sector"/>
18 </form>

19 </div>

202 <div class="container mb-5">

218 <table border = "1" class="table table-striped table-bordered">

228 <thead>

238 <tr class="bg-info">

24 <th>Name</th>

25 <th>Address</th>

26 <th>Postcode</th>

27 <th>Sector</th>

28 <th>Additional Information</th>

29 </tr>

30 </thead>

31= <l--

32 Below code is connecting to the hosted database.

33 Its taking in the postcode or sector entered by the end user

34 then assigning that to variable result which is then used in the SQL query to query the database
35 assigning all matches to data, which returns all matching companies in a ResultSet
36 -->

37= <tbody>

38= <%

39 String host = "jdbc:mysql://eu-cdbr-west-81.cleardb.com/heroku_298fc475a99a62d";
40 Connection connection = null;

41 Statement statement = null;

42 ResultSet resultSet = null;

43 Class.forName("com.mysql.cj.jdbc.Driver");

44 connection = DriverManager.getConnection(host, "b@a6@f8774bede", "13f98876");
45 statement = connection.createStatement();

46 String result = request.getParameter("search™};

47 String query;

48 if(result!=null){

49 query = "select * FROM company_details where postcode like '%"+result+"%' or sector like '%"+result+"%'";
58 telse{

51 query = "select * FROM company_details order by companyld desc”;

52

53 resultSet = statement.executeQuery(query};

54 while{resultSet.next()){

55 x>

56= <tr>

57 <td><%=resultSet.getString("companyName") %></td>

58 <td><¥=resultSet.getString("address™) %></td>

59 <td><¥=resultSet.getString("postcode™) %></td>

60 <td»<¥%=resultSet.getString("sector") %></td>

61 <td><¥=resultSet.getString("details") %»></td>

62 </tr>

638 <%

64 }

65 >

66 <ftbody>

67 <ftable>

68 <fdiv>

69 </body>

78 </html>

(JSP 6 CRUD - Search Data,2017)

2.3.7 Company Form JSP
This file interacts with the ModifyCompanyList Servlet, line 18 and 21 allows us to display
which form the end user wants. We know if the company form is not null, the user is looking
to update company details.

35

Using the actions on line 18 and 21, the switch statement in the servlet mentioned will
execute the corresponding method.

We are also calling the live data from the hosted database. As when an edit happens we
display the data already stored on the database.

1 <¥@ page language="java” contentType="text/html; charset=I50-8859-1"
2 pageEncoding="I50-8859-1"%>

3 <H@taglib uri="http://java.sun.com/jsp/jstl/core” prefix="c"
4 <|DOCTYPE html>

5% <html>

6= <head>

7 <meta charset="I50-8859-1">

8 <title:Register Company</title:

9 <link href="https://unpkg.com/bootstrap@d.5.08/dist/css/bootstrap.min.css” rel="stylesheet"” type="text/css">
18 </head>

11 <%@ include file="adminHeader.jsp"%>

%>

12% <body »

13e «div class="container col-md-5">

14s <div class="card">

15 <div class="card-body">

16

17e <c:if test="%{company != null}">

18 <form action="update"” method="post">

19 <fc:ify

26= <c:if test="${company == null}">

21 <form action="insert"” method="post">

22 <fe:if>

23

24= <caption>

258 ¢<h2>

265 <c:if test="${company != null}">

27 Edit New Company

28 <fc:if>

299 <c:if test="¢${company == null}">

30 Add New Company

31 ¢fe:if>

32 <fh2>

33 <fcaption>

34

358 <c:if test="${company |= null}">

36 <input type="hidden" name="companyId" value="<c:out value='${company.companyId}' />" />
37 <fc:if»

38

395 <fieldset class="form-group”>

48 <label>Company Name</label> <input type="text"
41 value="<c:out value="${company.companyName}' [>" class="form-control"”
42 name="companyName " required:>

43 </fieldset>

44

45% <fieldset class="form-group”>

46 <label>Address</label> <input type="text"

47 value="<c:out value="%${company.address}"' />" class="form-controlL”
48 name="agddress" required>

49 </fieldset>

36

516 <fieldset class="form-group">

52 <label»Postcode</label> <input type="text”

53 value="<c:out value="${company.postcode}’ />" class="form-control”
54 name="postcode” required>

55 </fieldset>

<fieldset class="form-group”>
<label»Sector</label> <input type="text"
value="<c:out value='${company.sector}’ />" class="form-control”
60 name="sector” required>
</fieldset>

<fieldset class="form-group™>
H4 <label>Details</label> <input type="text"”
65 value="<c:out value="${company.details}" />" class="form-control”
66 name="details"” required>
67 ¢</fieldset>
o8
69 <button type="submit” class="btn btn-success">Save</button>
) </form:
<fdiv>
72 <fdiv>
7 <fdivy
74 </body>

75 «<¥@ include file="footer.jsp™%:
76 </html>

2.3.8 Accounts Register

Account register JSP file provides the connection with account servlet class. Using
“/register” path we know this page should be displayed.

All fields are set to required, once save is clicked the account details will be added to the
hosted database.

1 <¥@ page language="java" contentType="text/html; charset=IS0-8859-1"

2 pageEncoding="150-8859-1"%>

3 <%@taglib uri="http://java.sun.com/jsp/jstl/core” prefix="c" %>
4 <IDOCTYPE html>

5¢ <html>

6= <head>

7 <meta charset="IS0-8859-1">

8 «title>Register Account</title>

9 <link href="css/bootstrap.css” rel="stylesheet"” type="text/css">
18 <script defer src="password.js"»></script>

11 </head>
12 <%@ include file="adwinHeader.jsp™%>
13= <body>
14% <div>
15 <h1></h1>
16 <div id="error"»</div>
178 <form id="form" action="<%=request.getContextPath() %>/register” method="post">
18= <div class="container col-md-5">
198 <div class="card">
28= <div class="card-body">
218 <fieldset class="form-group™>
22 <label>First Name</label> <input type="text"
23 value="<c:out value="${account.firstName}' />" class="form-control”
24 name="firstName" required>
25 </fieldset>
269 <fieldset class="form-group">
27 <label>Last Name</label> <input type="text"
28 value="<c:out value="${account.lastName}' />" class="form-control"”
29 name="lastName" required>
30 </fieldset>
31= <fieldset class="form-group">
32 <label>Username</label> <input type="text"
33 value="<c:out value="${account.username}' />" class="form-control"”
34 name="username"” required>
35 </fieldset>
36= <fieldset class="form-group"”>
37 <label>Password</label> <input id="password" type="text"
38 value="<c:out value='${account.password}' />" class="form-controlL"
39 name="password">
49 </fieldset>
41% <fieldset class="form-group">
a2 <label>Phone</label> <input type="text"
43 value="<c:out value="$§{account.phone}' />" class="form-control"
a4 name="phone” required>
45 </fieldset>
46" <fieldset class="form-group">
a7 <label»Email</label> <input type="text"
48 value="<c:out value="${account.email}' />" class="form-control"
49 name="email " required>
5@ </fieldset>
51 <button type="submit" class="btn btn-success">5ave</button>
52 </fdiv>
53 <fdiv>
54 <fdiv>
55 < fform>»
56 </div>
57 </body>
58 <¥@ include file="footer.jsp™%>
59 </html>
2.3.9 Web XML

We set the welcome file to the companySearch.jsp file, this is how the home page is set up

for end users to see the list and search if needed. Within the file we list our servlet name
and URL patterns.

38

X webxml

1

k?zml version="1.8" encoding="UTF-8"?>

2= ¢web-app xmlns="http://java. sun. com/xml/ns/j2ee” xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance” xsi:sc

3 <display-name>CompanyUnite</display-name>
4= <welcome-file-list>
5 <welcome-file>companySearch.jsp</welcome-file»
6 <fwelcome-file-list>
7
8= <servlet>
g= <description>
18 </description>
11 <display-name>AccountServlet</display-name>
12 <servlet-name>AccountServlet</servlet-name>
13 <servlet-class»org.project.companies.controller.AccountServlet</servliet-class>
14 </servlet>
15
16= <servlet-mapping>
17 <servlet-name>AccountServlet</servlet-name>
18 <url-pattern>/AccountServlet</url-pattern>
19 </servlet-mapping>
20
218 <servlet>
228 <description>
23 </description>
24 <display-name>CompanylListController</display-name>
25 <servlet-name>CompanylListController</servliet-names
26 <servlet-class>org.project.companies.controller.CompanyListController</servliet-class>
27 </servlet>
28
29s <servlet-mapping>
30 <servlet-name>CompanyListController</servliet-name>
31 <url-pattern>/CompanyListController</url-pattern>
iz <fservlet-mapping>
i3s <servlet>
i4s <description>
35 <fdescription>
36 <display-name>LoginServlet</display-name>
37 <servlet-name>LoginServlet</servlet-name>
38 <servliet-class>org.project.companies.controller.LoginServlet</servlet-class>
39 <fservlet>
40= <servlet-mapping>
41 <servlet-name>LoginServlet</servlet-name>
42 <url-pattern>fLoginServlet</url-pattern>
43 <fservlet-mapping>
AN drmmemes ot
448 <servlet>
45= <description>
46 </description>
a7 <display-name>UpdatedCompanylList</display-name>
48 <servlet-name>UpdatedCompanyList</servlet-name>
49 <servlet-class>org.project.companies.controller.UpdatedCompanylList</servlet-class»
58 </servlet>
518 <servlet-mapping>
52 <servlet-name>UpdatedCompanyList</servlet-name>»
53 <url-pattern>/UpdatedCompanyList</url-pattern>
54 </servlet-mapping>
55 </web-app>

2.3.10 Company Model Class
Using the separation of concerns, we created a model package to store all our model
classes.

Company model class we use annotations to define the @Entity, @Table, @Id and
@Column. Allowing the class to connect and interact with the correct table. These
classes are also known as POJO classes Plain Old Java Objects. Variables used to store

39

data listed in the bullet points below. Cosgrave, N.,2020. RESTful Web Services — Part IIl
(JAX-RS in a nutshell). 7opic 7, pp.21,22,23,24,25,26.

e companyld — This is used to identify business by a unique id.
e companyName — Variable is used to store the company name.
e address — Variable is used to store the address of the company.

e postcode — Here we will store the postcode where users will later be able to
search businesses by postcode. Allowing them to see businesses close by

e sector —Variable is used to store the sector in which the business specialises in.

