

1

Disclaimer
December 2020/May 2021

This technical report was developed by Lucian Nechita as part of the final project assessment for BSc (Hons)
in Computing (Software Development Stream) at National College of Ireland. For further information contact
National College of Ireland https://www.ncirl.ie/

The information and views set out in this report are those of the author(s) and do not necessarily reflect the
official opinion of the National College of Ireland. Neither the National College of Ireland institution and bodies
nor any person acting on their behalf may be held responsible for the use which may be made of the
information contained therein.

2

Contents
1. Objective 4

2. Opportunity 4

3. Solution 4

Introduction 5

4. Project Background 5

5. Project Aims 5

6. Project technologies 5

System 7

1. Requirements 7

a. Functional Requirements 7

b. Use Case Modelling 8

c. Data Requirements 19

d. Data Conversion 20

e. Environmental Requirements 21

f. Non-functional Requirements 21

g. Usability Requirements 21

2. Design & Architecture 22

a. System Architecture Back-End 22

b. System Implementation 23

c. User Interface 23

3. Testing 28

4. Evaluation 30

5. Conclusion 30

6. Further Development and Research 31

References 32

Appendices 34

1. Project proposal 34

2. Reflective Journal October 37

3. Reflective Journal November 38

4. Reflective Journal December 39

5. Reflective Journal January 40

6. Reflective Journal February 41

7. Reflective Journal March 42

8. Reflective Journal April 43

9. Showcase Poster 44

10. Attachments 45

3

Glossary

CI/CD In software development CI stands for continuous integration and CD for continuous
development. It is a software development practice where team members create and
integrate their code frequently verified by an automation build including tests to
detect errors and updates production environment code if no errors were detected.
(Stolberg, 2009)

Production
Environment

Production environment is a way for software developers to describe the setting
where computer code is executed and put into operation with the goal of being used
by end users. (Technopedia, n.d.)

End User/s An end user is a person for which a device, software or system was designed to interact
with. In simple terms it is the person who uses the software or hardware. (TechTerms,
n.d.)

Software
development
pipeline

A software development pipeline is a set of automated tasks from which computer
code is passed through from task to task following a set plan to achieve different goals
at each step. (Azure, n.d.)

Code
documentation

Code documentation is the process in which a programmer describes the code actions
or how the system works. (Goldis, 2018)

API
Documentation

API documentation is the process of explaining how to use a certain API endpoint, with
details about arguments, types, returns etc. (Vasudevan, n.d.)

Cloud computing Cloud computing is getting access to different computing resources as a service
including databases, virtual machines, networking resources, software etc. (Microsoft,
2018)

Use case
modelling

A use case model is a representation of how a user or different users interact with a
system to access a service, solve a problem, or achieve a certain goal. (UTM, n.d.)

Software
Development
Automation

Software development automation is the process of transforming manual labour into
automated systems which frees up developer time for more important tasks.
(StackExchange, 2017)

Software
Repository

Software repository is a change management tracker for project code building up a
history with all changes made to the code over time and promotes easy collaboration
within developer circles. (technopedia, 2016)

Web Application A web application is a software program which functions on a web server and it is
designed to be accessed by a browser with access to internet and installation free
applications. (PCMAG, 2016)

Responsive Web
Design

Responsive design is an approach to design application that should respond to user
behaviour and environment. Content of the application should dynamically adjust and
fit on the screen size on different devices with different screen sizes. (Smashing, 2016)

4

Executive Summary

This technical report provides the analysis and discussion of scope for the development of an automated code
documentation system. The strategy deals directly with the code and other tools in gathering the information
across platforms and building a production grade document.

1. Objective

The aim of this project is the creation of a system for automating code documentation process which will
gather source documents and assemble them into a ready to deploy web application. The system will work
within an automated development process, recognize repository changes, and automatically start a task
within the software pipeline publishing the web application to the cloud and making it accessible to end uses
within minutes.

2. Opportunity

Programmers live in a world of plain text, either code syntax or writing documentation its all plain text which
computer understands and process it into a different output. Most of the times we want to turn this output
into an easy to understand and pretty format which humans can digest with ease. Also, as programmers we
have the best tools to track changes to the code and we keep a close eye on the history of our changes but
not much monitoring on the documentation side of the application causing outdated descriptions of the
application features or code implementations.

The workflow for tracking code changes is very powerful and familiar to any developer so why would we
forget about it when it comes to documenting our application?

3. Solution

The solution is to use that powerful workflow discussed above for the documentation side of the application.
At its core, utodocs is a dynamic document bundler for modern applications. When utodocs processes your
application documentation, it internally builds a table of contents graph which maps every markdown file in
your project and generates http link's which point into your application GitHub repository.

Utodocs is an automated process for code documentation which is built at the same time with your
application source-code. This enables developers to keep a close eye on the changes of the code and
documentation, and the version of the documents will relate to the version of the source-code creating a
one-to-one mapping. So, when the version of the source-code is changed, being for a new feature or
downgrading the application to an older version; the documents will reflect the respective version of the
software.

5

Introduction

4. Project Background

This technical report provides the analysis and discussion of scope for the development of an automated code
documentation system strategy. The strategy deals directly with the management of code documentation at
all stages of software development life cycle.

The purpose of this document is to provide the reader with in-depth detail of the project. The proposed project
will give developers the ability to replace the manual task of gathering and assembling code documentation
with an automated system to build and deploy production grade documents. Writing code functionality
documentation takes as much time as writing the code if not longer. This takes precious software development
time from the developer and having an automated system which takes care of code documentation will
increase productivity and quality of the code.

5. Project Aims

The aim of this project is the creation of a system for automating code documentation process which will
gather source documents from different stages of software development life cycle and assemble them into a
ready to deploy web application. The system will work within an automated development process, recognise
repository changes, and automatically start a task within the software pipeline publishing the web application
to the cloud and making it accessible to end uses within minutes.

The automation tool should be coding language agnostic so any developer from any background can benefit.

The automation tool should be “learn free” so any developer can focus on what their best at instead of using
company time to learn how to use our tool.

The automation tool should include all stages of the software development life cycle. Building software
functionality usually include documents, scattered across different apps or places. For example, a UML use
case modelling documentation from requirements elicitation, might be small but powerful into helping us
building the documentation for a unit of functionality, like who can use it (actors), what they
need(prerequisites), and describe the flow of events.

6. Project technologies

• NodeJS – is an open-source JavaScript runtime environment which allows programs written in JavaScript
to run outside a browser, for example on a server or on a local machine environment. The project will
make use of the NodeJS technology to access operating system resources and run the JavaScript files to
parse and build the documentation and web application. The project will also use NodeJS to set up a back-
end environment within the pipeline where most of the code documentation automation system will
reside. (NodeJS, n.d.)

• JavaScript – is a popular programming language also known as the scripting language of the web. The
project will make use of the JavaScript language as it is light-weight, high level language and makes it very
fast to build software projects. The project will have a web-based component to display the web

6

application and as the web browsers mostly supports JavaScript language will make it more appropriate
to use. (developer.mozilla, n.d.)

• HTML and CSS Grid – is the foundation of web applications, HTML stands for Hypertext-Markup-Language
and it is designed to work in a browser and display web pages. Usually, it is assisted by CSS technology to
improve the design of the webpages. This project will make use of CSS Grid which is a newer technology
and can be used to create complex responsive layouts with more consistency between the browsers.
(Andrew, 2018)

• .MD File Types – the project will make use of GitHub’s standard text files which is .MD or markdown files.
It is plain text which include symbol to indicate special text like title or code text and it is used widely
across repositories. The system will make use of this filed to parse its content and transform it into a HTML
page with the special text indicated by symbol parsed accordingly to display it as a title or code block
within our HTML document. (Markdown, 2017)

• Concourse CI/CD – it is an open-source software which runs within a Docker container to build an
automated system and manipulate code files, test, or deploy applications to the web. The project will
make use of the Concourse technology to set up a pipeline between local environment and remote
repository, pipeline in which the system will gathers source documents and code, read, parse and test and
finally assembly all the pieces of the application and deploy it to the cloud. (Concourse, 2017)

• Mocha testing framework – Mocha is a test framework for JavaScript code used for unit and integration
testing of applications build in JavaScript. The project will make use of Mocha testing framework to test
the code and assure that the previously build features of the application are still functioning as intended.
This will increase development speed and system reliability. (Mocha, n.d.)

