Code Docs Automation

Technical Report 2020

National College of Ireland, BSc in Computing 20202021
Lucian Nechita, x16149505@)student ncirl ie
Student ID: x16149505

-l""'"l
\ National

College«
Ireland

Disclaimer

December 2020/May 2021

This technical report was developed by Lucian Nechita as part of the final project assessment for BSc (Hons)
in Computing (Software Development Stream) at National College of Ireland. For further information contact
National College of Ireland https://www.ncirl.ie/

The information and views set out in this report are those of the author(s) and do not necessarily reflect the
official opinion of the National College of Ireland. Neither the National College of Ireland institution and bodies
nor any person acting on their behalf may be held responsible for the use which may be made of the
information contained therein.

Contents

1. Objective
2. Opportunity
3. Solution
Introduction
4. Project Background
5. Project Aims
6. Project technologies
System
1. Requirements
a. Functional Requirements
b. Use Case Modelling
c. Data Requirements
d. Data Conversion

e. Environmental Requirements

f. Non-functional Requirements

g. Usability Requirements

2. Design & Architecture

a. System Architecture Back-End

b. System Implementation
c. User Interface
3. Testing
4. Evaluation
5.

Conclusion

6. Further Development and Research

References
Appendices
1. Project proposal
Reflective Journal October
Reflective Journal November
Reflective Journal December

Reflective Journal January

2

3

4

5

6. Reflective Journal February
7 Reflective Journal March

8 Reflective Journal April

9 Showcase Poster

10. Attachments

00 N N N UL D b

=
o

20
21
21
21
22
22
23
23
28
30
30
31
32
34
34
37
38
39
40
41
42
43
44
45

Glossary

Cl/CcD

Production
Environment

End User/s

Software
development
pipeline

Code
documentation

API
Documentation

Cloud computing

Use case
modelling

Software
Development
Automation

Software
Repository

Web Application

Responsive Web
Design

In software development Cl stands for continuous integration and CD for continuous
development. It is a software development practice where team members create and
integrate their code frequently verified by an automation build including tests to
detect errors and updates production environment code if no errors were detected.
(Stolberg, 2009)

Production environment is a way for software developers to describe the setting
where computer code is executed and put into operation with the goal of being used
by end users. (Technopedia, n.d.)

An end user is a person for which a device, software or system was designed to interact
with. In simple terms it is the person who uses the software or hardware. (TechTerms,
n.d.)

A software development pipeline is a set of automated tasks from which computer
code is passed through from task to task following a set plan to achieve different goals
at each step. (Azure, n.d.)

Code documentation is the process in which a programmer describes the code actions
or how the system works. (Goldis, 2018)

APl documentation is the process of explaining how to use a certain APl endpoint, with
details about arguments, types, returns etc. (Vasudevan, n.d.)

Cloud computing is getting access to different computing resources as a service
including databases, virtual machines, networking resources, software etc. (Microsoft,
2018)

A use case model is a representation of how a user or different users interact with a
system to access a service, solve a problem, or achieve a certain goal. (UTM, n.d.)

Software development automation is the process of transforming manual labour into
automated systems which frees up developer time for more important tasks.
(StackExchange, 2017)

Software repository is a change management tracker for project code building up a
history with all changes made to the code over time and promotes easy collaboration
within developer circles. (technopedia, 2016)

A web application is a software program which functions on a web server and it is
designed to be accessed by a browser with access to internet and installation free
applications. (PCMAG, 2016)

Responsive design is an approach to design application that should respond to user
behaviour and environment. Content of the application should dynamically adjust and
fit on the screen size on different devices with different screen sizes. (Smashing, 2016)

Executive Summary

This technical report provides the analysis and discussion of scope for the development of an automated code
documentation system. The strategy deals directly with the code and other tools in gathering the information
across platforms and building a production grade document.

1. Objective

The aim of this project is the creation of a system for automating code documentation process which will
gather source documents and assemble them into a ready to deploy web application. The system will work
within an automated development process, recognize repository changes, and automatically start a task
within the software pipeline publishing the web application to the cloud and making it accessible to end uses
within minutes.

2. Opportunity

Programmers live in a world of plain text, either code syntax or writing documentation its all plain text which
computer understands and process it into a different output. Most of the times we want to turn this output
into an easy to understand and pretty format which humans can digest with ease. Also, as programmers we
have the best tools to track changes to the code and we keep a close eye on the history of our changes but
not much monitoring on the documentation side of the application causing outdated descriptions of the
application features or code implementations.

The workflow for tracking code changes is very powerful and familiar to any developer so why would we
forget about it when it comes to documenting our application?

3. Solution

The solution is to use that powerful workflow discussed above for the documentation side of the application.
At its core, utodocs is a dynamic document bundler for modern applications. When utodocs processes your
application documentation, it internally builds a table of contents graph which maps every markdown file in
your project and generates http link's which point into your application GitHub repository.

Utodocs is an automated process for code documentation which is built at the same time with your
application source-code. This enables developers to keep a close eye on the changes of the code and
documentation, and the version of the documents will relate to the version of the source-code creating a
one-to-one mapping. So, when the version of the source-code is changed, being for a new feature or
downgrading the application to an older version; the documents will reflect the respective version of the
software.

Introduction

4. Project Background

This technical report provides the analysis and discussion of scope for the development of an automated code
documentation system strategy. The strategy deals directly with the management of code documentation at
all stages of software development life cycle.

The purpose of this document is to provide the reader with in-depth detail of the project. The proposed project
will give developers the ability to replace the manual task of gathering and assembling code documentation
with an automated system to build and deploy production grade documents. Writing code functionality
documentation takes as much time as writing the code if not longer. This takes precious software development
time from the developer and having an automated system which takes care of code documentation will
increase productivity and quality of the code.

5. Project Aims

The aim of this project is the creation of a system for automating code documentation process which will
gather source documents from different stages of software development life cycle and assemble them into a
ready to deploy web application. The system will work within an automated development process, recognise
repository changes, and automatically start a task within the software pipeline publishing the web application
to the cloud and making it accessible to end uses within minutes.

The automation tool should be coding language agnostic so any developer from any background can benefit.

The automation tool should be “learn free” so any developer can focus on what their best at instead of using
company time to learn how to use our tool.

The automation tool should include all stages of the software development life cycle. Building software
functionality usually include documents, scattered across different apps or places. For example, a UML use
case modelling documentation from requirements elicitation, might be small but powerful into helping us
building the documentation for a unit of functionality, like who can use it (actors), what they
need(prerequisites), and describe the flow of events.

6. Project technologies

e NodelJS —is an open-source JavaScript runtime environment which allows programs written in JavaScript
to run outside a browser, for example on a server or on a local machine environment. The project will
make use of the NodelS technology to access operating system resources and run the JavaScript files to
parse and build the documentation and web application. The project will also use NodelS to set up a back-
end environment within the pipeline where most of the code documentation automation system will
reside. (NodelS, n.d.)

e JavaScript — is a popular programming language also known as the scripting language of the web. The
project will make use of the JavaScript language as it is light-weight, high level language and makes it very
fast to build software projects. The project will have a web-based component to display the web

application and as the web browsers mostly supports JavaScript language will make it more appropriate
to use. (developer.mozilla, n.d.)

HTML and CSS Grid — is the foundation of web applications, HTML stands for Hypertext-Markup-Language
and it is designed to work in a browser and display web pages. Usually, it is assisted by CSS technology to
improve the design of the webpages. This project will make use of CSS Grid which is a newer technology
and can be used to create complex responsive layouts with more consistency between the browsers.
(Andrew, 2018)

.MD File Types — the project will make use of GitHub’s standard text files which is .MD or markdown files.
It is plain text which include symbol to indicate special text like title or code text and it is used widely
across repositories. The system will make use of this filed to parse its content and transform itinto a HTML
page with the special text indicated by symbol parsed accordingly to display it as a title or code block
within our HTML document. (Markdown, 2017)

Concourse CI/CD — it is an open-source software which runs within a Docker container to build an
automated system and manipulate code files, test, or deploy applications to the web. The project will
make use of the Concourse technology to set up a pipeline between local environment and remote
repository, pipeline in which the system will gathers source documents and code, read, parse and test and
finally assembly all the pieces of the application and deploy it to the cloud. (Concourse, 2017)

Mocha testing framework — Mocha is a test framework for JavaScript code used for unit and integration
testing of applications build in JavaScript. The project will make use of Mocha testing framework to test
the code and assure that the previously build features of the application are still functioning as intended.
This will increase development speed and system reliability. (Mocha, n.d.)

Test Driven Development — Test driven development is a technique of developing software by building the
tests before the functionality is build. Developing the failure tests before the functional code will increase
the robustness of the code as functional code has to pass the tests before it even works first time. (Agile,
n.d.)