Later users of the application will be able to query based on sector.

e details — Variable is used to store any additional information the business would

like others to see.

4] Companyjava &2

B iEntity(name="company_details")
11 @Table(name="company_details")
12 public class Company {

@ umn (name="companyId")
int companyId;

String companyhlame;
String address;

String postcode;

String sector;

String details;

public Company() {

}

public Company(int companyId, String companyName, String address, String postcode, String sector, String details) {

super();

this.companyIld = companyId;
this.companyName = companyName;
this.address = address;
this.postcode = postcode;
this.sector = sector;
this.details = details;

public Company(String companyName, String address, String postcode, String sector, String details) {
super();
this.companyName = companyName;
this.address = address;
this.postcode = postcode;
this.sector = sector;
this.details = details;

}

public int getCompanyId() {
return companylId;

}

public void setCompanyId(int companyId) {
this.companyId = companyId;

}

public String getCompanyName() {
return companyName;

}

public void setCompanyName(String companyName) {
this.companyName = companyhame;

}

40

public String getAddress() {
return address;

}

public void setAddress({String address) {
this.address = address;

H
public String getPostcode() {

return postcode;
}

public void setPostcode(String postcode) {
this.postcode = postcode;

}

public String getSector() {
return sector;

}

public void setSector(String sector) {
this.sector = sector;

}

public String getDetails() {
return details;

}

public void setDetails(String details) {
this.details = details;

}

@verride
public String toString() {
return "Company [companyId=" + companyld + ", companyName=" + companyName + ", address=" + address + ", postcode=" + postcode
+ ", sector=" + sector + ", details=" + details + "]";

2.3.11 Companay Service

As we continue to follow the separation of concerns design, it was decided to create a
service package. Here we will store our java service classes which will have the services we
would like to use.

Service classes will later be called by our resource classes. This class was implemented to
provide the ability to use the system through APl requests.

41

8 public class CompanyService {

16 CompanyDAD DAD = new CompanyDAD():

11€ publie List<Company> getCompany() {

1: List<Company> list = DAOD.getCompany():
13 return list:

14 }

16= public void addCompany(Company company) {
17 DAD. addCompany (company) 3

19}

11 publiec void updateCompany(Company updatedCompany) {
DAD. updateCompany {updatedCompany) ;

}

Joe public wvoid deleteCompany{int companyId) {
DAD.deleteCompany (companyId);

2.3.12 Company Resource
Within our resource class we have annotations such as @GET @POST @PUT @DELETE
@Path @Consumes @Produces.

@GET @POST @PUT @DELETE are developed to allow us to make HTTP requests
@Path used to specify specific paths needed for the request to work.

@Consumes @Produces developed to specify the type of request we would like to consume
or produce. Cosgrave, N.,2020. RESTful Web Services — Part Il JAX-RS in a nutshell). Topic 7,
pp.21,22.23.24,2526.

We also create an object of our company service class so we can use the service logic which
helps interact with the database.

42

28 @path("/project/companies")
21 public class CompanyResource {

22 CompanyService service = new CompanyService():

23 AccountService ac = new AccountService();

24

258 @GET

26 @Produces(MediaType . APPLICATION_JSON)

27 public List<Company> getCompany() {

28 List<Company> list = service.getCompany();

29 return list;

38 }

31

326 @POST

33 EConsumes (MediaType . APPLICATION_JSON)

34 public veoid postCompany(Company company) {

35 service.addCompany(company);

36 }

37

38= @PUT

39 @Path("/{companyId}")

48 @Consumes (MediaType.APPLICATION JSON)

41 publie veoid putCompany(@PathParam("companyId") int companyId, Company updatedCompany) {
42 updatedCompany.setCompanyld(companyld);

A3 service.updateCompany (updatedCompany) ;

a4 }

15

465 @DELETE

47 @Path("/{companyId}")

48 public void deleteCompany(@PathParam(”companyId™) int companyId) {
49 service.deleteCompany (companyId);

58 }

51

52¢ @GET

53 @Path("/{companyld}/accounts")

54 @Produces(MediaType .APPLICATION JSON)

55 publie List<Account> getAccountsByCompany(@PathParam("”companyId") int companyId} {
56 List<Account> accountlist = ac.getAccountsByCompany(companyId);
57 return accountlist:

58 }

60 }

61

2.3.13 Account Model
Account model class implementation is developed to allow us to create objects necessary to
interact with the hosted database.

Available in the screenshot shown are annotations such as @Entity, @Table, @Id,
@ManyToOne and @JoinColumn. These allow us to pass data to the correct database also
making a many to one relationship between two tables. Class also contains variables,
constructors, getters & setters.

43

9 @Entity(name="accounts_details")
1@ @Table(name="accounts_details™)
11 public class Account {

@Id

int accountId;
//hibernate feature

@ManyToOne (targetEntity=Company.class)

@loinColumn(name="companyId")
Company company;

String firstName;
String lastName;
String username;
String password;
String phone;
String email;

public Account() {

¥

public Account(String firstName, String lastName, String username, String password,
String phone, String email) {

}

super();
this.firstNam
this.lastName
this.username
this.password
this.phone =
this.email =

e = firstName;
= lastName;

= username;

= password;
phone;

email;

public Account(int accountId, Company company, String firstName, String lastMame, String username, String password,

String phone, String email) {

super();

this.accountId = accountld;

this. company
this.firstNam
this.lastName
this.username
this.password
this.phone =
this.email =

= company;
e = firstName;
= lastName;

= username;

= password;
phone;

email;

public int getAccountId() {

}

return accoun

tid;

44

SBe
59
o8
61
62e
63
bd
65
66=
67
68
69
lg=
71
72
73
749
15
16
77
182
79
80
81
g2e
83
84
85
8o=
87
88
89
o@=
91
92
93
g4
95
96
97
og=
99
lee
1a1
la2=
1a3
184
185

public void setAccountId(int accountId) {
this.accountld = accountld;

}

public Company getCompany() {
return company;
H

public void setCompany(Company company) {
this.company = company;

}

public String getFirstName() {
return firstName;

}

public void setFirstName(5tring firstName) {
this.firstName = firstName;

}

public String getLastName() {
return lastMame;

}

public void setlLastName(String lastName) {
this.lastName = lastName;

}

publiec String getUsername() {
return username;

}

public void setUsername(String username) {
this.username = username;

}

publiec String getPassword() {
return password;

}

public void setPassword(String password) {
this.password = password;

}

publie String getPhone() {
return phone;

}

45

public void setPhone(String phone) {
this.phone = phone;

}

public String getEmail() {
return email;

}
public void setEmail(String email) {

this.email = email;

}

2.3.15 Database Class
Database connection class used in multiple DAO classes. Establishing a connection with the
hosted database by stating the URL, Username and Password.

Code on line 19 & 20 shows how we establish that connection to the database using
DriverManager.

Driver Manager provides a basic service for JDBC drivers, using the get method it provides
all we need to do is pass in the url, username and password as parameters. If successful and
no exceptions are caught, we then return that connection. MySQL :: MySQL Connector/J 8.0
Developer Guide :: 7.1 Connecting to MySQL Using the JDBC DriverManager Interface, 2021)

Classes that import this connection
e Account Details DAO
e Company List DAO Impl

e Update Company DAO

46

) public class DBConnection {

private static final String URL = "jdbc:mysql://eu-cdbr-west-01.cleardb.com/heroku_298fc475a9%a62d" ;
private static final String USERNAME = "b@ac@f8774bede”;
private static final String PASSWORD = "13f08876";

public static Connection getConnection() {
Connection connection = mull;
try {
Class. forName(“com.mysql.cj.jdbc.Driver");
connection = DriverManager.getConnection(URL, USERNAME, PASSWORD);
} catch (SQLException e) {
{/ TODO Auto-generated catch block
e.printStackTrace();
} catch (ClassNotFoundException e) {
ff TOI uto-generated catch block

e.printStackTrace();

}
return connection;

}

public Connection getConnection2() {
Connection connection = null;
try {

Class. forName("com.mysql.cj.jdbc.Driver™);

connection = DriverManager.getConnection(URL, USERNAME, PASSWORD);
} cateh (SQLException e) {

/ Auto-generated catch block

e.printStackTrace();
} catch (ClassNotFoundException e) {

Auto-generated cat
e.printStackTrace();
}

return connection;

2.3.16 Update Company DAO
This Data Access Object Class contains multiple methods which interact with the hosted
database.

List of interactions with the database

e Inserting company information

e Selecting a company by Id

e Selecting all companies in the database

e Deleting a company by identifying it using its unique id

At the top of the class, we declared the constants for each query, writing the SQL while
adding in the placeholders “?” for the values that will be entered later through the
application.

All methods must access the database before interacting with it. Described previously in
section 2.3.15 the implementation of the database class is used by multiple classes.

We created an object of that class on line 24. Then in each method within the try we use
that object to use method getConnection2() providing the connection needed.

47

The Insert company method uses the company object as a parameter, using the get
methods through object “company”.