• Test Driven Development – Test driven development is a technique of developing software by building the
tests before the functionality is build. Developing the failure tests before the functional code will increase
the robustness of the code as functional code has to pass the tests before it even works first time. (Agile,
n.d.)

• Agile methodology – Agile methodology is an incremental software development technique which
encourages iterating quickly through the software development lifecycle, managing the project by
breaking up the system in small pieces and incrementally work on each piece from design to deployment.
(Alliance, 2018)

• Gantt Chart – A Gantt chart is a project management plan which helps software developers track progress
and manage tasks to a successful project delivery. It is a visual view of work to be done and its
dependencies showing a schedule across time with start and end dates for each task assisting the
development of the system and keeping an eye on project deliveries. (Manager, 2020)

• Heroku Cloud – Heroku Cloud is a platform from Sales Force that offers computing as a service for building,
testing, and managing applications. The project will make use of cloud computing technologies such as
database, virtual machine, and network interface to deploy the web application and make it available to
potential users without the need of installing the system. (Heroku, 2020)

7

System

1. Requirements

The following section of this paper will discuss the required specifications of the code documentation
automation system. We will describe the functions which the system should fulfil to satisfy stakeholder needs
expressed in a textual statement.

a. Functional Requirements
Functional requirements are a list of services a software must have on a component level of functional
level. It defines a set of specific functionalities which a system is likely to perform with a given input and
output expected. (GeeksForGeeks, 2017)

• User should be able to create a vertical navigation to place at the side of a page
The system will allow a user to create a vertical navigation bar for which the system will read the
folder structure from the repository and convert the names of the folders into links within a side
navigation bar of the web app.

• User should be able to create a top navigation bar
The system will allow users to customize the header of the web application by reading a predefined
file within repository.

• User should be able to customize the design of the application
The system will offer full access to the styling files for the web application where a user can delete,
add, or modify the looks, layout, or colours of the web app.

• User should be able to create .MD files
A user should be able to create markdown files within his own repository for which the system will
offer connection trough web Tokens and APIs.

• Convert markdown files to html
The system will read and convert the markdown text files into appropriate HTML, parsing markdown
symbols and transform normal text into titles of different sizes, images, code blocks, external links
etc.

• Ignore comments within the markdown files
The system will recognize comments within the markdown files and ignore them when parsing the
text and outputting it to HTML syntax.

• Continuous integration development
The system will not reside with developer’s code and will allow the user to operate the system
through a continuous integration pipeline where it will perform most of the tasks.

8

• Continuous deployment
A user should be able to deploy to the cloud the web application responsible for code
documentation and the system will have the necessary pipeline tasks in place for the deployment
process to happen is chosen.

• System Independence
The system will be independent of operating system or platform or developer code base, it will set
up its on server within a Docker image.

• Recognize code changes
The system will monitor any code changes happening in the repository and it will automatically build
a new version of the documentation if any changes happened.

b. Use Case Modelling
The following use case diagram provides a simple representation of a user’s interaction with the system
and user’s involvement with the system describing units of useful functionality performed by the code
documentation automation system in collaboration with external actors.

9

Use Case Write Use Cases

Description The user will have the ability to create .MD files with Use Cases, very similar to the use
cases on this paper

ID CDAS001

Scope The scope of this use case it to read and convert data from use cases docs to HTML

Actors Scrum Master, GitHub

Algorithm
Diagram

Flow Description • Precondition

The user must use the predefined markdown file
• Activation

Once it detects a non-empty predefined markdown file being uploaded to GitHub
• Main flow

 User writes use cases in the predefined markdown file (See A1)
 User pushes the file to the GitHub repository
 The system will intercept the file (See A2)
 The system will parse the content to HTML describing system functionality
 The system will commit the changes to GitHub (See A3)

• Alternate Flow
 A1 – The system will ignore the file and prompt the user for changes
 A2 – If is no modification done to the file or simply not present the system

will skip the parsing functionality
 A3 – If user wants to skip this step and chose to deploy instead the system

will deploy/update the web application on the cloud
• Exceptional Flow

 User manually stops the system, will display manually stopped message
 The system encounters an unexpected error, it will restart and try to

resume the job
• Termination

System is stopped by a user
• Post Condition

The system will sleep until new file is detected

10

Use Case Write Code

Description The user will have the ability to add a custom @anotation in addition to user’s code

ID CDAS002

Scope The scope of this use case it to read and convert data from source-code files to HTML

Actors Developer, GitHub

Algorithm
Diagram

Flow Description • Precondition

The user must use the @annotations within his own source code
• Activation

Once it detects @annotation in the code base file being uploaded to GitHub
• Main flow

 User appends @annotation to the source code
 User pushes the file to the GitHub repository
 The system will intercept the source code file (See A1)
 The system will parse the function name and parameters and transform

them to HTML syntax describing functions functionality
 The system will commit the changes to GitHub (See A2)

• Alternate Flow
 A1 – If is no @annotation detected system will skip annotation parsing

functionality
 A2 – If user wants to skip this step and chose to deploy instead the system

will deploy/update the web application on the cloud
• Exceptional Flow

 User manually stops the system, will display manually stopped message
 The system detects improper use of the @annotation and will notify the

user of the modifications needed and correct the mistake
 The system encounters an unexpected error, restart and resume the job

• Termination
System is stopped by a user

• Post Condition
The system will sleep until new @annotation within the file is detected

11

Use Case Write Tasks

Description The user will have the ability to write tasks or cards for developers with current and
future work items

ID CDAS003

Scope The scope of this use case it to read and convert data from tasks/cards to HTML

Actors Scrum Master, GitHub

Algorithm
Diagram

Flow Description • Precondition

The user must use predefined markdown files specially created to serve this
purpose

• Activation
Once it detects the predefined markdown files being uploaded to GitHub

• Main flow
 User writes use work items in the predefined markdown file (See A1)
 User pushes the file to the GitHub repository
 The system will intercept the file (See A2)
 The system will parse the content to HTML describing the functionality
 The system will commit the changes to GitHub (See A3)

• Alternate Flow
 A1 – The system will ignore the file and prompt the user for changes
 A2 – If is no modification done to the file or simply not present the system

will skip the parsing functionality
 A3 – If user wants to skip this step and chose to deploy instead the system

will deploy/update the web application on the cloud
• Exceptional Flow

 User manually stops the system, will display manually stopped message
 The system encounters an unexpected error, restart and resume the job

• Termination
System is stopped by a user

• Post Condition
The system will sleep until a new work task file is detected

12

Use Case Code Comments

Description The user will have the ability to write code comments within his source code and use
them to build documentations content

ID CDAS004

Scope The scope of this use case it to read and convert data from code comments to HTML

Actors Developer, GitHub

Algorithm
Diagram

Flow Description • Precondition

The user must use comments within his source code files
• Activation

Once it detects any code comments in the source files
• Main flow

 User writes comments within his code base files
 User pushes the file to the GitHub repository
 The system will intercept the file (See A1, See A2)
 The system will parse the content to HTML describing the functionality
 The system will commit the changes to GitHub (See A3)