Agile methodology — Agile methodology is an incremental software development technique which
encourages iterating quickly through the software development lifecycle, managing the project by
breaking up the system in small pieces and incrementally work on each piece from design to deployment.
(Alliance, 2018)

Gantt Chart — A Gantt chart is a project management plan which helps software developers track progress
and manage tasks to a successful project delivery. It is a visual view of work to be done and its
dependencies showing a schedule across time with start and end dates for each task assisting the
development of the system and keeping an eye on project deliveries. (Manager, 2020)

Heroku Cloud — Heroku Cloud is a platform from Sales Force that offers computing as a service for building,
testing, and managing applications. The project will make use of cloud computing technologies such as
database, virtual machine, and network interface to deploy the web application and make it available to
potential users without the need of installing the system. (Heroku, 2020)

System

1. Requirements

The following section of this paper will discuss the required specifications of the code documentation
automation system. We will describe the functions which the system should fulfil to satisfy stakeholder needs
expressed in a textual statement.

a. Functional Requirements

Functional requirements are a list of services a software must have on a component level of functional
level. It defines a set of specific functionalities which a system is likely to perform with a given input and
output expected. (GeeksForGeeks, 2017)

e User should be able to create a vertical navigation to place at the side of a page
The system will allow a user to create a vertical navigation bar for which the system will read the
folder structure from the repository and convert the names of the folders into links within a side
navigation bar of the web app.

e User should be able to create a top navigation bar
The system will allow users to customize the header of the web application by reading a predefined
file within repository.

e User should be able to customize the design of the application
The system will offer full access to the styling files for the web application where a user can delete,
add, or modify the looks, layout, or colours of the web app.

e User should be able to create .MD files
A user should be able to create markdown files within his own repository for which the system will
offer connection trough web Tokens and APIs.

e Convert markdown files to html
The system will read and convert the markdown text files into appropriate HTML, parsing markdown
symbols and transform normal text into titles of different sizes, images, code blocks, external links
etc.

e Ignore comments within the markdown files
The system will recognize comments within the markdown files and ignore them when parsing the
text and outputting it to HTML syntax.

e Continuous integration development
The system will not reside with developer’s code and will allow the user to operate the system
through a continuous integration pipeline where it will perform most of the tasks.

e Continuous deployment
A user should be able to deploy to the cloud the web application responsible for code
documentation and the system will have the necessary pipeline tasks in place for the deployment
process to happen is chosen.

e System Independence
The system will be independent of operating system or platform or developer code base, it will set
up its on server within a Docker image.

e Recognize code changes
The system will monitor any code changes happening in the repository and it will automatically build
a new version of the documentation if any changes happened.

b. Use Case Modelling

The following use case diagram provides a simple representation of a user’s interaction with the system
and user’s involvement with the system describing units of useful functionality performed by the code
documentation automation system in collaboration with external actors.

Systemn

ParsdlseCase

WritesUseCase
extends

includes

ReadFiles
extend

ParseCode

WritesCode / extends

extends extends
ParseTasks
Joncour:

WritesTasks Pipelin

v ParseComments
ConvertFiles
Scrumiaster

CodeComments

i WritesCodeTests

Developer

: ParseCodeTests
includes

extends

UploadsoGitHub
Developer

ConnectoSystem extends

includes Systemrinterface

includes

Checkfor Changes

CreatesolderStructure
extends

User

) includes
Designer

ModifyDocsDesign SystemDesigrFiles

Manager

Use Case
Description
ID

Scope
Actors

Algorithm
Diagram

Flow Description

Write Use Cases

The user will have the ability to create .MD files with Use Cases, very similar to the use
cases on this paper
CDAS001

The scope of this use case it to read and convert data from use cases docs to HTML

Scrum Master, GitHub

Start —» Use Case Writing

Parse Content YES

- Upload - Stop

e Precondition
The user must use the predefined markdown file
e Activation
Once it detects a non-empty predefined markdown file being uploaded to GitHub
e Main flow
v User writes use cases in the predefined markdown file (See A1)
v User pushes the file to the GitHub repository
v' The system will intercept the file (See A2)
v' The system will parse the content to HTML describing system functionality
v" The system will commit the changes to GitHub (See A3)
e Alternate Flow
v' Al -The system will ignore the file and prompt the user for changes
v' A2 —Ifis no modification done to the file or simply not present the system
will skip the parsing functionality
v' A3 —If user wants to skip this step and chose to deploy instead the system
will deploy/update the web application on the cloud
e Exceptional Flow
v User manually stops the system, will display manually stopped message
v' The system encounters an unexpected error, it will restart and try to
resume the job
e Termination
System is stopped by a user
e Post Condition
The system will sleep until new file is detected

Use Case
Description

ID
Scope
Actors

Algorithm
Diagram

Flow Description

Write Code
The user will have the ability to add a custom @anotation in addition to user’s code

CDAS002
The scope of this use case it to read and convert data from source-code files to HTML

Developer, GitHub

Code append
ST > @annotations @anotation
Parse Content YES Is appended? NO
- Upload - Stop

e Precondition
The user must use the @annotations within his own source code
e Activation
Once it detects @annotation in the code base file being uploaded to GitHub
e Main flow
v' User appends @annotation to the source code
User pushes the file to the GitHub repository
The system will intercept the source code file (See A1)
The system will parse the function name and parameters and transform
them to HTML syntax describing functions functionality
v" The system will commit the changes to GitHub (See A2)
e Alternate Flow
v Al - If is no @annotation detected system will skip annotation parsing
functionality
v' A2 —If user wants to skip this step and chose to deploy instead the system
will deploy/update the web application on the cloud

SRR

e Exceptional Flow
v" User manually stops the system, will display manually stopped message
v' The system detects improper use of the @annotation and will notify the
user of the modifications needed and correct the mistake
v" The system encounters an unexpected error, restart and resume the job
e Termination
System is stopped by a user
e Post Condition
The system will sleep until new @annotation within the file is detected

10

Use Case
Description
ID

Scope
Actors

Algorithm
Diagram

Flow Description

Write Tasks

The user will have the ability to write tasks or cards for developers with current and
future work items
CDAS003

The scope of this use case it to read and convert data from tasks/cards to HTML

Scrum Master, GitHub

Start E— Work items

Parse Content YES- NO*

- Upload - Stop

e Precondition
The user must use predefined markdown files specially created to serve this
purpose
e Activation
Once it detects the predefined markdown files being uploaded to GitHub
e Main flow
v’ User writes use work items in the predefined markdown file (See A1)
v User pushes the file to the GitHub repository
v" The system will intercept the file (See A2)
v" The system will parse the content to HTML describing the functionality
v" The system will commit the changes to GitHub (See A3)
e Alternate Flow
v' Al -The system will ignore the file and prompt the user for changes
v' A2 —If is no modification done to the file or simply not present the system
will skip the parsing functionality
v" A3 —If user wants to skip this step and chose to deploy instead the system
will deploy/update the web application on the cloud
e Exceptional Flow
v" User manually stops the system, will display manually stopped message
v' The system encounters an unexpected error, restart and resume the job
e Termination
System is stopped by a user
e Post Condition
The system will sleep until a new work task file is detected

11

Use Case
Description
ID

Scope
Actors

Algorithm
Diagram

Flow Description

Code Comments

The user will have the ability to write code comments within his source code and use
them to build documentations content
CDAS004

The scope of this use case it to read and convert data from code comments to HTML

Developer, GitHub

Start —— = Code comments

Caode has

arse Conte: ~
Parse Content YES comments?

NO

» Upload - Stop

e Precondition
The user must use comments within his source code files
e Activation
Once it detects any code comments in the source files
e Main flow
v' User writes comments within his code base files
v User pushes the file to the GitHub repository
v" The system will intercept the file (See A1, See A2)
v" The system will parse the content to HTML describing the functionality
v" The system will commit the changes to GitHub (See A3)
e Alternate Flow
v' Al -The system will allow to skip any comments within the source files
v' A2 —If is no modification done to the file or simply not present the system
will skip the parsing functionality
v" A3 —If user wants to skip this step and chose to deploy instead the system
will deploy/update the web application on the cloud
e Exceptional Flow
v' User manually stops the system, will display manually stopped message
v" The system encounters an unexpected error, restart and resume the job
e Termination
System is stopped by a user
e Post Condition
The system will sleep until new comments are added to the file

12

Use Case
Description
ID

Scope
Actors

Algorithm
Diagram

Flow Description

Code Tests

The user will have the ability to write tests for his source files and use test results
output as part of the code documentation

CDASO005

The scope of this use case it to read and convert data from unit tests to HTML

Developer, Pipeline, GitHub

Start — Unit tests

¥
Parse Content YES @ NO

- Upload - Stop

e Precondition
The user must use unit tests to test his source code files

e Activation
Once unit tests are run within the pipeline system functionality

e Main flow

v
v

v
v
v

v
v
v

User writes unit tests for his source code files

User activates the use of unit tests output towards building the
documentation

User pushes the file to the GitHub repository

The system will activate the pipeline and run the unit tests

The system will listen for unit tests output using operating system’s
STDIN/STDOUT data stream (See A1)

The system will save the output to OS memory

The system will parse the output to HTML describing the test results

The system will commit the changes to GitHub (See A3)

e Alternate Flow

v

v

A1l -The system will allow to skip listening for test inputs/outputs and skip
the parsing functionality