We're able to assign the data to each field name listed in the SQL query then running the
execute update. Allowing the insertion of the new data to the hosted database.

The remaining methods all take a very similar approach.

Delete method uses the Id of the company to identify the company details to be removed.

[l UpdateCompanyDAQ java &
E 1 package org.project.companies.DAD;

3% import java.sgl.Connection;
12
public class UpdateCompanyDAD {

private static final String INSERT_COMPANIES_SQL = "INSERT INTO heroku_298fc475a99a62d.company details (companyName, address, postcode, sector, details) VALUES (?,?,7,7,2);";
private static final String SELECT_COMPANY_BY_ID = "select companyld, companyName, address, postcode, sector, details from company details where companyId =1";

private static final String SELECT_ALL_COMPANIES = "select * from company_details";

private static final String DELETE_COMPANY_SQL = "delete from company details where companyld = ?;";

private static final String UPDATE_COMPANY_SQL = "update company_details set companyName = ?, address = ?, postcode = ?, sector = ?, details = ? where companyld = ?

public UpdateCompanyDAO() {
}
DBConnection newDBConnection = new DBConnection();

//Inserting company information to the database
public void insertCompany(Company company) throws SQLException {
System.out.print1n(INSERT_COMPANIES_SQL);
try(Connection connection = newDBConnection.getConnection2(); PreparedStatement preparedStatement = connection.prepareStatement(INSERT_COMPANIES_SQL)){
preparedStatement.setString(1, company.getCompanyName(});
preparedStatement . setString(2, company.getAddress());
preparedStatement . setString(3, company.getPostcode());
preparedStatement.setString(4, company.getSector());
preparedStatement . setString(5, company.getDetails());
System.out.println(preparedStatement);
preparedStatement .executelpdate() ;
}eateh (Exception e) {
e.printStackTrace();

}

//update exisiting company data to the database
public boolean updateCompany(Company company) throws SQLException {
boolean companyUpdated;

try(Connection connection = newDBConnection.getConnection2(); PreparedStatement preparedStatement = connection.prepareStatement (UPDATE_COMPANY_SQL);){
a7 System.owt.println(preparedStatement);
a8 preparedStatement.setString(1, company.getCompanyName(});
49 preparedStatement.setString(2, company.getAddress());
58 preparedStatement. setString(3, company.getPostcode());

51 preparedStatement.setString(4, company.getSector());
preparedStatement.setString(5, company.getDetails());
preparedStatement.setInt(6, company.getCompanyId());
companyUpdated = preparedStatement.executeUpdate() > 0;

raturn companyUpdated;

/fSelect company by id
public Company selectCompany(int companyId){
Company company = null;
try(Connection connection = newDBConnection.getConnection2(); PreparedStatement preparedStatement = connection.prepareStatement(SELECT_COMPANY_BY_ID)){
preparedStatement.setInt(1, companyId);
System.out.println(preparedStatement);

ResultSet rs = preparedStatement.executeQuery();

while (rs.next()) {
String companyName = rs.getString("companyName");
String address = rs.getString("address");
String postcode = rs.getString("postcode™);
String sector = rs.getString("sector”);
String details = rs.getString(“"details™);
company = new Company(companyld, companyMame, address, postcode, sector, details);
}
} catch (SQLException e) {
e.printStackTrace();

return company;

//select companies
public List<Company> selectAllCompanies(){
List<Company> companies = new ArraylList<>();
try(Connection connection = newDBConnection.getConnection2(); PreparedStatement preparedStatement = connection.prepareStatement(SELECT_ALL_COMPANIES)){
System.out.println(preparedStatement);

ResultSet rs = preparedStatement.executeQuery();

while (rs.next()) {
int companyld = rs.getInt("companyId”);
String companyName = rs.getString("companyMame"™);
String address = rs.getString(“address™);
String postcode = rs.getString("postcode™);
String sector = rs.getString("sector");
String details = rs.getString("details");
companies.add(new Company(companyId, companyName, address, postcode, sector, details));

}
} catch (SQLException e) {
e.printStackTrace();

return companies;

48

10 delete company
108= public boolean deleteCompany(int companyld) throws SQLException {
10¢ boolean rowDeleted;
118 try (Connection connection = newDBConnection.getConnection2(); PreparedStatement statement = connection.prepareStatement(DELETE_COMPANY_SQL);) {
statement.setInt(l, companyld);
rowDeleted = statement.executeUpdate() > @;

}

return rowDeleted;

2.3.17 Account Details DAO
Account details DAO class provides the functionality of connecting to the hosted database.

Class contains the registerAccountDetails method which is the logic for the registering of
administrator accounts.

Validate method provides the logic for when a user tries to log into the application. It checks
the database to ensure username and passwords are valid and are already stored on the
database.

R ——— g e @ S g e g e 5 g 8 o e R A e e | e e g e e SO,
| public class AccountUetallsUAU {

//String constant containing an SQL query for inserting administrators details once a connection is established

public static final String INSERT_ACCOUNT_SQL = "INSERT INTO heroku_298fc475a99a62d.account_details "

1 + “(companyId, first_name, last_name, username, password, phone, email) VALUES (2, 7, ?, ?, 2, 2, ?);";

public static final String SELECT_USERNAME_PASSWORD = "select * from account_details where username = ? and password = ? ";
19 public AccountDetailsDAO() {

i}

to connect to the hosted database

Object used e

24 DBConnection newDBConnection = new DBConnection();
2ilble by
he get method

2 //th exi e the us to t d
29 public void registerAccountDetails(Account account) throws SQLException{
try(Connection connection = newDBConnection.getConnection2(); PreparedStatement preparedStatement = connection.prepareStatement(IMSERT_ACCOUNT_SQL)){
preparedStatement.setInt(1, 5);
preparedStatement.setString(2, account.getFirstName());
preparedStatement. setString(3, account.getLastName());
preparedStatement. setString(4, account.getUsername());
preparedStatement. setString(5, account.getPassword());
preparedStatement.setString(6, account.getPhone());
preparedStatement.setString(?, account.getEmail());
System.out.println(preparedStatement);

preparedStatement . executeUpdate();
} catch (SQLException e) {
e.printStackTrace();

b

word are stored on the database

/lvalidate allows us to check if the and pa
public boolean validate(Account account) throws ClassNotFoundException {

boolean status = false;

try(Connection connection = newDBConnection.getConnection2(); PreparedStatement preparedStatement = connection.prepareStatement(SELECT_USERNAME_PASSWORD)){

1 preparedStatement.setString(1, account.getUsername());
52 preparedStatement.setString(2, account.getPassword());
System.out.println(preparedStatement);

ResultSet rs = preparedStatement.executeQuery();
status = rs.next();

} catch (SQLException e) {
printSQLException(e);

5

return status;

2.3.18 Hibernate.cfg.xml

Provides the connection to our ClearDB MySQL for API functionality. We import the
connection details within this file to our CompanyDAO class. Allowing us to add, update,
retrieve and delete data on the host database through API requests.

49

¥ hibernate.cfg.xml =
1 k!DOCTYPE hibernate-configuration PUBLIC
2 "-//Hibernate/Hibernate Configuration DTD 3.@//EN"
3 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

5= <hibernate-configuration>

6= <session-factory>

7 <!-- Connection settings --»

8 <property name="connection.driver_class”>com.mysgl.cj.jdbc.Driver</property>
9 <property name="dialect">org.hibernate.dialect.MySQLDialect</property>

10 <!-- Sample MySQL URL provided --»

11 <property name="connection.url">jdbc:mysql://eu-cdbr-west-01.cleardb.com/heroku_298fc475a99a62d</property>
12 <property name="connection.username">b0abc@f8774bede</property>

13 <property name="connection.password”>13f98876</property>

14

15 <!-- Show SQL on console --»

16 <property name="show_sql">true</property>

17

18 <!--Setting Session context model --»

19 <property name="current_session_context_class">thread</property>

28

21 </session-factory>

22 </hibernate-configuration>

2.4. Graphical User Interface (GUI)

2.4.1 Login Page
Administrators can only log into the system if their details are stored in the database,
gaining access to CRUD functionalities.

Welcome please sign in

Username:| Username
Password: | Password

O Remember Me?

2.4.2 Register Company

Given administrators log in successfully, they are brought to the page below. Allowing them
to add, edit or delete companies from the platform. They have the ability to navigate to
Registration to add new administrators to the database.

50

Add New Company

DeliveryService2

5 MobileCatering
6 CompanyB

8 Tom's Wings Food
Truck

9 Cafe Truck

10 GASTROFAKE

11 DeliverServiceFake
12 Best Cafe On

Wheels

13 Greek Food Truck

2.4.3 Add New Company

Clicking add new company shown in the previous screenshot, the administrator will be

santry

Dublin
city
centre
Crumlin

Dublin

Dublin

City

Centre

glasnevin

London

London

Howth

Grafton
Street

da

D2

dz2

D

1

SW100AD

SW110AD

D13

Register Company

Delivery

Catering

Delivery

Hospitality

Hospitality

Hospitality

Delivery

Hospitality

Hospitality

Interested in providing delivery service for other businesses in
the dublin area. Please contact DeliveryService2@fakemail.com

Mobile catering service, looking to provide catering service on
business grounds. Please contact MobileCatering@fakemail.com

Looking to provide delivery service for companies in the south
Dublin City Centre area. Please contact
CompanyB@fakemail.com

Food Truck looking for open space, in Dublin City Centre. Please
contact Tomwings@fakemail.com
Need to rent space, in a busy area. Please contact

CafeTruck@fakemail.com

Need to link up with a delivery service to deliver our products to
our customers. Please contact GASTROFAKE @fakemail.com

Looking to provide a delivery service in the London area. Please
contact DeliverServiceFake @fakemail.com

Need space with high footfall to rent. Please contact
cafewheels@fakemail.com

Looking to rent space in the city centre. Please contact
GrEEkTrUck@fakemail.com

Edit / Delete

Edit / Delete

Edit / Delete

Edit / Delete

Edit / Delete

Edit / Delete

Edit / Delete

Edit / Delete

Edit / Delete

presented with this form. Filling all form fields the administrator will successfully insert the
company data to the hosted database.