• Alternate Flow
 A1 – The system will allow to skip any comments within the source files
 A2 – If is no modification done to the file or simply not present the system

will skip the parsing functionality
 A3 – If user wants to skip this step and chose to deploy instead the system

will deploy/update the web application on the cloud
• Exceptional Flow

 User manually stops the system, will display manually stopped message
 The system encounters an unexpected error, restart and resume the job

• Termination
System is stopped by a user

• Post Condition
The system will sleep until new comments are added to the file

13

Use Case Code Tests

Description The user will have the ability to write tests for his source files and use test results
output as part of the code documentation

ID CDAS005

Scope The scope of this use case it to read and convert data from unit tests to HTML

Actors Developer, Pipeline, GitHub

Algorithm
Diagram

Flow Description • Precondition

The user must use unit tests to test his source code files
• Activation

Once unit tests are run within the pipeline system functionality
• Main flow

 User writes unit tests for his source code files
 User activates the use of unit tests output towards building the

documentation
 User pushes the file to the GitHub repository
 The system will activate the pipeline and run the unit tests
 The system will listen for unit tests output using operating system’s

STDIN/STDOUT data stream (See A1)
 The system will save the output to OS memory
 The system will parse the output to HTML describing the test results
 The system will commit the changes to GitHub (See A3)

• Alternate Flow
 A1 – The system will allow to skip listening for test inputs/outputs and skip

the parsing functionality
 A3 – If user wants to skip this step and chose to deploy instead the system

will deploy/update the web application on the cloud
• Exceptional Flow

 User manually stops the system, will display manually stopped message
• Termination

System is stopped by a user
• Post Condition

The system will sleep until new tests are created or modified

14

Use Case Connect to the System

Description The user will have the ability to connect his source code repository to the system
through systems settings files

ID CDAS006

Scope The scope of this use case it to give the user the ability to connect with the system

Actors Developer, Designer, GitHub

Algorithm
Diagram

Flow Description • Precondition

The user must download and install code docs automation system files
• Activation

Once user starts the application by entering to any CLI the run command
• Main flow

 User opens GitHub repository and retrieves connection string
 User opens the settings file provided by the system
 User adds connection string to the settings file
 User pushes the changes back to development repository
 The system will activate the pipeline
 The system will validate the connection with the repository (See A1)
 The system will save the settings to the repository

• Alternate Flow
 A1 – If connection string is not valid the system will notify the user

 – The system will display login GUI to manually login to GitHub
 – The user can enter account name and password
 – The system activates the pipeline

• Exceptional Flow
 User manually stops the system, will display manually stopped message
 GitHub refuses the connection, the system will notify the user and sleep

• Termination
System is stopped by a user

• Post Condition
The system will sleep until new push to GitHub branch is detected

15

Use Case Create Side Navigation

Description The user will have the ability to create a folder structure from which the system will
read and translate the structure into navigation for the web app documentation

ID CDAS007

Scope The scope of this use case it to give the user the ability to create a custom navigation

Actors Developer, GitHub

Algorithm
Diagram

Flow Description • Precondition

The user must be connected to the system
• Activation

Once user push his source code to the repo
• Main flow

 User creates a desired folder structure which will hold the documentation
 User pushes new changes to his source code
 The system will activate the pipeline
 The system reads the folder structure (See A1)
 The system creates a file holding the navigation structure
 The system will parse the file and outputs navigation to HTML
 The system will save the settings to the repository

• Alternate Flow
 A1 – If there are any subfolders the system will create a sub-list

 – The system will append indentation to each name of the folder
 – The system will write the result to a file
 – The system will continue with next folder reading the structure
 – The system will save the settings to the repository

• Exceptional Flow
 User manually stops the system, will display manually stopped message

• Termination
System is stopped by a user

• Post Condition
The system will sleep until new push to GitHub branch is detected

16

Use Case Create Top Navigation

Description The user will have the ability to create a file holding the structure of the top navigation
bar from which the system will read and translate the structure into top navigation

ID CDAS008

Scope The scope of this use case it to give the user the ability to create a custom navigation

Actors Developer, GitHub

Algorithm
Diagram

Flow Description • Precondition

The user must be connected to the system
• Activation

Once user push his source code to the repo
• Main flow

 User creates a desired structure for the top navigation bar (See A1)
 User pushes new changes to his source code
 The system will activate the pipeline
 The system reads the folder structure
 The system will parse the file and outputs navigation to HTML
 The system will save the settings to the repository

• Alternate Flow
 A1 – If user did not create the file with top navigation the system will

provide a default navigation settings file
 – The system will parse the file and outputs navigation to HTML
 – The system will save the settings to the repository

• Exceptional Flow
 User manually stops the system, will display manually stopped message

• Termination
System is stopped by a user

• Post Condition
The system will sleep until new push to GitHub branch is detected

17

Use Case Customise the Design of Documentation

Description The user will have the ability to change the design of the documentation created by
the system

ID CDAS009

Scope The scope of this use case it to give the user the ability to customize the design of the
documentation

Actors Designer

Algorithm
Diagram

Flow Description • Precondition

The user must be connected to the system and a HTML file must be generated at
least once

• Activation
Once user push his source code changes to the repo

• Main flow
 User opens the CSS settings file on the local repository
 User opens the HTML file
 User makes the CSS changes needed
 User pushes the new code changes to the repository
 The system will activate the pipeline
 The system reads the CSS modifications
 The system applies the changes to the web app
 The system deploys the changes

• Alternate Flow
 N/A

• Exceptional Flow
 User manually stops the system, will display manually stopped message

• Termination
System is stopped by a user

• Post Condition
The system will sleep until new push to GitHub branch is detected

18

Use Case View Documentation

Description The user will have the ability to view the deployed documentation available on the
cloud

ID CDAS010

Scope The scope of this use case it to give the user the ability to view the documentation
produced

Actors Scrum Master, Designer, Developer, Manager, User

Algorithm
Diagram

Flow Description • Precondition

The user must be having internet connection and system must be run at least one
time to generate the files and deploy the web app

• Activation
Once user visit the appropriate link to open web app

• Main flow
 User opens an internet browser
 User enters the link in a browser (See A1)
 The system will present the user with the documentation

• Alternate Flow
 A1 – If wrong link entered the system will present user with an error page

 – The system will give instructions of how to access documentation
 – The user clicks on one of the links available on the error page
 – The system will display the appropriate documentation page

• Exceptional Flow
 User manually stops the system, will display manually stopped message
 The cloud instance is down, the system will display 404 error page

• Termination
System is stopped by a user

• Post Condition
The system will enter a wait condition until an API call is made

19

c. Data Requirements
This section of the paper will describe the data requirements of the system which is an essential
requirement for the system functionality. The system will use GitHub repository as the backend solution
to store data generated by the system and by the user. All the documentation details will be stored on
GitHub which will consists of markdown files for documents text and a folder structure for the
navigation links of the web application. Take for example the sample dataset bellow:

The system will follow the pattern above, recursively reading each file and folder plus the text available
in each markdown file after which will create a copy of the above structure with the files converted to
HTML. The folders will become part of the navigation system of the web app and the markdown files
will be translated to sub-links for each link and the text within each markdown file will be parsed as the
content of the document.

This can be compared to a database system for an entity; once any CRUD operation is performed on any
of this files or folders the content of the web application will be updated accordingly. The project is
designed to use technologies which are closest to the developer and follow GitOps pattern. “GitOps
focuses on a developer-centric experience, by using tools developers are already familiar with, including
Git and Continuous Deployment tools. The core idea of GitOps is having a Git repository that always
contains declarative descriptions of the infrastructure currently desired in the production environment
and an automated process to make the production environment match the described state in the
repository.” (GitOps, 2017)

The most interesting thing is that we have access to each commit within the GitHub repository which
gives us a unique ID and a complete history of files modification. So, let us say you create and deploy an
application version 1.0.0, you will have documentation version 1.0.0 available for that version of the
application. If any customer has access to an older version of the application, it will have access to an
older version of the documentation as well as each commit will match with that version of the
application.