A3 —If user wants to skip this step and chose to deploy instead the system
will deploy/update the web application on the cloud

e Exceptional Flow

v

User manually stops the system, will display manually stopped message

e Termination
System is stopped by a user
e Post Condition
The system will sleep until new tests are created or modified

13

Use Case
Description
ID

Scope
Actors

Algorithm
Diagram

Flow Description

Connect to the System

The user will have the ability to connect his source code repository to the system
through systems settings files
CDASO006

The scope of this use case it to give the user the ability to connect with the system

Developer, Designer, GitHub

Connect
HEL - Repository
YES
e Validate Repo ——w Save Seftings ——» Stop

e Precondition

The user must download and install code docs automation system files
e Activation

Once user starts the application by entering to any CLI the run command
e Main flow

v' User opens GitHub repository and retrieves connection string

User opens the settings file provided by the system
User adds connection string to the settings file
User pushes the changes back to development repository
The system will activate the pipeline
The system will validate the connection with the repository (See A1)
v" The system will save the settings to the repository

SRR NE RN

e Alternate Flow
v" Al -If connection string is not valid the system will notify the user
— The system will display login GUI to manually login to GitHub
— The user can enter account name and password
— The system activates the pipeline
e Exceptional Flow
v User manually stops the system, will display manually stopped message
v" GitHub refuses the connection, the system will notify the user and sleep
e Termination
System is stopped by a user
e Post Condition
The system will sleep until new push to GitHub branch is detected

14

Use Case
Description
ID

Scope
Actors

Algorithm
Diagram

Flow Description

Create Side Navigation

The user will have the ability to create a folder structure from which the system will
read and translate the structure into navigation for the web app documentation
CDASO007

The scope of this use case it to give the user the ability to create a custom navigation

Developer, GitHub

Start —w» Folder Structure ——

Create Sublist

‘e Create File —— = Save File — — Stop

e Precondition

The user must be connected to the system
e Activation

Once user push his source code to the repo
e Main flow

User pushes new changes to his source code
The system will activate the pipeline
The system reads the folder structure (See A1)
The system creates a file holding the navigation structure
The system will parse the file and outputs navigation to HTML
The system will save the settings to the repository
e Alternate Flow
v' Al-If there are any subfolders the system will create a sub-list
— The system will append indentation to each name of the folder
— The system will write the result to a file
— The system will continue with next folder reading the structure
— The system will save the settings to the repository

LSRN N NN NEN

e Exceptional Flow
v User manually stops the system, will display manually stopped message
e Termination
System is stopped by a user
e Post Condition
The system will sleep until new push to GitHub branch is detected

User creates a desired folder structure which will hold the documentation

15

Use Case
Description
ID

Scope
Actors

Algorithm
Diagram

Flow Description

Create Top Navigation

The user will have the ability to create a file holding the structure of the top navigation
bar from which the system will read and translate the structure into top navigation
CDASO008

The scope of this use case it to give the user the ability to create a custom navigation

Developer, GitHub

Start Top N;\lnegauon

transform into default HTML
¢ HTML navigation . VES ™ navigation file —

wDeploy Changes—— Stop

e Precondition
The user must be connected to the system
e Activation
Once user push his source code to the repo
e Main flow
User creates a desired structure for the top navigation bar (See A1)
User pushes new changes to his source code
The system will activate the pipeline
The system reads the folder structure
The system will parse the file and outputs navigation to HTML
The system will save the settings to the repository

DN NI N N NN

e Alternate Flow
v' Al - If user did not create the file with top navigation the system will
provide a default navigation settings file
— The system will parse the file and outputs navigation to HTML
— The system will save the settings to the repository
e Exceptional Flow
v' User manually stops the system, will display manually stopped message
e Termination
System is stopped by a user
e Post Condition
The system will sleep until new push to GitHub branch is detected

16

Use Case

Description

ID

Scope

Actors

Algorithm
Diagram

Flow Description

Customise the Design of Documentation

The user will have the ability to change the design of the documentation created by

the system
CDASO009

The scope of this use case it to give the user the ability to customize the design of the
documentation

Designer

Start — % ChangeDesign —

YES.

—m Apply Changes — wDeploy Changes—— = Stop

e Precondition
The user must be connected to the system and a HTML file must be generated at
least once

e Activation
Once user push his source code changes to the repo

e Main flow

v

LUK

v

User opens the CSS settings file on the local repository
User opens the HTML file

User makes the CSS changes needed

User pushes the new code changes to the repository
The system will activate the pipeline

The system reads the CSS modifications

The system applies the changes to the web app

The system deploys the changes

e Alternate Flow

v

N/A

e Exceptional Flow

v

User manually stops the system, will display manually stopped message

e Termination

System is stopped by a user

e Post Condition
The system will sleep until new push to GitHub branch is detected

17

Use Case

Description

ID

Scope

Actors

Algorithm
Diagram

Flow Description

View Documentation

The user will have the ability to view the deployed documentation available on the
cloud
CDAS010

The scope of this use case it to give the user the ability to view the documentation
produced

Scrum Master, Designer, Developer, Manager, User

View Open Web App
Documentation Home Page

Start

Display HTML — ErEsey =t

e Precondition
The user must be having internet connection and system must be run at least one
time to generate the files and deploy the web app
e Activation
Once user visit the appropriate link to open web app
e Main flow
v User opens an internet browser
v’ User enters the link in a browser (See A1)
v" The system will present the user with the documentation
e Alternate Flow
v' Al-If wrong link entered the system will present user with an error page
— The system will give instructions of how to access documentation
— The user clicks on one of the links available on the error page
— The system will display the appropriate documentation page
e Exceptional Flow
v User manually stops the system, will display manually stopped message
v" The cloud instance is down, the system will display 404 error page
e Termination
System is stopped by a user
e Post Condition
The system will enter a wait condition until an API call is made

18

c. Data Requirements

This section of the paper will describe the data requirements of the system which is an essential
requirement for the system functionality. The system will use GitHub repository as the backend solution
to store data generated by the system and by the user. All the documentation details will be stored on
GitHub which will consists of markdown files for documents text and a folder structure for the
navigation links of the web application. Take for example the sample dataset bellow:

~ docs
~ functionality1
~ 1 Getting Started
¥ 1 Install.MD
¥ 2 Adding Mavigation.MD
3 Managing Data.MD
¥ 4 Deploy Your Application.MD
» 2 Main Concepts
» 3 Built-in Features
» 4 Best Practices
2 5 Tools
~ functionality2
¥ 1 Use CaseMD
¥ 2 ScopeMD
¥ 3 Actors.MD

» functionality3

The system will follow the pattern above, recursively reading each file and folder plus the text available
in each markdown file after which will create a copy of the above structure with the files converted to
HTML. The folders will become part of the navigation system of the web app and the markdown files
will be translated to sub-links for each link and the text within each markdown file will be parsed as the
content of the document.

This can be compared to a database system for an entity; once any CRUD operation is performed on any
of this files or folders the content of the web application will be updated accordingly. The project is
designed to use technologies which are closest to the developer and follow GitOps pattern. “GitOps
focuses on a developer-centric experience, by using tools developers are already familiar with, including
Git and Continuous Deployment tools. The core idea of GitOps is having a Git repository that always
contains declarative descriptions of the infrastructure currently desired in the production environment
and an automated process to make the production environment match the described state in the
repository.” (GitOps, 2017)

The most interesting thing is that we have access to each commit within the GitHub repository which
gives us a unique ID and a complete history of files modification. So, let us say you create and deploy an
application version 1.0.0, you will have documentation version 1.0.0 available for that version of the
application. If any customer has access to an older version of the application, it will have access to an
older version of the documentation as well as each commit will match with that version of the
application.

19

d. Data Conversion

The following section of this document will describe the steps taken for the conversion of markdown
files to the HTML syntax. The system will have a custom algorithm which will be used to transform
markdown symbols into HTML syntax. The project will be following the most common and widely used
markdown symbols for markdown syntax provided by GitHub (Guides, n.d.). Let us take for example the
table below:

Markdown HTML Display Output
Heading level 1 <h1>Heading level 1</h1> H .

eading level 1
Heading level 2 <h2>Heading level 2</h2> H .

eading level 2
Heading level 3 <h3>Heading level 3</h3> Heading |eve| 3
Heading level 4 <h4>Heading level 4</h4> Head | ng IeveI 4
H##### Heading level 5 <h5>Heading level 5</h5> Heading level 5

The system will parse the files and check for any heading symbols like # for heading level one and if
found it will delete the symbol and append the <h1> tag element surrounding the text. This will be
interpreted by any browser as a heading of size 32 pixels which will make it look larger on the page and
on a new line. As documents have headings to differentiate between different chapters and sub-
chapters/sections this feature is of high importance for the system. If now heading symbols are found
the system will need to convert the text into paragraphs, for example:

Markdown HTML Display Output

| really like using Markdown. <p>I really like using | really like using Markdown.
Markdown. </p>

I think | will use it to format ~ <p>I think | will use it to I think | will use it to format all my

all my documents from now format all my documents from documents from now on.

on. now on. </p>

As you notice we will surround any text without markdown symbols with a HTML <p> tag which will
render as a paragraph of size 16 pixels in any internet browser. The same process will happen for each
markdown symbol replacing the symbols and appending the appropriate HTML tags depending on the
type. The system will support heading, unorganised lists, organised lists, links, code blocks and images.