2.4.4 Edit New Company

Company Name

Address
Postcode
Sector

Details

Add New Company

If the administrator is tasked to update some business details, they are presented with this

page. Please note previous details are displayed in the text boxes. Administrators have the

51

privilege to update any of these fields. Once save is clicked the application will show new
updates immediately.

Edit New Company

MobileCatering

Address

Dublin city centre

Postcode

a4

Sector

Catering

Details

Mobile catering service, looking to provide catering service on business grounds

Save

2.4.4 Register New Administrator Account

Administrators can be added to the system through the application. Once details have been
entered to all available fields and save is clicked then the new account details will be stored
in the hosted database. Allowing the new administrator to access the system.

Register new administrator account

First Name
Last Name
Username
Password
Phone

Email

Save

52

2.4.5 Search for Businesses

This page is available to the public, businesses or people can visit the application without
the need to login and search for businesses in an area that suits them or by a sector
entering in the search box.

Deliveny

2.4.6 About Page

EasyDrinks Main Street Hospitality ~ Looking to team with a delivery service who can manage a high number of deliveries
throughout the evening

Bakery Truck Phisboro D1 Hospitality Need to rent space from 8am - 2pm

Greek Food Truck ~ Grafton Street D2 Hospitality ~ Looking to rent space in the city centre

Best Cafe On Howth D13 Hospitality Need space with high footfall to rent

Wheels

DeliverServicefake London SW110AD Delivery Looking to provide a delivery service in the London area

GASTROFAKE London SW100AD Hospitality = Need to link up with a delivery service to deliver our products to our customers

Cafe Truck glasnevin D11 Hospitality ~ Need to rent space, in a busy area

Tom's Wings Food Dublin City d2 Hospitality Food Truck looking for open space, in Dublin City Centre

Truck Centre

CompanyB Crumlin D2 Delivery Looking to provide delivery service for companies
Dublin

MobileCatering Dublin city da Catering Mobile catering service, looking to provide catering service on business grounds
centre

DeliveryService2 santry dn Delivery Interested in providing delivery service for other businesses in the dublin area

About us page provides a description of the goal CompaniesUnite have set out. Also
explaining what happens when a customer sends data through the form if they wish to
display their information on the application.

Company name
Company Name
Additional Information

Additional Information

Who we are

We're CompaniesUnite a platform to help businesses and entrepreneurs to work together, adapting to the restrictions introduced by the pandemic.

What matters to us

What matters to us is that businesses and people looking to venture new areas or looking to adapt under these circumstances are kept in business,

We want to help you adapt and create relationships outside of your providing better chances of survival.

What we do

We provide a platform that allows anyone interested on the internet to browse the list of businesses interested or looking to help others.
We display the details YOU send to us, as we have administrators working around the clock to get your information out there
We update customers data if they wish to make enhancements to the initial data they provided.

We also remove the data immediately once requested by that business.

How we do it

Once the form below is recieved, one of our administrators will pick up the task and write the corresponding information to the system.

Business information will be displayed immediately on the system once the administrators enters it into the database.

Address Postcode

Address Postcode

Sector

Sector

53

2.5. Testing

Testing is a very important phase when developing an application. Ensuring there are no
major issues blocking customers using the application provide great comfortability. We
executed on three different types of testing, unit, integration, and end user testing.

Unit Tests

Unit tests were developed using Eclipse IDE, creating a new unit test case for each of the
model classes was simple enough.

In the project explorer you can find JUnit Test Case option. Providing us with the dialog
box to add test packages and test classes, allowing us to link test classes with the java
classes keeping naming convention in sync.

As the model java classes are used a lot for creating objects while inserting,
manipulating, retrieving, and deleting data from our hosted database. It made sense to
get unit test coverage on company and account model classes.

Integration Tests

Postman is a tool widely used across the industry; many companies use the tool for
integration testing.

Showing through API requests the interactions between java classes model (POJO),
Service, Resource, DAO, and database connections.

We can confirm through all this interaction, data is returning as expected along with
adding, updating, and deleting through all the classes mentioned.

Sending these requests and receiving their responses we can confirm the integration
tests are being covered.

End User Tests

End user test proved to be very important on our initial run we seen one or two features
weren’t working as expected. By executing the tests over and over after each update we
ensured that all tests are now passing. The goal here is to mimic the customers
behaviour to catch any issues they might come across.

2.5.1 Unit Tests

Unit tests below confirm the code for our accounts class is working as expected. This
class is important for when the administrators want to create new admin accounts. We
are testing the getter methods from the accounts class.

54

Comparing the expected result with the actual result, by doing an assertEquals() we can
determine if the test is a pass or fail.

Account Unit Test Class

=l A v - g i v ooov

)] AccountTestjava &2

25
265
27
28
29
38
31
32
338
34
35
36
37
38
39
49=
41
432
43
44
45
46
A7E
48
49
50
51
52
53
54E
55
56
57
58
59
60

@Test
public void testGetFirstName() {
String expectFirstName = "Rachel”;

String actualFirstName = account.getFirstName();
assertEqual s(expectFirstName,actualFirstName);

}

@Test

public void testGetlLastName() {
String expectlLastName = "Johnson";
String actuallasthlame = account.getlastMame();
assertEquals(expectlLastName,actuallastName);

¥

@Test

public void testGetUsername() {
String expectUsername = "RachJlohnson567";
String actualUsername = account.getUsername();
assertEquals(expectUsername,actualUsername);

h

@Test

public void testGetPassword() {
String expectPassword = "hhfotyf3e9";
String actualPassword = account.getPassword();
assertEqual s(expectPassword,actualPassword);

}

@Test

public veoid testGetPhone(} {
String expectPhone = "©8924372";
String actualPhone = account.getPhone();
assertEqual s(expectPhone,actualPhone);

}

55

bl

String expectBEmail = "Rachlohnson@fakegmail.com”;

account.getEmail();

6l1e @Test

62 public void testGetEmail() {

63

64 String actualEmail =

65 assertEqual s(expectEmail,actualEmail);
66 }

67

68 }

Account Unit Test Results

Results shown in the screenshot below, all tests passed as expected.

File Edit Source Refactor

Mavigate Search Project Run

Window Help

wR AR -EANT"N- RN R R AR B PR I TR

2 Pac

kage Explorer guJUnit 22

o ® E - §

Finished after 0.019 seconds

= 8

Runs:

b/06 B8 Errors: 0

B Failures.

0

v Hitl org.project.companies.model.AccountTest [Runner: JUnit 4] (0.00

tel testGetPassword (0.001 s)
eel testGetEmail (0.000 s)

tel testGetPhone (0.000 s)

¢l testGetLastName (0.000 s)
¢l testGetUsername (0.000 s)
tel testGetFirstName (0.000 s)

(JUnit - Plug with Eclipse - Tutorialspoint, 2021)

[J] AccountTestjava &2 [J

————— - ==

String
String
asserti

h

@Test

public wvois
String
String
asserti

}

@Test

public wvois
String
String
asserti

}

@Test

public wvoii
String

56

Company Unit Test Class

Unit tests below confirm the code for our company class is working as expected. This
class is important for when the administrators want to add new or update existing
companies to the database. We're testing the getter methods from the company class.

Comparing the expected result with the actual result, by doing an assertEquals() we can
determine if the test is a pass or fail.

1 [J) CompanyTestjava

229 @Test

23 public void testGetCompanyName() {

24 String expectCompanMame = "MobileCafe™;

25 String actualCompanyMame = company.getCompanyName();
26 assertEqual s(expectCompanhiame,actualCompanyName) ;

27 }

28

29¢= @Test

30 public void testGetAddress() {

31 String expectAddress = "23 oldtown road, whitehall";
32 String actualAddress = company.getAddress();

33 assertTrue(expectAddress. contentEquals(actualAddress));
34 }

35

36 @Test

37 public void testGetPostcode() {

38 String expectPostcode = "D11";

39 String actualPostcode = company.getPostcode();

40 assertEquals(expectPostcode,actualPostcode);

41 }

42

438 @Test

44 public void testGetSector() {

45 String expectSector = "Hospitality";

46 String actualSector = company.getSector();

47 assertEquals(expectSector,actualSector);

48 }

49

5@= @Test

51 public void testGetDetails() {

52 String expectDetails = "Looking for open space to serve the public”;
53 String actualDetails = company.getDetails();

54 assertEquals(expectDetails,actualDetails);

55

56 }

=

57

Company Unit Test Results
Results shown in the screenshot below, all tests passed as expected.

File Edit Source Refactor Mavigate Search Project Run Window Help

il B Gyt @-Qq-~ A = I B
f# Package Explorer duJUnit & = O [J CompanyTestjava 2

g & E§| Q m [E - 8 1 package org.pro
Finished after 0.02 seconds 2

A= import static o
Runs: 5/5 8 Errors: 0 A Failures: 0

4
I 5 import org.juni
_ 6 import org.juni
~ [t org.project.companies.model.CompanyTest [Runner: JUnit 4] (0.C 7 import org.juni
tel testGetPostcode (0.000 s) 8
tE testGetAddress (0.000 s) 9 public class Col
el testGetSector (0.000 5) 0
¢ testGetDetails (0.000 s) ; é"”eate co
eEl testGetCompanyMame (0.001 s) 3 ompany com
49 @Before
5 public void
6 ¥
-
8e @After
9 public void
0 }
1
28 @Test
3 public void
4 String o
< 5 String .