20

d. Data Conversion
The following section of this document will describe the steps taken for the conversion of markdown
files to the HTML syntax. The system will have a custom algorithm which will be used to transform
markdown symbols into HTML syntax. The project will be following the most common and widely used
markdown symbols for markdown syntax provided by GitHub (Guides, n.d.). Let us take for example the
table below:

The system will parse the files and check for any heading symbols like # for heading level one and if
found it will delete the symbol and append the <h1> tag element surrounding the text. This will be
interpreted by any browser as a heading of size 32 pixels which will make it look larger on the page and
on a new line. As documents have headings to differentiate between different chapters and sub-
chapters/sections this feature is of high importance for the system. If now heading symbols are found
the system will need to convert the text into paragraphs, for example:

As you notice we will surround any text without markdown symbols with a HTML <p> tag which will
render as a paragraph of size 16 pixels in any internet browser. The same process will happen for each
markdown symbol replacing the symbols and appending the appropriate HTML tags depending on the
type. The system will support heading, unorganised lists, organised lists, links, code blocks and images.

Using markdown files (also referenced as .MD files in this paper) has been chosen for this project to
make it easier for developers to read or edit the documentation files without the need to worry about
HTML syntax. Having the HTML files will clutter the documentation and make it harder for developers
to read and edit because of the syntax overhead.

Markdown HTML Display Output

Heading level 1 <h1>Heading level 1</h1> Heading level 1

Heading level 2 <h2>Heading level 2</h2> Heading level 2

Heading level 3 <h3>Heading level 3</h3> Heading level 3

Heading level 4 <h4>Heading level 4</h4> Heading level 4

Heading level 5 <h5>Heading level 5</h5> Heading level 5

Markdown HTML Display Output

I really like using Markdown. <p>I really like using
Markdown. </p>

I really like using Markdown.

I think I will use it to format
all my documents from now
on.

<p>I think I will use it to
format all my documents from
now on. </p>

I think I will use it to format all my
documents from now on.

21

e. Environmental Requirements
• The system should have access to internet

As the system works with remote repository, cloud technologies and it is designed such that the
user can view the documentation files over the internet it is required that the system should have
access to an active internet connection.

• The system should have access to a repository
As the system uses the repository as its primary back-end storage reading and writing to it, the
system requires that the user should have access to a repository technology.

f. Non-functional Requirements
• The system should be available 24/7

As the developers can make code changes at any time of the day the system should be always
available, otherwise source code might change, and the documentation might not be created
leaving gaps between versions of the software and the documents.

• The system should incur minimal learning
The system should be designed to be “plug and play” as it tries to make it easier for developers to
do their jobs and spend their time on more important tasks.

• System performance
The system should complete the jobs required to parse and deploy the new version of the file in a
reasonable amount of time, so it will not impact developers speed on updating their source code.

• Docker Orchestration System
As the system will work within a pipeline within a docker container system the user should have a
container orchestration system like docker desktop. It will be possible for the user to use a different
approach as the system is portable in other pipeline, but it is up to the developer to tweak any
settings required.

• Access to cloud compute services
The user should have access to cloud computing services as the documentation will be published
on his own domain. If the user does not have access to cloud infrastructure the system will still
provide the raw generated files and it will be left to the user to decide the deployment platform.

g. Usability Requirements
• The system should have access to Docker technology

The system is built around Docker technology the user should be able to run docker images on local
computer or cloud environment with docker orchestrator technology, otherwise he will not be able
to run the system.

• The user should be familiar with technology
The system is designed for users with knowledge of programming languages and IT technology in
general and although the system will not have a big learning curve for the user, some general
knowledge is required.

• Independent of source code programming language
The system should be independent of developer’s source code programming language as it builds
only the documentation for the code. As the documentation is a stand-alone part of the software it
should not impact the source-code and just read through the files provided not run them.

22

2. Design & Architecture

The system will function on a NodeJS server technology serving front-end documents through HTTP
request/response methods. The front-end technology will be built with Angular framework which will display
a simplistic design to make the documentation pleasant to read. The web-application will be deployed on
Heroku cloud which will communicate with the master repository and update documents published by the
back-end system.

a. System Architecture Back-End
The back-end system will also be built on NodeJS technology and will live within the Concourse pipeline
activated by any commit to the development branch, building all the documentation and push it to the
master repository from where the front-end application will access the latest version of the
documentation. The following diagram should offer a better visual description of the system

23

b. System Implementation
• The system will have a continuous integration/continuous deployment pipeline where it will

detect any commits to the development branch. The system has access to any changes made to
the development branch and all git commands run against the branch from where we can access
commit ID, committer name. The system will use this information to version the documentation
keeping the same identifier as the software deployed.

• Upon detecting any changes, the pipeline will run all prerequisite jobs like unit tests, integration
tests, download repository etc. setting up the automation flow from end to end and validate the
code and the documentation created. The system will stop and notify of any errors encountered.

• The system is designed to be dynamic and for each file or folder created the system must create the
necessary endpoints where documentation can be accessed.

The HTTP GET method which is responsible for any endpoint request incoming from the client for
which we have created a custom method “readAndConvertFiles”. The method is taking any request
in the form of URL where we split each part and remove any invalid characters such as % and append
an empty space to match the folder name by traversing each directory recursively and comparing
to the string in the array of strings resulted.

c. User Interface
For the back-end service, we do not have user interface as the work done by developers is done mostly
in Command Line Interface. Once the back-end service is installed and configured developers pretty
much will need to forget about it, it is designed to work in the background but available to the developer
needs to delve in and inspect the current status of the process.

24

The developer has access to all the commits which will reference the specific version of the source-code
and documentation which is quite handy as we can inspect, debug, and revert any changes committed
in case a bug was discovered in production environment of our application. The documentation will be
updated and reflect the “old” version of the software documentation accessible to users within minutes
of reverting the source-code.

At the same time, the developer can see real time progress of their application status of their unit test
or integration test and any other required tasks just as a normal flow of a software deployment life cycle
and can track any version of a deployment with its associated output, e.g. a failed unit test job.

25

For the front-end application, I used Angular framework to create a single page application and as this
is a proof-of-concept application, I added few additional pages to spark interest and attract people in
supporting the system. The application is live and available at: https://utodocs.herokuapp.com

• Landing page is simplistic with few calls to action messages as we don’t want people to get lost
of what we are trying to achieve. Snippet from landing page:

https://utodocs.herokuapp.com/

26

• I have also added a blog and contribute section for any developer who enjoys the idea and
wants to contribute into creating a better experience for the developers using utodocs or simply
needs more insights into why which I reflected into my blog.

• The documentation is by far the most interesting feature of the application. Simply put I used
utodocs/the system to document itself so that is a live sample of the documentation created by
utodocs on how to use and understand utodocs.

27

• Heroku Cloud – Initially I had the application deployed to Microsoft’s Azure cloud by my account
credit recently expired so I had to redeploy my application to Heroku cloud. The application is
deployed automatically on every GitHub push so as a developer I do not have to take any steps
into creating a new version of the app.

I simply work on a new feature on my local environment and when it is ready, I simply push it
to the develop branch and everything else is taken care of, unit tests, deployments, conversions
etc. P.S. In a real-life scenario this should be done by a pull request where developers will

28

inspect the code at hand and approve/reject the pull request which will than be merged into
develop if approved and continue with testing etc.

3. Testing

For the testing part of the system, I used Karma test runner for JavaScript code that runs on NodeJs and have
them executed in the browser. The test runner is running the tests and checks the within the browser to see
if the desired output matches what the browser displays.