Using markdown files (also referenced as .MD files in this paper) has been chosen for this project to
make it easier for developers to read or edit the documentation files without the need to worry about
HTML syntax. Having the HTML files will clutter the documentation and make it harder for developers
to read and edit because of the syntax overhead.

20

Environmental Requirements

The system should have access to internet

As the system works with remote repository, cloud technologies and it is designed such that the
user can view the documentation files over the internet it is required that the system should have
access to an active internet connection.

The system should have access to a repository

As the system uses the repository as its primary back-end storage reading and writing to it, the
system requires that the user should have access to a repository technology.

Non-functional Requirements

The system should be available 24/7

As the developers can make code changes at any time of the day the system should be always
available, otherwise source code might change, and the documentation might not be created
leaving gaps between versions of the software and the documents.

The system should incur minimal learning

The system should be designed to be “plug and play” as it tries to make it easier for developers to
do their jobs and spend their time on more important tasks.

System performance

The system should complete the jobs required to parse and deploy the new version of the file in a
reasonable amount of time, so it will not impact developers speed on updating their source code.
Docker Orchestration System

As the system will work within a pipeline within a docker container system the user should have a
container orchestration system like docker desktop. It will be possible for the user to use a different
approach as the system is portable in other pipeline, but it is up to the developer to tweak any
settings required.

Access to cloud compute services

The user should have access to cloud computing services as the documentation will be published
on his own domain. If the user does not have access to cloud infrastructure the system will still
provide the raw generated files and it will be left to the user to decide the deployment platform.

Usability Requirements

The system should have access to Docker technology

The system is built around Docker technology the user should be able to run docker images on local
computer or cloud environment with docker orchestrator technology, otherwise he will not be able
to run the system.

The user should be familiar with technology

The system is designed for users with knowledge of programming languages and IT technology in
general and although the system will not have a big learning curve for the user, some general
knowledge is required.

Independent of source code programming language

The system should be independent of developer’s source code programming language as it builds
only the documentation for the code. As the documentation is a stand-alone part of the software it
should not impact the source-code and just read through the files provided not run them.

21

2. Design & Architecture

The system will function on a NodelS server technology serving front-end documents through HTTP
request/response methods. The front-end technology will be built with Angular framework which will display
a simplistic design to make the documentation pleasant to read. The web-application will be deployed on
Heroku cloud which will communicate with the master repository and update documents published by the

back-end system.

Pipeline

@)
35 32
T ~ O o
o o e 5
n = o
Qa Qﬂ!
38 32

a. System Architecture Back-End
The back-end system will also be built on NodelS technology and will live within the Concourse pipeline

activated by any commit to the development branch, building all the documentation and push it to the
master repository from where the front-end application will access the latest version of the
documentation. The following diagram should offer a better visual description of the system

Collect Use Case
L

Data
Commmit ID ———
Commit to
Start — - Develop » Read markdown ———
e -
Run Integration)
- Tosts » Tests Results
Y
~——— Push to master
“— s Run Unit Tests » Tests Results -y
Front-End
Application Detect Change =—— Y
Sleep

22

b. System Implementation

e The system will have a continuous integration/continuous deployment pipeline where it will
detect any commits to the development branch. The system has access to any changes made to
the development branch and all git commands run against the branch from where we can access
commit ID, committer name. The system will use this information to version the documentation
keeping the same identifier as the software deployed.

e Upon detecting any changes, the pipeline will run all prerequisite jobs like unit tests, integration
tests, download repository etc. setting up the automation flow from end to end and validate the
code and the documentation created. The system will stop and notify of any errors encountered.

e The system is designed to be dynamic and for each file or folder created the system must create the
necessary endpoints where documentation can be accessed.

The HTTP GET method which is responsible for any endpoint request incoming from the client for
which we have created a custom method “readAndConvertFiles”. The method is taking any request
in the form of URL where we split each part and remove any invalid characters such as % and append
an empty space to match the folder name by traversing each directory recursively and comparing
to the string in the array of strings resulted.

c. User Interface

For the back-end service, we do not have user interface as the work done by developers is done mostly
in Command Line Interface. Once the back-end service is installed and configured developers pretty
much will need to forget about it, it is designed to work in the background but available to the developer
needs to delve in and inspect the current status of the process.

) develop.git) main.git
linting build-and-deploy
@ node-image # node-image

ele-tests

|

l unit-tests I

23

The developer has access to all the commits which will reference the specific version of the source-code
and documentation which is quite handy as we can inspect, debug, and revert any changes committed
in case a bug was discovered in production environment of our application. The documentation will be
updated and reflect the “old” version of the software documentation accessible to users within minutes
of reverting the source-code.

) develop.git checked2os aza
check: develop._git

L ¥ ref bed1al]8do1feseland32e4203abT3Td30e802T4

inputs to metadata

ele-tests

commit
bes1x818d91 feseaanaszesanzabrafdasennzrs
suthor
e lscimnrica
]Jr.unE suthor_date
m 2821-85-88 15:44:38 +@188
committer

push-to lecianrica
committer_date
ﬂ? 2821-80~88 10:44238 +@188
bramch
unit-tests develop
message
“2 start e2e tests
url
https: /i thub. conflucianricafwiodocs conmit /bed 1281 0d3 feSetan 302048 53ab T3 Fd35e 20274

Sdfazéedoibes2cdchadbfic Tednsandaadadac
Bal8alchanszaven1siefosracansezfoaf 13000
ealdiEadeBina SE05ch 12849 24383dcT 14284311
coznalbecd7erdzfacfasabsnrsasrascfesaboe

sasodzeadebeb fezsrecoas) reecdaThessnsTs

At the same time, the developer can see real time progress of their application status of their unit test
or integration test and any other required tasks just as a normal flow of a software deployment life cycle
and can track any version of a deployment with its associated output, e.g. a failed unit test job.

i-: "% utodocs / <> unit-tests

storted May 2 26821 88:13:33 PH
unit-tests #78 finished may 2 2621 08:15:27 PR m @
duration Tm Hs et
83 8 B1 8 79 78 77 76 75 T4 T3 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47
Comniline Banowlarfcoreftesting - es?A15 a5 esmi@lh
run-tests
Comp1ling Eangular/platform-browser-dynamic : esZB15 as esmZdT5
Compiling Bangular/platform-browser/testing : es2815 as esm2@15
Compiling Bangular/platform-browser-dynamic/testing : e=2815 as ezn2B15
B2 85 2821 19:15:27 . TE3:INFO [karma-zerver]: Karma v6.1.2 server started at http: //localhost: 9876/
@2 @5 2021 19:15:27.765:INFO [launcher]: Launching browsers ChromeHeadlessCI with concurrency unlimited
B2 85 2021 19:15:27.767:INFO [launcher]: Starting browser ChromeHeadless
B2 85 2821 19:15:27.781:ERROR [launcher]: Cannot start ChromeHeadless
Can not find the binary fusr/bin/chromium-browser
Please sst env variable CHROME_EIN
B2 85 2821 19:15:27 .781:ERROR [launcher]: ChromeHeadless stdout:
@2 @5 2021 19:15:27.782:ERROR [launcher]: ChromeHeadless stderr:
npm ELIFECYCLE
npm 1
npm utodocs8d. 8.0 test: "ng test --no-watch --no-progress --browsers ChromeHeadlessCI™
npm Exit statuz 1
npm
npm Failed at the utodocs®8.0.8 test script.
npm This is probably not a problem with npm. There is likely additiomal logging output abowe.

npm A complete log of this run can be found in:
npm {root/.npn/_logs/2821-85-02T19_15_27_B15Z-debug. log

For the front-end application, | used Angular framework to create a single page application and as this
is a proof-of-concept application, | added few additional pages to spark interest and attract people in
supporting the system. The application is live and available at: https://utodocs.herokuapp.com

e Landing page is simplistic with few calls to action messages as we don’t want people to get lost
of what we are trying to achieve. Snippet from landing page:

Document Your Code

You write markdown

This is where things get interesting, you
provide me with the description of your application
functionality, can even provide me with the code...

***javascript
console.log("my log")

same as writing a markdown file and utodocs will
transform, build and publish a producticn
gradle web application containing

your updated versicn of the **documentation**

the autamation

choice. Learn more about utodocs here.

sUtodocs makes HTML< o>

LA S

This is where things get interesting, you
provide me with the description of your application
functionality, can even provide me with the code...