2.5.2 Integration
Integration testing were executed using a tool called Postman. Confirming the java classes
and business logic are working as expected while integrating with the database.

Ensuring our company model class along with other java classes such as our data access
object classes, which are used to create SQL queries and send the prepared statement to
the database when a connection is secured covering the full integration.

We covered the major integration tests using Postman.
Integration tests executed are:

e Retrieve all Companies

e Add New Company

e Update Existing Company
e Delete Company by ID

58

2.5.2.1 Get all Companies

Get all Companies test covers the fact the user can retrieve data from the hosted database.

URL

Metho
d

Header

Value

http://localhost:8080/CompanyUnite/JAXRS/project/c
ompanies

GET

Conten
t-Type

application/js
on

lease contact

DeliveryService?@fakemsil.com”,

Please contact MobilsCatering@fakemazil.com”,

"Llaoki'lg to provide delivery service for companies in the south Dublin (ity Centre area. Please contact CompanyB@fakemail.com”,
03n

to link up with a delivery service to deliver our products to our customers. Please contact GASTROFAKEgfakemail.com”,

Normal @ MNoenvironment~
E htip:ilocalhost:8080/CompanyUnite/JAXRS/project/companies
Content-Type application/json fx) Manage presets
He
Send Preview Add to collection
Body B 0 3 ser2ms
Pretty = Raw | Preview - EF JSON | XML
[
{
"address": "santry®,
b 1
iveryService3",
d in providing delivery service for other businesses in the dublin area. P
"postcode™:
"sector”: "
s
{ N
"address": "Dublin city centre”,
"companyId": 5,
"companyNam “MobileCatering”
Udetailz": e catering service, looking to provide catering service on business grounds.
"postcode”; "d4",
A "sector": "Catering”
i
{ . .
"address": "Crumlin Dublin",
" 6
H "‘Ec'nsan‘;B"J
2,
Delivery"™
%,
"address": "Dublin City Centre",
"companyL 8,
"companyNami “Tom's Wings Food Truck",
“details” d Truck looking for open space, in Dublin City Centre. Please contact Tomwings@fakemzil.com™,
"postcode -
X "sector": "Husp:ﬁ:ality"
I
{ . :
"address": "glasnevin",
"companyL 9,
"companyNams "Cafe Truck",
"details" eed to rent space, in a busy area. Please contact CafeTruck@fakemail.com",
"postcode 11",
i "sector”: "Hospitality”
iel
{
"address": "London™,
"companyId”: 18,
"c : "GASTROFAKE",
"postcode Wlaeap”,
. "sector": "Hospitality"
i
{
"London™,
“DeliverServiceFake ",
ooking to provide a delivery service in the London area. Please contact DeliverServiceFake@fakemail.com”,
W1l@AD"
i "sector”: "Delivery™ ’
; b

59

est Cafe On Wheels”

H J‘Greek Food Truck",
ooking to rent space’in the city

stcode’ .
*sector”: “Hospitality”

J‘Bakar\; Truck",
to rent space

"postcode
"sector”:

"Hospitality™

ain Street”,
15

“Easy

casyDrinks",
ooking to

HuspiiJ:ality"

from 8am - 2pm.

Please

space with high F:o%fal'_ to rent. Please contact cafewhesls@fakemail.com”,

centre. Please contact GrEEkTrlUck@fakemail.com",

contact bakery@fakemail.com”,

team with a delivery service who can manage & high number of deliveries throughout the evening. Please contact easyDrinks@fakemail.com”,

2.5.2.1 Add New Company

Add New Company integration test covers the overall integration of java classes and the
database while inserting new company data. Using details below, along with a json request
body shown in the screenshot, we confirmed company data is added to the system.

URL

Metho
d

Header

Value

http://localhost:8080/CompanyUnite/JAXRS/project/c

ompanies

POST Conten

t-Type

application/js
on

htip:/flocalhost 8080/Company Unite/lJAXRS/projecticompanies

Manage presets

POST

ous social distancing for up to 15 people. Please contact me at PublHealthFit@fakeemail.conl’,

Content-Type application/ison <
form-data | euvnw-form-uriencoded | raw | JSON =

H
ES0l Freview | Addio collection

"companyId":
':comp§n "

Loo
it

postcode”:
"Hosp

"sector”:

" "Personal Public Health Fitness”
g to use open space that al

ancing for up to 15 people. Please

contact me at PublHealthFitgfakeemail

v | @URLparams | @ Headers (1)

]

60

2.5.2.1 Update Existing Company

Update Existing Company integration test covers the overall integration of java classes and
the database while updating existing company data. Using details below, along with a json
request body shown in the screenshot, we confirmed company data is updated on the

system.
URL Method | Header Value
http://localhost:8080/CompanyUnite/JAXRS/projec | PUT Content- | application/
t/companies/{companyld} Type json

hitp: /flocainost:8080/Company Unite/JAXRS/projecticompanies/ss

Content-Type applicationfson o Manage presets

form-data

-ww-form-uriencoded | raw | JSON

ESVE Preview

Add to collection

- 2pm. Please contact bakery@fakemail.com”,

ery service who can manage a high number of

istancing for up to 15 people. Please contact

2.5.2.3 Delete Company by ID

deliveries

throughout the evening. Please cont

PUT

me st PublHeslthFitgfakeemsil.com”,

G URLparams || @ Headers (1)

=3

act easyDrinks@fakenail.com”,

Delete Company by ID integration test covers the overall integration of java classes and the
database while allowing for customer data to be removed when requested. As seen no
request body is required for this test, just the details provided below.

URL

Method | Header Value
http://localhost:8080/CompanyUnite/JAXRS/proj | DELETE Content- | application/js
ect/companies/{companyld} Type

61

hitp:/localnost:8080/Company Unite/JAXRS/projectcompanies/ss

Manage presets

formdata | x-www-form-uriencoded | raw | Test—

IEZ| Frevev | Adiocoliecton

"Grafton Street”,

ek Food Truck”,
ing to rent space in the city centre. Please contact GrEEkTrUck@fakemail.com™,

space from Bam - 2pm. Please contact bakery@fakemail.com”,

yDrink:

3 main street”,

Personal Public Health Fitmess”,
ing to use open space that

2.5.3 End User Testing

S
to team with a delivery service who can manage a high number of deliveries throughout the

evening. Please

DELETE v| | @ URLparams | @ Headers (0)

allows social distancing for up to 15 people. Please contact me at PublHealthFit@fakeemail.com”,

[~

contact easyDrinks@fakemail.com",

As mentioned in the brief description, end user is extremely important stage to sign off. As it

shows the application is working as expected.

It provides us with what the customer experiences, not only is it an important stage, but it’s

also very important we understand how the customer uses the application.

If we don’t know how the end user will interact with the application, our test cases are not
valid. After reviewing how 5 different people use the application. The test cases reflect how

the end user will interact with the application.

Test | Test Case | Steps Expected | Actual Stat
Case | Objective Result Result us
ID
TC_O | Login 1. Goto url: Login Logged in | Pass
1 Successfu | https://testprojectunite.herokuapp.com/ Successfu | Successfu
lly 2.Add username - johnsmith Iy lly
3.Add password - johnsmith123
4.Click login
TC_O | Allfields 1. Go tourl: Fields Top blank | Pass
2 Required | https://testprojectunite.herokuapp.com/register | display field
for 2. Leave each field blank at a given time warning displays
Registrati e First Name if left warning
on e lLast Name blank
e Username
e Password
e Phone

62

https://testprojectunite.herokuapp.com/
https://testprojectunite.herokuapp.com/register

e Email
8. Click Save
TC_O | Allfields 1. Gotourl: Fields Top blank | Pass
3 Required | https://testprojectunite.herokuapp.com/new display field
for 2. Leave each field blank at a given time warning displays
entering e Company Name if left warning
company e Address blank
details e Postcode
e Sector
e Details
7. Click Save
TC_O | Edit 1. Gotourl: Company | Company | Pass
4 Company | https://testprojectunite.herokuapp.com/edit?co details details
mpanyld=13 display displayed
2. Edit Company Name updated the new
3. Edit Address informati | edited
4. Edit Postcode on when | informati
5. Edit Sector saved on
6. Edit Details
7. Click Save
TC_O | Delete 1. Gotourl: Company | Company | Pass
5 Company | https://testprojectunite.herokuapp.com/list is deleted | removed
2. Go to the last Company on the list from the | from the
3. Click Delete platform | system
and the complete
database | ly
TC_0 | Search 1. Gotourl: Compani | Expected | Pass
6 Postcode | https://testprojectunite.herokuapp.com/company | es within | businesse
Search.jsp matching | s
2. Search for an available postcode on the list of postcode | returned
companies should when
display matching
on the postcode
applicatio | was
n entered
TC_0 | Search 1. Gotourl: Compani | Expected | Pass
7 Sector https://testprojectunite.herokuapp.com/company | es within | businesse
Search.jsp the same | s
2. Search for an available sector on the list of sector returned
companies should when
display matching
on the sector
applicatio | was
n entered

TC_01 Results

End user logged in successfully as we are brought to the list of businesses. We can also
see the features such as Add New Company, Edit and Delete which are provided to only
admins after a successful login.