29

This works well on the local environment as the developer can inspect the tests and see any failures with the
reason why it fails. When we run this test within the pipeline it is a different story as there is no developer to
watch this test and having chrome opening within the pipeline will result in an error. To make it work in the
pipeline I had to use a HeadlessChrome which is a version of Chrome browser working in a sandbox
environment without being the full UI, essentially running Chrome without Chrome, is just the underling code
and I have to say it was quite challenging to set it up.

Jasmine is the framework used for creating the unit tests for the application. Jasmine is a behaviour driven
testing framework for testing JavaScript code. Initially I planned to use Mocha testing framework, but I
experienced many issues when running the tests within the pipeline again as they require a Browser DOM. So,
I had to change to Jasmine testing framework as it does not require a DOM and it is the most popular within
Angular framework. Jasmine also comes with a very hand test reporter which builds a status page of our overall
test coverage.

At this stage, the pipeline does not run tests for the “feature” git branch and in a real-life scenario it should
run the unit-tests on any branch that requested a “pull request”, as I am a one-man team it didn’t make sense
to enable such functionality. You can also see above that the unit tests are not 100% code coverage but again
as this is more a proof-of-concept/start-up type of application it is recommended not to create any
unit/integration tests etc. as it is a waste of time and money. Usually in a start-up/proof-of-concept
requirements will change very often making any tests created redundant and the market still needs to accept,

30

application needs to prove itself worthy and potential to generate income before we can spend money on
testing. As such I have created end-to-end/unit-tests to cover the National College of Ireland continuous
assessment requirements but in a real-life scenario I would not.

I have also added a linting task within the pipeline which checks the code for programmatic and stylistic errors.
It is a static code analyser which will format the code before it’s deployed to the version control provider. The
process should be done before each pull request but as I am a one-man team this step is done between
develop and main branch. If code is not properly formatted the pipeline will output an error and refuse the
deployment.

4. Evaluation

The evaluation of the system was done with creating the documentation for itself. The system is highly scalable
as it makes use of the latest industry tools as Docker images for pipelines where we can instantiate multiple
pipelines to work depending on the lead and requirements and as the system makes use of cloud platform the
front-end application can scale horizontally of vertically depending on the cloud provider but with no
impediments from the system itself.

The version of the documentation will reflect the latest version at the version control provider, such as GitHub,
making it quite robust in terms of correctness of the documentation. So as long the developer has the desired
version of the source-code and documentation on GitHub the system is guaranteed to display the correct
version.

The documentation is deployed within 3-4 minutes of creating a new version of the document and as it is an
Angular front-end application it only has few kilobytes in size making it very fast into accessing it from a
browser, around two hundred milliseconds until the application is fully loaded into the browser.

5. Conclusion

Considering that I am part-time student with full time job and more modules to work on, building the
application took a very long time but even to my surprize using the application into creating the
documentation was done very quick. We can fully document an application within one day as long as we
know the content of the documentation which is quite awesome.

The application strength is that developers can just create documentation without learning new tools or this
tool. As long as they have some knowledge of Angular and CSS, they can easily manipulate it to create a
completely different User Interface. Also, the documentation will reflect the latest source-code change as it
is deployed or reverted at the same time with the source-code which is a very robust way in making sure the
documents reflect the actual source-code software functionality.

One of the disadvantages of the application is that it was only tested wit GitHub version control platform, it
might work with other platforms but as I did not test it, I’ll put it as a disadvantage. Another disadvantage is
that the angular application needs a server to run on the cloud which feels a bit like a waste of money to
have a server running on the cloud just to serve documentation, better approach will be to have a fully static
website which will be cheaper.

31

6. Further Development and Research

I really like the end result of my application and as a future research I will get feedback from developers and
try to understand what other people need from a document automation system, where I can improve. Also,
in real world scenario businesses have multiple version control repositories and even in different providers.
Having the system act as a platform for the organisation code documentation and serve documentation
from multiple repositories from different providers will make it more robust and even more attractive to
developers.

The system will keep the same direction in terms of “learn free” feature and try to avoid having “settings”
within the system as the more “settings” we have the more time the developer needs to spend in learning
the application making his life harder instead of easier.

32

References
Agile, n.d. Introduction to Test Driven Development (TDD). [Online]
Available at: http://agiledata.org/essays/tdd.html
[Accessed 17 12 2020].

Alliance, A., 2018. What is Agile?. [Online]
Available at: https://www.agilealliance.org/agile101/
[Accessed 17 12 2020].

Andrew, R., 2018. Grid by Example. [Online]
Available at: https://gridbyexample.com/examples/
[Accessed 17 12 2020].

Azure, M., 2020. Get to know Azure. [Online]
Available at: https://azure.microsoft.com/en-us/overview/
[Accessed 17 12 2020].

Azure, n.d. Azure Pipelines. [Online]
Available at: https://azure.microsoft.com/en-us/services/devops/pipelines/
[Accessed 15 12 2020].

Concourse, 2017. Concourse. [Online]
Available at: https://concourse-ci.org/pipelines.html
[Accessed 17 12 2020].

developer.mozilla, n.d. JavaScript. [Online]
Available at: https://developer.mozilla.org/en-US/docs/Web/JavaScript
[Accessed 15 12 2020].

GeeksForGeeks, 2017. Functional vs Non Functional Requirements. [Online]
Available at: https://www.geeksforgeeks.org/functional-vs-non-functional-requirements/
[Accessed 17 12 2020].

GitOps, 2017. GitOps. [Online]
Available at:
https://www.gitops.tech/#:~:text=GitOps%20is%20a%20way%20of,Git%20and%20Continuous%20Deployment%20tool
s.
[Accessed 18 12 2020].

Goldis, A., 2018. How to document source code responsibly. [Online]
Available at: Code documentation
[Accessed 15 12 2020].

Guides, G., n.d. Mastering Markdown. [Online]
Available at: https://guides.github.com/features/mastering-markdown/
[Accessed 18 12 2020].

Manager, p., 2020. The Ultimate Guide to Gantt chart. [Online]
Available at: https://www.projectmanager.com/gantt-chart
[Accessed 17 12 2020].

Markdown, 2017. What is Markdown?. [Online]
Available at: https://www.markdownguide.org/getting-started/
[Accessed 17 12 2020].

33

Microsoft, 2018. What is cloud computing?. [Online]
Available at: https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
[Accessed 15 12 2020].

Mocha, n.d. Mocha. [Online]
Available at: https://mochajs.org/
[Accessed 17 12 2020].

NodeJS, n.d. About Node.js. [Online]
Available at: https://nodejs.org/en/about/
[Accessed 15 12 2020].

PCMAG, 2016. Definition of Web application. [Online]
Available at: https://www.pcmag.com/encyclopedia/term/web-application
[Accessed 16 12 2020].

Smashing, 2016. What Is Responsive Web Design?. [Online]
Available at: https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-
design/#:~:text=Responsive%20Web%20design%20is%20the,use%20of%20CSS%20media%20queries.
[Accessed 15 12 2020].

StackExchange, 2017. What is development automation?. [Online]
Available at: https://softwareengineering.stackexchange.com/questions/178311/what-is-development-automation
[Accessed 15 12 2020].

Stolberg, S., 2009. Enabling Agile Testing through Continuous Integration, Chicago, IL, USA: IEEE.

technopedia, 2016. Software Repository. [Online]
Available at: https://www.techopedia.com/definition/32890/software-repository
[Accessed 15 12 2020].

Technopedia, n.d. Production Environment. [Online]
Available at: https://www.techopedia.com/definition/8989/production-
environment#:~:text=Production%20environment%20is%20a%20term,intended%20uses%20by%20end%20users.
[Accessed 06 12 2020].

TechTerms, n.d. End User. [Online]
Available at:
https://techterms.com/definition/enduser#:~:text=An%20end%20user%20is%20the,or%20programmers%20of%20the
%20product.
[Accessed 06 12 2020].