>

console.log("my log™)

L0

same as writing a markdown file and utodocs will
transform, build and publish a production

gradle web application containing

your updated version of the < -»documentation< 0>

>

Utodocs is provided and executed as a step within the development pipeline which automatically builds
and publizhes the latest wersion of your documentstion along zide youre code. The documentation itzelf

will be transformed into an exact replica of this angular web-app and publizhed to a cloud provider of

) main. git

25

https://utodocs.herokuapp.com/

e | have also added a blog and contribute section for any developer who enjoys the idea and
wants to contribute into creating a better experience for the developers using utodocs or simply
needs more insights into why which | reflected into my blog.

u"‘ndocs HOME DOCUMENTATION CONTRIBUTE BLOG O

Contribute

The way a team plays as a whole determines its success. You may have the great

stars in the world, butif they don't play together, the club won' be worth a dims

The people who want to contribute to utedocs should do so for the love of open

op

ecosystem, and most importantly, pushing the web forward together. Because v
Collective model and transparency across products, we want to funnel supporti

free software for projects or core teams using utodocs automation.

How Can I Help?

Anybody can help by doing any of the following:

* Ask your employer to use utodocs in projects.
* Help us write and maintain the content on this site.
» Contribute to the core repositony.

* Encouraging Employers

e The documentation is by far the most interesting feature of the application. Simply put | used
utodocs/the system to document itself so that is a live sample of the documentation created by
utodocs on how to use and understand utodocs.

26

HOME DOCUMENTATION CONTRIBUTE BLOG O

~ 1 Welcome

I 1.1 Introduction
1.2 Glossary

1.3 Technologies

'
'
=
'
'
'
'
=
'
'
'
'
i
'
'
'
'
L

1.4 Licence

2 Understand Utodocs
w 3 Getting Started
;—3.1 Prerequisites

- 3.2 Setting Up Concourse

|
- 3.3 Insta

4 Setup

Writing Documeantation Markdown Cheatsheet

Welcome to utodocs

First of all | would like to say thank you for taking an interest into utodocs automation. We are thrilled to
see you here and hope you are enjoying our product so far, and just to keep you posted, we are always
working to make utodocs exactly what you need for your live application and your feedback helps us

decide which features to build, and what improvements should be made to our product.

Project Background

This technical report provides the analysis and discussion of scope for the development of an automated
code documentation system strategy. The strategy deals directly with the management of code
documentation. The proposed project will give developers the ability to replace the manual task of
gathering and assembling code documentation with an automated system to build and deploy

production grade documents,

Project Aims

The aim of this project is the creation of a system for automating code documentation process which will
gather source documents and assemble them into a ready to deploy web application. The system will
work within an automated development process, recognise repository changes, and automatically start
a task within the software pipeline publishing the web application to the cloud and making it accessible

to end uses within minutes.

Version controlled plain text

As programmers we live in a world of plain text. Our documentation tooling should be no exception. We
want tools that turn plain text into pretty HTML. We also have some of the best tooling available for
tracking changes to files. Why would we forgo using those tools when writing documentation? This

workflow is powerful, and familiar to developers.

Markdown

Your first stepsin documentation should go into your Markdown. Cade hosting services will render your

Heroku Cloud — Initially I had the application deployed to Microsoft’s Azure cloud by my account
credit recently expired so | had to redeploy my application to Heroku cloud. The application is
deployed automatically on every GitHub push so as a developer | do not have to take any steps
into creating a new version of the app.

| simply work on a new feature on my local environment and when it is ready, | simply push it
to the develop branch and everything else is taken care of, unit tests, deployments, conversions
etc. P.S. In a real-life scenario this should be done by a pull request where developers will

27

inspect the code at hand and approve/reject the pull request which will than be merged into
develop if approved and continue with testing etc.

3. Testing

For the testing part of the system, | used Karma test runner for JavaScript code that runs on Nodels and have
them executed in the browser. The test runner is running the tests and checks the within the browser to see
if the desired output matches what the browser displays.

l-.:::..;:::::...........................::.‘IIIHIIIiiIIIIIIiIIIIIIiiI

C @ localhost:9876/2id=4742360 wooa
Chrome is being controlled by automated test software. X

_

Chrome 90.0.4430.212 (Windows 10) is idle

@asmine <

24 specs, 0 failures, randomized with seed 47369 Finished in 0.319s

MainsidenavComponent
= should create

MarkdownCheatsheetComponent
= should create

DocsInteractionservice
= should be created

BlogComponent
= should render The Quantum Leap title
= should create

AppComponent
= should create the app

contributeComponent
= should create

MainDocsComponent
= should create

SubTopnavComponent
= should render Writing Documentation 1link title
= should render separator
= should render Writing Documentation 1link title
= should create sub-navbar

HomeC omponent
= should create

TopnavComponent
= should render BLOG Tink title
should render DOCUMENTATION 1ink title
should render HOME link title
should have as logo ‘"utodocs®
should render CONTRIBUTE Tink title
should render logo title
should create navbar

writinghocumentat ionComponent
= should create

NotFoundComponent
= should create

FooterComponent
= should create

Saferiperipe
= Create an instance

DISOLAMMER. SEPTEMBER/MAY 2021

THIS PROJECT WAS DEVELCPED BY LUCIAM MECHITA AS PART OF THE RINAL FROJECT ASSESSMENT FOR BEC HOMS) IN OOMPUTING (SOFTWARE DEVELOPMEMNT STREAM) AT NATIONAL COLLEGE
OF IRELAND. FOR FURTHER INFORMATION CONTACT NATIOMAL COLLEGE OF IRELAMD AT hittps/fwww.ncirlie

THE INFORMATION AMD WIEWS SET OUT i THIS REPORT ARE THOSE OF THE AUTHOR(S) AND D0 NOT NECESSARILY RERLECT THE OFFICIAL OPIMION OF THE MATIOMAL COLLEGE OF IRELAND. -

28

This works well on the local environment as the developer can inspect the tests and see any failures with the
reason why it fails. When we run this test within the pipeline it is a different story as there is no developer to
watch this test and having chrome opening within the pipeline will result in an error. To make it work in the
pipeline | had to use a HeadlessChrome which is a version of Chrome browser working in a sandbox
environment without being the full Ul, essentially running Chrome without Chrome, is just the underling code
and | have to say it was quite challenging to set it up.

Jasmine is the framework used for creating the unit tests for the application. Jasmine is a behaviour driven
testing framework for testing JavaScript code. Initially | planned to use Mocha testing framework, but |
experienced many issues when running the tests within the pipeline again as they require a Browser DOM. So,
| had to change to Jasmine testing framework as it does not require a DOM and it is the most popular within
Angular framework. Jasmine also comes with a very hand test reporter which builds a status page of our overall
test coverage.

All files

91.83% Statements es/71 0% Branches e/ 81.67% Functions 1s/24 84.91% Lines s1/s7

Press n orj to go to the next unct k, b, p or k for the previous block
File « Statements Branches Functions Lines
app/main] 100% 212 100% @ 0/0 100% | 0/0 100% 171
app/navigation/sidenavimain-sidenav | INGNGIGEG 100% 313 100% @ 0/0 100% | 0/0 100% 212
app/navigation/sub-topnav] 100% 313 100% = 0/0 100% @ 11 100% 212
app/navigation/topnav] 100% 414 100% @ 0/0 100% | 111 100% 313
app/pages/blog 76.67% 5/6 100% 0/0 83.33% | 1/3 78% | 10/14
app/pages/contribute 76.67% 5/6 100% | 0/0 83.33% | 1/3 75% | 1317
app/pages/docs/main-docs 66.67% 4/6 100% | 0/0 63.33% | 1/3 60% 3/5
app/pages/home 71.43% 5I7 100% @ 0/0 66.33% | 1/3 | 6667% 4/6
app/services I | 96.67% | 14/15 0% 0/6 96% | 4/4 | 38.46% @ 12/13
app/shared/footer] 100% 212 100% @ 0/0 100% | 0/0 100% 11
app/shared/markdown-cheatsheet 66.67% 4/6 100% | 0/0 63.33% | 1/3 60% 3/5
app/shared/not-found] 100% 212 100% @ 0/0 100% | 0/0 100% 11
app/shared/writing-documentation 66 67% 4/6 100% | 0/0 3333% | 1/3 60% 3/5
main] 100% 3/3 100% @ 0/0 100% | 0/0 100% 3/3

At this stage, the pipeline does not run tests for the “feature” git branch and in a real-life scenario it should
run the unit-tests on any branch that requested a “pull request”, as | am a one-man team it didn’t make sense
to enable such functionality. You can also see above that the unit tests are not 100% code coverage but again
as this is more a proof-of-concept/start-up type of application it is recommended not to create any
unit/integration tests etc. as it is a waste of time and money. Usually in a start-up/proof-of-concept
requirements will change very often making any tests created redundant and the market still needs to accept,

29

application needs to prove itself worthy and potential to generate income before we can spend money on
testing. As such | have created end-to-end/unit-tests to cover the National College of Ireland continuous
assessment requirements but in a real-life scenario | would not.

| have also added a linting task within the pipeline which checks the code for programmatic and stylistic errors.
It is a static code analyser which will format the code before it’s deployed to the version control provider. The
process should be done before each pull request but as | am a one-man team this step is done between
develop and main branch. If code is not properly formatted the pipeline will output an error and refuse the
deployment.