63

https://testprojectunite.herokuapp.com/new
https://testprojectunite.herokuapp.com/edit?companyId=13
https://testprojectunite.herokuapp.com/edit?companyId=13
https://testprojectunite.herokuapp.com/list
https://testprojectunite.herokuapp.com/companySearch.jsp
https://testprojectunite.herokuapp.com/companySearch.jsp
https://testprojectunite.herokuapp.com/companySearch.jsp
https://testprojectunite.herokuapp.com/companySearch.jsp

Register Company

Add New Company

DeliveryService2 santry Delivery Interested in providing delivery service for other businesses in Edit / Delete
the dublin area. Please contact DeliveryService2@fakemail.com

5 MobileCatering Dublin d4 Catering Mobile catering service, looking to provide catering service on Edit / Delete
ity business grounds. Please contact MobileCatering@fakemail.com
centre

6 CompanyB Crumlin D2 Delivery Looking to provide delivery service for companies in the south Edit / Delete
Dublin Dublin City Centre area. Please contact

CompanyB@fakemail.com

8 Tom'sWingsFood Dublin d2 Hospitality ~ Food Truck looking for open space, in Dublin City Centre. Please Edit / Delete
Truck City contact Tomwings@fakemail.com
Centre
9 Cafe Truck glasnevin D11 Hospitality ~ Need to rent space, in a busy area. Please contact Edit / Delete

CafeTruck@fakemail.com

10 GASTROFAKE london SW100AD Hospitality — Need to link up with a delivery service to deliver our productsto Edit / Delete
our customers. Please contact GASTROFAKE®@fakemail.com

11 DeliverServiceFake London ~ SW110AD Delivery Looking to provide a delivery service in the London area, Please Edit / Delete
contact DeliverServiceFake@fakemail.com

TC_02 Results

Shown in the screenshot below we can see the warning “Please fill out this field” where
we left Last Name blank and tried to save all the other details. We ran this test on each
field to ensure that all fields are required when writing to the database.

Register new administrator account
First Name
Toby

Last Name
Username Please fill out this field.

Toby@123

Password

adfafa

Phone

2325522

Email

Toby@ 123@fakemail.com

Save

TC_03 Results

64

We ran this test on all company fields, leaving one field blank at a time. Shown below in

the screenshot we can see the warning “Please fill out this field” when Address field is
left blank as the admin tries to save all other details.

Add New Company

Company Name

Mobile Barbers

Address

Postcode ‘ Please fill out this field.

D3
Sector
Hairdressing
Details

Need open space to cut hair

Save

TC_04 Results

If you look at the screenshot shown in TC_01, we update the company with ID 1 which
has a Company Name of “DeliveryService2”. Presented in the screenshot below, we
update the Company Name to be “DeliveryService3”.

In the second screenshot below we now see the name of the company with ID1 has a
Company Name of “DeliveryService3”.

This shows a successful update, we ran this edit test on all fields available, each field
updated as expected.

65

Edit New Company

Company Name

DeliveryService%l

Address

santry

Postcode

d11

Sector

Delivery

Details

Interested in providing delivery service for other businesses in the dublin area. Please contact Delive

Save

Register Company

Add New Company

DeliveryService3 santry Delivery Interested in providing delivery service for other businesses in Edit / Delete
the dublin area. Please contact DeliveryService2@fakemail.com

5 MobileCatering Dublin d4 Catering Mobile catering service, looking to provide catering service on Edit / Delete
city business grounds. Please contact MobileCatering@fakemail.com
centre

6 CompanyB Crumlin D2 Delivery Looking to provide delivery service for companies in the south Edit / Delete
Dublin Dublin City Centre area. Please contact

CompanyB@fakemail.com

8 Tom's Wings Food ~ Dublin d2 Hospitality ~ Food Truck looking for open space, in Dublin City Centre. Please Edit / Delete
Truck City contact Tomwings@fakemail.com
Centre

TC_05 Results

This test is very important, if the customer no longer wants their details on the system,
they should be removed immediately.

Shown in the screenshot below we delete company with ID number 45.

e Company Name — Pizza Food Truck

66

e Address - Meath
e Postcode —M11
e Sector - Food

e Additional Information — Need to rent open space

RN L i e

4 Bakery Truck Phisboro D1 Hospitality ~ Need to rent space from 8am - 2pm. Please contact Edit / Delete
bakery@fakemail.com

5 EasyDrinks Main D1 Hospitality ~ Looking to team with a delivery service who can manage a high Edit / Delete
Street number of deliveries throughout the evening. Please contact
easyDrinks@fakemail.com

45 Pizza Food Truck Meath M11 Food Need to rent open space Edit

Available in the screenshot below is an updated list after the delete is made.

We can see there is no longer a company with an ID of 45 or any of the other details
provided in the bullet points.

This shows the test case successfully passed the end user testing.

13 Greek Food Truck Grafton D2 Hospitality Looking to rent space in the city centre. Please contact edit / Delete
Street GreEEkTrUck@fakemail.com
14 Bakery Truck Phisboro D1 Hospitality =~ Need to rent space from 8am - 2pm. Please contact Edit / Delete

bakery@fakemail.com

15 EasyDrinks Main D1 Hospitality ~ Looking to team with a delivery service who can manage a high Edit / Delete
Street number of deliveries throughout the evening. Please contact
easyDrinks@fakemail.com

TC_06 Results

Searching will be used a lot by the end users, allowing them to get the details they’re
looking for a lot quicker.

Some businesses may not want to deal with others outside of their town or city.
Providing the end users to search by surrounding postcodes.

Seen in the screenshot, we entered in postcode D1, all the businesses displayed that are
in D1, along with D11 and D13.

67

D1

DeliveryService3 santry Delivery Interested in providing delivery service for other businesses in the dublin area. Please contact
DeliveryService2@fakemail.com

Cafe Truck glasnevin D11 Hospitality ~ Need to rent space, in a busy area. Please contact CafeTruck@fakemail.com

Best Cafe On Howth D13 Hospitality Need space with high footfall to rent. Please contact cafewheels@fakemail.com

Wheels

Bakery Truck Phisboro D1 Hospitality Need to rent space from 8am - 2pm. Please contact bakery@fakemail.com

EasyDrinks Main D1 Hospitality Looking to team with a delivery service who can manage a high number of deliveries
Street throughout the evening. Please contact easyDrinks@fakemail.com

TC_07 Results

Another search option is the sector the customer is interested in. Seen in the screenshot
below Delivery is entered, showing businesses in this sector only.

Delivery|

DeliveryService3 ~ santry Delivery Interested in providing delivery service for other businesses in the dublin area. Please
contact DeliveryService2@fakemail.com

Companyg Crumlin D2 Delivery Looking to provide delivery service for companies in the south Dublin City Centre area
Dublin Please contact CompanyB@fakemail.com
DeliverserviceFake London SW110AD Delivery Looking to provide a delivery service in the London area. Please contact

DeliverServiceFake@fakemail. com

2.6. Evaluation
Evaluating the system was reached by executing different techniques of testing.

Executing unit, integration, and end user tests, prove to be a wide range of coverage
when evaluating the system. Shown in the screenshots above all unit tests were
executed successfully, covering isolated parts of the code.

Integration tests provided us with more comfortability in our evaluation by covering
interaction over multiple Java classes, along with generating SQL queries and connecting
to the database. Postman was very useful to test all of the integration as a whole
ensuring the functionality is working as expected.

68

End user tests were extremely useful, by replicating how the customer will interact with
the application. We could be sure the application behaves as expected. Customer will
see no major issues as end user tests covered all major functionalities.

3.0 Conclusions
We cover advantages and disadvantages, along with strengths and limitations to the project.

Advantages of companiesUnite project is providing a platform for people who wish to adapt
and survive the current restrictions. Encouraging building new business relationships
outside of your organisation. Easy to use web application, with the ability to use API for
faster interaction with the database. Some advantages personally were the skills | gained.
For example, getting stronger at Java. Completing difficult tasks using JSP files. Deploying a
full web application on Heroku while using a deployed version of MySQL. Implementing
college curriculum into my project. Getting exposure to how full end to end applications are
integrated. Using Bootstrap for designing the GUI. Creating a project that could actually help
people in the future. Getting familiar with new tools such as Postman and putting them into
practice. Providing potential customers with the opportunity to adapt to the issues forced
on us due to the pandemic.

Disadvantages of the companiesUnite project little or no resources, hosted on a free dyno
type on Heroku which sleeps when their inactivity for 30 minutes. Unable to import
JavaScript or CSS file like | wanted into the JSP file. This was the biggest disadvantage as |
found it out later in the project life cycle. Seen in the screenshot below there is a bug which
| was unable to resolve. Forced to use HTML required tags to have some sort of form
validation. | really wanted to integrate JavaScript into this project. Issue | faced trying to
design the application using CSS and Javascript, | would receive this Failed to load resource:
the server responded with a status of 404 () by trying a simple import like <link
rel="stylesheet" href="css/style.css" type="text/css"/>

Strengths of the companiesUnite project, real time updates reflected on the application. JSP
files work well with Servlets allowing for smooth communication. Server-side code was very
useful for the search feature. Project is hosted on Heroku, providing availability and

69

security. Project was created to help people, which might entice others to get behind and
support.

Limitations are the fact we have a cheap set up when it comes to instances on the cloud as
there is no money invested. Minimum security set up, just the basics provided by Heroku.

4.0 Further Development or Research
Given the opportunity arose and the benefits of additional time for the project. I’d may have
considered a newer framework such as Angular or REACT for the frontend.

MySQL for the database done the job it needed, integrating the database into the cloud,
wasn’t as tough as | thought it would be originally.

MongoDB is being used a lot in the modern applications, a lot of the big companies uses it.
Given | decide to continue the project, I'll consider using different frameworks.

At the beginning of the project, | wasn’t familiar with a lot of frameworks and what would
best suit me. Deciding to go with what | knew some companies use and languages thought
by the college.

For example, using the whole API option, is widely used in the insurance industry. This was
covered in the Web Services APl module. My goal was to use what | learnt from the college.