UTM, n.d. Concept: Use-Case Model. [Online]
Available at:
http://www.utm.mx/~caff/doc/OpenUPWeb/openup/guidances/concepts/use_case_model_CD178AF9.html#:~:text=A
%20use%2Dcase%20model%20is,system%20to%20solve%20a%20problem.&text=The%20most%20important%20mode
l%20elements,the%20model%20to%20simplify%20communications
[Accessed 15 12 2020].

Vasudevan, K., n.d. What is API Documentation, and Why It Matters?. [Online]
Available at: https://swagger.io/blog/api-documentation/what-is-api-documentation-and-why-it-
matters/#:~:text=API%20documentation%20is%20a%20technical,and%20integrate%20with%20an%20API.&text=API%2
0description%20formats%20like%20the,to%20generate%20and%20maintain%20them
[Accessed 15 12 2020].

34

Appendices

1. Project proposal

Code Docs Automation
O ve rvie w
The p urp ose of this d ocume nt is to p rovid e the re ad e r with more in-d e p th d e tail o f my final ye ar p roject for
National Colle g e of Ire land BSc (Hons) in Comp uting p rog ramme . The p rop ose d p ro ject will g ive
d e ve lop e rs the ab ility to d ocument the ir cod e . Docume nting the cod e , the d eve lop e r writte n usually take s
twice the time to write the cod e (p e rsonal exp e rie nce). The n the d eve lop e r sp e nd s at le ast one time to
cre ate and p ub lish the d ocumentation.

Goal
Free the d e ve lop e r time b y re d ucing the amount of time ne e d e d for writing d ocume ntation to at le ast half
the time nece ssary to write the actual cod e .

The automation too l should b e “LEARN FREE” me aning that the d e ve lop e r should not sp e nd time le arning
how to use the automation functionality inste ad of writing cod e .

O b je ctive s
Cre ate a too l for automating cod e d ocume ntation p roce ss which will re ad the te xt file s from the cod e
re p ository and transform the te xt into HTML. Cre ate the automation p roce ss within a Continuous
Inte g ration/ Continuous De live ry p ip e line and p ub lish the HTML p ackag e online so o the r d e ve lop e rs can
acce ss. Automation p roce ss should re ad the fo ld e rs and p aths of the d ocuments re p ository and
automatically cre ate the navig ation of the we b site .

Be ne fits
Free ing up d e ve lop e r time will g ive him time to d o more imp ortant job s, imp rove cod e q uality and fix
more b ug s and ove rall imp roving the b usine ss log ic and d e live r more value to the custome r and b usine ss
itse lf.

Ke y Succe ss Factors
The automation too l should b e cod ing lang uag e ag nostic so any d e ve lop e r from any b ackg round can
b e ne fit. The automation too l should b e “le arn free ” so any d e ve lop e r can focus on what the ir b e st at
inste ad of using comp any time to le arn how to use our too l.

The automation too l should includ e all stag e s of the software d eve lop me nt life cycle . Build ing software
functionality usually includ e d ocume nts, scatte re d across d iffe rent ap p s or p lace s. For e xamp le , a UML use
case mod e lling d ocume ntation from re q uire me nts e licitation, mig ht b e small b ut p owe rful into he lp ing us
b uild ing the d ocumentation for a unit o f functionality, like who can use it (actors), what they
nee d (p re re q uisite s), and how to use it (flow of eve nts).

35

Proje ct Plan

36

Te chnical De tails
• The p roject will make the use of Nod eJS e ng ine which will g ive us the ab ility to run the ap p lication

within a p ip e line .
• The p roject will b e b uilt mainly with JavaScrip t lang uag e , most like ly can b e b uilt with any lang uag e b ut

my skills with JavaScrip t are g re ate r than o the r lang uag e s.
• The p roject will make use of the use case mod e lling te chniq ue in b uild ing the actual e nd use r

p ub lishe d d ocumentation.
• The p roject will fo llow the software d ocume ntation life cycle and g athe r as much information as

p ossib le from e ach ste p for b uild ing the d ocume ntation.

• The p roject will b e use d to d ocume nt itse lf d uring the p roce ss of b uild ing the automation
• The p roject will make use of HTML and CSS Grid te chnolog ie s for the front-e nd re sulting p ackag e .
• The p roject will use .md typ e (markd own e xte nsion) file s whe re all the d ata will b e g athe red b y the

d e ve lop e rs.
• The p roject will use Concourse p ip e line s te chnolog ie s to imp leme nt continuous

integ ration/continuous d ep loy and d ocke r imag e s for the und e rling infrastructure
• The p roject will d e p loy the d ocumentation for itse lf cre ate d b y itse lf on a cloud p latform like He roku or

Azure .
The p roject will use Mocha frame work for unit and inte g ration te sts and to conve y information to the
d ocumentation automation syste m for b uild ing the d ocumentation.

Evaluation

The syste m will b e te ste d b y cre ating the d ocume ntation for itse lf while b uild ing it and I should b e ab le to
re ad the d ocume ntation online .

37

2. Reflective Journal October

National Colle g e of Ire land
Course : BSc (Hons) in Comp uting – Software Deve lop me nt
Month: Octob e r 2020
Lucian Nechita, x16149505

Code Docs Automation

Backg round
My final p roje ct is an automate d ap p lication to he lp d e ve lop e rs d ocume nt the ir software . The ap p lication
will b e d e sig ne d to live within a Continuous Inte g ration / Continuous Deve lop me nt p ip e line , it will re ad
hand -writte n d ocuments and conve rt it to a p rod uction re ad y web site .

Planning
As any g ood p ro ject imp leme ntation starts with few se ssions of p lanning . First wee k of Octob e r is all ab out
p lanning how I can, and how I want to b uild my ap p lication. Discove ring the re q uire d te chnolog ie s
involve d and asse ssing critical skills nece ssary in b uild ing the ap p lication, is at hig he st p riority.

Re se arch
In the second we e k of Octob e r, I p ut all my e fforts into re se arch on comp e titive ap p lications, the ir marke t
share and hig hlig ht the ir achie ve me nts, whe re e xactly p e op le connecte d with the ir own technolog y and
what the y love d ab out it. I b e lie ve it is imp ortant to se e what o the r p e op le will love to see achieve d from
such te chnolog ie s

Brainstorming
Third and fourth we e k of O ctob e r was all ab out b rainstorming feature s on my ap p lication. I allowe d two
wee ks for this task as I want to make sure I will b uild e xactly what I nee d and d iminish the chance s to miss
on op p ortunitie s, missing fe ature s.

Achie ve me nts
The month of O ctob e r he lp e d me b e tte r und e rstand the p rob lem I face . Althoug h I will continue ove r the
month of Octob e r to ite rate ove r and ove r the p lanning p art o f the p roject as a b e tte r knowle d g e of p ro je ct
re q uire me nts will sp e e d up the d eve lop me nt p rog re ss late r d own the road

Stud e nt Sig nature : Lucian Nechita Date : 27 /09 /2020
Sup e rvisor’s Sig nature : …………. Date : / /2020

38

3. Reflective Journal November

National Colle g e of Ire land
Course : BSc (Hons) in Comp uting – Software Deve lop me nt
Month: Novemb e r 2020
Lucian Nechita, x16149505

Code Docs Automation

Backg round
For the month of Nove mb e r, I sp e nd time on p lanning and re se arch for my final p ro je ct which is the
automate d ap p lication to he lp d e ve lop e rs d ocume nt the ir software fe ature s. As it is q uite a challe ng ing
p ro ject, I need to make sure I know what I want to b uild b e fore I start b uild ing it, o the rwise I will sp e nd
more time red oing the functionalitie s which I will b uild .