4. Evaluation

The evaluation of the system was done with creating the documentation for itself. The system is highly scalable
as it makes use of the latest industry tools as Docker images for pipelines where we can instantiate multiple
pipelines to work depending on the lead and requirements and as the system makes use of cloud platform the
front-end application can scale horizontally of vertically depending on the cloud provider but with no
impediments from the system itself.

The version of the documentation will reflect the latest version at the version control provider, such as GitHub,
making it quite robust in terms of correctness of the documentation. So as long the developer has the desired
version of the source-code and documentation on GitHub the system is guaranteed to display the correct
version.

The documentation is deployed within 3-4 minutes of creating a new version of the document and as it is an
Angular front-end application it only has few kilobytes in size making it very fast into accessing it from a
browser, around two hundred milliseconds until the application is fully loaded into the browser.

5. Conclusion

Considering that | am part-time student with full time job and more modules to work on, building the
application took a very long time but even to my surprize using the application into creating the
documentation was done very quick. We can fully document an application within one day as long as we
know the content of the documentation which is quite awesome.

The application strength is that developers can just create documentation without learning new tools or this
tool. As long as they have some knowledge of Angular and CSS, they can easily manipulate it to create a
completely different User Interface. Also, the documentation will reflect the latest source-code change as it
is deployed or reverted at the same time with the source-code which is a very robust way in making sure the
documents reflect the actual source-code software functionality.

One of the disadvantages of the application is that it was only tested wit GitHub version control platform, it
might work with other platforms but as | did not test it, I'll put it as a disadvantage. Another disadvantage is
that the angular application needs a server to run on the cloud which feels a bit like a waste of money to
have a server running on the cloud just to serve documentation, better approach will be to have a fully static
website which will be cheaper.

30

6. Further Development and Research

| really like the end result of my application and as a future research | will get feedback from developers and
try to understand what other people need from a document automation system, where | can improve. Also,
in real world scenario businesses have multiple version control repositories and even in different providers.
Having the system act as a platform for the organisation code documentation and serve documentation
from multiple repositories from different providers will make it more robust and even more attractive to
developers.

The system will keep the same direction in terms of “learn free” feature and try to avoid having “settings”
within the system as the more “settings” we have the more time the developer needs to spend in learning
the application making his life harder instead of easier.

31

References

Agile, n.d. Introduction to Test Driven Development (TDD). [Online]
Available at: http://agiledata.org/essays/tdd.html
[Accessed 17 12 2020].

Alliance, A., 2018. What is Agile?. [Online]
Available at: https://www.agilealliance.org/agile101/
[Accessed 17 12 2020].

Andrew, R., 2018. Grid by Example. [Online]
Available at: https://gridbyexample.com/examples/
[Accessed 17 12 2020].

Azure, M., 2020. Get to know Azure. [Online]
Available at: https://azure.microsoft.com/en-us/overview/
[Accessed 17 12 2020].

Azure, n.d. Azure Pipelines. [Online]
Available at: https://azure.microsoft.com/en-us/services/devops/pipelines/
[Accessed 15 12 2020].

Concourse, 2017. Concourse. [Online]
Available at: https://concourse-ci.org/pipelines.html
[Accessed 17 12 2020].

developer.mozilla, n.d. JavaScript. [Online]
Available at: https://developer.mozilla.org/en-US/docs/Web/JavaScript
[Accessed 15 12 2020].

GeeksForGeeks, 2017. Functional vs Non Functional Requirements. [Online]

Available at: https://www.geeksforgeeks.org/functional-vs-non-functional-requirements/

[Accessed 17 12 2020].

GitOps, 2017. GitOps. [Online]
Available at:

https://www.gitops.tech/#:~:text=GitOps%20is%20a%20way%200f,Git%20and%20Continuous%20Deployment%20tool

s.
[Accessed 18 12 2020].

Goldis, A., 2018. How to document source code responsibly. [Online]
Available at: Code documentation
[Accessed 15 12 2020].

Guides, G., n.d. Mastering Markdown. [Online]
Available at: https://guides.github.com/features/mastering-markdown/
[Accessed 18 12 2020].

Manager, p., 2020. The Ultimate Guide to Gantt chart. [Online]
Available at: https://www.projectmanager.com/gantt-chart
[Accessed 17 12 2020].

Markdown, 2017. What is Markdown?. [Online]
Available at: https://www.markdownguide.org/getting-started/
[Accessed 17 12 2020].

32

Microsoft, 2018. What is cloud computing?. [Online]
Available at: https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
[Accessed 15 12 2020].

Mocha, n.d. Mocha. [Online]
Available at: https://mochajs.org/
[Accessed 17 12 2020].

NodelS, n.d. About Node.js. [Online]
Available at: https://nodejs.org/en/about/
[Accessed 15 12 2020].

PCMAG, 2016. Definition of Web application. [Online]
Available at: https://www.pcmag.com/encyclopedia/term/web-application
[Accessed 16 12 2020].

Smashing, 2016. What Is Responsive Web Design?. [Online]

Available at: https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-
design/#:~:text=Responsive%20Web%20design%20is%20the,use%200f%20CSS%20media%20queries.
[Accessed 15 12 2020].

StackExchange, 2017. What is development automation?. [Online]
Available at: https://softwareengineering.stackexchange.com/questions/178311/what-is-development-automation
[Accessed 15 12 2020].

Stolberg, S., 2009. Enabling Agile Testing through Continuous Integration, Chicago, IL, USA: IEEE.

technopedia, 2016. Software Repository. [Online]
Available at: https://www.techopedia.com/definition/32890/software-repository
[Accessed 15 12 2020].

Technopedia, n.d. Production Environment. [Online]

Available at: https://www.techopedia.com/definition/8989/production-
environment#:~:text=Production%20environment%20is%20a%20term,intended%20uses%20by%20end%20users.
[Accessed 06 12 2020].

TechTerms, n.d. End User. [Online]
Available at:
https://techterms.com/definition/enduser#:~:text=An%20end%20user%20is%20the,or%20programmers%200f%20the

%20product.
[Accessed 06 12 2020].

UTM, n.d. Concept: Use-Case Model. [Online]

Available at:

http://www.utm.mx/~caff/doc/OpenUPWeb/openup/guidances/concepts/use case model CD178AF9.html#:~:text=A
%20use%2Dcase%20model%20is,system%20t0%20solve%20a%20problem.&text=The%20most%20important%20mode
1%20elements,the%20model%20to%20simplify%20communications

[Accessed 15 12 2020].

Vasudevan, K., n.d. What is APl Documentation, and Why It Matters?. [Online]

Available at: https://swagger.io/blog/api-documentation/what-is-api-documentation-and-why-it-
matters/#:~:text=AP1%20documentation%20is%20a%20technical,and%20integrate%20with%20an%20AP|.&text=AP1%2
Odescription%20formats%20like%20the,to%20generate%20and%20maintain%20them

[Accessed 15 12 2020].

33

Appendices

1. Project proposal

Code Docs Automation

Overview

The purpose ofthis document is to provide the reader with more in-depth detail of my final year project for
National College oflreland BSc (Hons) in Computing programme. The proposed project will give
developers the ability to document their code. Documenting the code, the developer written usually takes
twice the time to write the code (personal experience). Then the developer spends at least one time to
create and publish the documentation.

Goal

Free the developertime byreducing the amount oftime needed for writing documentation to at least half
the time necessary to write the actualcode.

The automation tool should be “LEARN FREE” meaning that the developer should not spend time learning
how to use the automation functionality instead ofwriting code.

Objectives

Create a tool for automating code documentation process which will read the text files from the code
repository and transform the text into HTML. Create the automation process within a Continuous
Integration/ Continuous Delivery pipeline and publish the HTMLpackage online so other developers can
access. Automation process should read the folders and paths ofthe documents repository and
automatically create the navigation ofthe website.

Benefits

Freeing up developer time will give him time to do more important jobs, improve code quality and fix
more bugs and overall improving the business logic and deliver more value to the customer and business
itself.

Key Success Factors

The automation toolshould be coding language agnostic so any developer from any background can
benefit. The automation toolshould be “learn free” so any developer can focus on what their best at
instead ofusing company time to learn how to use our tool.

The automation tool should include all stages ofthe software development life cycle. Building sofiware
functionality usually include documents, scattered across different apps or places. For example, a UMLuse
case modelling documentation from requirements elicitation, might be small but powerfulinto helping us
building the documentation for a unit of functionality, like who can use it (actors), what they
need(prerequisites), and how to use it (flow ofevents).