Provided there were additional resources, | would look to host the applications on more
secure machines. Ensure better performance once the funding was available.

Direction | would like to take the project would be including a lot of new features to
enhance the application. Get feedback from other people, see if they have any interesting
ideas.

| would go with the new frameworks out there; I'd have to spend some time getting familiar
with them.

Ensure | choose the right cloud platform for this project, get the best security, performance,
and availability my resources allow.

5.0 References

Cleardb.com. 2021. ClearDB Developer Center - Welcome. [online] Available at:
<https://www.cleardb.com/developers/platform/overview> [Accessed 27 April 2021].

Tutorialspoint.com. 2021. JSP Titorial - Tutorialspoint. [online] Available at:
<https://www.tutorialspoint.com/jsp/index.htm> [Accessed 12 February 2021].

70

Tyson, M., 2019. What is JSP? Introduction to JavaServer Pages. [online] InfoWorld. Available at:
<https://www.infoworld.com/article/3336161/what-is-jsp-introduction-to-javaserver-pages.htm1>
[Accessed 10 February 2021].

Tutorialspoint.com. 2021. JSP - Standard Tag Library (JSTL) Tutorial - Tutorialspoint. [online]
Available at: <https://www.tutorialspoint.com/jsp/jsp_standard tag library.htm> [Accessed 18
February 2021].

JournalDev. 2013. JSTL Tutorial JSSTL Tags Example - JournalDev. [online] Available at:
<https://www_journaldev.com/2090/jstl-tutorial-jstl-tags-example> [Accessed 22 February 2021].

Dev.mysql.com. 2021. MySQL .: MySQL Connector/J8.0 Developer Guide :: 7.1 Connecting to MySQL
Using the JDBC DriverManager Interface. [online] Available at:
<https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-usagenotes-connect-
drivermanager.htmI> [Accessed 17 January 2021].

https://mymoodle.ncirlie/pluginfile.php/127662/mod resource/content/0/Week5.RESTful%20We
b%20Services%2011%20JAX-RS%20in%20a%20nutshell.pdf [Accessed 8 December 2020].

Tutorialspoint.com. 202 1. JUnit - Plug with Fclipse - Tutorialspoint. [online] Available at:
<https://www.tutorialspoint.com/junit/junit plug with eclipse.htm> [Accessed 2 April 2021].

Youtube.com. 2017. SSP 6 CRUD - Search Data. [online] Available at:
<https://www.youtube.com/watch?v=W4D1TVGd7UA> [Accessed 03 March 2021].

6.0 Appendices

This section should contain information that is supplementary to the main body of the report.

6.1. Project Plan

National
College o
Ireland

71

https://mymoodle.ncirl.ie/pluginfile.php/127662/mod_resource/content/0/Week5.RESTful%20Web%20Services%20III%20JAX-RS%20in%20a%20nutshell.pdf
https://mymoodle.ncirl.ie/pluginfile.php/127662/mod_resource/content/0/Week5.RESTful%20Web%20Services%20III%20JAX-RS%20in%20a%20nutshell.pdf

National College of Ireland

Project Proposal
Companies Unite

01/11/2020

BSHCE
Software Development
2020/2021
Aaron Reilly
x17124719
x17124719@student.ncirl.ie

Contents

1.0 (0] o 1=l A1V TP PP PP T PPRTOPRROPI 73
2.0 2% Lol €= 01U 1o o SRS 73
3.0 Lol Y] or= | I Y o] o] o =Tl o F PR USPRR 73
4.0 [o [=Tot S ad - [[SRR 74

5.0 =Tl a1 1o B D L=] = L1 KRN 76
6.0 V] [F) 4 o] o N 76

7.0 Objectives

The goal for this project is to build an API system that helps companies stay open
throughout the pandemic. The application will be built in java while stored in the cloud. This
app will provide companies the visibility to other interested companies. On this app they
can find companies that best match their needs and that are more suitable.

1. Provide companies a platform where they can unite

2. Increase company interaction by providing a stable system

3. Enhance other companies understanding on the help available
4. Implement a way for companies to quickly find help they need
5. Encourage company to company engagement

6. Create a teamwork environment amongst competitors

7. Platform to be stored in the cloud

8.0 Background

During the pandemic, many companies had to shut down. In some cases, they had to shut
down completely as they could not afford to fund through the pandemic. Many companies
had the ability to serve outside and keep social distancing. We have seen cases where if a
place did not serve food they had to completely shut down. This happened on more than
one occasion also, seeing many people lose jobs and family businesses. Companies Unite is
an application which will help those companies, allowing them to react dynamically to the
situation. There are companies out there that can help others and provide a service,
whether that is providing food to a local pub or even an open space to a restaurant if the
only option is to serve outside. On this application companies can provide information on
services they provide along with help they need. Some companies might want to just help
maybe they have a big open area they could rent to other companies.

9.0 Technical Approach
To provide customers with a stable and effective platform the approach | am looking to take
for this project is an APl system to transfer data. This will be developed in the programming

73

language java, requests and responses used for the transferring of data will be in JSON
format. Data to be stored in MySQL database where the application will query that stored
data. For the frontend | am planning on outputting to a form where | will use html and
JavaScript. This platform will be stored in the cloud as this module is in semester 2.

10.0 Project Plan

Task
ﬂ Mode = Task Mame » Duration » Start ~ Finish -
EH -y Milestones 152 days Thu15/10/20 Fri 14/05/21
7 Reflective Journal - 13 days Thu 15/10/20 Mon 02/11/20
October
7 Reflective Journal - 22 days Sun 01/11/20 Mon 30/11/20
Movember
7 Reflective Journal - 21 days Tue 01/12/20 Tue 29/12/20
December
7 Project Prototype 2 days Thu 17/12/20 Fri 18/12/20
b Mid Point 1day Tue 22/12/20 Tue 22/12/20
Presentation
b Final Project 1day Sun 09/05/21 Sun 09/05/21
Documentation
b Final Project 1day Sun 16/05/21 Sun 16/05/21
Presentation
EH Planning 17 days Thu 15/10/20 Sat07/11/20
b Project Pitch 3 days Thu 15/10/20 Sun 18/10/20
b Project Proposal & days Mon 02/11/20 Sat07/11/20
Document
EH Analysis 6 days Fri13/11/20 Fri20/11/20
7 Research Requireme 2 days Fri 13/11/20 Mon 16/11/20
b Implement & days Fri 13/11/20 Fri 20/11/20
Requirement
Documents
3 Review 1day Sat 21/11/20 Sat21/11/20
Requirements
EH Design 10 days? Mon 23/11/20 Sat05/12/20
7 API Design & days Sun 22/11/20 Fri 27/11/20
2 Database Design 3 days Sat 28/11/20 Tue 01/12/20
3 User Interface 4 days Wed 02/12/20 Sat05/12/20

Design

74

#+
#+
-y
»
*
#*
EH -
*
»
Qtr 4, 2020

Oct

Prototype

Implementation

Final Project

Implementation

Testing
Unit Testing

Integration Testing

Functional Testing

Deployment

21 days
B89 days

17 days
6 days
7 days
5days
35 days

Consider Platform (A 11 days
Deploy to suitable of 3 days

Qtr 1, 2021

Jan

Fri 20/11/20

Tue 29/12/20

Thu 01/04/21
Thu 01/04/21
Sat 10/04/21
Mon 19/04/21
Wed 17/03/21
Wed 17/03/21
Sat01/05/21

Sun 20/12/20

Fri 30/04/21

Fri 23/04/21
Thu 08/04/21
Sat17/04/21
Fri 23/04/21
Tue 04/05/21
Wed 31/03/21
Tue 04/05/21

Qtr 2, 2021

Apr

May

75

11.0 Technical Details

Approach for the frontend is to use the following
e JavaScript — provide feedback to the customer after an action has been taken.
e HTML —Structure the Ul here we will create the form and login page
e (SS — Design the Ul using CSS to improve on the Ul
Backend programming language
e Java - Core programming language
Database Management System
e MySQL - Using this we can store the data and make modifications to the data
Storage

e Cloud Services — Heroku is the provider used to host the project.

12.0 Evaluation

This project will use mock data, where customers can be replicated with fake data. This data
will contain information about help they need. Junit will be used for unit testing running
tests against the java code. Integration testing, | would like to follow the BDD (Behaviour
Driven Development) process using cucumber here | will create feature files explaining the
behaviour with the integration code running in the background. Functional testing will
happen when the Ul is available, this may be a manual process, if time allows, | would like to
automate those tests with selenium.

76

12.1. Ethics Approval Application (only if required)
12.2. Reflective Journals

Reflective Journal (October)
e Student name: Aaron Reilly

e Programme: BSHCSD4 — Software Development Stream

e Month: October 2020

My Achievements
For the month of October my achievements were successfully submitting my project proposal. Also, |
have made a good start on my CA’s for Mobile Applications, Strategic Management & Al modules.

The main issues | faced

The main issue | had this month was getting familiar to Teams and doing everything online. This is
my first semester online, its very new to me. At the beginning, | was missing the start of some
classes just because | was not sure how to get there. Lecturers use Teams differently, setting up
groups and working within a team on Teams.

My Reflection

As | have little or no time at all, | decided to log into my account early before work and play around
with Teams just to become more comfortable with it. Now | have a really good understanding on
how to use teams, its no longer an issue. Only issue | have now is my mic won’t work which means |
can talk to others | need to type everything.

Intended Changes

Now that | have been logging on earlier than before, I’'m using that time on CA’s to take pressure off
later. Coming into November | plan to focus more on Data Application Development & API modules.
| plan to resolve my mic issue this week.