Pro je ct Sub missions
For the first wee k of Nove mb e r, I comp le te d the e thics form and asse mb le d the p roject p rop osal re p ort
re q uire d b y National Colle g e of Ire land BSc in comp uting p rog ramme . This is ve ry imp ortant as
communicating your p ro je ct and id e as to o the rs will he lp you b e tte r p romote your p rod uct.

Gantt Chart
Pro ject manag e me nt took my se cond we e k, and it is anothe r imp ortant ste p in b uild ing my automation
software and Gantt chart is one of the most p op ular way of showing , p lanning , and illustrate p ro je ct’s
sche d ule . Doing this I can b e tte r p lan my activitie s and kee p an e ye on the d e ad line s which make s me
more suitab le to d e live r my p roject succe ssfully.

Fo llowing the Plan
Following my Gantt chart, I sp e nt third wee k of Nove mb e r re se arching the marke t in d e p t and I found
some similar ap p lications, b ut they are limite d to only one p rog ramming lang uag e and it is mostly just for
API’s. While re se arching I start to g e t more and more id e a’s, so I d e fine d the scop e of the p ro ject re lative to
the time I have . I will try to stick to the scop e as I d o not want to g e t ove rwhe lme d b y the amount of work.

Gathe ring Re q uire me nts
My final week in the month of Nove mb e r was mostly ab out making more re search, on re q uire me nts
g athe ring b e st p ractice s and the actual re q uire me nts of my automation framework/ap p lication.

Achie ve me nts
Having the req uire me nts finalise d is a major mile stone and I manag e d to kee p p rog re ss in sync with my
p ro ject manag e me nt p lan. I have a b e tte r id e a of what my software should d o and what it should not d o.

Stud e nt Sig nature : Lucian Nechita Date : 27 / Nove mb e r /2020
Sup e rvisor’s Sig nature : …………. Date : / Novemb e r /2020

39

4. Reflective Journal December

 National Colle g e of Ire land
 Course : BSc (Hons) in Comp uting – Software Deve lop me nt
 Month: Dece mb e r 2020
 Lucian Nechita, x16149505”

Code Docs Automation

Backg round
For the month of Dece mb e r, I sp e nd my time on d e sig n and d e sig n re late d re se arch for my final p roject,
the automated ap p lication to he lp d e ve lop e rs d ocume nt the ir software fe ature s.

De sig n
My first two wee ks in the month of Dece mb e r was mostly ab out the d e sig n of the fe ature s for my
ap p lication and cre ate the use case mod e lling of my ap p lication which I will ne e d to use to b uild my
software d ocume ntation. So , I had to b e care ful ab out the q uality of my use case mod e lling as it will imp act
the e nd -re sult o f the automate d d ocume ntation.

Re q uire me nts Elicitation
As use case mod e lling is a re ally g ood too l for req uire me nts e licitation and rep re se nt system’s
re q uire me nts, I sp e nd time re se arching b e st p ractice s and ite rating ove r key e le me nts in my use case ’s
se ve ral time to make sure I re ally und e rstand what the y sup p ose d to d e live r. It was g ood as my knowle d g e
g row in req uire me nts e licitation and d e scrib e how actors use a syste m to achieve a p articular g oal.

Pro je ct De live rab le s
Final Pro je ct mid te rm was in the month of Dece mb e r and I had to p ut some time asid e to comp le te
p ro ject’s d e live rab le s re q uire d b y National Colle g e of Ire land BSc in comp uting p rog ramme . Re ally hap p y
that I manag e d to p lan for the se ste p s in my p ro ject’s manag e ment Gantt chart and it was easie r to
manag e .

Environme nt Se tup
For the last we e k of De cemb e r, I se t up the d eve lop me nt e nvironme nt which involve d se tting up GitHub
and my comp ute r’s e nvironme nt variab le s to d eve lop me nt, cre ate d the p ip e line and run a he llo world
Nod e JS ap p lication within the p ip e line , and conne cte d the p ip e line with the cloud e nvironme nt for CI/CD.

Achie ve me nts
I have g ained valuab le knowle d g e for re q uire me nts e licitation and se t-up the e nvironme nts as p lanne d . I
fe e l re ad y to start b uild ing my ap p lication.

Stud e nt Sig nature : Lucian Nechita Date : 27 / De ce mb e r /2020
Sup e rvisor’s Sig nature : …………. . Date : / De ce mb e r /2020

40

5. Reflective Journal January

National Colle g e of Ire land
 Course : BSc (Hons) in Comp uting – Software Deve lop me nt
 Month: January 2020
 Lucian Nechita, x16149505”

Code Docs Automation

Summary
In the month of January, I sp e nt most of my time with e xams and b uild ing /p laying around my Dece mb er
b uild of the software p roto typ e .

Exams
My first wee k in the month of January was mostly ab out the up coming e xams and I sp e nt all my time
stud ying and g e tting the exam p ap e rs re ad y for the d e ad line . As we had six mod ule s last se me ste r and
only four this se me ste r, I d e cid e d to d e lay p roject work and focus on exams only consid e ring that my
p ro ject p lan includ e d six mod ule s for the se cond seme ste r as we ll. Having just four will fre e up much time
for p ro je ct work e nab ling me to have this d e lay.

Environme nt Se tup
As I finalise d use case mod e lling d ocume ntation d uring Dece mb e r month and I have b uilt a software
p ro to typ e I was ab le to start connecting the ap p lication with all my e nvironments. I have cre ate d a GitHub
account to ho ld my software source cod e and cre ate d a p ip e line in Concourse with Docke r orche strator
which will allow me to p ush the cod e troug h the p ip e line , have all the te sts execute d and the
d ocumentation cre ate d and save it to the GitHub rep ository.

Pro je ct Availab ility
As the d ocume ntation nee d s to b e p ub lishe d to a cloud ve nd or, I have connecte d GitHub re p ository with
He roku cloud p rovid e r which will p ub lish my cod e online once a new ve rsion of the source -cod e re ache s
the maste r b ranch. This is re lative ly fast making the d ocume ntation availab le on the inte rne t within minute s
which is g re at as the late st ve rsion of the software will have the late st ve rsion of the d ocumentation

Docume ntation Se tup
The d ocs automation p ro je ct makes use of file s and fo ld e rs to g ene rate we b ap p d ocume ntation links and
conte nt, and althoug h the conte nt g e ne rate d b y the software is working as intend e d the re are some
challe ng e s g e ne rating the links (or tab le of contents) as it has to b e d ynamic, and use rs should neve r
manually create the links. The issue is within the file -p aths as they d iffe r from O S to O S (Linux, Wind ows
e tc.) and which link g oe s whe re , the OS is sorting the fo ld e r structure and we d o not nee d it to b e sorted .

Stud e nt Sig nature : Lucian Nechita Date : 27 / January /2020
Sup e rvisor’s Sig nature : …………. . Date : / January /2020

41

6. Reflective Journal February

National Colle g e of Ire land
 Course : BSc (Hons) in Comp uting – Software Deve lop me nt
 Month: Fe b ruary 2020
 Lucian Nechita, x16149505”

Code Docs Automation

National Colle g e of Ire land
 Course : BSc (Hons) in Comp uting – Software Deve lop me nt
 Month: Fe b ruary 2020
 Lucian Nechita, x16149505”

Code Docs Automation

O ve rvie w
For the month of Fe b ruary, I had a ve ry b ig unfore see n issue . My p e rsonal comp ute r crashe d b eyond
normal re cove ry op tions. Not re ally sure why b ut the mothe rb oard stop p e d showing any sig ns of life and I
p e rforme d all p ossib le troub le shooting me thod s with no succe ss. My only op tion was to b uy a new
mothe rb oard which took a lo t o f time as I had to make sure it’s comp atib le with o the r p arts. O f course , is
no t that straig htforward as newe r mothe rb oard s d oe sn’t like o ld e r CPU’s, so I had to ord e r a ne w CPU and
Rand om-Acce ss-Me mory as we ll.