34

Project Plan

1721 2/21 4/21
7 "] E 3 as 29 2 26
Final Project start end
Research + Discovery 09/11/20 04/12/20 [EEEEEE——
Conduct Market research oW1l w1 | 3
Define project scope 1311 1611 LD]
Seope finalized 1811 1811 5
Conduct requirments research 2011 2311 1DL|:
Gather requirements 2611 o012
Requirements finalized 0212 021z }Il
Kickoff meeting with supervisor 0412 0anz2
Design 07/12/20 22/12/20 [r—
High-level Use Case Modeling omz oanz
Design check-in 012 | D9z
Design period 1wz 1z
Deliver final design 2712 2212
Environment Setup 23/12/20 30/12/20
Set up Development env 2312 | 2402
Set up Pipeline env 2502 | 2802
Set up cloud/prod env 2912 3012
Sprint 1 04/01/21 25/01/21 ——
Sprint planning o4/01 0501 ::I-l
Sprint 1 start 0EO1 | D&DL
Sprint period 0401 1801
Testing 1901 19/01
Documentation created review 20/01 20/01
Bug Fix period 2101 22/01
Deploy / Sprint 1 end /01 2S00 |
Sprint 2 25/01/21 15/02/21 P——
Backlog grooming 25/01 27/01
Sprint 1 retrospective 2501 2501 : |
Sprint planning 28/01 29/01 I-I
Sprint 2 start 002 0202 :
Sprint period 2501 030z =
Testing B2 oaoz
Documentation created review 09/02 09/02
Bug Fix period 1002 1102
Deploy / Sprint 2 end 1502 1502
Sprint 3 15/02/21 0B/03/21 —
Backlog grooming 15/02 17/02
Sprint 2 retrospective 1502 1502 :
Sprint planning 18/02 102
Sprint 3 start 2302 2302 i
Sprint pericd 15/02 2402 |:|-|
Testing o103 o103
Documentation created review 02/03 02/03
Bug Fix period 0303 04/03
Deploy / Sprint 3 end OE/03 08/03
Sprint 4 08/03/21 29/03/21 =]
Backlog grooming OB/O3 10/03
Sprint 3 retrospective DE/O3 0803
Sprint planning 11703 12/03
Sprint 3 start 1603 16/03
Sprint period DE/O3 17/03
Testing 203 22/03
Documentation created review 23/03 23/03
Bug Fix period 24/03 25/03
Deploy / Sprint 4 end 2903 29/03
Sprint 5 20/03/21 19/04/21 —_—
Backlog grooming 29003 31/03 —
Sprint 4 retrospactive 2003 2903
Sprint planning 0104 02/04
Sprint 4 start 0604 DG4
Sprint period 29003 o07/04 —
Testing 12/04 12/m4
Documentation created review 1304 1304
Bug Fix period 14/04 15/04
Deploy / Sprint 5 end 19/04 1904
Sprint 6 18/04/21 10/05/21 [, |
Backlog grooming 1304 21/04
Sprint 5 retrospective 1304 13/04
Sprint planning 22/04 2304
Sprint 5 start 2704 | 2704 :
Sprint period 1804 28/04 I:I-l
Testing 0305 030
Documentation created review 04/05 04/05
Bug Fix period o505 | 060S
Deploy / Sprint & end /05 10405
Backlog 10/11/20 03/12/20 [
Backlog tasks TBC 11 031z I:_E
Backlog task 1 10711 0312 %:
Backlog task 2 111 03nz v i —
Backlog task 3 R R |

35

Technical Details

e The project willmake the use of NodeJS engine which will give us the ability to run the application
within a pipeline.

e The project willbe built mainly with JavaScript language, most likely can be built with any language but
my skills with JavaScript are greater than other languages.

e The project willmake use ofthe use case modelling technique in building the actual end user
published documentation.

e The project will follow the software documentation life cycle and gather as much information as
possible from each step for building the documentation.

Planning

Software
Development
Life Cycle

(SDLC)

Analysis

Implementation

=b,

Design

e The project willbe used to document itself during the process ofbuilding the automation

e The project willmake use of HTMLand CSS Grid technologies for the front-end resulting package.

e The project willuse .md type (markdown extension) files where all the data willbe gathered by the
developers.

e The project willuse Concourse pipelines technologies to implement continuous
integration/continuous deploy and docker images for the underling infrastructure

e The project willdeploy the documentation for itself created by itselfon a cloud platform like Heroku or
Azure.
The project willuse Mocha framework for unit and integration tests and to convey information to the
documentation automation system for building the documentation.

Evaluation

The system will be tested by creating the documentation for itself while building it and Ishould be able to
read the documentation online.

36

2. Reflective Journal October

National College oflreland

Course: BSc (Hons) in Computing —Software Development
Month: October 2020

Lucian Nechita, x16149505

Code Docs Automation

Background

My final project is an automated application to help developers document their software. The application
willbe designed to live within a Continuous Integration / Continuous Development pipeline, it will read
hand-written documents and convert it to a production ready website.

Planning

As any good project implementation starts with few sessions of planning. First week of Octoberis allabout
planning how Ican, and how [want to build my application. Discovering the required technologies
involved and assessing critical skills necessary in building the application, is at highest priority.

Research

In the second week ofOctober, [put all my efforts into research on competitive applications, their market
share and highlight their achievements, where exactly people connected with their own technology and
what they loved aboutit. Ibelieve it is important to see what other people will love to see achieved from
such technologies

Brainstorming

Third and fourth week of October was allabout brainstorming features on my application. [allowed two
weeks for this task as Iwant to make sure Iwill build exactly what Ineed and diminish the chances to miss
on opportunities, missing features.

Achievements

The month ofOctober helped me better understand the problem Iface. Although Iwill continue over the
month ofOctober to iterate over and over the planning part ofthe projectas a better knowledge ofproject
requirements will speed up the development progress later down the road

Student Signature: Lucian Nechita Date: 27 /09 /2020
Supervisor’s Signature: Date: //2020

37

3. Reflective Journal November

National College oflreland

Course: BSc (Hons) in Computing —Software Development
Month: November 2020

Lucian Nechita, x16149505

Code Docs Automation

Background

For the month of November, Ispend time on planning and research for my final project which is the
automated application to help developers document their software features. As it is quite a challenging
project, Ineed to make sure [know what I want to build before Istart building it, otherwise I will spend
more time redoing the functionalities which Iwill build.

Project Submissions

For the first week of November, [completed the ethics form and assembled the project proposalreport
required by National College ofIreland BSc in computing programme. This is very important as
communicating your project and ideas to others willhelp you better promote your product.

Gantt Chart

Project management took my second week, and it is another important step in building my automation
software and Gantt chart is one ofthe most popular way ofshowing, planning, and illustrate project’s
schedule. Doing this Ican better plan my activities and keep an eye on the deadlines which makes me
more suitable to deliver my project successfully.

Following the Plan

Following my Gantt chart, Ispent third week of November researching the marketin dept and [found

some similar applications, but they are limited to only one programming language and it is mostly just for
API’'s. While researching Istart to get more and more idea’s, so Idefined the scope ofthe project relative to

the time Thave. [will try to stick to the scope as Ido not want to get overwhelmed by the amount of work.

Gathering Requirements
My final week in the month of November was mostly about making more research, on requirements
gathering best practices and the actualrequirements of my automation framework/application.

Achievements
Having the requirements finalised is a major milestone and Imanaged to keep progress in sync with my

project management plan. [have a betteridea of what my software should do and what it should not do.

Student Signature: Lucian Nechita Date: 27 / November /2020
Supervisor’s Signature: Date: / November /2020

38

4. Reflective Journal December

National College ofreland

Course: BSc (Hons) in Computing —Software Development
Month: December 2020

Lucian Nechita, x16149505

Code Docs Automation

Background
For the month of December, [spend my time on design and design related research for my final project,
the automated application to help developers document their software features.

Design

My first two weeks in the month of December was mostly about the design ofthe features for my
application and create the use case modelling of my application which Iwillneed to use to build my
software documentation. So, Thad to be careful about the quality of my use case modelling as it will impact
the end-result ofthe automated documentation.

Requirements Elicitation

As use case modelling is a really good tool for requirements elicitation and represent system’s
requirements, [spend time researching best practices and iterating over key elements in my use case’s
several time to make sure Ireally understand what they supposed to deliver. It was good as my knowledge
grow in requirements elicitation and describe how actors use a system to achieve a particular goal.

Project Deliverables

Final Project midterm was in the month of December and Thad to put some time aside to complete
project’s deliverables required by National College oflreland BSc in computing programme. Really happy
that Imanaged to plan for these steps in my project’s management Gantt chart and it was easier to
manage.

Environment Setup

For the last week of December, Iset up the development environment which involved setting up GitHub
and my computer’s environment variables to development, created the pipeline and run a hello world
NodeJS application within the pipeline, and connected the pipeline with the cloud environment for CI/CD.

Achievements
Thave gained valuable knowledge for requirements elicitation and set-up the environments as planned. I
feelready to start building my application.

Student Signature: Lucian Nechita Date: 27 / December /2020
Supervisor’s Signature: Date: / December /2020

39

5. Reflective Journal January

National College oflreland

Course: BSc (Hons) in Computing —Software Development
Month: January 2020

Lucian Nechita, x16149505

Code Docs Automation

Summary
In the month ofJanuary, [spent most of my time with exams and building/playing around my December
build ofthe software prototype.