Reflective Journal (November)
e Student name: Aaron Reilly

e Programme: BSHCSD4 — Software Development Stream
e Month: November 2020

My Achievements
For the month of November my achievements were successfully submitting CA’s for Mobile
Applications, Strategic Management, APl and Data Application Development.

77

The main issues | faced

The main issue | had this month was on my CA1 for Data Application Development. | found it very
difficult to find datasets online that | could use for the CA. The delay put on a lot of pressure right
before submission. | never had deal with data in that way, which left me unsure if the data would be
enough for the CA. Other difficulties were the fact | never used R before. Also, the documentation
was a lot. | never had used IEEE format before and its referencing. It would have been good to go
over some examples.

My Reflection

| could have managed my time better and been more decisive in choosing what datasets to work
with for the Data Application Development CA. Then | could have spent more time on the more
interesting parts of the CA, rather than rushing at the end.

Intended Changes
CA2 is similar but with python, | plan to decide on the dataset a lot earlier and get an early start on
the CA. Hopefully this will take off more pressure around the time of submission.

Reflective Journal (December)
e Student name: Aaron Reilly

e Programme: BSHCSD4 — Software Development Stream

e Month: December 2020

My Achievements

Achievements for December were successfully submitting CA’s for Al, Mobile Applications, Data
Application Development. My main achievement for this month was delivering the mid-point
presentation. As a lot was needed to get done for this, given the deliverables for other modules.

The main issues | faced

The main issues | had this month was delivering my CA for Data Application Development. The main
issue | had with Data Application Development was writing python programs, having no practical
experience with that programming language.

My Reflection
| feel we could have covered more practical work during the semester. Maybe | could have spent
more time on Python courses in my own time before starting the semester.

78

Intended Changes
Be more prepared before starting a semester, get a good understanding on what will be delivered in
each module.

Reflective Journal (January)
e Student name: Aaron Reilly

e Programme: BSHCSD4 — Software Development Stream

e Month: January 2020

My Achievements

For the month of January my achievement was successfully migrating my codebase from NetBeans
to Eclipse. Being able to connect the application to a MySQL database. The program can now ADD,
UPDATE, DELETE and RETRIEVE data from a MySQL database.

The main issues | faced.

The main issue | faced this month was trying to connect my project using NetBeans to a MySQL
database. Having searched for examples on the web, looking on stack overflow and other sites.
Unfortunately, | couldn’t get it to work. Given | have more experience with Eclipse | decided to
migrate my project to Eclipse.

My Reflection

Making the decision to move to Eclipse proved to be the right decision as | can now interact with a
MySQL database. Maybe | shouldn’t have waited to migrate at the end of the month. | believe |
spent too much time trying to stay with NetBeans rather than using Eclipse.

Intended Changes
Spend more time at the beginning of the project researching and deciding on what tools | should use
throughout the project.

Reflective Journal (February)
e Student name: Aaron Reilly

e Programme: BSHCSD4 — Software Development Stream

e Month: February 2020

My Achievements
For the month of February my achievement was getting more familiar with eclipse. Have some Ul
available for my project using JSP and Servlets. My main achievement was being able to read data

79

from the database and displaying it on the Ul. Setting this up took a lot of time and effort which is
why | have this as my main achievement. | would have liked to spend more time on the code or
designing the UL.

The main issues | faced.

The main issue faced for the month of February was trying find a way to use both my machine-to-
machine code along with Ul implementation while interacting with MySQL database all in the same
project.

My Reflection

Looking at how long | spent trying to get everything to work together, probably should have picked
easier technologies. JAX-RS we covered in our modules which was fine but assuming we would be
covering the Ul and how they all link together was what | spent a lot of time on.

Intended Changes

Know more about the technologies | decide to use for projects, | knew | would be interested in these
but was not aware of how difficult I'd find setting up the project or finding the necessary jar files in
order to make the project work.

Reflective Journal (March)
e Student name: Aaron Reilly

e Programme: BSHCSD4 — Software Development Stream

e Month: March 2020

My Achievements

For the month of March my achievements were successfully submitted Usability Design and
Distributed Systems CA’s. Distributed System RPC CA was difficult but, in the end, | was happy with
what | got done. Even though it was difficult | found the assignment very interesting.

The main issues | faced.
The main issue faced for the month of March was not getting to spend as much time on my project
as | would have liked. We had a lot of CA’s due for this month, which took up most of my time.

My Reflection
Overall, I'm happy with my performance this month. Completing all assignments in time, could have
managed my time better and worked on my project more.

80

Intended Changes
Better time management, even though I’'m happy with what | got done this month. | feel with better
time management | could have spent more time on my project.

Reflective Journal (April)
e Student name: Aaron Reilly

e Programme: BSHCSD4 — Software Development Stream

e Month: April 2020

My Achievements

For the month of April my achievements were successfully submitting Cloud Computing CA’s.
Working on a ruby on rails project was interesting and new to me, never used it before. Deploying
the project on Heroku proved to be challenging. Other achievements were adding search and CRUD
functionalities to my project.

The main issues | faced.

The main issue faced for the month of April was creating my own gem for my ruby on rails cloud
computing CA. Unfortunately, | was unable to get the functionality working when it was deployed to
Heroku. | did present the functionality on my local environment.

My Reflection
Would have liked to spend more time on my project. Happy, with what | achieved given the time
spent on the project this month.

Intended Changes
Spend all my time on the project now that all the modules are completed.

12.3. Other materials used

12.3.1 Think Aloud
Think aloud is a very popular technique it’s one of the techniques we covered in this semester for
our usability design module.

Through this technique we can get a full understanding on the end users’ interaction with our web
application.

Task Name / Number Edit Company Information / TC_04
Task Goal Edit existing company details
Start & End Times 15:34 - 15:37

81

Expected / Ideal Behaviour

The end user will successfully edit a company’s detail

Actual Behaviour

Company details updated successfully

Notes / Comments

End user took a bit of time to decide what they should update

Anything additional

Should have suggested an update before executing the technique

82

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.3.1 Java
	1.3.2 JSON
	1.3.3 ClearDB MySQL
	1.3.4 JSP
	1.3.7 Heroku
	1.3.8 Eclipse
	1.3.9 GitHub

	1.4. Structure
	1.4.1 System
	1.4.2 Conclusion
	1.4.3 Further Development or Research
	1.4.4 References

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2. Requirement 1 <Add Company Details>
	2.1.1.3. Description & Priority
	2.1.1.4. Use Case
	2.1.1.5. Requirement 2 <Edit Company Details>
	2.1.1.6. Description & Priority
	2.1.1.7. Use Case
	2.1.1.8. Requirement 3 <Delete Company Details>
	2.1.1.9. Description & Priority
	2.1.1.10. Use Case
	2.1.1.11. Requirement 4 <Search Companies>
	2.1.1.12. Description & Priority
	2.1.1.13. Use Case
	2.1.1.14. Requirement 5 <User Registration>
	2.1.1.15. Description & Priority
	2.1.1.16. Use Case
	2.1.2. Data Requirements
	2.1.2.1 ClearDB MySQL
	2.1.2.2 JSON

	2.1.3. User Requirements
	2.1.4. Environmental Requirements
	2.1.4.1 Heroku
	2.1.4.2 ClearDB MySQL
	2.1.4.3 Eclipse
	2.1.4.4 Postman

	2.1.5. Usability Requirements
	2.1.5.1 Performance
	2.1.5.2 Accessibility

	2.2. Design & Architecture
	2.3. Implementation
	2.3.1 Login Controller
	2.3.2 Modify Company List Controller
	2.3.3 Register Account Controller
	2.3.4 Login JSP
	2.3.5 Modify Company List JSP
	2.3.6 Company Search JSP
	2.3.7 Company Form JSP
	2.3.8 Accounts Register
	2.3.9 Web XML
	2.3.10 Company Model Class
	2.3.11 Companay Service
	2.3.12 Company Resource
	2.3.13 Account Model
	2.3.15 Database Class
	2.3.16 Update Company DAO
	2.3.17 Account Details DAO
	2.3.18 Hibernate.cfg.xml

	2.4. Graphical User Interface (GUI)
	2.4.1 Login Page
	2.4.2 Register Company
	2.4.3 Add New Company
	2.4.4 Edit New Company
	2.4.4 Register New Administrator Account
	2.4.5 Search for Businesses
	2.4.6 About Page

	2.5. Testing
	2.5.1 Unit Tests
	2.5.2 Integration
	2.5.2.1 Get all Companies
	2.5.2.1 Add New Company
	2.5.2.1 Update Existing Company
	2.5.2.3 Delete Company by ID

	2.5.3 End User Testing

	2.6. Evaluation

	3.0 Conclusions
	4.0 Further Development or Research
	5.0 References
	6.0 Appendices
	6.1. Project Plan

	7.0 Objectives
	8.0 Background
	9.0 Technical Approach
	10.0 Project Plan
	11.0 Technical Details
	12.0 Evaluation
	12.1. Ethics Approval Application (only if required)
	12.2. Reflective Journals
	Reflective Journal (October)
	My Achievements
	The main issues I faced
	My Reflection
	Intended Changes

	Reflective Journal (November)
	My Achievements
	The main issues I faced
	My Reflection
	Intended Changes

	Reflective Journal (December)
	My Achievements
	The main issues I faced
	My Reflection
	Intended Changes

	Reflective Journal (January)
	My Achievements
	The main issues I faced.
	My Reflection
	Intended Changes

	Reflective Journal (February)
	My Achievements
	The main issues I faced.
	My Reflection
	Intended Changes

	Reflective Journal (March)
	My Achievements
	The main issues I faced.
	My Reflection
	Intended Changes

	Reflective Journal (April)
	My Achievements
	The main issues I faced.
	My Reflection
	Intended Changes

	12.3. Other materials used
	12.3.1 Think Aloud