I would ’ve takin it to a shop to b e q uickly fixe d b ut d ue to Corona virus all shop s we re close d , and my only
op tion was to fix it myse lf. So , I o rd e red the nece ssary p arts b ut ag ain d ue to CO VID and Bre xit comb ine d
the p arts we re ve ry slow to arrive as the d e live ry was stuck on Unite d King d om customs.

This p rob le m re ally hurt my p rog re ss on the final p ro ject so far as I was not ab le to d o anything . Only
p rog re ss I d one was to atte nd the se me ste r two mod ule s on my mob ile p hone which wasn’t a g re at
e xp e rie nce b ut hey, b e tte r than nothing .

Re cove r lost time
I d on’t have a re ally g ood me thod of re cove ry ap art o f sacrificing fe w hours of sle ep and work on my
p ro ject. We have 730 hours in a month from which I sp e nd 160 at work and 240 sle e p ing (8 hours) g iving
me 330 hours le ft for co lleg e . Divid ing that b y the numb e r of mod ule s this se me ste r I’m le ft with 66hours
for e ach mod ule in a month. So , I will have to re cove r 66 hours, consid e ring that I can cut two hours from
my sle ep ing that will g ive me roug hly 33hours or one month of sle ep ing two hours le ss and g e t b ack on
track with my p ro je ct.

Conclusion
I b e lie ve I still have a chance to finalize my final ye ar p ro ject and d e live r most of the p ro je ct re q uire me nts.
My o the r op tion was to ap p ly for a d e fe rral, b ut I p re fe r to g o forward and try my b e st, just a little toug he r.

Stud e nt Sig nature : Lucian Nechita Date : 27 / Fe b ruary /2020
Sup e rvisor’s Sig nature : …………. . Date : / Fe b ruary /2020

42

7. Reflective Journal March

National Colle g e of Ire land
 Course : BSc (Hons) in Comp uting – Software Deve lop me nt
 Month: March 2020
 Lucian Nechita, x16149505”

Code Docs Automation

O ve rvie w
For the month of March, I fo llowe d my p revious p lan of sle ep ing two hours le ss which was q uite
challe ng ing and tiring b ut it d id p ay off and I manag e d to b ring the p roject up to d ate . Also , I was ve ry
b usy in p ushing out assig nme nts for o the r mod ule s in se me ste r two way b e fore the ir d e ad line s so I can g e t
more time to work on my final p ro je ct.

Pro je ct p rofile
Pro ject’s p rofile was cre ate d and sub mitte d on te ams to b e re viewe d b y the te ache rs and sup e rvisors, it
was q uite small task b ut q uite imp ortant into ad ve rtising my p ro je ct, so sp ecial care was g ive n on the
se lecte d p rofile p hotos and targ e t aud ie nce me ssag e s.

Pro je ct Docume ntation
For the p roject d ocume ntation I took the fee d b ack re ce ive d from the mid -p oint sub mission and I ad d e d a
whole system ove rvie w as it was q uite d ifficult fo r the aud ie nce what I was trying to achieve and how the
syste m will look like on my o ld d ocumentation. Also , anothe r fe e d b ack was to includ e more d e tails on the
te chnolog y use d within my p roject which I succe ssfully ad d e d . O nly thing le ft is the te sting and evaluation
which will have to wait until I imp le ment the te sts and evaluate my p roject

The syste m
The syste m is my only conce rn at this stag e as I d o not have any othe r assig nme nts d ue . Curre ntly is b ack
up and working as inte nd e d on the d eve lop ing /local e nvironment manag ing to translate any markd own
file s into b rowse r viewab le p ag e s. I start working on the use r inte rface and hop e fully d ep loy it live on the
cloud within a we e k.

Conclusion
Kee p ing a cool he ad and b e ing ab le to ad ap t e ve n in the most d ire and unfore see ab le of circumstance s
he lp e d me recove r and stay on the track with my p ro je ct.

Stud e nt Sig nature : Lucian Nechita Date : 27 / March /2020
Sup e rvisor’s Sig nature : …………. . Date : / March /2020

43

8. Reflective Journal April

National Colle g e of Ire land
 Course : BSc (Hons) in Comp uting – Software Deve lop me nt
 Month: Ap ril 2020
 Lucian Nechita, x16149505”

Code Docs Automation

O ve rvie w
For the month of Ap ril, I fo llowe d the req uire me nt on the d ocume ntation in b uild ing the automation
syste m and cre ate d the unit te st p lus the d ocumentation reg ard ing the te sting p art o f the syste m.

Unit Te sting
Project’s unit te sts we re p e rforme d with Mocha framework for Nod e JS and JavaScrip t lang uag e and is the
most p op ular frame work out he re at the mome nt. The te sting was q uite d ifficult to p e rform as the syste m
involve s a lo t o f te rminal command s to talk to the op e rating system and transform the ind ivid ual p arts into
b e autiful d ocume ntation.

Use r Inte rface
For the use r inte rface I used Ang ular frame work in the e nd as I was a b it und ecid e d b e twe en front-e nd
frame works. I choose Ang ular for the simp le re ason that is the most use d frame work within larg e
org anisations and this is a g re at skill and know-how to have und e r my d e ve lop me nt “b e lt” which will b oost
my p rofe ssional life .

The syste m
The syste m is cap ab le of taking markd own d ocument and transform the m into b e autiful cod e
d ocumentation which is d e p loye d along sid e the source -cod e itse lf making the d ocumentation more
re levant to the d e p loye d source -cod e and g ive d e ve lop e r le ss chance s to have outd ate d d ocume ntation.
De ve lop e rs are also ab le to twe ak the d ocument looks and fee l b y ad d ing custom se tting s into the syste m
g iving the m the ab ility to ke ep the uniq ue ne ss of the ir ap p lication look and fee l.

Conclusion
It was a toug h p rob le m try and so lve and ye t the b ig g e st challe ng e is to fig ure out the human inp uts
toward s the d ocumentation and d iscove r a way to automate that, so in the near future I p lan to p lay with
sp ee ch cod e d ocumentation automation with the hop e of cap turing the d e ve lop e r thoug hts while he
cod e s and d e ve lop his solution.

Stud e nt Sig nature : Lucian Nechita Date : 27 / Ap ril /2020
Sup e rvisor’s Sig nature : …………. . Date : / Ap ril /2020

44

9. Showcase Poster

45

10. Attachments

Original files for above appendices.

x16149505
Reflective Jurnal Part

x16149505
Reflective Jurnal Par

Lucian Nechita
Project Proposal .do

x16149505
Reflective Jurnal Part

Project Proposal
Lucian Nechita.pdf

x16149505
Reflective Jurnal Par

x16149505
Reflective Jurnal Part

Lucian_Nechita_Mar
ch_Reflective_Journa

Lucian_Nechita_Apr
il_Reflective_Journal

Showcase
Poster.pptx

	1. Objective
	2. Opportunity
	3. Solution
	Introduction
	4. Project Background
	5. Project Aims
	6. Project technologies

	System
	1. Requirements
	a. Functional Requirements
	b. Use Case Modelling
	c. Data Requirements
	d. Data Conversion
	e. Environmental Requirements
	f. Non-functional Requirements
	g. Usability Requirements

	2. Design & Architecture
	a. System Architecture Back-End
	b. System Implementation
	c. User Interface

	3. Testing
	4. Evaluation
	5. Conclusion
	6. Further Development and Research

	References
	Appendices
	1. Project proposal
	2. Reflective Journal October
	3. Reflective Journal November
	4. Reflective Journal December
	5. Reflective Journal January
	6. Reflective Journal February
	7. Reflective Journal March
	8. Reflective Journal April
	9. Showcase Poster
	10. Attachments