Exams

My first week in the month ofJanuary was mostly about the upcoming exams and Ispent all my time
studying and getting the exam papers ready for the deadline. As we had six modules last semester and
only four this semester, Idecided to delay project work and focus on exams only considering that my
project plan included six modules for the second semester as well. Having just four will free up much time
for project work enabling me to have this delay.

Environment Setup

As Ifinalised use case modelling documentation during December month and T have built a software
prototype Iwas able to start connecting the application with allmy environments. [have created a GitHub
account to hold my software source code and created a pipeline in Concourse with Docker orchestrator
which will allow me to push the code trough the pipeline, have all the tests executed and the
documentation created and save it to the GitHub repository.

Project Availability

As the documentation needs to be published to a cloud vendor, [Thave connected GitHub repository with
Heroku cloud provider which will publish my code online once a new version ofthe source-code reaches
the master branch. This is relatively fast making the documentation available on the internet within minutes
which is great as the latest version ofthe software will have the latest version ofthe documentation

Documentation Setup

The docs automation project makes use offiles and folders to generate web app documentation links and
content, and although the content generated by the software is working as intended there are some
challenges generating the links (or table ofcontents) as it has to be dynamic, and users should never
manually create the links. The issue is within the file-paths as they differ from OS to OS (Linux, Windows
etc.)and which link goes where, the OS is sorting the folder structure and we do notneed it to be sorted.

Student Signature: Lucian Nechita Date: 27 / January /2020
Supervisor’s Signature: Date: / January /2020

40

6. Reflective Journal February

National College oflreland

Course: BSc (Hons) in Computing —Software Development
Month: February 2020

Lucian Nechita, x16149505

Code Docs Automation

National College oflreland

Course: BSc (Hons) in Computing —Software Development
Month: February 2020

Lucian Nechita, x16149505

Code Docs Automation

Overview

Forthe month of February, [had a very big unforeseen issue. My personal computer crashed beyond
normal recovery options. Not really sure why but the motherboard stopped showing any signs oflife and I
performed allpossible troubleshooting methods with no success. My only option was to buy a new
motherboard which took a lot oftime as Thad to make sure it’s compatible with other parts. Ofcourse, is
not that straightforward as newer motherboards doesn’t like older CPU’s, so I had to order a new CPU and
Random-Access-Memory as well.

Iwould ve takin it to a shop to be quickly fixed but due to Corona virus all shops were closed, and my only
option was to fix it myself. So, [ordered the necessary parts butagain due to COVID and Brexit combined
the parts were very slow to arrive as the delivery was stuck on United Kingdom customs.

This problem really hurt my progress on the final project so far as Iwas not able to do anything. Only
progress Idone was to attend the semester two modules on my mobile phone which wasn’ a great
experience but hey, better than nothing.

Recover lost time

Idon’t have a really good method ofrecovery apart ofsacrificing few hours ofsleep and work on my
project. We have 730 hours in a month from which Ispend 160 at work and 240 sleeping (8 hours) giving
me 330 hours left for college. Dividing that by the number of modules this semester 'm left with 66hours
for each module in a month. So, [will have to recover 66 hours, considering that Ican cut two hours from
my sleeping that will give me roughly 33hours or one month ofsleeping two hours less and get back on
track with my project.

Conclusion
Ibelieve Istillhave a chance to finalize my final year project and deliver most ofthe project requirements.
My other option was to apply for a deferral, but Iprefer to go forward and try my best, just a little tougher.

Student Signature: Lucian Nechita Date: 27 / February /2020
Supervisor’s Signature: Date: / February /2020

41

7. Reflective Journal March

National College oflreland

Course: BSc (Hons) in Computing —Software Development
Month: March 2020

Lucian Nechita, x16149505

Code Docs Automation

Overview

For the month of March, [followed my previous plan ofsleeping two hours less which was quite
challenging and tiring but it did pay offand Imanaged to bring the project up to date. Also, I was very
busyin pushing out assignments for other modules in semester two way before their deadlines so [can get
more time to work on my final project.

Project profile

Project’s profile was created and submitted on teams to be reviewed by the teachers and supervisors, it
was quite small task but quite important into advertising my project, so special care was given on the
selected profile photos and target audience messages.

Project Documentation

For the project documentation [took the feedback received from the mid-point submission and Tadded a
whole system overview as it was quite difficult for the audience what I was trying to achieve and how the
system will look like on my old documentation. Also, another feedback was to include more details on the
technology used within my project which Isuccessfully added. Only thing left is the testing and evaluation
which will have to wait until [implement the tests and evaluate my project

The system

The system is my only concern at this stage as Ido not have any other assignments due. Currently is back
up and working as intended on the developing/local environment managing to translate any markdown

files into browser viewable pages. Istart working on the user interface and hopefully deploy it live on the
cloud within a week.

Conclusion
Keeping a coolhead and being able to adapteven in the most dire and unforeseeable ofcircumstances
helped me recover and stay on the track with my project.

Student Signature: Lucian Nechita Date: 27 / March /2020
Supervisor’s Signature: Date: / March /2020

42

8. Reflective Journal April

National College oflreland

Course: BSc (Hons) in Computing —Software Development
Month: April 2020

Lucian Nechita, x16149505

Code Docs Automation

Overview
For the month of April, [followed the requirement on the documentation in building the automation
system and created the unit test plus the documentation regarding the testing part ofthe system.

Unit Testing

Project’s unit tests were performed with Mocha framework for NodelJS and JavaScript language and is the
most popular framework out here at the moment. The testing was quite difficult to perform as the system
involves a lot ofterminal commands to talk to the operating system and transform the individual parts into
beautiful documentation.

User Interface

For the user interface lused Angular framework in the end as Iwas a bit undecided between front-end
frameworks. Ichoose Angular for the simple reason that is the most used framework within large
organisations and this is a great skilland know-how to have under my development “belt” which will boost
my professional life.

The system

The system is capable oftaking markdown document and transform them into beautiful code
documentation which is deployed alongside the source-code itself making the documentation more
relevant to the deployed source-code and give developer less chances to have outdated documentation.
Developers are also able to tweak the document looks and feelby adding custom settings into the system
giving them the ability to keep the uniqueness oftheir application look and feel.

Conclusion

It was a tough problem try and solve and yet the biggest challenge is to figure out the human inputs
towards the documentation and discover a way to automate that, so in the near future Iplan to play with
speech code documentation automation with the hope ofcapturing the developer thoughts while he
codes and develop his solution.

Student Signature: Lucian Nechita Date: 27 / April /2020
Supervisor’s Signature: Date: / April /2020

43

9. Showcase Poster

. utodocs
ﬁ e
-\ National
;:GI}EgEE Mational College of Ireland, BSc (Hons) in Computing 2020/2021
relan Lucian Nechita, Student ID x16149505

The aim of this praject is the creation of a system for automating code documentation process which will
gather source documents and assemble them into a ready to deploy web application. The system will work
within an automated development process, recognize repository changes, and gutomatically start a task
within the software pipeline publishing the web application to the cloud and making it accessible to end
Uses Within minutes.

“As prograrmmers we live in a world of plain text. Make more time for the
Our documentation taoling should be no things you love, automate
exception. We want tools that turn plain text into !
pretty HTML." (write the docs)

“We also have some of the best tooling available
for tracking changes to files. Why would we forgo
using those tools when writing documentation?
This workflow is powerful, and familiar to
developers.” (write the docs)

At its core, Wtodocs is a dynamic document
bundler for modern applications. When utodocs,
processes your application documentation, it
internally builds a table of contents graph which
maps every markdown file in your praject and
generares heep link's which paint into vour
application GitHub repository.

<

44

10. Attachments

Original files for above appendices.

oW W o

x16149505 x16149505 Lucian Nechita x16149505
Reflective Jurnal ParReflective Jurnal Par Project Proposal .doReflective Jurnal Par

¢

Project Proposal
Lucian Nechita.pdf

oW W m B

x16149505 x16149505 Lucian_Nechita_Mar Lucian_Nechita_Apr Showcase
Reflective Jurnal Par Reflective Jurnal Par ch_Reflective_Journ:il_Reflective_Journal Poster.pptx

45

	1. Objective
	2. Opportunity
	3. Solution
	Introduction
	4. Project Background
	5. Project Aims
	6. Project technologies

	System
	1. Requirements
	a. Functional Requirements
	b. Use Case Modelling
	c. Data Requirements
	d. Data Conversion
	e. Environmental Requirements
	f. Non-functional Requirements
	g. Usability Requirements

	2. Design & Architecture
	a. System Architecture Back-End
	b. System Implementation
	c. User Interface

	3. Testing
	4. Evaluation
	5. Conclusion
	6. Further Development and Research

	References
	Appendices
	1. Project proposal
	2. Reflective Journal October
	3. Reflective Journal November
	4. Reflective Journal December
	5. Reflective Journal January
	6. Reflective Journal February
	7. Reflective Journal March
	8. Reflective Journal April
	9. Showcase Poster
	10. Attachments

